相平衡与相图的教学体会

相平衡与相图的教学体会
相平衡与相图的教学体会

相平衡与相图的教学体会

中国地质大学(北京) 邓雁希Ξ

摘 要:相平衡与相图是无机材料物理化学中非常重要的一部分内容,本文介绍了作者在该内容的教学实践中,不断进行教学内容和教学方法改革探索,激发学生学习的主动性,重视学生能力培养的体会。

关键词:相平衡与相图 教学体会

相图,也叫平衡图、组成图或状态图,是处于平衡状态下系统的组分、物相和外界条件相互关系

的几何描述。相图在许多科学技术领域已成为解决实际问题不可缺少的工具,例如在化学、化工、矿物、地质和物理等领域中的应用十分广泛。在材料领域也十分重要,例如,几种化合物混合在一起能合成出什么(即往什么方向进行)?最后能得到多少预计的相组成(即限度)?这是材料制备过程中人们迫切关心的问题,而相图能有效和方便地解决这类问题。因此,相图对于材料科学工作者的作用如同地图对于旅行者那样重要,相图与相平衡的研究就成为解决新材料研制的重要课题。

但是,教学实践表明,学好相图是很难的,尤其是多元平衡相图大多数具有非常复杂的空间结构,需要学生具有较强的空间想象力,有的学生从刚开始就没能理解其真谛,结果随着学习相图种类的增加和复杂,其学习难度也随之增大。因此,如何使学生能够更多地了解和认识多元系统相平衡与相图的基本理论和规律,掌握分析和阅读实际复杂三元相图的方法和技巧,会用相图基本原理分析单元、二元、三元系统专业相图的相变化规律,了解其实际应用,是教师在授课过程中必须解决的问题。在教学的过程中,笔者有如下的思考和体会。

一、激发学生对学习相图的兴趣

兴趣是最好的老师,人只有对某一学问或者课程有了浓厚的兴趣,才会有学习的动力和毅力,学习效率才会高,所掌握的知识才能牢固,才可能会应用知识。一个人的能力发展也是与兴趣密切相关的,任何行业的成功者,都是以兴趣为基础的。诺贝尔还在童年时代就受父亲的影响,对实验产生了浓厚的兴趣。这对他后来成为伟大的科学家产生了很大的影响。因此,在相图教学过程中,教师有责

任培养学生对于相图学习的兴趣,让学生学会学习,培养他们的学习能力、学习方法、学习欲望和学习动力。

相平衡与相图这部分内容与我们的生活息息相关,各种与相平衡有关的现象随处可见。滑冰者可以在冰上潇洒地滑过(尽管冰实际上并不是很光滑的);盐撒在结冰的路面上可以把冰除去;水和油不能混合;糖加到冰水里只有少部分溶解,而加到热茶里却很快溶解。这些奇妙的现象激起学生的兴趣后,就能促使他们去学习相平衡与相图的有关知识。相图在许多科学技术领域中也已经成为解决实际问题不可缺少的工具,例如在开发新材料过程中,往往要研究用什么材料在什么条件下形成什么相,预计获得什么性能,而相图可以帮助我们选择配料方案及工艺制度,合理分析生产过程中质量问题、产生的原因以及帮助我们进行新材料的研制。因此,在教学过程中,特别注意把理论知识和生活中的实践结合起来,使学生认识到理论学习有助于实际问题的解决,以此加强学生对相图的兴趣以及学习的动力。

二、注重基础,掌握基本概念和基本规律相平衡与相图部分在无机材料物理化学课程中占有非常重要的地位,教学大纲中要求学生掌握基本相图类型的构成、特点、静态和动态分析,并且能够分析实际的专业相图。而这些内容具有较强的理论性,涉及的概念和规律非常多,它们往往是学生学好相图的障碍。为此,在教学中特别注意对基础知识、基本概念和基本规律的掌握,并且强调这些基础知识的灵活应用。教学实践表明,只要学生掌握了这些有关的基本概念和基本规律,学好复杂相图并且能够灵活应用是不难的。例如,在这部分内容中,“吉布斯相律(f =C -P +n )”贯穿其中,

1

6Ξ邓雁希,中国地质大学(北京)材料科学与工程学院,讲师。

2004年第2期

中国地质教育

CHIN ESE GEOLO GICAL EDUCA TION

相图的学习就是从吉布斯相律开始的,我们要求学生必须彻底掌握该规律并能够在相图的分析中熟练运用该规律。因此,在授课过程中,紧紧抓住该公式中的每一个符号,从物理意义、适用范围等方面讲透,澄清学生可能产生的各种模糊认识,使学生真正弄清楚该公式的意义。在讲组分数C、相数P 和n值时,紧紧地与材料系统相联系,如对于“相”这个概念,在学生掌握了其含义之后,还特别强调了在无机材料领域中经常遇到的情况,比如玻璃的配料是把石英砂、长石粉、纯碱、方解石粉等混合在一起,表面看起来是很均匀的,但是可以用机械的方法把它们分离开,因此玻璃配合料不是一个相而是多相的;对于n值,由于很多材料系统都是可以忽略压力影响的凝聚系统,因此吉布斯相律又可以简化为f=C-P+1。引用这样的实例来阐述概念能够加深学生对概念的理解,对于吉布斯相律在相图分析中的正确应用有着很重要的意义。三元相图以二元相图为基础,把组分扩大为3,因此比二元相图更为复杂,也更接近于实际情况,在硅酸盐、材料和冶金等方面应用得十分普遍。但由于三元相图是非常复杂的空间立体图形,需要较强的空间想象力,如果基础没有打好,那么后面的实际复杂相图是很难分析并灵活应用的。因此,在教学过程中强调七大基本规则(等含量规则、等比例规则、背向性规则、杠杆规则、重心规则、相对位规则、共轭位规则)的掌握,并且教给学生如何在具体的相图分析中来应用这些规则;另外,三元相图中还有大量的规律,在实际授课过程中通过具体的例子使它们变得易于被学生掌握。这些规则和规律对于学好三元相图、正确分析三元相图是非常重要的,只有掌握了三元相图中最基本的原理和基本规律,才能正确地分析和应用实际复杂的三元相图。

三、强调知识的联系和综合

相图部分内容繁杂,但各部分内容之间并不是孤立的。比如三元系统相图可认为是由三个简单的二元系统组成的;二元相图尽管成百上千万且各不相同,但是任何复杂相图都存在共性,因为其热力学原理是相同的,都是受相律约束的,都是由若干个基本类型相图(如图1)按一定规律组合或演变而形成的。因此,在教学过程中,通过阅读各种类型的相图组成、特点并在各类型相图之间找出差异、共性和内在联系来提高学生分析相图的能力,从而使学生更加准确和全面掌握相图的知识。我们在讲“生成低共熔型有限固溶体的二元系统相图”时,让学生来比较该图和最简单的二元系统相图,让学生找出他们之间的区别和联系,从中深刻地理解曲线(aQ、QW、bP、PF)和区域(α和β)的含义(如图2)。另外,我们在讲完相图的基本类型和基本规律之后,借用实际的专业复杂相图,

分析相图的步骤以及其间需要应用的规律和规则联系到一起,使知识系统化。通过这样的教学,就可以在学生的头脑中形成一定的知识体系,而不是分散的、零星的,对于复杂相图的分析才是有好处的。而在教学过程中通过相图的分析得出的一些规律性的东西,可以指导我们的材料制备工作。

图1 基本相图

图2 相图的比较

四、理论联系实际,不断激发学生的学习热情和钻研精神

相图部分,理论性的知识很多,因此,在教学中,应特别注重增强教学内容的实践性。除了重点学习相图的基本原理和基本规律之外,还特别指出哪些物质组成的系统具有这种形式的相图,这种相图在实践中有何应用,能够解决什么样的实际问题。例如,我们在讲“具有不一致熔化合物的二元

26相平衡与相图的教学体会总第50期 

系统相图”时,在学生了解了相图的基本原理和基本规律之后,告诉学生很多材料体系(例如SiO 22Al 2O 3系统、MgO 2SiO 2系统、Mg 2Ni 系统、CaF 22CaCl 2系统等等)中都有不一致熔化合物生成,这

类相图在实际生产中得到了广泛的应用。例如某单位需要的一种刚玉为骨架,外表包一层莫来石结构的催化剂载体,就可以根据SiO 22Al 2O 3相图利用包晶反应的原理来制造。为了让学生能够利用所学的知识来解决问题,我们让学生来设计方案,然后让大家来讨论。学生在对这些问题的解决过程中必然会提出自己的想法,从而促使他们不停地去思考,在思考的过程中培养他们的钻研精神、创新意识和科学思维能力。

五、注重教学方法的改革,提高学生分析问题、解决问题的能力

在课堂上尽量不采取“灌输式”的教学方式,而是注重启发式教学,采用引导发现教学法,在教师的启发和引导下,让学生去思考、去做、去说,启发学生善于提出问题,引导学生积极地进行类比思维、逆向思维、发散思维与集中思维,培养学生的科学探究精神和创新思维能力。例如,我们在讲“具有一个不一致熔二元化合物的三元系统相图”时,把整个相图分成很多区域(如图3示),

选择不同区域(如第4和第6小区)的物系点,先从学生已经了解的知识出发,让他们自己分析不同物系点的冷却结晶情况,通过教师的引导最后得出结论(即在转熔点的析晶结果以及穿相区的规律性),使他们成为知识的再发现者,让他们体会到发现知识、展示知识的愉悦。这种方法突出了学生“发现”的过程,因此有利于激发学生的学习兴趣。又如,在讲“实际三元相图CaO 2Al 2O 32SiO 2”时,举了一个应用例子即水泥的生产,要求学生结合相图加以讨论并回答“如何应用该相图来分析水泥生产过程中配料、烧成及冷却”。在学生讨论过程中,教师启发学生应用学过的知识来进行分析,鼓励学生自己得出结论,从而提高他们利用相图分析实际问题的能力。经过这样的教学后,使学生有了一个认识问题、分析问题、解决问题的思路,既启迪了学生的逻辑思维能力,还可以提高他们应用基础知识解决问题的能力。这样在教学过程中即可通过教师的主导作用,来充分发挥学生的学习主动性。相平衡与相图的教学实践表明,在教学过程中本着“注重基础、强调理论联系实际”的原则进行教学,效果还是很好的。学生普遍对无机材料物理化学课程中相图学习的积极性很高,能够灵活运用所学的知识来分析问题和解决问题

图3 具有一个不一致熔二元化合物的三元系统相图

参 考 文 献

11黄勇、崔国文1相图与相变1清华大学出版社,19871221饶东生1硅酸盐物理化学1冶金工业出版社,199731周亚栋1无机材料物理化学1武汉工业大学出版社,1996

3

62004年第2期

中国地质教育

CHIN ESE GEOLO GICAL EDUCA TION

物理化学相图小知识

1.相律的有关概念与相律表达式 (1)独立组份数C=S-R-R′。S为物种数,R为独立化学反应计量式数目。R′ 为同一相中独立的浓度限制条件数(包括不同物种依反应计量式比例关系及离子物种电中性条件) (2)自由度数f,系指相平衡体系中相数保持不变时,所具有独立可变的强度变量数。 (3)相律内容及其数学表达式。相律就是揭示pVT平衡系统中自由度数、独立组份数和相数三者之间的制约关系。 表达式为:f=C-Φ+2;式中(式中 2 指T、p两强度变量) 当T、p中有任一固定,则表达式为:条件自由度数f*=C-Φ+1 当考虑除T、p、X B以外的其他变量或相间有某种限制时,则表达式为f=C-Φ+n;(式中n≥2)(4)相律的局限性与应用的关键性。相律是一个定性规律,它指明特定条件下该平衡系统至多存在的相数及其相应的独立变量数,但不能指明是哪些相共存?哪些性质可作为独立变量及其它们之间的定量关系?相律对单相与复相都适用,但应用相律时,首先要考察系统是否满足相律成立的条件,并确定系统的组份数。 2.单组份系统的相图与特征 (1)单组份系统相律与相图:因C=1 ,故相律表达式为f=3-Φ。显然f最小为零,Φ最多应为 3 ,因相数最少为 1 ,故自由度数最多为 2 。相图是用几何图形来描述多相平衡系统宏观状态与T、p、X B(组成)的关系。在单组份相图中有单相的面、两相平衡线和三相平衡的点,自由度分别为f=2、f=1、f=0。 (2)单组份相变的特征与类型。相变是一个连续的质的飞跃。相平衡时物质在各相中的化学势相等,相变时某些物理性质有突变。根据物性的不同变化有一级相变和连续相变(包括二级相变等高阶相变)之分;前者广为存在如气、液、固之间转变,其特点是物质在两相中的化学势一级导数不相等,且发生有限的突 变〔即〕,此 类相变平衡曲线斜率符合克拉贝龙方程。后者如氦He(Ⅰ)与He(Ⅱ)的转变。正常状态与超导状态的转变,其特点是化学势的一级导数在相变点连续〔即V1=V2,S1=S2〕,但化学势二级导数 在相变点附近则迅速变化,出现一个极大峰如; 或。二级相变平衡曲线斜率符 合爱伦菲斯(Ehrenfest)方程: 3.克拉贝龙—克劳修斯方程及其应用条件 (ⅰ)克拉贝龙方程:适用于单组份系统两相间平衡 (ⅱ)克拉贝龙—克劳修斯方程:适用与其中含气相的两相间平衡,且气相应服从理想气体状态方程。

二维相图和三维相图的计算

二维相图和三维相图的计算 描述二维相图和三维相图计算的算法。虽然零相分数的概念是用于计算二维相图,单相分数的概念被应用于计算三维相图。三维相图可以更好的观察等高线,例如在三维相边界的等温线。零相分数和单相分数的概念已经被推广到任何属性的等高线。 引言 材料是现代科技的基石。材料目前面临的挑战是设计新材料,改进现有的技术,以满足新技术的需要。为了提高材料的研究效率,概念集成计算材料工程(ICME)已被提出并应用在材料研究和工业应用中。在近十年在ICME领域有许多重大的成就。在ICME领域中的一个最重要的组成部分是相位特性变化的模拟,如热力学,动力学和力学性能的模拟。所有相得相关属性与相平衡密切相关,它可以图形化地呈现在相图中。 相图,通常被称为材料的设计图,在材料设计中起重要作用。在早期,大多数的相图通过实验测量并且局限于一元,二元和三元系统。计算相图可以追溯到Van Laar 和meijering 两人。他们计算了一些简单的二元和三元相图。1970年,计算机作为一个新的材料研究方法由考夫曼等人开创的相图计算标志着相图计算的开始。相图计算方法在ICME中已经成为一个重要的仿真方法。 相图被收集在一起便于查阅运用。随着互联网的效率越来越高,许多常用的在线相图是在网上可以找到。收集的相图和网上的资源大多数是二维(2D)静态图并且局限于低阶系统。然而,在实际应用中,多组分相图通常在手册或在线相图数据库中不可用。为了计算多组元相图的有用性,计算机软件和多组分热力学数据库是必要的。近年来,一些相图计算软件,如Pandat, Thermo-Calc, 和FACTSage已经被开发用来解决这个问题。

5.静力学:相图、物理平衡复习

静力学的基本方程大家都是熟知的,对于每个物体写合力为零+合力矩为零,但是这样的后果是经常造出一个n 元一次方程组(n 元不等式的处理办法我们在上一讲已经部分解决)。如何省去不必要的麻烦是这一讲的目标。正是“去掉所有不必要的东西”,“用同一个方程表述尽量多的情况”这样的想法诱发了拉格朗日等人建立了理论力学。如今理论力学已经几乎现代物理的标准描述方式。 静力学化简的基本原理在于,约束力是“要多大,有多大”。约束力和约束总是成对出现,增加一个几何条件,增加一个未知的力。如果能让一个约束力不出现在方程中,方程组就会从一个n 元一次 方程组变成1n -元一次方程组。要知道在n 很大的时候,解方程计算量大约是3 3 n ,从而导致你的运算 时间随着3n 增长,计算正确率随着3 3 (1)n q -下降,其中q 是你一次计算犯错的概率。所以要干事情就是不让约束力出现。 第一部分:矢量力学的基本方法 1、 在垂直于约束力方向写方程,也就是高中天天念叨的“在XX 方向的分力” 2、 通过合理选取支点,让一些力不出现。 注意 I 只有合外力等于0的体系才能导致体系不同点为支点计算力矩相同 II 同一个物体选择两个支点写方程,相当于一个力矩方程+一个不平行于支点连线方向的受力方程。 3、 通过以整体为对象,将内部相互作用消去(相当于用目测的办法把两个方程加了一下) 4、 即将滑动的时候将摩擦力和支持力合成一个确定方向,不定大小的力。然后配合矢量图或者三 力汇交解决问题。(相当于用目测的办法把f N μ=这个式子带入了) 5、 计算的主要复杂度来源于将方程相加时候,要把同类项都乘一遍,再加一遍,如果能每次都能“用一个方程消灭一个未知数”,那么你解的就是n 个一元一次方程,而不是n 元一次方程组, 正确概率会变成(1')n q -,时间变成n ,显然好了很多。以5为最后目标,以1-4为手段,绝大部分静力学暴力计算题都可以合理时间内解决。 附加说明两点 1 明白这些原理的老师命的题可以使得以上做法全部失效,参见学而思出的《第29届复赛模拟试题汇编》(六套),在https://www.360docs.net/doc/d112653647.html, 下载。 2 如何在压根没时间解方程时候,只通过解方程混分,参见暑期最后一节课的骗分学导论。 本讲导学 第4讲 静力学化简 知识模块

二元相图计算

《二元相图计算》创新课程作业 学生:于永龙班级:焊接2班学号:10850212 一名词解释 1. 体系 体系就是我们研究的对象的总和。 2. 环境 系统以外又与系统密切相关的部分称为环境,环境必须是与系统有相互影响的有限部分。 3. 组元 组成合金的独立的、最基本的单元称为组元,组元可以是组成合金的元素或稳定的化合物。 4. 相 系统中物理性质和化学性质完全相同的均匀部分称为相。 5. 相律 表示平衡物系中的自由度数,相数及独立组分数之间的关系。数学表达式:?=C-Ф+2 6. 杠杆定律 在结晶过程中,液、固二相的成分分别沿液相线和固相线变化。 7. Gibbus自由能 G=H-TS, G叫做吉布斯自由能。 8. 化学势 等温等压下,在一定浓度的溶液中,加入微量组分B,而引起系统吉布斯函数对组分B物质的量的变化率。 9. 理想溶液 宏观定义:溶液中的任一组分在全部浓度范围内都符合拉乌尔定律的溶液称为理想溶液。 分子模型定义:各组分分子的大小及作用力彼此相似,当一种组分的分子被另一种组分的分子取代时,没有能量的变化或空间结构的变化,即就是当各组分混合成溶液时,没有热效应和体积的变化。 10. 拉乌尔定律 如果溶质是不挥发性的,即它的蒸气压极小,与溶剂相比可以忽略不计,则在一定的温度下,稀溶液的蒸气压等于纯溶剂的蒸气压与其克分子分数的乘积。 二读书报告 关于《相图分析及应用》的读书报告 相图在冶金,化工等工业生产部门及矿物、化学等科学研究领域有着广泛应用和重要指导意义,是解决一些实际问题不可缺少的工具。在生产及新产品开发过程中,人们经常要遇到相图基础知识和应用相图解决一些实际问题,而《相图

相图计算理论相关

系列讲座一(2009-06-30) 1. 为什么模型要有空位(Va ) 比如二元的(Fe,Ni),在三元时间隙位置溶有第三组元C ,那么三元模型就变成(Fe,Ni)(C,Va),所以二元的模型可以修改为(Fe, Ni)Va 。此处加Va 是为了外推的方便。 纯组元的自由能,因加入空位而自由能降低。 2. 热力学函数 G(T, P),H(P,S) 等 当一个体系达到平衡时 ∑=ββG n G min (体系的自由能达到最低值) 3. 平衡条件——自由能最低 A .e.g. B .对于一个简单的共晶体系,体系的自由能ββααG n G n G n G L L ++=

C .化学势的定义式 ααα α μB n A A n G )(??= 系列讲座二(2009-07-02) 1. 相平衡时,混合自由能最低 证明一:化学势的定义式ααα α μB n A A n G )(??= ∑=ααG n G p j k k j k k n j k x k n j j j j j n x x G n G n G n G n G n G n n n G )()()(,,????=????+=??+??=??≠≠∑∑∑ααα αααααα n n n n x k j k k == ∑ 其中,??? ???? ? ??-??=??≠≠j p p j p p p n j k n j k n j k n n n n n n n n x ,,21)( [] k ij n n n -=δ21 = ij δ k j k j ≠=01 G α G β

[] k ij x n -= δ1 ∴∑∑∑===??-??+=??-??+=c k k k j c k k k ij c k k j x G x x G G x G x x G G 11 1ααα ααα α δμ 证明二:平衡时β αμμA A = ββααG f G f G += 1010 021********=-+=-+=--=--ββα αββ ααβ βααx x x x x f x f x x f x f x 条件极值 令 ) 1()1()()(212111221111-++-++--+--++=β β β αααββααββααββααφφλλx x x x x f x f x x f x f x G f G f L 其中未知数有βαββααβαφφλλ,,,,,,,,,212121x x x x f f )6(0)5(0)4(0)3(0)2(0)1(022 222211111122112211 =+-??=??=+-??=??=+-??=??=+-??=??=--=??=--=??β βββααααααββββββα αα αβ βββ α ααφλφλφλφλλλλλf x G f x L f x G f x L f x G f x L f x G f x L x x G f L x x G f L αα αf x x ?-?+?)1()5()3(21: 02 211=-+??+??α ααα ααα φG f x G f x x G f x 所以,?? ????-??+??-=ααα ααα α φG x G x x G x f 2211 (7)

材料设计与热力学相图计算

哈尔滨工业大学材料热力学论文——相图计算及其在材料设计中的应用 指导老师:郑明毅 学生:孙永根 学号:11S109048

相图计算及其在材料设计中的应用 摘要 本文首先介绍了材料设计所遇到的困难以及CALPHAD技术的出现及应用。CALPHAD 技术综合利用计算热力学、动力学模拟及实验数据规范评估来优化材料的成分、相(含亚稳相)组成、组织结构及加工处理过程,进而改善材料性能,是二十世纪八十年代出现了计算材料学这一新学科的重要组成部分。 本文分别简要介绍了计算相图(CALPHAD技术)在ZA52-xY镁合金的合金设计及建立Mg-Ca-Ce三元体系热力学系统中的应用,凸显了CALPHAD技术在计算多元体系相图中的优势。 1 材料设计与热力学相图计算 1.1 材料设计的途径及CALPHAD技术 在以往的材料开发上,通常采用“试错法”来实现,即材料开发人员通过大量的实验和经验来选择材料的成分、稳定工艺参数。这样即消耗了大量的人力和物力,又不利于系统地探讨材料改性的机理。 材料科学研究面临的突出问题可以归结到两个方面:(1)由于研究对象的复杂性,现有理论模型无法突破局限性,对一些错综复杂问题的处理难以令人满意;(2)虽然新的实验技术、仪器和设备不断涌现,在一定范围内为实验研究提供了新的途径,但大都极为昂贵。材料制备中一个不容忽视的问题是:我们对具有一定组织和性能的多组元或多相材料的成分缺乏可预见性。相图常常作为确定材料制各工艺路线(包括成分配比、合成和处理)的唯一依据。但是,对于多元、多相新兴材料,绝大多数情况下只能找到其构成元素间的二元相图,而三元和三元以上的多元相图非常有限。因此,对多组元合金制备时成分的确定相当缺乏理论指导,而试验尝试的方法盲目性较大,又非常耗时耗力。 由上述可见,传统的材料研究方法存在不少局限性。对于新材料研制,单纯依靠理论研究和实验尝试都不能保证科学性和高效性。 随着近一个世纪合金理论的积累和几十年来计算机技术的迅速发展,20世纪60年代相计算(PHACOMP)技术在Ni基高温合金成分设计上的成功应用揭开了合金设计的序幕。虽然那仍是一种依赖于经验的相平衡成分计算,至少让材料学家体会到相平衡信息对于合金设计是多么的重要;70年代出现的CALPHAD技术已经是在追求利用普遍适应性的热力学模型获得多元体系中所有物相(包括亚稳相)的特征函数,再通过严格的热力学理论,得到多元体系的所有物相的热力学性质,使材料设计由经验设计向科学设计转变。 CALPHAD技术综合利用计算热力学、动力学模拟及实验数据规范评估来优化材料的成分、相(含亚稳相)组成、组织结构及加工处理过程,进而改善材料性能,是二十世纪八十年代出现了计算材料学这一新学科的重要组成部分。CALPHAD技术利用实验测定的相平衡信息和热化学数据,对相关研究体系进行严格的热力学优化,获得体系中包括亚稳相在内所有物相的热力学特征函数(通常为Gibbs自由焓),虽然它仍依赖于由实验获得低元体系的数据参数,但可以说,多元体系的所有热化学性质尤其是相转变驱动力、相转变所需克服的势垒及亚稳相关系的获得过程已经达到了真正意义上的理性阶段。人们对实验测定相关系在新材料研发特别是材料设计上的重要性是有足够认识的,但只有在通过CALPHAD技术来获得所有热化学性质之后,相图测定和相平衡研究才真正成为了材料设计的一部分。 目前,材料设计领域富有挑战性的课题就是如何在不同层次一材料的成分设计、显微结构、性能和制备工艺之间搭桥,从而达到从材料微观结构到宏观性能的预测和设计。

相平衡课后解答

第四章 相平衡 复习题 1.判断下列说法是否正确,为什么? (1) 在一个密封的容器内,装满了373.2K的水,一点空隙也不留,这时水的蒸气压等于零;(2) 在室温和大气压力下,纯水的蒸气压为P*,若在水面上充入N2(g)以增加外压,则纯水的蒸气压下降; (3) 小水滴与水汽混在一起成雾状,因为它们都有相同的化学组成和性质,所以是一个相;(4) 面粉和米粉混合得十分均匀,肉眼已无法分清彼此,所以它们已成为一相; (5) 将金粉和银粉混合加热至熔融,再冷却至固态它们已成为一相; (6) 1molNaCl(s)溶于一定量的水中,在298K时,只有一个蒸气压; (7) 1molNaCl(s)溶于一定量的水中,再加少量的KNO3(S),在一定的外压下,当达到气—液平衡时,温度必有定值; (8) 纯水在三相点和冰点时,都是三相共存,根据相律,这两点的自由度都应该等于零。 答(1)不对 (2)不对 (3)不对,两相——气相与液相 (4)不对,两相 (5)正确。 (6)正确 (7)冰点时,两相共存,f=1。 2.指出下列平衡系统中的物种数、组分数、相数和自由度数。 (1)NH4Cl(s)在真空容器中,分解成NH3(g)和HCl(g)达平衡; (2)NH4Cl(s)在含有一定量NH3(g)的容器中,分解成NH3(g)和HCl(g)达平衡;(3)CaCO3(s)在真空容器中,分解成CO2(g)和CaO(s)达平衡; (4)NH4 HCO3(s)在真空容器中,分解成NH3(g),CO2(g)和H2O(g) 达平衡; (5)NaCl水溶液与纯水分置于某半透膜两边,达渗透平衡; (6)NaCl(s)与其饱和溶液达平衡; (7)过量的NH4Cl(s),NH4I(s)在真空容器中达成如下的分解平衡; NH4Cl(s)NH3(g)+HCl(g) NH4I(s) NH3(g)+ HI(g) i. 含有Na+ ,K+ ,SO42- ,NO3- 四种离子的均匀水溶液。 答(1) S=3, C=1, f=1. (2) S=3, C=2, f=1. (3) S=3, C=2, f=1. (4) S=4, C=1, f=1. (5) S=2,C=1, f=1. (6) S=2, C=1, f=1. (7) S=5, C=2, f=1. (8) S=5, C=4, f=5. 3.回答下列问题。 (1) 在同一温度下,某研究系统中有两相共存,但它们的压力不等,能否达成平衡?

相平衡和相图 (7)

学前指导将学习到的知识点: 知识点094.具有一个低温分解、高温稳定二元化合物的三元 系统相图

6.4.3.6 具有一个低温稳定、高温分解的二元 化合物的三元系统相图 ●化合物S的组成点在AB边上,化合物在 T R温度以下才能稳定存在,温度高于T R, 则分解为A、B两种晶相。 ●由于其分解温度低于A、B两组元的低共 熔温度,因而不可能从A、B二元的液相 线A′e3′和B′e3′直接析出 S晶体,即S晶体 的初晶区不会与AB边相接触。

E和R,但只能划分出与P和E对应的两个副三 角形。 ●P点在对应的△ASC外的交叉位置,是双升点。 E点在对应的△BSC内的重心位置,是低共熔 ●R点周围的三个初晶区是(A)、(S)、 (B),对应的三种晶相的组成点A、S、B在 一条直线上,不能形成一个副三角形。

在R点上进行的过程是化合物的形成或分解过程,即: A+B<-> S(A m B n)。 ●这种无变量点称为过渡点。从R点周围三条界 线上的温降方向看,类似于双降点,所以R点 ●在过渡点上由于F=0。系统的温度不变,液相 组成在R点上不变,实际上液相量也不变,这 个情况和前面介绍的各种无变量点有所不同。

●M点在副三角形SBC内,对应的无变量点E, 最终析晶产物为晶相B、S、C ●M的初晶区在A内,冷却先析出A,P=2, F=2,液相组成沿着AM背向线变化,固相组成在A, ●液相组成到达界线Re3上的a后析出A和B, P=3,F=1,液相组成沿着界线aR变化,固相组成离开A沿着AB变化。

●液相组成到R点,固相组成在D点, A+B->S, P=4,F=0,系统不能继续降温,直到A消失。 ●液相组成才沿RE界线变化,不断析出B、S。P=3,F=1,固相离开D,向G变化,固相组 成为B、S ●最后在E点,液相中同时析出B、S、C,固相 组成由G离开AB边进入三角形内部,当固相 组成与M重合,液相消耗完毕,析晶结束。

铁碳合金相图相关计算

铁碳合金相图相关图像算式问题整理 Gary 问答题: 图像总结:

工业纯铁 亚共析钢 共析钢 过共析钢 亚共晶白口铸铁 共晶白口铸铁 过共晶白口铸铁 占比计算: 1.工业纯铁(<=0.0218%C ) 2.亚共析钢(0.0218%~0.77%C ) 3 III Fe C 3III ++Fe C αγαγα γγααα→→→???→???→????→3III Fe C 100%6.69x W = ?3III Fe C 6.69-=1-100%6.69x W W α= ?

3.共析钢(0.77%C ) 4.过共析钢(0.77%~2.11%C ) 5.亚共晶白口铸铁(2.11%~4.3%C ) 6.共晶白口铸铁(4.3%C ) 7.过共晶白口铸铁(4.3%~6.69%C ) 3 III Fe C P 3III ++P +P+Fe C αγαγγγααα→→→???→???→????→P -0.0218 100% 0.77-0.0218x W = ?3III Fe C P -100%6.69x W W = ??(1)3III P Fe C =1--W W W α?()100% P 3P F+Fe C γγ→???→析() P 100% W =F 6.69-0.77 100% 6.69W = ?3Fe C 0.77 100%6.69W = ?析3 II Fe C P 3II 3II +Fe C P+Fe C γγγγ→→????→???→3Fe C 0.77 100% 6.690.77x W -= ?-II 3II P Fe C 6.69(1)100%= 100% 6.690.77x W W -=-??-d 3II L L Fe C L γ d L L++L γγγ→→→???→???→????→P '3II d 3II d F e C L P+Fe C +L γγ→++??? →'d d L L 2.11= 100%4.30 2.11x W W -=?-3Fe C 2.110.77 4.30100% 6.690.77 4.30 2.11x W --=??--II '3d P Fe C L 6.69-2.11 4.301--= 100% 6.69-0.77 4.30 2.11x W W W -=??-II d L L P 'd d 3L L L (P+Fe C ) γ→→???→???→共晶'd d L L =100% W W =3P Fe C 6.69-4.30 1-= 100% 6.69W W =?晶3I d L Fe C L L P '3I d 3I d 3I L L+Fe C L +Fe C L +Fe C γ→→→????→???→???→3Fe C 4.30 100% 6.69 4.30x W -= ?-I '3d Fe C L 6.691100% 6.69 4.30x W W -=-= ?-I

相图动力学计算步骤及方法CuNi

一:Cu-NI 互扩散计算步骤: 1. setup SYS: go data------进入数据库 THERMODYNAMIC DATABASE module running on PC/WINDOWS NT Current database: SGTE Alloy Solutions Database v4 V A /- DEFINED B2_BCC BCC_B2 L12_FCC L102_FCC REJECTED GAS:G REJECTED IONIC_LIQUID:Y OXIDE_LIQUID:Y REJECTED TDB_SSOL4:sw user data------转化至用户自定义数据库(打开Cu-Ni.TDB热力学数据库) TDB_USER: define-species------定义元素 SPECIES: CU NI CU NI DEFINED TDB_USER: rej ph *------屏蔽所有相 LIQUID:L FCC_A1 REJECTED TDB_USER: rest ph fcc------保留fcc相

FCC_A1 RESTORED TDB_USER: get------获取数据 TDB_USER: app user------添加用户数据库(打开CU-NI(自己定义).TDB动力学数据库) TDB_APP: def-sp SPECIES: CU NI CU NI DEFINED TDB_APP: rej ph * FCC_A1 REJECTED TDB_APP: res ph fcc FCC_A1 RESTORED TDB_APP: get TDB_APP: go par------进入PARROT模块 PARROT VERSION 5.3d RUNNING ON PC/WINDOWS NT PARROT: go d-m------进入dictra-monitor模块 NO TIME STEP DEFINED DIC>

相图的热力学基础

相图的热力学基础 合金相图尽管都是由实验测绘的,但其理论基础却是热力学。因此,了解一些相图热力学的基本原理,对正确测绘相图、正确理解和应用相图均有重要意义。现在,对于一些简单类型相图已能利用组元的热力学参数进行理论计算。理论算出的相图与实验测绘的基本符合。由于电子计算机的出现,促使理论计算相图有了显著进展。特别是对一些实验测绘有困难的领域,如超高温、高压和低温等方面的相图工作,理论计算更有其重要意义。 一、两相混合的自由能 在一定温度下,当某成分合金分解成两个混合相时,如果忽略它们的界面能,则在自由能一成分图上,此合金和两个混合相的自由能值必在一条直线上,如图3—72所示。设合金为x,其摩尔自由能为G(高度为bx),当它分解为x1和x2两相后,其摩尔数分别为n1和n2,靡尔自由能分别为G1(高度为ax1)和G2(高)。此时合金的成分x和摩尔自由能G可分别用下式表示: 度为cx 2 式(3-22)表明,ab线和bc线的斜率相等,所以a、b和c三点在一直线上,即是说,两个相混合后的自由能值(b)就在此两相的自由能值的连线上,而b点的位置可由两个相的摩尔数(n1和n2)按杠杆定律决定,即

二、溶体的自由能一成分曲线 溶体是指两种以上组元组成的均匀单相溶体,如溶液和固溶体。已知吉布斯自由能G(简称自由能)的一般表示式为 式中H为焓(热函),S为熵,T为绝对温度。 1、焓:在温度T时,溶体的焓是由构成它的原子之间的结合能及其热能之和组成的,即 式中Ho为OK时原子间的结合能,Cp为等压热容。 T CpdT/T和混合熵△Sm。 2、熵:也是由两项组成,即升高温度时的温熵∫ 根据热力学第三定律,在温度OK时,如果是纯组元或化合物,其结构处于理想完整状态,两项熵值皆为零。如果是由两种以上原子组成的溶体,由于两种原子存在不同的排列方式,使得混合熵不为零。故在温度T时,溶体的熵值S为 3、溶体自由能的表达式 将式(3-24、25)代入式(3-23)中,即得在温度T时溶体自由能的表达式: 溶体的Cp值难于理论计算,只能用实验测出。 下面介绍Hm和△Sm值的近似求法。(此处省略,详见本文最后(一)或书本p100-104)

相关文档
最新文档