铸钢件气孔缺陷的分析及预防

铸钢件气孔缺陷的分析及预防
铸钢件气孔缺陷的分析及预防

铸钢件气孔缺陷的分析及预防

发表时间:2019-04-18T15:47:18.713Z 来源:《基层建设》2019年第5期作者:刘冰

[导读] 摘要:在进行机械化生产的时候,铸钢件由于其精确度比较高,而且能够做到流水线生产,具有较好的重复性。

中车齐齐哈尔车辆有限公司黑龙江省齐齐哈尔市 161002

摘要:在进行机械化生产的时候,铸钢件由于其精确度比较高,而且能够做到流水线生产,具有较好的重复性。受到了人们的青睐,获得了广泛的应用,具体分析铸钢件的特点,对铸钢件在制造时容易产生的气孔缺陷进行分析,并且阐述铸钢件气孔出现缺陷的原理,分析如何预防铸钢件气孔缺陷,以供参考。

关键词:铸钢件气孔缺陷;制造;机械化

引言

由于铸钢件有易于进行大规模流水线生产的特点,在机械化生产的过程中获得了广泛的应用,在同一生产线上,不会限制铸钢件的形状大小和材料,铸钢件的特点在于铸钢件的外观和内部结构重复性好,而且尺寸精度较高,具有较好的表面光滑度以及平整性,不需要进行合箱取模,在操作的过程中工艺流程较为简单,。在一定程度上,可以避免出现废品和铸造缺陷。

1铸钢件气孔缺陷的危害

在铸钢产品当中气孔是一种主要的缺陷,对铸钢件的质量产生影响的一个重要因素。气孔往往会导致铸件产生多种不利影响,会让铸件的有效截面积大幅度减少,还会导致铸钢件的强度降低,出现的一些多角形气孔和裂纹状气孔还会在一定程度上让铸件的块口敏感性增加,导致应力集中等问题的产生,逐步变成断裂缺陷的裂纹源。另外,气孔还在一定程度上让铸件的抗拉强度和疲劳强度降低。

图1 铸钢件气孔

2铸钢件气孔缺陷机理分析

铸钢件当中常会出现一些气孔缺陷,这些缺陷会对铸钢件的硬度、强度以及弹性模量等相关性能产生较大影响,出现气孔的原因多种多样,生产工艺流程不当以及原材料质量不佳,都会导致铸钢件出现气孔缺陷。合理的对铸钢件气孔缺陷进行分析,能够让气孔缺陷问题得到改善,让铸钢件的质量提高,让企业的效益增加。

导致顶盖报废的气孔当中,侵入性气孔是相对较为常见的,在箱体结构当中,顶盖属于密封型,在浇筑的过程中,高温钢液会让顶盖当中的一些石灰石成分分解,而出现一定量的二氧化碳,然后因为排气孔较小,造成分解的二氧化碳没有办法及时的向外排出,造成二氧化碳在分解的时候出现气压比钢液的表面阻力大等情况,二氧化碳就会在钢液当中渗入,二氧化碳与钢液是不相容的,与此同时二氧化碳具有较小的密度,会在钢液当中浮起,而从冒口处排出,一些二氧化碳无法排出,则会出现侵入性气孔在铸钢件的上表面滞留。

反应性气孔可能会导致汽轮机出现前缸报废等情况,出现气孔的原因主要是因为没有烘干气室腔型芯,在高温的情况下,沙箱会出现一定量的蒸汽,某些蒸汽会从型芯当中的气孔当中排出,如果钢液将型芯淹没,孔隙就会处于堵塞的状态,蒸气没有办法顺利地在型芯当中排出,另外如果蒸汽压力比钢液表面阻力大的时候,可能会出现三种情况,第一种情况是水蒸气,进入到钢液当中会导致钢液出现飞溅的情况,其次是高温钢液和水进行反应而出现氧化铁,第三种情况是水蒸气由于高温的作用而出现分解,产生氢气,氢会与钢相溶而出现钢脆等情况,对铸钢件的质量产生影响。

3铸钢件气孔缺陷防治对策

依照上面所阐述的情况来分析铸钢件气孔缺陷形成的机理,发现这些缺陷出现的机理较为独特,在研究的过程中,可以采取合理的方式,对铸钢件气孔缺陷进行预防和控制。

首先需要对砂芯以及砂型的干燥性和透气性进行重视,保证具有较高的透气效率,这样可以让二氧化碳的残留量等大为减少,可以避免铸钢件出现较大的氧化等情况,让铸钢件的吸氢能力降低,这样会避免出现氢脆等问题,让铸钢件的质量提高,其次,如果第一条方式无法将二氧化碳和增氧吸氢等情况完全解决,这就需要把含金量高的钢液从铸钢件型腔当中排出,这种方式在第一种预防的办法无法将问题解决的时候可以进行弥补。第三,分析以往的数据进行总结之后发现石灰石砂在封闭型的铸钢件型芯制造的过程中并不适用,主要是由于这种结构的特点会导致其排气过程很困难,从而会出现一些侵入性气孔出现大量缺陷等情况,最后还需要重视脱碳去氧的问题,在氧化期一定要进行脱碳的操作,在还原期需要做好去氧的操作,这样可以让铸钢件的质量大幅度提高。

4典型的铸钢件气孔缺陷预防

4.1侵入型气孔造成顶盖报废的预防方法

在预防侵入型气孔导致顶盖报废的过程中,使用的方法是将腔室型砂使用的方法转变,把型砂转变成酸硬化呋喃树脂砂,这样可以让树脂砂的发气量显著的得到改善,让型芯的排气性能加强,通过实验分析可以发现,将型砂转变为树脂砂,可以将其空缺线的问题得到合理的解决,在进行铸钢件生产的过程中,没有发现明显的气孔缺陷。

4.2反应型气孔造成汽轮机前缸报废的预防方法

在预防反应性气孔导致汽轮机前缸报废的过程中,主要的使用的方法是让排气加强,在型砂的内部出气孔由砂型的底部穿过,引出于砂箱的底部,这样把砂型下入铸型后,完成干燥的工作,排干水分,就可以将这类问题解决,在钢水熔炼的时候容易出现气孔缺陷,在钢水融化的时候一定要做好清渣的工作,通常条件下需要彻底清渣两次,清渣工作完成之后,需要迅速将聚渣覆盖,覆盖钢水,若钢水在此过程中和空气接触,就会出现表面氧化物,在装炉熔炼前,原材料一定要做到压实压紧,避免空气进入,需要让氧化物形成的概率降低,死水的形成主要是因为融化好的钢水高温等待的时间比较长,会造成质量下降,所以一般情况下需要控制等待的时间在15分钟以内。

乘用车车身漆膜橘皮的成因及其预防

乘用车车身漆膜橘皮的成因及其预防 核心提示: 1漆膜橘皮的定义 涂层表面类似橘子皮形状的波纹称橘皮,它是涂层最常见和难以控制的缺陷之一,已成为国内外各大汽车厂面临的棘手问题。乘用车面漆外观质量直接影响到产品的市场竞争力,而面漆橘皮是评价乘用车车身面漆涂装质量的一个重要指标。光泽和映象清晰度常用于控制涂层的外观。然而即使光泽度很高的涂膜,其表面的波动度也影响着整个涂膜的外观,同时认为光泽测量也控制不了波动的视觉效果,这种效应被称为“橘皮”。橘皮或微波动是尺寸在0.1~10mm之间的波纹状结构造成的。在高光泽的涂层表面,人们可看到波状、明暗相间的区域。可以区分2种不同等级的波动:长波动也称为橘皮,这是在2~3m的距离上能观察到的波动;另一种叫短波动或微波动,这是间距约50cm处观察到的波动。要指出的是有时为了遮盖底材的表面缺陷或者获得特殊的涂层外观会有目的地设计一定的波动度或波纹结构。因此“橘皮”可定义为“高光泽表面的波状结构”,其使漆层表面产生斑纹、未流平的视觉外观。粉末涂料涂膜的视觉外观(光泽、雾影度、流平、橘皮)的控制非常重要,特别是在不同场合喷涂的部件组装时。 2影响涂膜流动和外观的因素 在工业涂料中,粉末涂料在制备和成膜过程中的相变化是独特的。由于缺乏溶剂来润湿和提高涂膜流动性导致粉末涂料比液体涂料更难去除的表面缺陷。虽然两者的主要组分类似,但相比于液体涂料,热固性粉末涂料的成膜机理不同。粉末涂料是无溶剂的均一体系,在制备过程中颜料和其它组分通过熔融混合被分散和部分包裹于低分子固体树脂中。粉末涂料的使用是通过空气把粉末传送到底材上(粉末悬浮于空气中),再通过电荷使之附着于底材上。在预定的温度下加热使粉末颗粒熔化、聚集(聚结)在一起、流动(成膜),接着流平,这期间通过一个有黏性的液态阶段润湿表面,最后化学交联形成相对分子质量高的涂膜,这就是粉末涂料的成膜过程。成膜过程可分为熔融、聚结形成涂膜、流平3个阶段。在给定温度下控制熔融聚结速度最重要的因素是树脂的熔点、熔融态粉末颗粒的黏度以及粉末颗粒的大小。为了使流动效果最佳,熔融聚结应当尽可能快地完成,以便有较长的时间来完成流平。固化剂的使用虽然缩短了可供流动和流平所需的时间,但活性较高的粉末形成的涂膜常呈现橘皮。影响涂膜流动和流平的关键因素是树脂的熔融黏度、体系的表面张力和膜厚。熔融黏度取决于固化温度、固化速率和升温速率。粉末喷涂时流动和流平的动力来自体系的表面张力,该作用力与施加到涂膜上的分子间的引力相反,其结果导致熔融黏度高,对抗流动和流平的阻力大。因此表面张力和分子间引力之间的差值大小决定着涂膜流平的程度。对于流动性很好的涂料,显然该体系的表面张力应尽可能高且熔融黏度应尽可能低。 这些可通过加入能提高体系表面张力的助剂和使用相对分子质量低的低熔点的树脂来实现。根据以上条件制备的涂料具有极好的流动性,但是由于其高的表面张力会导致缩孔,同时由于较低的熔融黏度会产生流挂且边角涂覆性差。实际工作中体系的表面张力和熔融黏度都控制在特定范围内,这样可得到合格的涂膜外观。太低的表面张力或太高的熔融黏度会阻止涂膜流动导致涂膜流动性差,而表面张力太高时会在成膜过程中出现缩孔。熔融黏度太低会使

压铸件的缩孔缩松问题解决方案-12页文档资料

压铸件的缩孔缩松问题解决方案 1.压铸件缩孔缩松现象存在的原因 压铸件缩孔缩松现象产生的原因只有一个,那就是由于金属熔体充型后,由液相转变成固相时必然存在的相变收缩.由于压铸件的凝固特点是从外向内冷却,当铸件壁厚较大时, 内部必然产生缩孔缩松问题. 所以,就压铸件来说,特别是就厚大的压铸件来说,存在缩孔缩松问题是必然的,是不可以解决的. 2.解决压铸件缩孔缩松缺陷的唯一途径 压铸件缩孔缩松问题,不能从压铸工艺本身得到彻底解决,要彻底解决这个问题,只能超越该工艺,或者说是从 系统外寻求解决的办法. 这个办法又是什么呢? 从工艺原理上说,解决铸件缩孔缩松缺陷,只能按照通过补缩的工艺思想进行.铸件凝固过程的相变收缩,是一种自然的物理的现象,我们不能逆这种自然现象的规律,而只能遵循它的规律,解决这个问题. 3.补缩的两种途径 对铸件的补缩,有两种途径,一是自然的补缩,一是 强制的补缩. 要实现自然的补缩,我们的铸造工艺系统中,就要有能实现“顺序凝固”的工艺措施.很多人直觉地以为,采用低

压铸造方法就能解决铸件的缩孔缩松缺陷,但事实并不是这 么回事.运用低压铸造工艺,并不等于就能解决铸件的缩孔 缩松缺陷,如果低压铸造工艺系统没有设有补缩的工艺措施,那么,这种低压铸造手段生产出来的毛坯,也是可能百分之 一百存在缩孔缩松缺陷的. 由于压铸工艺本身的特点,要设立自然的“顺序凝固”的工艺措施是比较困难的,也是比较复杂的.最根本的原因 还可能是, ”顺序凝固”的工艺措施,总要求铸件有比较长的凝固时间,这一点,与压铸工艺本身有点矛盾. 强制凝固补缩的最大特点是凝固时间短,一般只及”顺序凝固”的四分之一或更短,所以,在压铸工艺系统的基础上,增设强制的补缩工艺措施,是与压铸工艺特点相适应的,能很好解决压铸件的缩孔缩松问题. 4.强制补缩的两种程度:挤压补缩和锻压补缩 实现铸件的强制补缩可以达到有两种程度.一种是 基本的可以消除铸件缩孔缩松缺陷的程度,一种是能使毛坯 内部达到破碎晶粒或锻态组织的程度.如果要用不同的词来 表述这两种不同程度话,那么,前者我们可以用“挤压补缩” 来表达,后者,我们可以用“锻压补缩”来表达. 要充分注意的一个认识,分清的一个概念是,补缩都 是一种直接的手段,它不能间接完成.工艺上,我们可以有一个工艺参数来表达,这就是”补缩压强”.

▲铸钢件缺陷原因分析

铸钢件缺陷产生的原因分析 铸钢阀门由于其成本的经济性和设计的灵活性,因而得到广泛的运用。由于阀门铸件的基本结构属于中空结构,形状比较复杂,铸造工艺受到铸件尺寸、壁厚、气候、原材料和施工操作的种种制约,因此,铸钢件常常会出现砂眼、气孔、裂纹、缩松、缩孔和夹杂物等各种铸造缺陷, 生产控制有一定难度,尤以砂型铸造的合金钢铸件为多。因为钢中合金元素越多钢液的流动性越差,铸造缺陷就更容易产生。 一、铸钢的铸造工艺特点 铸钢的熔点较高,钢液易氧化、钢水的流动性差、收缩性大,其体收缩率为10~14%,线收缩为1.8~2.5%。为防止铸钢件产生浇不足、冷隔、缩孔和缩松、裂纹及粘砂等缺陷,必须采取较为复杂的工艺措施: 1、由于钢液的流动性差,为防止铸钢件产生冷隔和浇不足,铸钢件的壁厚不能小于8mm;浇注系统的结构力求简单;采用干铸型或热铸型;适当提高浇注温度,一般为1520°~1600℃,因为浇注温度高,钢水的过热度大、保持液态的时间长,流动性可得到改善。但是浇温过高,会引起晶粒粗大、热裂、气孔和粘砂等缺陷。因此一般小型、薄壁及形状复杂的铸件,其浇注温度约为钢的熔点温度+150℃;大型、厚壁铸件的浇注温度比其熔点高出100℃左右。 2、由于铸钢的收缩量较大,为防止铸件出现缩孔、缩松缺陷,在铸造工艺上大都采用冒口、冷铁和补贴等措施,以实现顺序凝固。

3、为防止铸钢件产生缩孔、缩松、气孔和裂纹缺陷,应使其壁厚均匀、避免尖角和直角结构、在铸型用型砂中加锯末、在型芯中加焦炭、以及采用空心型芯和油砂芯等来改善砂型或型芯的退让性和透气性。 4、铸钢的熔点高,相应的其浇注温度也高。高温下钢水与铸型材料相互作用,极易产生粘砂缺陷。因此,应采用耐火度较高的人造石英砂做铸型,并在铸型表面刷由石英粉或锆砂粉制得的涂料。为减少气体来源、提高钢水流动性及铸型强度,大多铸钢件用干型或快干型来铸造,如采用CO2硬化的水玻璃石英砂型。 二、铸钢件常见的铸造缺陷 铸钢件在生产过程中经常会发生各种不同的铸造缺陷,常见的缺陷形式有:砂眼、粘砂、气孔、缩孔、缩松、夹砂、结疤、裂纹等。 A )砂眼缺陷 砂眼是由于金属液从砂型型腔表面冲下来的砂粒(块),或者在造型、合箱操作中落入型腔中的砂粒(块)来不及浮入浇冒系统,留在铸件内部或表面而造成的。砂眼缺陷处内部或表面有充塞着型(芯)砂的小孔,是一种常见的铸造缺陷。 B)粘砂缺陷 在铸件表面上,全部或部分覆盖着一层金属(或金属氧化物)与砂(或涂料)的混(化)合物或一层烧结构的型砂,致使铸件表面粗糙,难于清理。粘砂多发生在型、芯表面受热作用强烈的部位,分机械粘砂和化学粘砂两种。机械粘砂是由金属液渗入铸型表面的微孔中形成的,当渗入深度小于砂粒半径时,铸件不形成粘砂,只是表面粗糙,当渗入深度

铸造缺陷-气孔的描述及分析

铸造缺陷-----气孔的概述以及分析 一、术语含义:金属液在凝固过程中陷入金属中的气泡,在铸件中形成的孔洞,称为气孔。还有气眼、气泡、呛火、呛等非正规名称,是孔壁光滑的孔洞类铸造缺陷。 二、目视特征:是指肉眼看到的铸件缺陷的形态特征,是区分气孔、缩孔、砂眼、加渣及确定气孔种类性质的依据。 1、形状:一般为球形或近似于球形、泪滴形、梨形、蠕虫状、长针形等气孔孔洞。 2、表面面貌:在肉眼观察下,气孔孔壁是平滑的,表面颜色有的发亮,有的金属本色,有的发蓝,灰铸铁孔洞表面有的附着一层碳膜。 3、尺寸:由于形成气孔原因复杂,尺寸变动是无规律的,有的大到10至20几毫米,有的小到不到1毫米。 4、部位:是指孔洞在铸件截面中的位置,一般可分为表面气孔,一落砂就可发现,内部气孔只有在机加工后才能显示出来,有的皮下气孔在喷砂后或机加工去除表面硬皮后才能发现。多出现在浇注位置的上面。 5、危害性:气孔是铸件常见和多发性缺陷,一般情况下,气孔使铸件报废数量约占铸件废品率的25%-80%。 6、气孔种类:从气孔形成原因、形成过程、形成机理来分类,气孔可分为5种,及侵入气孔、裹挟气孔、析出气孔和内外反应气孔。 下面先说一说最常见、发生最多的侵入型气孔。 一、从浇注到铸件凝固成壳期间,砂型、砂芯发生的气体侵入金属液

时产生的气孔称为侵入性气孔。 1、它的形状特征:团球形、梨形、泪滴形,小头所指是气体来源的方向。 2、表面面貌:孔壁平滑,铸件侵入气体主要成分是CO时,孔壁呈蓝色;是氢气时,孔壁是金属色,发亮;是水蒸气时,孔壁是氧化色,孔壁发暗,灰色。 3、一般尺寸较大,在几毫米以上。 4、部位:按浇注位置来说,常处于铸件上表面,去掉浇冒口或气针后可看到,有的粗加工后表现出来。 5、分布:大多情况下是单个或几个聚集的尺寸较大的气孔,很少成为弥散性气孔或针孔。 二、形成机理: 1、砂型:砂型中的气体侵入金属液,分为两种:①不润湿型:组成砂型型砂粒度细、强度高、紧实度大(硬),如静压线造型。高温铁水遇到湿砂型,表面水分极度气化膨胀,在砂型毛细管内形成较高压力,一部分向外透过砂型排入大气,一部分因压力大,超过铁水静压力,克服表面张力,便进入铁水中,关系式为:P A>P o+P M+P N P A——表示气体侵入压力 P o——型腔中气体压力,即标准大气压 P M——金属液静压力 P N——金属液表面阻力(表面张力和粘度)

液态收缩和凝固收缩是铸件产生缩孔和缩松的基本原因

液态收缩和凝固收缩是铸件产生缩孔和缩松的基本原因 影响铸件收缩的因素: 化学成分与合金类别:如铸钢的收缩最大,灰铸铁最小。 浇注温度:合金浇注温度越高,过热度越大,液体收缩越大。 铸件结构和铸型工艺条件:铸件的收缩并非自由收缩,而是受阻收缩。1)铸件中各部分冷却速度不同,收缩先后不一致,相互制约产生阻力;2)铸型等对铸件收缩产生的机械阻力。 铸件在冷却和凝固过程中,若液态收缩和凝固收缩所缩减的体积得不到补充,往往在铸件最后凝固的地方出现孔洞。容积大而且比较集中的孔洞—缩孔;细小而且分散的孔洞—缩松。 产生原因:液态收缩和凝固收缩值大于固态收缩值 缩孔和缩松存在:铸件有效承载面积减小,引起应力集中,力学性能下降,还降低气密性和物理性能。 缩孔的形成:在铸件上部或最后凝固的部位; 其外形特征是:近于倒圆锥形。 缩松的形成:由于结晶温度范围较宽,树枝晶发达,流动性低、液态和凝固收缩所形成的细小、分散孔洞得不到液态金属补充而造成。 纯金属和共晶成分的合金,易形成集中缩 如何防止缩孔和缩松: 防止措施①合理选用铸造合金②按照定向凝固原则进行凝固采用各种措施保证铸件结构上各部分按照远离冒口的部分先凝固然后是靠近冒口部分最后是冒口本身的凝固③合理选择浇注系统和浇注位置④合理地应用冒口、冷铁和补贴等工艺措施。附缩孔补救措施焊补。挖去缺陷区金属用与基体金属相同或相容的焊条焊补缺陷区焊后修平进行焊后热处理。 举例: Ti-47Al-2Cr-2Nb合金铸锭有很强的柱状晶生长趋势,在轴线附近区域形成分散的缩松;加入0.8%B(原子分数)后,铸锭的组织得到细化,并削弱了柱状晶生长趋势,收缩缺陷分布集中以大缩孔方式存在,显微缩松的密度和尺寸均降低.添加0.1%C(原子分数)后,铸锭的组织和缩孔缩松与Ti-47Al-2Cr-2Nb比均无明显变化. 热应力:铸件在凝固和冷却过程中,不同部位由于不均衡的收缩而引起的应力。为铸造残留应力 减少或消除应力的方法: 减少铸件各部位的温差,尽量形成同时凝固。 改善铸型和型芯的退让性,以减少收缩的机械阻力。 在性能满足的前提下,选择弹性模量E小和收缩系数小的合金。 消除应力方法:1)人工失效:去应力退火 2)自然失效 3)振动时效 铸件内应力的预防措施铸件产生铸造内应力的主要原因是合金的固态收缩。为了减小铸造内应力在铸造工艺上可采取同时凝固原则。所谓同时凝固原则就是采取工艺措施保证铸件结构上各部分之间没有温差或温差尽量小使各部分同时凝固。此外还可以采取去应力退火或自然时效等方法将残余应力消除。

各种缺陷分析与产生原因

锻造成形过程中的缺陷及其防止方法 一、钢锭的缺陷 钢锭有下列主要的缺陷: (1)缩孔和疏松 钢锭中缩孔和疏松是不可避免的缺陷,但它们出现的部位可以控制。钢锭中顶端的保温冒口,造成钢液缓慢冷却和最后凝固的条件,一方面使锭身可以得到冒口中钢液的补缩,另一方面使缩孔和疏松集中于此处,以便锻造时切除。 (2)偏析钢锭中各部分化学成分的不均匀性称为偏析。偏析分为枝晶偏析和区域偏析两种,前者可以通过锻造以及锻后热处理得到消除,后者只能通过锻造来减轻其影响,使杂质分散,使显微孔隙和疏松焊和。 (3)夹杂不溶于金属基体的非金属化合物称为夹杂。常见的夹杂如硫化物、氧化物、硅酸盐等。夹杂使钢锭锻造性能变化,例如当晶界处低熔点夹杂过多时,钢锭锻造时会因热脆而锻裂。夹杂无法消除,但可以通过适当的锻造工艺加以破碎,或使密集的夹杂分散,可以在一定程度上改善夹杂对锻件质量的影响。 (4)气体 钢液中溶解有大量气体,但在凝固过程中不可能完全析出,以不同形式残存在钢锭内部。例如氧与氮以氧化物、氮化物存在,成为钢锭中夹杂。氢是钢中危害最大的气体,它会引起“氢脆” ,使钢的塑性显著下降;或在大型锻件中造成“白点” ,使锻件报废。 (5)穿晶 当钢液浇注温度较高,钢锭冷却速度较大时,钢锭中柱状晶会得到充分的发展,在某些情况下甚至整个截面都形成柱状晶粒,这种组织称为穿晶。在柱状晶交界处(如方钢锭横截面对角线上),常聚集有易熔夹杂,形成“弱面” ,锻造时易于沿这些面破裂。在高合金钢锭中容易遇到这种缺陷。 (6)裂纹 由于浇注工艺或钢锭模具设计不当,钢锭表面会产生裂纹。锻造前应将裂纹消除,否则锻造时由于裂纹的发展导致锻件报废。 (7)溅疤 当钢锭用上注法浇注时,钢液冲击钢锭模底而飞溅到钢锭模壁上,这些附着的溅沫最后不能和钢锭凝固成一体,便成溅疤。溅疤锻造前必须铲除,否则会形成表面夹层。 二、轧制或锻制的钢材中的缺陷 轧制或锻制的钢材中往往存在如下缺陷: (1)裂纹和发裂 裂纹是由于钢锭缺陷未清除,经过轧制或锻造使之进一步发展造成的。由于轧制或锻造的工艺规范不当,在钢材内引起很大的内应力,也会造成裂纹。断面大、合金元素多的钢材容易产生裂纹。 发裂是深度为0.50~1.50mm 的发状裂纹,它是轧制或锻造时由于钢锭皮下气泡沿变形方向被拉长或夹杂物沿变形方向伸长而形成。发裂一般需经酸洗后才能发现。 (2)伤痕和折叠 伤痕是钢材表面上深约0.2~0.30mm 的擦伤、划伤细痕。折叠一般由于轧制或锻造工艺不当造成。 (3)非金属夹杂和疏松

水性涂料涂膜表面缺陷-缩孔防治

水性涂料涂膜表面缺陷-缩孔的防治 a深圳海川化工科技有限公司 b Cognis香港有限公司 摘要:本文阐述了引起水性涂料漆膜缩孔的影响因素与缩孔的防治措施。 关键词:缩孔;表面张力差;消泡剂 1. 引言 随着社会的发展,涂料的应用已经越来越广泛,在城市建设和美化中,涂料成为装扮城市的三大要素之一,即花草、灯光、色彩涂料。但在涂料的应用中会碰到各式各样的问题,漆膜产生针孔、缩孔是最常见的问题之一,它会导致建筑物的表面出现缺陷、影响光泽和耐沾污性,降低涂层屏蔽性,使建筑物的整体效果大打折扣,严重影响涂料的使用寿命。本文要介绍了乳胶漆缩孔的形成和预防,以及缩孔问题的处理。 2. 缩孔的形成 涂膜的表面缺陷主要是凹陷、针孔、以及边角的缩边或厚边等现象。涂膜表面凹陷有两种情况,一种是圆形凹陷、一种六角多边型凹陷。涂膜表面出现的凹陷是由表面张力梯度造成的,由于涂料组成的变化和温度变化导致表面张力不均,流体由低表面张力处流向高表面张力处,结果在流体表面形成凹陷,也称为Maragoni效应,最终出现边缘隆起、中心下陷成圆形的缩孔,或边缘隆起、中心下陷为六边形槽的贝纳尔多旋涡。缩孔中心有低表面张力的物质存在,其与周围的涂料存在表面张力差,这个差值就是缩孔形成的动力,促使周围的液体流体向四周背离它(缩孔污源)而流开成凹陷-缩孔。 涂料在施工干燥过程中形成缩孔,有涂料本身的问题和基材清洁问题,由于涂料本身有低表面张力液滴的存在、或被涂饰表面因污染存在有低表面张力区,造成表面张力的不均匀,涂料在表面张力差的作用下,由低表面张力处流向高表面张力处,结果形成一个个中心凹陷的孔洞-缩孔。我们将表面张力的不均匀归为缩孔形成的内因。其实涂料本身的一些性质,如涂料粘度、触变性、涂料干燥速度以及涂膜厚度等,能加剧或减弱涂料流体的流动能力,从而会加剧或减弱缩孔的程度,我们将这些因素归为缩孔的外因。内因是缩孔的必然条件,外因可以适当控制或加剧缩孔的程度。 涂料施工后,干燥成膜过程中,表面溶剂挥发,表面聚合物的浓度增高,涂料粘度增高,都会导致表面张力和表面密度超过本体,形成凹陷。总的来说,较厚涂膜(> 4 mm)的液体涂层,主要是密度梯度驱使流动(图1a),较薄的液体涂层是表面张力梯度控制流动(图1b),形成一个个缩孔。

铸钢件缩孔和缩松的形成与预防

F 铸造 oundry 热加工 热处理/锻压/铸造2011年第15期 69 铸钢件缩孔和缩松的形成与预防 宁夏天地奔牛实业集团有限公司 (石嘴山753001) 王福京 缩孔和缩松从本质上来说,是因为型内的金属产生收缩而引起的,但是不同种类的金属,其形成缩孔和缩松的机理有所不同。 1.产生机理 从铸钢件角度来分析,钢液注满型腔后,由于型壁的传热作用,型内钢液形成自型壁表面至铸件壁厚中心温度逐渐升高的温度梯度。随着型壁传热作用不断地进行,型内钢液温度不断降低。当与型壁表面接触的钢液温度降至凝固温度时,铸件的表面就开始凝固,并形成一层固体状态的硬壳。如果这时浇注系统已经凝固,那么硬壳内处于液体状态的钢液就与外界隔绝。 当型内钢液温度进一步降低时,硬壳内的钢液一方面因温度降低而产生液态收缩,另一方面由于硬壳的传热作用,使与硬壳接触的钢液不断结晶凝固,从而出现凝固收缩。这两种收缩的出现,将使硬壳内钢液液面下降。 与此同时,处于固体状态的硬壳,也因温度的降低而产生固态收缩,对于铸钢件来说,由于液态收缩和凝固收缩的总和是大于固态收缩的,因此在重力作用下,硬壳内钢液液面将下降,并且与上部硬壳脱离接触。 随着型内钢液温度不断地降低和硬壳内钢液不断地凝固,硬壳越来越厚,而钢液越来越少。当铸件内最后的钢液凝固后,铸件上部的硬壳下面就会出现一个孔洞,这个孔洞即为缩孔。 虽然凝固后的铸件自高温状态冷却至室温时,还将产生固态收缩,从而使整个铸件和其内部缩孔的体积稍有减小,但并不会改变缩孔体积与铸件体积的比值。由于凝固层厚度的增加和钢液的减少是不断进行的,因而从理论上来说,缩孔的形状是漏斗状的。并且因残存的钢液凝固时不能得到补缩, 所以在产生缩孔的同时,往往也伴随着缩松的出现。用肉眼能直接观察到的缩孔为宏观缩孔,而借助于放大镜或将断面腐蚀以后才能发现的缩孔为微观缩孔。 一般情况下,宏观缩孔可以用补焊的手段来解决,而微观缩孔就无法处理了,一般都是成片出现的微小孔洞。 铸件在凝固后期,其最后凝固部分的残留钢液中,由于温度梯度小,这些残留钢液是按同时凝固的方式进行凝固的,凝固开始时,在整个钢液内出现许多细小的晶粒。随着温度降低和晶粒的长大,以及新的晶粒的产生,若早期结晶的晶粒之间留有液体,这些液体即可能被固态晶粒所包围而与液体分离或近似分离,最后凝固的部分出现许多被固态晶粒隔离而孤立的少量钢液;或者出现许多虽未被固态晶粒完全隔离,但与外界钢液的连接通道很小的钢液,由于此时钢液的粘度很大,外界钢液很难经过细小的通道给予补充,因此这些虽未被固态晶粒完全隔离的钢液也几乎处于孤立状态。当这些完全或不完全孤立的钢液进一步冷却、凝固收缩时,由于得不到钢液补充,便会在这些地方形成分散而微小的细孔即为缩松。 2.防止措施 以上分析阐述了缩孔、缩松的产生原因。只有把缩孔、缩松的产生原因弄清楚了,才能够有针对性地预防缩孔、缩松的产生,生产实践中,可以从以下几个方面采取措施。 (1)铸件结构 铸件壁厚应尽可能均匀;铸件 筋壁的连接不能太集中,应采用交叉或分散布置,以免形成太大的热节,从而引起该处型壁传热条件恶化;铸件的内角不能太小,在不影响铸件使用性能的情况下,宜采用90°以上的内角,从而改善内角

如何解决压铸件及其他铸造件的缩孔缩松问题

压铸件及其它铸造件存在缩孔缩松问题是一个普遍的现象,有没有彻底解决这个问题的方法?答案应该是有的,但它会是什么呢? 1、压铸件缩孔缩松现象存在的原因 压铸件缩孔缩松现象产生的原因只有一个,那就是由于金属熔体充型后,由液相转变成固相时必然存在的相变收缩。由于压铸件的凝固特点是从外向内冷却,当铸件壁厚较大时,内部必然产生缩孔缩松问题。 所以,就压铸件来说,特别是就厚大的压铸件来说,存在缩孔缩松问题是必然的,是不可以解决的。 2、解决压铸件缩孔缩松缺陷的唯一途径 压铸件缩孔缩松问题,不能从压铸工艺本身得到彻底解决,要彻底解决这个问题,只能超越该工艺,或者说是从系统外寻求解决的办法。 这个办法又是什么呢? 从工艺原理上说,解决铸件缩孔缩松缺陷,只能按照通过补缩的工艺思想进行。铸件凝固过程的相变收缩,是一种自然的物理的现象,我们不能逆这种自然现象的规律,而只能遵循它的规律,解决这个问题。 3、补缩的两种途径 对铸件的补缩,有两种途径,一是自然的补缩,一是强制的补缩。

要实现自然的补缩,我们的铸造工艺系统中,就要有能实现“顺序凝固”的工艺措施。很多人直觉地以为,采用低压铸造方法就能解决铸件的缩孔缩松缺陷,但事实并不是这么回事。运用低压铸造工艺,并不等于就能解决铸件的缩孔缩松缺陷,如果低压铸造工艺系统没有设有补缩的工艺措施,那么,这种低压铸造手段生产出来的毛坯,也是可能百分之一百存在缩孔缩松缺陷的。 由于压铸工艺本身的特点,要设立自然的”顺序凝固”的工艺措施是比较困难的,也是比较复杂的。最根本的原因还可能是,”顺序凝固”的工艺措施,总要求铸件有比较长的凝固时间,这一点,与压铸工艺本身有点矛盾。 强制凝固补缩的最大特点是凝固时间短,一般只及”顺序凝固”的四分之一或更短,所以,在压铸工艺系统的基础上,增设强制的补缩工艺措施,是与压铸工艺特点相适应的,能很好解决压铸件的缩孔缩松问题。 4、强制补缩的两种程度:挤压补缩和锻压补缩 实现铸件的强制补缩可以达到有两种程度。一种是基本的可以消除铸件缩孔缩松缺陷的程度,一种是能使毛坯内部达到破碎晶粒或锻态组织的程度。如果要用不同的词来表述这两种不同程度话,那么,前者我们可以用”挤压补缩”来表达,后者,我们可以用”锻压补缩”来表达。 要充分注意的一个认识,分清的一个概念是,补缩都是一种直接的手段,它不能间接完成。工艺上,我们可以有一个工艺参数来表达,这就是”补缩压强”。

铸造缺陷总结

铸造缺陷 一、孔眼类 气孔,缩松,缩孔,渣(脏)眼,砂眼,铁豆 气孔:在铸件内部、表面或近于表面处有大小不等的光滑孔眼,为白色或带一层暗色 缩松:在铸件内部聚集在一处或多处微小而不连贯的缩孔 缩孔:在铸件厚断面内部,两交界面的内部及厚断面和厚断面交接处的内部或表面,形状不规则,孔内粗糙不平 渣眼:孔眼形状不规则,不光滑、里面全部或局部充塞着渣 砂眼:在铸件内部或表面有充塞着型砂的孔眼 铁豆:是夹着铁珠的孔眼、别名铁珠、豆眼、铁豆砂眼等。铁豆的特征是:孔眼比较规则、孔眼内包含着金属小珠、常发生在铸铁件上。 二、表面缺陷类 夹砂,粘砂,结疤,冷隔 夹砂:在铸件表面上,有一层金属瘤状或片状物。在金属瘤片和铸件之间夹有一层型砂 粘砂:在铸件表面上、全部或部分覆盖着金属(或金属氧化物)与砂(或涂料)的混合物(或化合物),或一层烧结的型砂·致使铸件表面粗糙 结疤:在铸件表面上,有金属夹杂或包含型砂或渣的片状或瘤状物 冷隔:在铸件上有一种未完全融合的缝隙或洼坑,其交接边缘是圆滑的 三、裂纹类 热裂,冷裂,温裂 热裂:铸件上有穿透或不穿透的裂纹,呈弯曲形,开裂处表面氧化 冷裂:铸件上有穿透或不穿透的裂纹,呈直线形,开裂处表面未氧化。 温裂:温裂又称热处理裂纹由切割、焊接或热处理不当引起。特征是:铸件上有穿透或不穿透的裂纹,开裂处金属表面氧化。 四、铸件形状、尺寸和重量不合格类 浇不足,落砂,抬箱,错箱,偏芯,变形,多肉,损伤,形状尺寸不合格 浇不足:由于金属液未完全充满型腔而产生的铸件缺肉 落砂:由于砂型或泥芯大块脱落产生的,铸件产生多肉或缺肉 抬箱:由于金属液的压力,使上下型分离而造成的铸件外形及尺寸与图样不符 错箱:铸件的一部分与另一部分在分型面上错开,发生相对的位移 偏芯:由于泥芯的位置发生了不应有的变化,而引起的铸件形状与尺寸与图样不符 变形:由收缩应力引起的铸件外形和尺寸与图样不符 损伤:在打箱、搬运或清理时,损坏了铸件的完整性 五、铸件成分组织性能不合格类 化学成分不合格,金相不合格,偏析,过硬,物理机械性能不合格 偏析:同一铸件上化学成分、金相组织和性能不一致,多发生在有色金属件和厚壁钢铸件上 过硬:(白口)铸件全部或局部过硬,有时断面呈白色,使铸件难以加工。多发生在铸铁件上 物理机械性能不合格:铸件的物理机械性能如强度、硬度、延伸率、冲击值以及耐热、耐磨、耐蚀等性能不合技术条件

铸件常见缺陷和处理

铸件常见缺陷、修补及检验 一、常见缺陷 1.缺陷的分类 铸件常见缺陷分为孔眼、裂纹、表面缺陷、形状及尺寸和重量不合格、成份及组织和性能不合格五大类。(注:主要介绍铸钢件容易造成裂纹的缺陷) 1.1孔眼类缺陷 孔眼类缺陷包括气孔、缩孔、缩松、渣眼、砂眼、铁豆。 1.1.1气孔:别名气眼,气泡、由气体原因造成的孔洞。 铸件气孔的特征是:一般是园形或不规则的孔眼,孔眼内表面光滑,颜色为白色或带一层旧暗色。(如照片) 气孔 照片1 产生的原因是:来源于气体,炉料潮湿或绣蚀、表面不干净、炉气中水蒸气等气体、炉体及浇包等修后未烘干、型腔内的气体、浇注系统不当,浇铸时卷入气体、铸型或泥芯透气性差等。 1.1.2缩孔 缩孔别名缩眼,由收缩造成的孔洞。

缩孔的特征是:形状不规则,孔内粗糙不平、晶粒粗大。 产生的原因是:金属在液体及凝固期间产生收缩引起的,主要有以下几点:铸件结构设计不合理,浇铸系统不适当,冷铁的大小、数量、位置不符实际、铁水化学成份不符合要求,如含磷过高等。浇注温度过高浇注速度过快等。 1.1.3缩松 缩松别名疏松、针孔蜂窝、由收缩耐造成的小而多的孔洞。 缩松的特征是:微小而不连贯的孔,晶粒粗大、各晶粒间存在明显的网状孔眼,水压试验时渗水。(如照片2) 缩松 照片2 产生的原因同以上缩孔。

1.1.4渣眼 渣眼别名夹渣、包渣、脏眼、铁水温度不高、浇注挡渣不当造成。 渣眼的特征是:孔眼形状不规则,不光滑、里面全部或局部充塞着渣。(如照片3) 渣眼 照片3 产生的原因是:铁水纯净度差、除渣不净、浇注时挡渣不好,浇注系统挡渣作用差、浇注时浇口未充满或断流。 1.1.5砂眼 砂眼是夹着砂子的砂眼。 砂眼的特征是:孔眼不规则,孔眼内充塞着型砂或芯砂。 产生的原因是:合箱时型砂损坏脱落,型腔内的散砂或砂块未清除干净、型砂紧实度差、浇注时冲坏型芯、浇注系统设计不当、型芯表面涂料不好等。 1.1.6铁豆

缩松原因分析

铸件缺陷分析 1 多肉类铸件缺陷 多肉类缺陷主要有飞翅(飞边,披峰),毛刺,抬型(抬箱)等. 飞翅与毛刺区别:飞翅主要产生的分型面等活动块结合处,通常垂直于铸件表面.又称飞边或披峰.毛刺指铸件表面形状不规则刺状突起.常出现在型,芯开裂处. 飞翅与毛刺的形成原因:飞翅形成主要是压射前机器的锁模力调整不佳导致分型面等活动块的配合不严;模具及滑块损坏,闭锁组件失效.毛刺形成主要是紧实度不均匀,浇注温度过高等致使开裂产生. 飞翅与毛刺的防止方法:飞翅是检查合模力或增压情况,调整压射增压机构,使压射增压峰值降低;检查模具滑块损坏程度并修整.毛刺的防止方法是浇注温度不宜过高,加大起模斜度等. 飞翅与毛刺的补救措施:轻微的用滚筒或喷丸清理,较厚的用铲,磨,冲切等方法去除. 抬型与飞翅区别:抬型是铸件在分型面部位高度增大,并伴有厚大飞翅;单纯飞翅厚度较薄,铸件分型面部位高度不增加. 2 孔洞类铸件缺陷 孔洞类缺陷主要有:气孔,针孔,缩孔,缩松和疏松. 针孔属于气孔的一种.气孔主要是指出现在铸件内部或表层,截面呈圆形,椭圆形,腰圆形,梨形或针头状,孤立存在或成群分布的孔洞.

气孔形成原因:炉料潮湿,锈蚀,油污,气候潮湿;浇注系统不合理;压室充满度不够;排气不畅;模具型腔位置太深;涂料成分不当或过多;金属液除渣不良等. 气孔的防止方法:坩锅等要充分预热和烘干;直浇道的喷嘴截面 积应尽可能比内浇口截面积大;提高压室充满度;深腔处开设排 气塞;重熔料的加入比例要适当;加强除渣,除气;充型速度不宜 过高,浇注位置与浇注系统的设置应保证金属液平稳在充满型腔;适当提高浇注温度和铸型温度,合理设置排气塞和溢流槽等. 气孔的补救措施:超出验收标准时报废;单独大气孔焊补;成群小气孔可用浸渗处理方法填补,质量要求高的可采用热等静压处理法消除气孔. 缩松属于缩孔的一种,指细小的分散缩孔. 缩孔与气孔及缩松,疏松的区别:缩孔形状不规则,表面粗糙,产 生在铸件热节和最后凝固部位,常伴有粗大树枝晶;气孔形状规则,表面光滑,分布在铸件表面或遍布整个铸件或某个局部,断口不呈海绵状;缩松与疏松断口呈海绵状,常产生在铸件厚大部位,不遍布整个铸件,缩松与疏松无严格分界,只是程度差别. 缩孔,缩松,疏松产生的原因:凝固时间过长;浇注温度不当,过高易产生缩孔,过低易产生缩松和疏松;凝固温度间隔过宽,易产生缩松和疏松;合金杂质过多;浇注系统设置不当;铸件结构不合理,壁厚变化突然;内浇道问题;合金杂质过多;模温问题. 缩孔,缩松,疏松的防止方法:改进铸型工艺设计;改进铸件结构

铸钢件常见铸造缺陷及预防措施

铸钢件常见铸造缺陷及预防措施 铸钢件在生产过程中经常会发生各种不同的铸造缺陷,如何预防这些缺陷,一直是铸件生产厂家关注的问题。本文主要介绍了笔者在这方面的一些认识和实践经验。 我车间主要采用传统湿型砂铸造工艺生产铸钢件,在长期的生产中,发现铸钢件主要出现以下铸造缺陷,砂眼,粘砂,气孔,缩孔,夹砂结疤,胀砂等等。 1.砂眼及其预防措施 砂眼缺陷处内部或表面有充塞着型(芯)砂的小孔,砂眼是一种常见的铸造缺陷,往往导致铸件报废。砂眼是由于金属液从砂型型腔表面冲下来的砂粒(块),或者在造型,合箱操作中落人型腔中的砂粒(块)来不及浮入浇冒系统,留在铸件内部或表面而造成的。 砂眼的预防措施: 1.1严格控制型砂性能,提高砂型芯的表面强度和紧实度,减少毛刺和锐角,减少冲砂。 1.2合箱前把型腔和砂芯表面的浮砂处理干净,平稳合箱,如果是明冒口或贯通出气眼,应避免散砂从中掉人型腔,合箱后要尽快浇注。 1.3设置正确合理的浇冒系统,避免金属液对型壁和砂芯的冲刷力过大。 1.4浇口杯表面要光滑,不能有浮砂。 2.粘砂及其预防措施 在铸件表面上,全部或部分覆盖着一层金属(或金属氧化物)与砂(或涂料)的混(化)合物或一层烧结构的型砂,致使铸件表面粗糙,难于清理。粘砂多发生在型、芯表面受热作用强烈的部位,分机械粘砂和化学粘砂两种。机械粘砂是由金属液渗入铸型表面的微孔中形成的,当渗入深度小于砂粒半径时,铸件不形成粘砂,只是表面粗糙,当渗入深度大于砂粒半径时,就形成机械粘砂,化学粘砂是金属氧化物和造型材料相互进行化学作用的产物,与铸件牢固地结合在一起而形成的。 粘砂的预防措施: 2.1选用耐火度高的砂,以提高型砂,芯砂的耐火度,原砂的SiO2含量在96%(质量分数)以上,而且砂粒应对粗些。铸钢件的浇注温度越高,壁厚越厚,对原砂中SiO2含量的要求越高。

铸钢件缩孔及缩松缺陷的消除

铸钢件缩孔及缩松缺陷的消除 【摘要】通过分析铸钢件缩孔及缩松产生的机理,总结出铸件产生缩孔及缩松缺陷的部位,提出从改进浇注系统、改变铸件结构、适当提高浇注温度及控制浇注速度等几个方面消除铸件中的缩孔及缩松。 缩孔及缩松缺陷是铸钢件生产中的一大难题,长期以来困扰着广大铸造工作者。这两种缺陷多发生在铸件内部,通过机械加工或X 射线检查可以发现,要进行挽救比较困难,也有发生在表面上的,通过安放冒口可以消除。这两种缺陷很相似,危害都很大,可以归为一类。由于缩孔及缩松缺陷的消除需要综合考虑浇注系统、浇注温度、铸件结构、冒口及冷铁等工艺因素,在实际生产中难以控制。本文拟对铸钢件生产中出现的缩孔、缩松缺陷的消除作一探讨,供有关人员参考。 一、缩孔及缩松缺陷产生的机理 铁液在铸型内冷凝的过程中,体积要发生三次收缩:第一次是合金液从浇注温度冷却到开始凝固的温度,称为液态收缩; 第二次是从开始凝固的温度冷却到金属液全部凝固的温度,称为凝固收缩; 第三次是从全部凝固的温度冷却到室温,称为固态收缩。液态收缩的大小与浇注温度有关,铁液每降低100 ℃,体积约缩小0. 78 % ~1. 2 % ,因此浇注温度越高,液态收缩越大。一般情况下,在能保证流动性的前提下,应尽量降低铁液的浇注温度。液态及凝固收缩受合金成分的影响较大,比如,在其他成分相同的情况下,碳、硅含量越大,收缩就越小; 而锰、硫含量越多,则收缩量越大。一般铸钢件在凝固收缩阶段的线收缩率为2. 0 % ~3. 5 % ,因此在砂型铸造中制造模样时,除了加放一定的加工余量外,还要按铸造合金的收缩特性,加上一定量的合金收缩率。当金属液进入型腔后,靠近型壁的金属液散热快,冷却速度快,而后向铸件中心逐次凝固。铸件在冷却凝固的过程中,一般液态收缩时可以得到浇包中液态金属的补缩,这个阶段的收缩对铸件质量影响不大; 固态收缩对形成缩孔、缩松缺陷的影响也不大,但如果在凝固收缩时得不到补缩,就会在铸件最后凝固的部位( 如温度最高的中心处) 形成细小或分散的孔洞,即缩孔、缩松缺陷。 二、缩孔及缩松缺陷产生的部位 实际生产中,有时候要区分是缩孔还是气孔或是夹渣缺陷,并不是很容易,需要综合考虑铸件的结构因素来判断。总结起来,缩孔及缩松缺陷在铸件上产生的部位肯定是最后凝固的地方,而导致最后凝固主要有以下两种情况: ( 1) 最常见是发生在铸件断面突增或铸件几何热节的部位,因为这些地方金属液的散热最慢,最后凝固而形成缺陷。 ( 2) 并非是铸件的几何热节,而是因为金属液长时间流经某处,使该处过热,也会产生缩孔及缩松缺陷,通常称之为物理热节。 三、缩孔及缩松缺陷的防止措施 要使铸钢件在凝固过程中不产生缩孔及缩松缺陷,必须将铸件最后凝固的部位引出铸件本体,这就需要在铸件内形成顺序凝固的温度梯度,使金属液从较低温度开始凝固,而最后凝固的部位在冒口中。生产中常用的方法有以下几种。 1. 使用冒口 在浇注一般的小铸钢件或结构简单的小型铸件时,有无冒口影响不大,因为铸钢件自身有一定的补缩能力。而当铸钢件较复杂时,冒口的作用就比较明显。冒口有明冒口和暗冒口两种。明冒口暴露在空气中,冷却速度快,浇注一段时间后就凝固了,使冒口中的金属液与外界隔离,降低了冒口的补缩效率,对此可在浇注的最后阶段,将一部分金属液由冒口浇入,以强化冒口的补缩效果。冒口的位置需根据铸件壁厚和冷却的情况而定,应设置在铸件最后凝固的部位。冒口的断面一般为被补缩断面的1. 5 ~2 倍,冒口的高度应为其直径的1. 5 ~2.

浅谈汽车涂装漆膜缩孔的防治

浅谈汽车涂装漆膜缩孔的防治 摘要:本文讲述漆膜缩孔形成机理,通过对中面涂漆缩孔防治案例分析,得出原因并针对性进行分析,制定对策,为有效的预防和解决缩孔问题提供思路。 关键词:漆膜;缩孔;案例分析 1 引言 随着时代的发展,人们的审美观也在发生变化,对汽车外观的要求也越来越苛刻,高光泽、高硬度、高品质、长久的防腐性成为涂装制造业追求的目标。在汽车生产过程中由于受涂装工艺、涂装管理、涂装材料的制约,漆膜品质的过程控制难免有疏漏,这将直接影响车间的直行率,造成车辆滞留无法交车。下面简述一下影响直行率的漆膜弊病之一-缩孔。 2 缩孔形成机理 缩孔被认为在漆膜表面由一个中心点出发,在涂层表面形成圆形凹陷,其边缘多半微拱起。 缩孔的形成主要分为两种: (1)密度梯度引起:干燥成膜过程中,表面溶剂挥发,表面聚合物的浓度增高,涂料粘度增高,都会导致表面张力和表面密度超过本体,形成凹陷; (2)表面张力梯度引起:由于涂料组成的变化和温度变化导致表面张力不均,流体由低表面张力处流向高表面张力处,结果在流体表面形成凹陷。 3 案例分析 下面对遇到的几种缩孔案例进行分析, 案例一 某涂装生产线,2012 年6 月在生产过程中,电泳车身烘干后,在ED打磨工位发现车身出现批量缩孔现象,需要大面积打磨处理,严重影响生产车间的直行率,使生产处于停滞状态,对此工艺技术人员及材料供货厂家立即展开了调查: 根据缩孔产生的时间段,我们进行了流水线各阶段的试验排查 1 工艺参数 根据经验前处理-电泳的质量缺陷常伴有各槽体工艺参数的不稳定或异常现象,对此我们专门对前处理-电泳各槽体的工艺参数进行排查发现:○1当班次脱脂各参数完好;○2当班次电泳各参数完好。 2.进行对比排查 ○1用ACT板在倒水1进行刮板进行电泳,分别排查电泳工序及烤房的影响 结果:随线烘烤和实验室烤箱烘烤电泳试板无明显区别,排除烤房对车身污染造成缩孔的影响。 ○2用现场随线进行磷化,倒水1摘下,用颜料、树酯、纯水在实验室进行配槽,用现场磷化板和ACT板分别进行电泳

缩松与缩孔相关知识

铸件缩孔、缩松产生的原因 1、铸件结构方面的原因 由于铸件断面过厚,造成补缩不良形成缩孔。铸件壁厚不均匀,在壁厚部分热节处产生缩孔或缩松。 由于铸孔直径太小形成铸孔的砂芯被高温金属液加热后,长期处于高温状态,降低了铸孔表面金属的凝固速度,同时,砂芯为气体或大气压提供了通道,导致了孔壁产生缩孔和缩松。 铸件的凹角圆角半径太小,使尖角处型砂传热能力降低,凹角处凝固速度下降,同时由于尖角处型砂受热作用强,发气压力大,析出的气体可向未凝固的金属液渗入,导致铸件产生气缩孔。 2、熔炼方面的原因 液体金属的含气量太高,导致在铸件冷却过程中以气泡形式析出,阻止邻近的液体金属向该处流动进行补缩,产生缩孔或缩松。 当灰铸铁碳当量太低时,将使铁水凝固时共晶石墨析出量减少,降低了石墨化膨胀的作用,使凝固收缩增加,同时也降低铁水的流动性。认而降低铁水的自补缩能力,使铸件容易产生缩孔或缩松。 当铁水含磷量或含硫量偏高时,磷是扩大凝固温度范围的元素,同时形成大量的低熔点磷共晶,凝固时减少了补缩能力。硫是阻碍石墨化的元素,硫还能降低铁水的流动性。同时,铁水氧化严重,也降低液体金属的流动性,使铸件产生缩孔或缩松。 孕育铸铁或球墨铸铁在浇注前用硅铁等孕育剂进行孕育处理时,如果孕育不良,将导致铁水凝固时析出大量的渗碳体,从而使凝固收缩增加,产生缩孔或缩松。 3、工艺设计的原因 (1)浇注系统设计不合理浇注系统设计与铸件的凝固原则相矛盾时,可能会导致铸件产生缩孔或缩松。主要表现为浇注位置不合适,不利于顺序凝固,内浇口的位置及尺寸不正确。对于灰铸铁和球墨铸铁,如果将内浇口开在铸件厚壁处,同时内浇口尺寸较厚,浇注后,内浇口则长时间处于液体状态。在铁水凝固发生石墨化膨胀的作用下,铁水会经内浇口倒流回直浇道,从而使铸件产生缩孔和缩松。 (2)冒口设计不合理冒口位置、数量、尺寸及冒口颈尺寸未能促进铸件顺序凝固,都可能导致铸件产生缩孔和缩松。如果在暗冒口顶部未放置出气冒口,或冷铁使用不当,也会导致铸件产生缩孔和缩松。 (3)型砂、芯砂方面的原因型砂(芯砂)的耐火度及高温强度太低,热变形量太大。当在金属液的静压力或石墨化膨胀力的作用下,型壁或芯壁会产生移动。使铸件实际需要的补缩量增加或在膨胀部位出现新的热节,导致铸件产生缩孔和缩松。这种现象对大中型铸件是很敏感的。另外,如果型砂中水分含量太高,将使型壁表面的干燥层厚度减少和水分凝聚区的水分增加,范围扩大,从而使型壁的移动能力增加,导致缩孔及缩松的产生。 (4)浇注方面的原因浇注温度太高,使液态金属的液态收缩量增加;太低时,又会降低冒口的补缩能力,特别是采用底注式浇注系统时更明显,铸件往

浅谈消失模铸造铸钢件常见缺陷及防治措施

浅谈消失模铸造铸钢件常见缺陷及防治措施[摘要]文章就铸钢件表面缺陷的形成机制进行了简单论述,对该缺陷防治的 措施进行了浅析,并经过分析指出铸钢件表面形成缺陷气痕和流痕的主要原因:浇注系统不合理、透气性偏低、浇注温度不高不稳定等等,并针对不同原因进行了针对性的研究和分析,总结出一些防治措施和方法。 【关键词】铸钢件;铸造缺陷;缺陷防治 液态金属的质量好坏以及铸造工艺方案的制定、落实与执行的质量都决定了铸件质量的高低。为了使得铸件的质量能够得到保证,从铸件原材料的购买、造型、制芯、合箱、浇注、落沙、铸件清理直至最后的热处理为止,每个制造过程都要进行的严格控制,如有不慎,将会出现各种不同的缺陷。对铸件质量的基本要求是其结构组织和性能符合使用要求,但是由于很多的铸件只是要求为自由表面,而不再对其进行加工,因此对铸件的表面质量以及外表形状和尺寸均有非常严格的要求。铸钢件大致存在以下的常见缺陷:缩孔、缩松、气孔、冷裂与热裂、白点以及偏析和缺陷断口等等。文章针对铸钢件常见缺陷的特点进行了总结,并以此为诊断铸件质量提供参考。 1、消失模铸钢充型的特殊性 在铸件进行铸造充型凝固的瞬间变产生了铸件的缺陷。通常情况下无论大小型铸件的充型时间都比较短。消失模铸件充型与普通空腔铸造不同之处在于其缺陷的形成是由消失模铸钢件夹渣缺陷所产生。 1.1 消失模铸钢件的充型形态 绝大多数对于消失模铸造金属液充型过程的研究都是基于铝合金消失模铸造充型过程的基础上,并且大部分都是在无负压作用下进行的充型。基于这种情况,金属液从内浇通道进入铸件的“型腔”,并且金属液的前沿以扇形的形态向前流动,于此同时金属液在重力的作用下其前沿向下发生了形状的改变,但是其总体的流动方向仍是向着远离内浇道的方向推进,直到“型腔”被金属液全部充满为止。金属液的温度以及模样材料的性质和充型的速度决定了金属液与摸样接触的边界形态,金属液温度越高、摸样密度越小、充型的速度越快,则金属液整体的推进速度就越快。边界区内是一层摸样气化所形成的高压气,该气隙的厚度在1mm至3mm之间,内气压大约为0.12MPa,在抽负压是内气压约为0.096MPa,并且随着合金类型、浇注速度、浇注温度、模样密度、直浇道面积、涂料高温透气性及负压大小的不同而发生改变。在铝合金无负压浇注的情况下,通常根据不同情况将金属液与摸样界面的形态分为以下四种模型:接触模式、间隙模式、溃散模式以及卷入模式。 1.2 金属液充型的湍流形态以及所产生的附壁效应 我国企业在消失模钢/铁件生产浇注的过程中,都是通过对干砂铸型施加负压的方式来紧固干砂的砂型,从而保证铸型有足够的强度和刚度来抵挡金属液的冲击以及浮力,确保铸型在整个浇注和凝固的过程中能够完整有效,最终得到结构完整的铸件。在砂箱高度不再继续增加的情况下,消失模铸造黑色合金铸件中负压方法的使用对于保证干砂铸型的强度和刚度起来到了很大的作用,从而确保了铸造过程的继续实施,这在我国消失模铸造工艺的发展过程中起到了非常重要的作用。 在试验中,充型的金属液在流动过程中为湍流状态,充型前的金属液的形态

相关文档
最新文档