化工原理A2A

化工原理A2A
化工原理A2A

昆明理工大学试卷(A )

考试科目:化工原理(下) A2 考试日期:2012.01.06命题教师:杨劲

学院:化工学院专业班级:学生姓名:学号:

任课教师:课序号:考试座位号:

一.填空(15分,每空1分)

1、以气相摩尔分数差为推动力的总传质系数Ky和以液相摩尔分数差为推动力的总传质系数Kx之间的关系是,由此可推知N oL = N oG 。

2、设计精馏塔时,若将泡点加料改为露点加料,加料热状态参数q 值将;若其他条件不变,则所需要的理论板数,同时蒸馏釜中所需要的加热蒸汽消耗量,塔顶冷凝器中冷却剂消耗量。

3、板式塔的全塔效率是指完成一定的分离任务所需的与之比。

4、当混合液的相对挥发度或形成物时,适宜采用萃取操作进行分离。

5、在测量湿球温度时,空气流速需大于m/s ,这是为了减少和的影响,使测量结果较为精确。

二.选择题(20分,每空2分)

1. 设计吸收塔时,分离任务一定,吸收剂进口温度、操作压力、入塔浓度均已确定,若选

用性质更加优良的填料,则所需传质单元高度____________,传质单元数

A.增大 B.减小 C. 不变 D.不确定

2. 某精馏塔精馏段理论板数为N1层,提馏段理论板数为N2层,现因设备改造,使提馏段的理论板数增加,精馏段的理论板数不变,且F、xF 、q、R、V等均不变,则此时: 。

A.xW减小,xD增加;B.xW减小,xD不变;

C.xW减小,xD减小; D.xW减小,xD的变化视具体情况而定。

3.精馏分离某二元混合物,规定分离要求为x D、x W。如进料分别为x F1、x F2时,其相应的最小回流比分别为R min1、R min2。当x F1>x F2时,则。

A.R min1<R min2

B.R min1=R min2

C.R min1>R min2

D.R min的大小无法确定

4.操作中的精馏塔分离某理想物系,第n块板上的温度为t1、液相组成x1,第n+2块板上的温度为t2、组成为x2,则有。

A、t1>t2 , x1>x2

B、t1>t2 , x1

C、t1

D、t1x2

5. 与板式塔相比,填料塔具有 的特点。

A 、操作范围大

B 、适于处理含固体悬浮物的物料

C 、适于真空操作

D 、清洗方便

6.进行萃取操作时应使:

A 选择性系数小于1

B 选择性系数大于1

C 分配系数小于1

D 分配系数大于1

7. 对湿度一定的空气,以下各参数中 与空气的温度无关。

A,相对湿度 B,湿球温度 C ,露点温度 D ,绝热饱和温度

8. 某湿物料的平衡含水量为X *,所得干燥产品的含水量必 X *。

A 等于

B 大于或等于

C 小于

D 不确定

9.在给定的空气条件下,不同物料在恒速阶段的干燥速率 。

A ,相同

B ,有较大差异

C ,有极大差异

D ,可能有差异,也可能相同

三. 简答题(每题5分,共10分)

1. 吸收过程中,逆流与并流各有何优缺点?一般工业吸收多用哪种流向?

2. 精馏塔操作中,若将加料口向上移动两层塔板,x D 、x W 将有何变化?为什么?

四、(20分)在某逆流操作的填料吸收塔内,回收混合气体中的可溶组分A ,混合气体中A 的初始浓度为0.02 (摩尔分数)。为了节约成本,吸收剂为解吸之后的循环水,液气比为

1.5,在操作条件下,气液平衡关系为Y * = 1.2X 。当解吸塔操作正常时,解吸后水中A 的浓度为0.001(摩尔分数),吸收塔气体残余A 的浓度为0.002(摩尔分数);若解吸操作不正常,解吸后水中A 的浓度为 0.005(摩尔分数),其他操作条件不变,则气体残余A 的浓度为多少?

五、(20分)在连续精馏塔中分离相对挥发度为2.5的双组分混合物,饱和蒸汽进料,进料流率h kmol F /100=,其中含易挥发组分A 为0.4(摩尔分率,下同),操作回流比为4,并测得塔顶、塔底中A 的组成分别为0.95和0.05,试求:

(1)写出塔的精馏段和提馏段的操作线方程;

(2)若要求塔顶产品量为h kmol /60,能否得到合格产品?

欲得到x D =0.95的合格产品,最大可能的采出液量D max 为多少?

(3)若已知塔釜上方那块实际板(第n 块板)的气相默弗里效率60.0=mV E ,求该块

实际板(第n 块)上升蒸汽的组成n y 。

六、(15分)在恒定干燥条件下的箱式干燥器内,将湿染料由湿基含水量45%干燥到3%,湿物料的处理量为8000㎏湿染料,实验测得:临界湿含量为30%,平衡湿含量为1%,总干燥时间为28h 。(1)试计算恒速阶段和降速阶段各经历了多少小时?

(2)恒速阶段和降速阶段平均每小时所蒸发的水分量又各为多少kg 水/h ?

化工原理公式和重点概念

《化工原理》重要公式 第一章 流体流动 牛顿粘性定律 dy du μτ= 静力学方程 g z p g z p 2211 +=+ρ ρ 机械能守恒式 f e h u g z p h u g z p +++=+++2222222111 ρρ 动量守恒 )(12X X m X u u q F -=∑ 雷诺数 μμρ dG du ==Re 阻力损失 22 u d l h f λ= ????d q d u h V f ∞∞ 层流 Re 64=λ 或 2 32d ul h f ρμ= 局部阻力 2 2 u h f ζ= 当量直径 ∏ =A d e 4 孔板流量计 ρP ?=20 0A C q V , g R i )(ρρ-=?P 第二章 流体输送机械 管路特性 242)(8V e q g d d l z g p H πζλ ρ+∑+?+?= 泵的有效功率 e V e H gq P ρ= 泵效率 a e P P =η

最大允许安装高度 100][-∑--=f V g H g p g p H ρρ]5.0)[(+-r NPSH 风机全压换算 ρ ρ''T T p p = 第四章 流体通过颗粒层的流动 物料衡算: 三个去向: 滤液V ,滤饼中固体) (饼ε-1V ,滤饼中液体ε饼V 过滤速率基本方程 )(22 e V V KA d dV +=τ , 其中 φμ 012r K S -?=P 恒速过滤 τ22 2 KA VV V e =+ 恒压过滤 τ222KA VV V e =+ 生产能力 τ ∑=V Q 回转真空过滤 e e q q n K q -+=2? 板框压滤机洗涤时间(0=e q ,0=S ) τμμτV V W W W W 8P P ??= 第五章 颗粒的沉降和流态化 斯托克斯沉降公式 μρρ18)(2 g d u p p t -=, 2R e

化工原理干燥试题及答案

干燥 一、填空题: 1、空气湿度的测定是比较麻烦的,实际工作中常通过(),然后经过计算得到。 2、一定状态的空气容纳水分的极限能力为() 3、物料与一定湿度的空气接触,不能被除去的水分称为()。 4、干燥过程可分为两个阶段:()和(),两个干燥阶段的交点称为(),与其对应的物料含水量称为()。 5、恒速干燥阶段又称为(),其干燥速率的大小取决于()。 6、降速干燥阶段又称为(),其干燥速率的大小取决于(),与外部的干燥条件关系不大。 7、临界含水量X 随()的不同而异。 8、平衡水分X*与()有关。 9、在连续干燥中,常采用湿物料与热空气并流操作的目的在于(),代价是()。 10、干燥过程中采用中间加热方式的优点是(),代价是()。 11、干燥过程中采用废气再循环的目的是(),代价是()。 12、干燥速率是指(),其微分表达式为()。 13、恒速干燥阶段干燥时间T=() 14、若降速干燥阶段的干燥速率与物料的含水量X呈线性变化,干燥时间T=() 15、干燥器按加热的方式可分为(),(),()和介电加热干燥器。 16、干燥器中气体和物料的流动方式可分为()、()和()。 17、结合水分和非结合水分的区别是()。 时,若水的初温不同,对测定结果()影响(有或没有)。 18、测定湿球温度t W 二、判断题: 1、只要知道湿空气的性质参数(如湿度H,相对湿度φ,比容vH,比热CH, ,绝热饱和温度tas,露点td)中的任意两个焓IH,干球温度t,湿球温度t W 就可确定其状态。() 2、温度为t的湿空气,增大湿度其湿球温度升高。() 3、同一房间内不同物体的平衡水汽分压相同,温度相等。() 4、物料的平衡水分与物料的堆放方式有关。() 5、物料的平衡水分是物料与一定状态的空气接触能被干燥的限度。() 6、结合水的蒸汽压低于同温度下纯水的饱和蒸汽压。() 7、平衡水分必定是结合水分。() 8、一定的温度下,物料中结合水分不仅与物料有关,而且与空气的状态有关。() 9、等温干燥过程必定是升焓干燥过程。() 三、选择题

化工原理 传热综合实验报告 数据处理

化工原理 传热综合实验报告 数据处理 七、实验数据处理 1.蒸汽冷凝与冷空气之间总传热系数K 的测定,并比较冷空气以不同流速u 流过圆形直管时,总传热系数K 的变化。 实验时蒸汽压力:0.04MPa (表压力),查表得蒸汽温度T=109.4℃。实验装置所用紫铜管的规格162mm mm φ?、 1.2l m =,求得紫铜管的外表面积 200.010.060318576281.o S d l m m m ππ=??=??=。 根据2 4s s V V u A d π= =、0.012d m =,得到流速u ,见下表2: 表2 流速数据 取冷空气进、出口温度的算术平均值作为冷空气的平均温度,查得冷空气在不同温度下的比热容p c 、黏度μ、热传导系数λ、密度ρ,如下表3所示: 表3 查得的数据 t 进/℃ t 出/℃ t 平均/℃ ()p c J kg ????? ℃ Pa s μ? ()W m λ?????℃ ()3 kg m ρ-? 22.1 77.3 49.7 1005 0.0000196 0.0283 1.093 24.3 80.9 52.6 1005 0.0000197 0.02851 1.0831 26.3 82.7 54.5 1005 0.0000198 0.02865 1.0765 27.8 83 55.4 1005 0.0000198 0.02872 1.0765 29.9 83.6 56.75 1005 0.0000199 0.02879 1.0699 31.8 83.7 57.75 1005 0.00002 0.02886 1.0666 33.7 83.8 58.75 1005 0.0000200 0.02893 1.0633 35.6 84 59.8 1005 0.0000201 0.029 1.06 根据公式()()=V s p s p Q m c t t c t t ρ=--出进出进、 ()()ln m T t T t t T t T t ---?=--进出进出 , 求出Q 序号 ()31s V m h -? ()1u m s -? 1 2.5 6.140237107 2 5 12.28047421 3 7.5 18.42071132 4 10 24.56094843 5 12.5 30.70118553 6 15 36.84142264 7 17.5 42.98165975 8 20 49.12189685

化工原理重要概念和公式

《化工原理》重要概念 第一章流体流动 质点含有大量分子的流体微团,其尺寸远小于设备尺寸,但比起分子自由程却要大得多。 连续性假定假定流体是由大量质点组成的、彼此间没有间隙、完全充满所占空间的连续介质。 拉格朗日法选定一个流体质点 , 对其跟踪观察,描述其运动参数 ( 如位移、速度等 ) 与时间的关系。 欧拉法在固定空间位置上观察流体质点的运动情况,如空间各点的速度、压强、密度等,即直接描述各有关运动参数在空间各点的分布情况和随时间的变化。 轨线与流线轨线是同一流体质点在不同时间的位置连线,是拉格朗日法考察的结果。流线是同一瞬间不同质点在速度方向上的连线,是欧拉法考察的结果。 系统与控制体系统是采用拉格朗日法考察流体的。控制体是采用欧拉法考察流体的。 理想流体与实际流体的区别理想流体粘度为零,而实际流体粘度不为零。 粘性的物理本质分子间的引力和分子的热运动。通常液体的粘度随温度增加而减小,因为液体分子间距离较小,以分子间的引力为主。气体的粘度随温度上升而增大,因为气体分子间距离较大,以分子的热运动为主。 总势能流体的压强能与位能之和。 可压缩流体与不可压缩流体的区别流体的密度是否与压强有关。有关的称为可压缩流体,无关的称为不可压缩流体。 伯努利方程的物理意义流体流动中的位能、压强能、动能之和保持不变。 平均流速流体的平均流速是以体积流量相同为原则的。 动能校正因子实际动能之平均值与平均速度之动能的比值。 均匀分布同一横截面上流体速度相同。 均匀流段各流线都是平行的直线并与截面垂直 , 在定态流动条件下该截面上的流体没有加速度 , 故沿该截面势能分布应服从静力学原理。

层流与湍流的本质区别是否存在流体速度 u 、压强 p 的脉动性,即是否存在流体质点的脉动性。 第二章流体输送机械 管路特性方程管路对能量的需求,管路所需压头随流量的增加而增加。 输送机械的压头或扬程流体输送机械向单位重量流体所提供的能量 (J/N) 。 离心泵主要构件叶轮和蜗壳。 离心泵理论压头的影响因素离心泵的压头与流量,转速,叶片形状及直径大小有关。 叶片后弯原因使泵的效率高。 气缚现象因泵内流体密度小而产生的压差小,无法吸上液体的现象。 离心泵特性曲线离心泵的特性曲线指 H e~ q V ,η~ q V , P a~ q V 。 离心泵工作点管路特性方程和泵的特性方程的交点。 离心泵的调节手段调节出口阀,改变泵的转速。 汽蚀现象液体在泵的最低压强处 ( 叶轮入口 ) 汽化形成气泡,又在叶轮中因压强升高而溃灭,造成液体对泵设备的冲击,引起振动和侵蚀的现象。 必需汽蚀余量 (NPSH)r 泵入口处液体具有的动能和压强能之和必须超过饱和蒸汽压强能多少 离心泵的选型 ( 类型、型号 ) ①根据泵的工作条件,确定泵的类型;②根据管路所需的流量、压头,确定泵的型号。 正位移特性流量由泵决定,与管路特性无关。 往复泵的调节手段旁路阀、改变泵的转速、冲程。 离心泵与往复泵的比较 ( 流量、压头 ) 前者流量均匀,随管路特性而变,后者流量不均匀,不随管路特性而变。前者不易达到高压头,后者可达高压头。前者流量调节用泵出口阀,无自吸作用,启动时关出口阀;后者流量调节用旁路阀,有自吸作用,启动时开足管路阀门。 通风机的全压、动风压通风机给每立方米气体加入的能量为全压 (Pa=J/m 3 ) ,其中动能部分为动风压。

化工原理第10章

第10章习题解答 1 在操作条件下,以纯净的氯苯为萃取剂,在单级接触萃取器中,萃取含丙酮的水溶液。丙酮-水-氯苯三元混合液的平衡数据见本题附表。试求: ⑴在直角三角形坐标系下,绘制此三元体系的相图,其中应包括溶解度曲线、联接线和辅助曲线; ⑵若近似地将前五组数据中B与S视为不互溶,试在X-Y直角坐标图上标绘分配曲线; ⑶若丙酮水溶液质量比分数为0.4,并且m B/m S=2.0,在X-Y直角坐标图上求丙酮在萃余相中的浓度; ⑷求当水层中丙酮浓度为45%(质量%,下同)时,水与氯苯的组成以及与该水层成平衡时的氯苯层的组成; ⑸由0.12kg氯苯和0.08kg水所构成的混合液中,尚需加入多少kg丙酮即可成为三元均相混合液; ⑹预处理含丙酮35%的原料液800kg,并要求达到萃取平衡时,萃取相中丙酮浓度为30%,试确定萃取剂(氯苯)的用量; ⑺求条件⑹下的萃取相和萃余相的量,并计算萃余相中丙酮的组成; ⑻若将条件⑹时的萃取相中的溶剂全部回收,求可得萃取液的量及组成。 解:⑴依平衡数据绘出溶解度曲线如附图1-1所示,图中各点代号与数据的对应关系注于附表1-1中。联结互成平衡的两液层组成点得E1R1、E2R2、E2R2……等平衡联结线。 由E1、E2、E3……各点作平行于AB边的直线,再由R1、R2、R3……各点作平行于AS边的

直线,两组线分别相交于点G、H、I、J、K,连接P、G、H、I、J、K即得辅助曲线。 ⑵将前五组数据转换为质量比浓度,其结果列于附表1-2中,并在X-Y直角坐标图上标绘分配曲线,如图1-2。 附表1-2 ⑶由X F=0.4,在图1-2上,自点X F作斜率为-m B/m S=-2.0的直线与分配曲线相交于点T,点T的横坐标即为丙酮在萃余相中的浓度X R=0.25。 图1-1 图1-2 ⑷水层中各组分的浓度 由所绘制的溶解度曲线如图1-3,在AB边上确定组分A的浓度为45%的点F,由点F绘直线FW平行于三角形底边BS,则FW线上各点表示A的组成均为45%。FW与溶解度曲线左侧的交点R,即代表水层中含A为45%的组成点,由图可读得点R组成为(质量%): x A=45%x B=52.8%x S=2.2%

化工原理 大题 第二章

第二章 习题 1. 在用水测定离心泵性能的实验中,当流量为26 m 3/h 时,泵出口处压强表和入口处真空表的读数分别为152 kPa 和24.7 kPa ,轴功率为 2.45 kW ,转速为2900 r/min 。若真空表和压强表两测压口间的垂直距离为0.4m ,泵的进、出口管径相同,两测压口间管路流动阻力可忽略不计。试计算该泵的效率,并列出该效率下泵的性能。 解:在真空表和压强表测压口处所在的截面11'-和22'-间列柏努利方 程,得 2 2 1 1 2 2 12,12 22e f p u p u z H z H g g g g ρρ-+ + +=+ + + ∑ 其 中 : 210.4z z m -=4 12. 4710 p P a = -?表压 5 21.52 10p P a =?(表压) 12u u = ,12 0f H - =∑ 则泵的有效压头为: 5 21 213 (1.520.247)10 ()0.418.41109.81 e p p H z z m g ρ-+?=-+=+ =? 泵的效率3 2618.4110 100%53.2%1023600102 2.45 e e Q H N ρη??= = ?=?? 该效率下泵的性能为: 3 26/Q m h = 18.14H m =53.2%η= 2.45N kW = 3. 常压贮槽内盛有石油产品,其密度为760 kg/m 3,黏度小于20 cSt ,在贮存条件下饱和蒸气压为80kPa ,现拟用65Y -60B 型油泵将此油品以15 m 3/h 的流量送往表压强为177 kPa 的设备内。贮槽液面恒定,设备的油品入口比贮槽液面高5 m ,吸入管路和排出管路的全部压头损失分别为1 m 和4 m 。试核算该泵是否合用。 若油泵位于贮槽液面以下 1.2m 处,问此泵能否正常操作?当地大气压按101.33kPa 计。 解:要核算此泵是否合用,应根据题给条件计算在输送任务下管路所需压头 ,e e H Q 的值,然后与泵能提供的压头数值比较。

化工原理概念汇总汇总

化工原理知识 绪论 1、单元操作:(Unit Operations): 用来为化学反应过程创造适宜的条件或将反应物分离制成纯净品,在化工生产中共有的过程称为单元操作(12)。 单元操作特点: ①所有的单元操作都是物理性操作,不改变化学性质。②单元操作是化工生产过程中共有的操作。③单元操作作用于不同的化工过程时,基本原理相同,所用设备也是通用的。单元操作理论基础:(11、12) 质量守恒定律:输入=输出+积存 能量守恒定律:对于稳定的过,程输入=输出 动量守恒定律:动量的输入=动量的输出+动量的积存 2、研究方法: 实验研究方法(经验法):用量纲分析和相似论为指导,依靠实验来确定过程变量之间的关系,通常用无量纲数群(或称准数)构成的关系来表达。 数学模型法(半经验半理论方法):通过分析,在抓住过程本质的前提下,对过程做出合理的简化,得出能基本反映过程机理的物理模型。(04) 3、因次分析法与数学模型法的区别:(08B) 数学模型法(半经验半理论)因次论指导下的实验研究法 实验:寻找函数形式,决定参数

第二章:流体输送机械 一、概念题 1、离心泵的压头(或扬程): 离心泵的压头(或扬程):泵向单位重量的液体提供的机械能。以H 表示,单位为m 。 2、离心泵的理论压头: 理论压头:离心泵的叶轮叶片无限多,液体完全沿着叶片弯曲的表面流动而无任何其他的流动,液体为粘性等于零的理想流体,泵在这种理想状态下产生的压头称为理论压头。 实际压头:离心泵的实际压头与理论压头有较大的差异,原因在于流体在通过泵的过程中存在着压头损失,它主要包括:1)叶片间的环流,2)流体的阻力损失,3)冲击损失。 3、气缚现象及其防止: 气缚现象:离心泵开动时如果泵壳内和吸入管内没有充满液体,它便没有抽吸液体的能力,这是因为气体的密度比液体的密度小的多,随叶轮旋转产生的离心力不足以造成吸上液体所需要的真空度。像这种泵壳内因为存在气体而导致吸不上液的现象称为气缚。 防止:在吸入管底部装上止逆阀,使启动前泵内充满液体。 4、轴功率、有效功率、效率 有效功率:排送到管道的液体从叶轮获得的功率,用Ne 表示。 效率: 轴功率:电机输入离心泵的功率,用N 表示,单位为J/S,W 或kW 。 二、简述题 1、离心泵的工作点的确定及流量调节 工作点:管路特性曲线与离心泵的特性曲线的交点,就是将液体送过管路所需的压头与泵对液体所提供的压头正好相对等时的流量,该交点称为泵在管路上的工作点。 流量调节: 1)改变出口阀开度——改变管路特性曲线; 2)改变泵的转速——改变泵的特性曲线。 2、离心泵的工作原理、过程: 开泵前,先在泵内灌满要输送的液体。 开泵后,泵轴带动叶轮一起高速旋转产生离心力。液体在此作用下,从叶轮中心被抛向 g QH N e ρ=η/e N N =η ρ/g QH N =

化工原理干燥实验报告.doc

化工原理干燥实验报告 一、摘要 本实验在了解沸腾流化床干燥器的基本流程及操作方法的基础上,通过沸腾流化床干燥器的实验装置测定干燥速率曲线,物料含水量、床层温度与时间的关系曲线,流化床压降与气速曲线。 干燥实验中通过计算含水率、平均含水率、干燥速率来测定干燥速率曲线和含水量、床层温度与时间的关系曲线;流化床实验中通过计算标准状况下空气体积、使用状态下空气体积、空气流速来测定流化床压降与气速曲线。 二、实验目的 1、了解流化床干燥器的基本流程及操作方法。 2、掌握流化床流化曲线的测定方法,测定流化床床层压降与气速的关系曲线。 3、测定物料含水量及床层温度时间变化的关系曲线。 4、掌握物料干燥速率曲线的测定方法,测定干燥速率曲线,并确定临界含水量X0及恒速阶段的传质系数kH及降速阶段的比例系数KX。 三、实验原理 1、流化曲线 在实验中,可以通过测量不同空气流量下的床层压降,得

到流化床床层压降与气速的关系曲线(如图)。 当气速较小时,操作过程处于固定床阶段(AB段),床层基本静止不动,气体只能从床层空隙中流过,压降与流速成正比,斜率约为1(在双对数坐标系中)。当气速逐渐增加(进入BC段),床层开始膨胀,空隙率增大,压降与气速的关系将不再成比例。 当气速继续增大,进入流化阶段(CD段),固体颗粒随气体流动而悬浮运动,随着气速的增加,床层高度逐渐增加,但床层压降基本保持不变,等于单位面积的床层净重。当气速增大至某一值后(D点),床层压降将减小,颗粒逐渐被气体带走,此时,便进入了气流输送阶段。D点处的流速即被称为带出速度(u0)。 在流化状态下降低气速,压降与气速的关系线将沿图中的DC线返回至C点。若气速继续降低,曲线将无法按CBA继续变化,而是沿CA’变化。C点处的流速被称为起始流化速度(umf)。 在生产操作过程中,气速应介于起始流化速度与带出速度之间,此时床层压降保持恒定,这是流化床的重要特点。据此,可以通过测定床层压降来判断床层流化的优劣。 2、干燥特性曲线 将湿物料置于一定的干燥条件下,测定被那干燥物料的质量和温度随时间变化的关系,可得到物料含水量(X)与时间(τ)的关系曲线及物料温度(θ)与时间(τ)的关系曲线(见下图)。物料含水量与时间关系曲线的斜率即为干燥速率(u)。将干燥速

化工原理课后题答案(部分)

化工原理第二版 第1章蒸馏 1.已知含苯0.5(摩尔分率)的苯-甲苯混合液,若外压为99kPa,试求该溶液的饱和温度。苯和甲苯的饱和蒸汽压数据见例1-1附表。 t(℃) 80.1 85 90 95 100 105 x 0.962 0.748 0.552 0.386 0.236 0.11 解:利用拉乌尔定律计算气液平衡数据 查例1-1附表可的得到不同温度下纯组分苯和甲苯的饱和蒸汽压P B *,P A *,由 于总压 P = 99kPa,则由x = (P-P B *)/(P A *-P B *)可得出液相组成,这样就可以得到一 组绘平衡t-x图数据。 以t = 80.1℃为例 x =(99-40)/(101.33-40)= 0.962 同理得到其他温度下液相组成如下表 根据表中数据绘出饱和液体线即泡点线 由图可得出当x = 0.5时,相应的温度为92℃ 2.正戊烷(C 5H 12 )和正己烷(C 6 H 14 )的饱和蒸汽压数据列于本题附表,试求P = 13.3kPa下该溶液的平衡数据。 温度C 5H 12 223.1 233.0 244.0 251.0 260.6 275.1 291.7 309.3 K C 6H 14 248.2 259.1 276.9 279.0 289.0 304.8 322.8 341.9 饱和蒸汽压(kPa) 1.3 2.6 5.3 8.0 13.3 26.6 53.2 101.3 解:根据附表数据得出相同温度下C 5H 12 (A)和C 6 H 14 (B)的饱和蒸汽压

以t = 248.2℃时为例,当t = 248.2℃时 P B * = 1.3kPa 查得P A *= 6.843kPa 得到其他温度下A?B的饱和蒸汽压如下表 t(℃) 248 251 259.1 260.6 275.1 276.9 279 289 291.7 304.8 309.3 P A *(kPa) 6.843 8.00012.472 13.30026.600 29.484 33.42548.873 53.200 89.000101.300 P B *(kPa) 1.300 1.634 2.600 2.826 5.027 5.300 8.000 13.300 15.694 26.600 33.250 利用拉乌尔定律计算平衡数据 平衡液相组成以260.6℃时为例 当t= 260.6℃时 x = (P-P B *)/(P A *-P B *) =(13.3-2.826)/(13.3-2.826)= 1 平衡气相组成以260.6℃为例 当t= 260.6℃时 y = P A *x/P = 13.3×1/13.3 = 1 同理得出其他温度下平衡气液相组成列表如下 t(℃) 260.6 275.1 276.9 279 289 x 1 0.3835 0.3308 0.0285 0 y 1 0.767 0.733 0.524 0 根据平衡数据绘出t-x-y曲线 3.利用习题2的数据,计算:⑴相对挥发度;⑵在平均相对挥发度下的x-y数据,并与习题2 的结果相比较。 解:①计算平均相对挥发度 理想溶液相对挥发度α= P A */P B *计算出各温度下的相对挥发度: t(℃) 248.0 251.0 259.1 260.6 275.1 276.9 279.0 289.0 291.7

化工原理基本概念

基本定义 理想溶液 ideal solution(s):溶液中的任一组分在全部浓度范围内都符合拉乌尔定律[1]的溶液称为理想溶液。 这是从宏观上对理想溶液的定义。从分子模型上讲,各组分分子的大小及作用力,彼此相似,当一种组分的分子被另一种组分的分子取代时,没有能量的变化或空间结构的变化。换言之,即当各组分混合成溶液时,没有热效应和体积的变化。即这也可以作为理想溶液的定义。除了光学异构体的混合物、同位素化合物的混合物、立体异构体的混合物以及紧邻同系物的混合物等可以(或近似地)算作理想溶液外,一般溶液大都不具有理想溶液的性质。但是因为理想溶液所服从的规律较简单,并且实际上,许多溶液在一定的浓度区间的某些性质常表现得很像理想溶液,所以引入理想溶液的概念,不仅在理论上有价值,而且也有实际意义。以后可以看到,只要对从理想溶液所得到的公式作一些修正,就能用之于实际溶液。 各组成物质在全部浓度范围内都服从拉乌尔定律的溶液。[2]对于理想溶液,拉乌尔定律与亨利定律反映的就是同一客观规律。其微观模型是溶液中各物质分子的大小及各种分子间力(如由A、B二物质组成的溶液,即为A-A、B-B及A-B 间的作用力)的大小与性质相同。由此可推断:几种物质经等温等压混合为理想溶液,将无热效应,且混合前后总体积不变。这一结论也可由热力学推导出来。理想溶液在理论上占有重要位臵,有关它的平衡性质与规律是多组分体系热力学的基础。在实际工作中,对稀溶液可用理想溶液的性质与规律作各种近似计算。 泡点: 液体混合物处于某压力下开始沸腾的温度,称为在这压力下的泡点。 若不特别注明压力的大小,则常常表示在0.101325MPa下的泡点。泡点随液体组成而改变。对于纯化合物,泡点也就是在某压力下的沸点。 一定组成的液体,在恒压下加热的过程中,出现第一个气泡时的温度,也就是一定组成的液体在一定压力下与蒸气达到汽液平衡时的温度。泡点随液相组成和压力而变。当泡点与液相组成的关系中,出现极小值或极大值时,这极值温度相应称为最低恒沸点或最高恒沸点,这时,汽相与液相组成相同,相应的混合物称为恒沸混合物。汽液平衡时,液相的泡点即为汽相的露点。

化工原理干燥习题

《化工原理》 第九章干燥 一、填空题: 1.按操作方式分类,干燥可分为和 . 答案:连续干燥,间歇干燥 2..干燥进行的必要条件是物料表面所产生的水汽(或其它蒸汽)压力__________________。答案:大于干燥介质中水汽(或其它蒸汽)的分压。 3.干燥这一单元操作,既属于传质过程,又属______________。 答案:传热过程 4.相对湿度φ值可以反映湿空气吸收水汽能力的大小,当φ值大时,表示该湿空气的吸收水汽的能力_________;当φ=0时。表示该空气为___________。 答案: 小;绝干空气 5.在一定温度下,物料中结合水分和非结合水分的划分是根据___________而定的;平衡水分和自由水分是根据__________而定的。 答案:物料的性质;物料的性质和接触的空气状态 6.作为干燥介质的湿空气,其预热的目的____________________________ _____________________。 答案:降低相对湿度(增大吸湿的能力)和提高温度(增加其热焓) 7.除去固体物料中湿分的操作称为。 答案: 干燥 8.空气经过程达到饱和的温度称为绝热饱和温度。 答案: 绝热增湿 9. 在一定空气状态下干燥某物料,能用干燥方法除去的水分为__________;首先除去的水 分为____________;不能用干燥方法除的水分为__________。 答案: 自由水分;非结合水分;平衡水分 10.湿空气的焓湿图由等湿度线群、等温线群、、水气分压线和相对湿度 线群构成。

答案:等焓线群 11.在进行干燥操作时,湿空气不可作为干燥介质。 答案:饱和(或φ=1) 12.表示单位质量绝干部空气中所含空气及水气的总容积称为湿空气的。 答案:比容 13. 某物料含水量为0.5 kg水.kg绝干料,当与一定状态的空气接触时,测出平衡水分 为0.1kg水.kg绝干料,则此物料的自由水分为_____________。 答案: 0.4 kg水.kg绝干料 14. 表面的温度等于________________,而在干燥的降速阶段物料的温度 _________________。 答案:最大或恒定、水分、热空气的湿球温度,上升或接近空气的温度 15.不饱和的空气在总不变的情况下,进行等湿冷却至饱和状态时的温度称 为。 答案: 露点温度 16. 当干燥一种易碎的物料,可采用_______________干燥器。 答案: 厢式 17. 在进行干燥操作时,湿空气不可作为干燥介质。 答案:饱和空气 18.表示单位质量绝干部空气中所含空气及水气的总容积称为湿空气的。 答案:湿度 19.湿空气通过预热器预热后,其湿度___________,热焓______________,相对湿度 __________。(增加、减少、不变) 答案: 不变、增加、减少 20. 对于不饱和空气,表示该空气的三个温度,即:干球温度t,湿球温度tw和露点t d间 的关系是______________。 答案: t>t w>t d> 二、选择题

化工原理实验数据处理关于

离心泵特性曲线原始数据 序号 水流量Q/m3/h 水温°C 出口压力/m 入口压力 /m 电机功率 /KW 1 0.00 27.70 21.50 0.00 0.49 2 1040.00 27.70 20.40 0.00 0.53 3 2170.00 27.70 19.20 0.00 0.58 4 3110.00 27.60 18.10 -0.30 0.64 5 3890.00 27.60 17.10 -0.40 0.69 6 4960.00 27.50 15.20 -0.70 0.75 7 5670.00 27.50 14.30 -1.00 0.80 8 6620.00 27.30 13.10 -1.20 0.85 9 7380.00 27.40 11.50 -1.50 0.88 10 8120.00 27.00 8.90 -1.70 0.90 11 8950.00 26.60 5.80 -2.10 0.93 已知 ΔZ=0.2m η电=0.9 η转=1.0 此温度下水的密度约为ρ=997.45kg/m3 以第 组数据为例计算 根据扬程Z g p g p H ?+-= ρρ12e 转电电轴ηη??=N N 102Q e e ρ??= H N 轴 N N e =η He= N 轴= e N = η=

离心泵特性曲线 序号 水流量 Q/m3/s He/m N 轴/KW Ne/KW η 1 0.00 21.70 0.44 0.00 0.00 2 0.29 20.60 0.48 0.06 0.12 3 0.60 19.40 0.52 0.11 0.22 4 0.86 18.60 0.58 0.16 0.27 5 1.08 17.70 0.62 0.19 0.30 6 1.38 16.10 0.68 0.22 0.32 7 1.58 15.50 0.72 0.24 0.33 8 1.84 14.50 0.77 0.26 0.34 9 2.05 13.20 0.79 0.26 0.33 10 2.26 10.80 0.81 0.24 0.29 11 2.49 8.10 0.84 0.20 0.24 2 0.00 0.050.100.150.200.250.300.350.400.450.500.550.600.650.700.750.800.85Q (m3/s ) 离心泵 特 性曲线 η N E (K W ) 8 1012141618 2022 He-Q η-Q N 轴-Q He (m )

化工原理基本概念和原理

化工原理基本概念和原理 蒸馏––––基本概念和基本原理 利用各组分挥发度不同将液体混合物部分汽化而使混合物得到分离的单元操作称为蒸馏。这种分离操作是通过液相和气相之间的质量传递过程来实现的。 对于均相物系,必须造成一个两相物系才能将均相混合物分离。蒸馏操作采用改变状态参数的办法(如加热和冷却)使混合物系内部产生出第二个物相(气相);吸收操作中则采用从外界引入另一相物质(吸收剂)的办法形成两相系统。 一、两组分溶液的气液平衡 1.拉乌尔定律 理想溶液的气液平衡关系遵循拉乌尔定律: p A =p A 0x A p B =p B 0x B =p B 0(1—x A ) 根据道尔顿分压定律:p A =Py A 而P=p A +p B 则两组分理想物系的气液相平衡关系: x A =(P—p B 0)/(p A 0—p B 0)———泡点方程 y A =p A 0x A /P———露点方程 对于任一理想溶液,利用一定温度下纯组分饱和蒸汽压数据可求得平衡的气液相组成;反之,已知一相组成,可求得与之平衡的另一相组成和温度(试差法)。

2.用相对挥发度表示气液平衡关系 溶液中各组分的挥发度v可用它在蒸汽中的分压和与之平衡的液相中的摩尔分率来表示,即v A=p A/x A v B=p B/x B 溶液中易挥发组分的挥发度对难挥发组分的挥发度之比为相对挥发度。其表达式有: α=v A/v B=(p A/x A)/(p B/x B)=y A x B/y B x A 对于理想溶液:α=p A0/p B0 气液平衡方程:y=αx/[1+(α—1)x] Α值的大小可用来判断蒸馏分离的难易程度。α愈大,挥发度差异愈大,分离愈易;α=1时不能用普通精馏方法分离。 3.气液平衡相图 (1)温度—组成(t-x-y)图 该图由饱和蒸汽线(露点线)、饱和液体线(泡点线)组成,饱和液体线以下区域为液相区,饱和蒸汽线上方区域为过热蒸汽区,两曲线之间区域为气液共存区。 气液两相呈平衡状态时,气液两相温度相同,但气相组成大于液相组成;若气液两相组成相同,则气相露点温度大于液相泡点温度。 (2)x-y图

化工原理第三章

试题: 球形颗粒在静止流体中作重力沉降,经历________和_______两个阶段。 沉降速度是指_______阶段,颗粒相对于流体的运动速度。 答案与评分标准 加速运动 等速运动 等速运动 (每个空1分,共3分) 试题: 在滞留区,球形颗粒的沉降速度t u 与其直径的______次方成正比;而在湍流区,t u 与其直径的______次方成正比。 答案与评分标准 2 1/2 (每个空1分,共2分) 试题: 降尘室内,颗粒可被分离的必要条件是_____________________________;而气体的流动应控制在__________________流型。 答案与评分标准 气体在室内的停留时间θ应≥颗粒的沉降时间t θ。(2分) 滞流 (1分) (共3分) 试题: 在规定的沉降速度t u 条件下,降尘室的生产能力只取决于_____________而与其__________________无关。 答案与评分标准 降尘室底面积 (2分) 高度 (1分) (共3分) 试题: 过滤常数K 是由__________及___________决定的常数;而介质常数e q 与e θ是反映________________的常数。

物料特性 过滤压强差 过滤介质阻力大小 试题: 过滤操作有________和___________两种典型方式。 答案与评分标准 恒压过滤 恒速过滤 试题: 在重力场中,固体颗粒在静止流体中的沉降速度与下列因素无关的是( )。 (A )颗粒几何形状 (B )颗粒几何尺寸 (C )颗粒与流体密度 (D )流体的流速 答案与评分标准 (D) 试题: 含尘气体通过长4m ,宽3m ,高1m 的降尘室,已知颗粒的沉降速度为0.25m/s ,则降尘室的生产能力为( )。 (A )3m 3/s (B )1m 3/s (C )0.75m 3/s (D )6m 3/s 答案与评分标准 (A) 试题: 某粒径的颗粒在降尘室中沉降,若降尘室的高度增加一倍,则该降尘室的生产能力将()。 (A )增加一倍 (B )为原来的1/2 (C )不变 (D )不确定 答案与评分标准 (C) 试题: 粒径分别为16m μ和8m μ的两种颗粒在同一旋风分离器中沉降,沉降在滞流区,则两种颗粒的离心沉降速度之比为()。 (A )2 (B )4 (C )1 (D )1/2

化工原理-第2章-流体输送机械-典型例题题解

化工原理典型例题题解 第2章 流体输送机械 例1 离心泵的工作点 用某一离心泵将一贮罐里的料液送至某高位槽 ,现由于某种原因,贮罐中料液液面升高,若其它管路特性不变,则此时流量将( )。 A 增大 B 减少 C 不变 D 不确定 例 2 附图 例2 附图 解:该题实际上是分析泵的工作点的变动情况。工作点是泵特性曲线与管路特性曲线的交点,其中任何一条特性曲线发生变化,均会引起工作点的变动,现泵及其转速不变,故泵的特性曲线不变。将管路的特性曲线方程式列出 2 421212)(8v q g d d l g P P Z Z H πζλρ++-+-= 现贮槽液面升高,1Z 增加,故管路特性曲线方程式中的截距项数值减小,管路特性曲线的二次项系数不变。由曲线1变为曲线2,则工作点由A 点变动至B 点。故管路中的流量增大,因此答案A 正确。 例2 离心泵压头的定义 离心泵的压头是指( )。 A 流体的升举高度; B 液体动能的增加; h m ,Q 3 m ,H e A B 1 曲线2曲线

C 液体静压能的增加; D 单位液体获得的机械能。 解:根据实际流体的机械能衡算式 H e =(Z 2-Z 1)+(P 2-P 1)+(u 22-u 12 )/2g+ΣH f 离心泵的压头可以表现为液体升举一定的高度(Z 2-Z 1),增加一定的静压能(P 2-P 1)/(g ρ),增加一定的动能(u 22-u 12 )/(2g)以及用于克服流体流动过程中产生的压头损失ΣH f 等形式,但本质上离心泵的压头是施加给单位液体(单位牛顿流体)的机械能量J(J/N=m).故答案D 正确。 例3离心泵的安装高度H g 与所输送流体流量、温度之间的关系 分析离心泵的安装高度H g 与所输送流体流量、温度之间的关系。 解:根据离心泵的必需汽蚀余量(NPSH)r ,计算泵的最大允许安装高度的计算公式为 [][]5.0)() 10(0 +---=∑-r f v g NPSH H g P g P H ρρ (1) 首先分析离心泵的必需汽蚀余量(NPSH)r 的定义过程。在泵内刚发生汽蚀的临界条件下,泵入口处液体的静压能和动能之和(P 1,min /g ρ+u 12 /2g)比液体汽化的势能(P v /g ρ)多余的能量(u k 2 /2g+ΣH f(1-k))称为离心泵的临界汽蚀余量,以符号(NPSH)C 表示,即 ∑-+=-+=)1(2 21 min ,122)(K f K v c H g u g p g u g P NPSH ρρ (2) 由(2)式右端看出,流体流量增加,(NPSH )C 增加,即必须的汽蚀余量(NPSH)r 增加。由(1)式可知,液体流量增加,泵的最大允许安装高度[] g H 应减少。根据(NPSH)C 的定义可知,当流量一定而且流动状态已进入阻力平方区时(u k 2 /2g+ΣH f(1-k),均为确定值),(NPSH)C 只与泵的结构尺寸有关,故汽蚀余量是泵的特性参数,与所输送流体的蒸汽压P V 无关。由(1)式可知,若流体温度升高,则其P V 值增加,从而[] g H 应减小。 例4 离心泵的组合使用 现需用两台相同的离心泵将河水送入一密闭的高位槽,高位槽液面上方压强为(表压强),高位槽液面与河水水面之间的垂直高度为10m ,已知整个管路长度为50m (包括全部局部阻力的当量长度),管径均为50mm ,直管阻力摩擦系数λ=。单泵的特性曲线方程式为2 6100.150v e q H ?-=(式中H e 的单位为m ;q v 的单位为m 3 /s )。通过计算比较该两台泵如何组合所输送的水总流量更大。 解:泵的组合形式分为串联和并联,由此单泵的特性曲线方程写出串联泵和并联泵的特性曲线方程 2 6100.2100v e q H ?-=串 (1) 2 5105.250v e q H ?-=并 (2) 自河水水面至密闭高位槽液面列出管路特性曲线方程 g u d l l g P Z H e e 22∑++?+?=λ ρ 将有关数据代入 81 .92)050 .0785.0( 050.050 025.081.9100010013.15.1102 2 5 ????+???+ =v e q H 整理得: 2 5103.315.10v e q H ?+= (3)

《化工原理》基本概念、主要公式

《化工原理》基本概念、主要公式 第一章 基本概念: 连续性假定质点拉格朗日法欧拉法定态流动轨线与流线系统与 控制体粘性的物理本质 质量守恒方程静力学方程总势能理想流体与实际流体的区别可压 缩流体与不可压缩流体的区别 牛顿流体与非牛顿流体的区别伯努利方程的物理意义动量守恒方程 平均流速动能校正因子 均匀分布均匀流段层流与湍流的本质区别稳定性与定态性边界层 边界层分离现象因次 雷诺数的物理意义泊谡叶方程因次分析实验研究方法的主要步骤摩 擦系数完全湍流粗糙管 局部阻力当量长度毕托管驻点压强孔板流量计转子流量计的特点 非牛顿流体的特性(塑性、假塑性与涨塑性、触变性与震凝性、粘弹性) 重要公式: 牛顿粘性定律dyduμτ= 静力学方程gzpgzp2211+=+ρρ 机械能守恒式fehugzphugzp+++=+++2222222111ρρ 动量守恒)(12XXmXuuqF?=Σ 雷诺数μμρdGdu==Re 阻力损失22udlfλ=h ????dqduhVf∞∞ 层流Re64=λ或232dulhfρμ= 局部阻力22ufζ=h 当量直径Π=Ae4d 孔板流量计ρPΔ=200ACqV ,gRi)(ρρ?=ΔP 第二章 基本概念: 管路特性方程输送机械的压头或扬程离心泵主要构件离心泵理论压 头的影响因素叶片后弯原因 气缚现象离心泵特性曲线离心泵工作点离心泵的调节手段汽蚀现 象必需汽蚀余量(NPSH)r 离心泵的选型(类型、型号) 正位移特性往复泵的调节手段离心泵与 往复泵的比较(流量、压头) 通风机的全压、动风压真空泵的主要性能参数

重要公式: 管路特性242)(8VeqgddlzgpHπζλρ+Σ+Δ+Δ= 泵的有效功率eVeHgqPρ=

化工原理——干燥

第七章 干燥 【例7-1】 已知湿空气的总压p t =101.3kPa ,相对湿度?=0.6,干球温度t =30℃。试求: ①湿度H ;②露点t d ;③绝热饱和温度;④将上述状况的空气在预热器中加热至100℃所需的热量。已知空气质量流量为100kg (以绝干空气计)/h ;⑤送入预热器的湿空气体积流量,m 3 /h 。 解:已知p t =101.3kPa ,?=0.6,t =30℃。 由饱和水蒸气表查得水在30℃时的蒸气压p s =4.25kPa ①湿度H 可由式7-4求得: 016025 46031012546062206220.......p p p .H s t s =?-??=-=??kg/kg ②按定义,露点是空气在湿度不变的条件下冷却到饱和时的温度,现已知 55225460...p p s =?==?kPa 由水蒸气表查得其对应的温度t d =21.4℃。 ③求绝热饱和温度t as 。按式(7-18) ()()H H c r t t as H as as --=/ (a ) 已知t =30℃并已算出H =0.016kg/kg ,又c H =1.01+1.88H =1.01+1.88×0.016=1.04kJ/kg ,而r as 、H as 是t as 的函数,皆为未知,可用试差法求解。 设t as =25℃,p as =3.17kPa ,H as =0.622 02.017 .33.10117 .3622.0=-=-as t as p p p kg/kg , r as =2434kJ/kg ,代入式(a )得t as =30-(2434/1.04)(0.02-0.016)=20.6℃<25℃。 可见所设的t as 偏高,由此求得的H as 也偏高,重设t as =23.7℃,相应的p as =2.94kPa ,H as =0.622×2.94/(101.3-2.94)=0.0186kg/kg ,r as =2438kJ/kg ,代入式(a )得t as =30-(2438/1.04)(0.0186-0.016)=23.9℃。两者基本相符,可认为t as =23.7℃。 ④预热器中加入的热量 Q =100×(1.01+1.88×0.016)(100-30) =7280kJ/h 或2.02kW ⑤送入预热器的湿空气体积流量 8825.46.03.1013.10127330273294.22100=?? ? ???-??? ??+?? =V m 3/h 【例7-2】 已知湿空气的总压为101.3kPa 相对湿度为50%,干球温度为20℃。试用I-H 图求解: (a )水气分压p ; (b )湿度H ; (c )焓I ; (d )露点t d ; (e )湿球温度t W ; (f )如将含500kg/h 干空气的湿空气预热至117℃,求所需热量Q 。 解:见本题附图。

相关文档
最新文档