大学物理习题解答5第五章稳恒电流(2)

大学物理习题解答5第五章稳恒电流(2)
大学物理习题解答5第五章稳恒电流(2)

第四章 静电场

本章提要

1.电荷的基本性质

两种电荷,量子性,电荷首恒,相对论不变性。

2.库仑定律

两个静止的点电荷之间的作用力

1212

22

04kq q q q r r =

=F r r πε 其中

922910(N m /C )k =??

122-1-201

8.8510(C N m )4k -=

=??επ

3.电场强度

q =

F E 0q 为静止电荷。由

1010

22

04kq q q q r r =

=F r r πε 得

11

2204kq q r r

=

=E r r πε

4.场强的计算

(1)场强叠加原理

电场中某一点的电场强度等于各个点电荷单独存在时在该点产生的电场强度的矢量和。

i =∑E E

(2)高斯定理

电通量:在电场强度为E 的某点附近取一个面元,规定S ?=?S n ,θ为E 与n 之间的夹角,通过S ?的电场强度通量定义为

e cos E S ?ψ=?=??v S θ

取积分可得电场中有限大的曲面的电通量

ψd e s

S =???E ò

高斯定理:在真空中,通过任一封闭曲面的电通量等于该封闭曲面内的所有

电荷电量的代数和除以0ε,与封闭曲面外的电荷无关。即

i 0

1

d s

q

=

∑??E S g ò内

ε

5.典型静电场

(1)均匀带电球面

0=E (球面内) 2

04q r

πε=

E r (球面外)

(2)均匀带电球体

3

04q R πε=

E r (球体内)

2

04q r

πε=E r (球体外)

(3)均匀带电无限长直线场强方向垂直于带电直线,大小为

02E r λ

πε=

(4)均匀带电无限大平面场强方向垂直于带电平面,大小为

2E σε=

6.电偶极矩

电偶极子在电场中受到的力矩

=?M P E

思考题

4-1 02

0 4q

q r =

=

πεr 与F

E E 两式有什么区别与联系。 答:公式

q F

E =

是关于电场强度的定义式,适合求任何情况下的电场。而公式

02

04q r

πε=

E r

是由库仑定理代入定义式推导而来,只适于求点电荷的电场强度。

4-2一均匀带电球形橡皮气球,在气球被吹大的过程中,下列各场点的场强将如何变化?

(1) 气球内部 (2) 气球外部 (3) 气球表面

答:取球面高斯面,由00d n

i i q ε=?=∑??òE S 可知

(1)内部无电荷,而面积不为零,所以E 内= 0。 (2)E 外=

2

04r q πε与气球吹大无关。

(3)E 表=2

04R q πε随气球吹大而变小。

4-3 下列几种说法是否正确,为什么?

(1) 高斯面上电场强度处处为零时,高斯面内必定没有电荷。 (2) 高斯面内净电荷数为零时,高斯面上各点的电场强度必为零。 (3) 穿过高斯面的电通量为零时,高斯面上各点的电场强度必为零。 (4) 高斯面上各点的电场强度为零时,穿过高斯面的电通量一定为零。 答:(1)错

因为依高斯定理,E = 0 只说明高斯面内净电荷数(所有电荷的代数和)为零。

(2)错

高斯面内净电荷数为零,只说明整个高斯面的d s

??g òE S 的累积为零。并不一

定电场强度处处为零。

(3)错

穿过高斯面的电通量为零时,只说明整个高斯面的d s

??g òE S 的累积为零。并

不一定电场强度处处为零。 (4)对

E = 0,则整个高斯面的d s

??g òE S 的累积为零。所以电通量φ=0。

4-4 试利用电场强度与电势的关系式d d l U

E l

=-

分析下列问题: (1) 在电势不变的空间内,电场强度是否为零? (2) 在电势为零处,电场强度是否一定为零? (3) 在电场强度为零处,电势是否一定为零? 答:(1)是

由d d l U

E l

=-可知,当电势处处相等时,d 0U =,E l =0

实际例子:静电平衡的导体内。 (2)否

电势为零处电势梯度d d U

l

不一定为零,所以E l 也不一定为零。

实际例子:电偶极子连线中点处。 (3)否

如果E l 等于零,则电势梯度为零,但电势不一定为零。 实际例子:两个相同电荷连线中点处。

4-5 如图4-1所示,将两个完全相同的电容器串联起来,在与电源保持连接时,将一电介质板摩擦插入电容器C 2的两板间,试定性地描述C 1、C 2上的电量、电容、电压、及电场强度的变化。

答:插入电介质板后,C 2的增大,致使整个电路电容1/C=1/C 1+1/C 2增大,而总电压U 又没变,所以每个电容器所储存的电量q 1 = q 2增加。由于无摩

擦,这种增加的电量全部由电源提供。

C 1=ε0S/d 不变,而储存的电量增加时,U 1= q 1/C 增大,故U 2减小。由U = Ed 可知E 2减小。U 1增大而两极板距离d 不变,故E 1增大。

4-6 一空气电容器充电后切断电源,然后灌入煤油,问电容器的能量有何变化?如果在灌煤油时电容器一直与电源相连,能量又如何变化?

答:电容器灌入煤油后,电容量增大,但极板上的电量没有改变,由C q W e 22=可知电容器的能量W e 会减少。减少的那部分能量,由煤油分子在静电场极化过程中转化成煤油的内能。

如果灌煤油时,电容器一直与电源相连,由能量公式22CU W e =可知,C 增大而U 不变时,电容器的能量W e 增大。这时电源向电容器充电,将电源的化学能转化为电容器的内能。

图4-1

练习题

4-1 由相距较近的等量异号电荷组成的体系称电偶极子,生物细胞膜及土壤颗粒表面的双电层可视为许多电偶极子的集合。因此,电偶极子是一个十分重要的物理模型。图4-2所示的电荷体系称电四极子,它由两个电偶极子组合而成,其中的q 和l 均为已知,对图4-2中的P 点(OP 平行于正方形的一边),证明当x l ?时

4

043

x pl

E p πε≈

其中,p=ql 称电偶极矩。

解:将左边和右边的电偶极子在P 点产生的场强分别称为E 左和E 右,则:

()

()3

02 4l

p

E x πε=

+左方向向下 ()

()302

4l p E x πε=

-

右方向向上

P 点处的合场强为

()

()

()()3

22

3

33220002

2

232444l

l l l x l p p p E E E x x x πεπεπε+=-=

-

=

-

+

??-??

左右

∵2

l

x ?

∴()4

03 4pl

E x πε=

方向向上 原题证毕。

4-2 一个均匀带电的细棒长为l ,带电总量为q ,证明,在棒的垂直平分线上离棒为a 处的电场强度为

2

204

21

a l a q

E +=

πε

解:棒的线电荷密度为q ρ=。如图4-3,对称地取距中点为x 处的电荷 d d d /q x q x l ρ==。其d E 和d 'E 的水平方向的分量相互抵消,P 点的场强为d E 和d 'E 沿竖直向上分量之和:

()()

()

122222032

2

20 d 2d cos 2d 4d 2 E E q a

a x a x aq x l a x

θ

πεπε==++=

+合 棒在P 处的场强为

()

2

2

32

0 0

2

20d d 2 l l aq x E E l a x

πε==+??合

将tan x a θ=代入上式,并考虑x 由0积分到2l 时,sin θ由

0,后对E 积分可得:

2

204

21

a l a q

E +=

πε

4-3 一个半径为R 的带电圆盘,电荷面密度为σ,求:

(1)圆盘轴线上距盘心为x 处的任一点P 的电场强度; (2)当R →∞时,P 点的电场强度为多少? (3)当x R ?时,P 点的电场强度又为多少? 解:(1)取半径为r —r+d r 的圆环,如图4-4所示,因其上电荷对P 点的产生的场强垂直分量相互抵消,所以其对P 点场强为

()()

()

()

12

2222032

32

2

22

200 d d d 4 2 d d 42S x

E x r x r x r r x r r x r

x r

σθπεσπσπεε==

++=

=

++E cos

整个圆盘的电荷在P 点的产生的场强为

()

()

32

12

222200 d 122R

x r r x E x r x R σσεε??

?==- ?++?

?

?

(2)当R →∞时,可将带电圆盘看作无限大带

电平面,因此P 点电场强度为

2E σε'=

(3)当x R ?时,可将带电圆盘看作点电荷,因此P 点电场强度为:

图 4-3

?

图4-4

22

22

0044R R E x x

σπσπεε''==

4-4 大多数生物细胞的细胞膜可以用两个分别带有电荷的同心球壳系统来模拟。在本题图4-5中,设半径为1R 和2R 的球壳上分别带有电荷1Q 和2Q ,求:

(1)I 、II 、III 三个区域中的场强;

(2)若1Q =-2Q 各区域的电场强度又为多

少?画出此时的电场强度分布曲线 (即E -r 关系曲线)。从这个结果,你可以对细胞膜的电场强度

分布有个概略的了解。

解:(1)I :以r 1﹤R 1为半径作球面高斯面,因

面内无电荷,依

1

d i S

i

q

ε=

∑??

E S g ò内

可得:

E 1= 0

II :以122R r R <<为半径作球面高斯面,面内的

电荷为Q 1,依

1

d S

Q ε=

??

E S g ò

可得:

1

22

024Q E r πε=

III :以23R r <为半径作球面高斯面,面内的电荷为Q 1+Q 2,同理可得:

E 3 =

23

0214r Q Q πε+

(2)根据上部分结果可得 I : E 1= 0 II :1

22

024Q E r πε=

III :E 3= 0 根据已知条件画出E r -关系曲线如图

4-6所示

4-5 实验表明,在靠近地面处有相当强的大气电场,电场强度方向垂直地面

图4-5

向下,大小约为-1100N C ?;在离地面1.5 km 高的地方,电场强度方向也是垂直地面向下的,大小约为-125N C ?。

(1)计算从地面到此高度的大气中电荷的平均体密度;

(2)若地球上的电荷全部分布在地球表面,求地球表面的电荷面密度; (3)已知地球的半径为6610m ?,地球表面的总电量为多少? 解:(1)由已知可得,离地面高度为1.5km 的大气电场-1225N C E =?,地面的大气电场为-11100N C E =?。

从 1.5km 高处至地面作圆柱体高斯面,依题意得: 120

e q

E S E S φε∑=-=

()012q E E S ε=-∑

()()

012123

13-38.8510751.5104.4310C m E E q q V hS h ερ----∑∑=

==

??=?=??

(2)靠近地球表面作球面高斯面

∵10 E S S σε=

∴()

121021 1008.85108.910C m E S σ---==-??=-??

(3)()()2

1065 8.9104610 4.010C q S σπ--==-???=-?∑

4-6 随着温度的升高,一般物质依次表现为固态、液态和气态。当温度继续升高时,气体中的大量分子将由于激烈碰撞而离解为电子和正离子。这种主要由带电离子组成的状态为物质的第四态,处于该态的物质称等离子体。如果气体放电时形成的等离子体圆柱内的体电荷分布有如下关系

()()

2

22

2r

a

a r e +=

ρρ

其中,e ρ为电荷体密度,0ρ为圆柱轴线上的e ρ值,a 为常量,求电场强度分布。

解:以半径r 长度L 作圆柱高斯面,如图4-8所示,则:

H = 1.5km

图4-7

20

d 2 ()2d r

s

r

e r E S rLE

r rL

r r L πρπερπε?===

???

ò ()20

22200

22e r r ra E a r ρρεε==+

4-7 测定土壤颗粒所带电量的方法之一是沉降法。在该法中,使土壤颗粒在已知黏滞系数??的液体中沉降,测出其收尾速度(即最后的稳定速度) 1V 。然后,再通过极间电压施加一个如图所示的静电场(假定土壤颗粒带正电荷),调节E 使颗粒达到新的收尾速度2V ,这时有下列关系成立:

()

E

v v r q 21 6-=

πη

其中,r 为土粒的半径,q 为土粒所带电量。请证明这个关系。

解:对进入电场前后的带电土壤颗粒(后简称q )进行受力分析可得: q 进入电场前:

16mg r πην=

q 进入电场达v 2后:

26mg qE r πην=+

联立①②得:

()E

v v r q 21 6-=

ηπ

原题证毕

4-8 为了将混合在一起的带负电荷的石英颗粒和带正电荷的磷酸盐颗粒分开,可以使之沿重力方向垂直通过一个电场区域来达到。如果电场强度51510N C E -=?g ,颗粒带电率为5110C Kg --g ,假设颗粒进入电场区域的初速度为零,欲将石英颗粒和磷酸盐颗粒分离100 mm 以上,问颗粒通过电场区域的距离至少应为多少?该题说明了在农业上很有实用价值的静电分选技术的原理。

解:正、负带电颗粒受水平方向的电场力和竖直方向的重力,在电场中运动轨迹如图4-9所示。

分别对带正、负电荷的颗粒进行受力分析: 正电荷:

q E m a +++=

r

图4-8

负电荷:

q E m a ---=

-25 (m s )q E

a a a m ++-+

=

=?== 水平位移为:

21 22

l a t = 竖直位移为:

21

2

h g t =

联立①②两式得带电颗粒通过电场距离为

2

9810(m)2 .g l h a

-=

=?

4-9 水分子的电偶极矩为-306.1310C m ??,如果这个电偶极矩是由一对点电荷±e 引起的(e 为电子电量),那么,它们的距离是多少?如果电偶极矩的取向与强度为6-110N C ?电场方向一致,要使这个电偶极矩倒转成与电场相反的方向需要多少能量(用eV 表示)? 解:(1)依题意得:

P = ql

3011

19

6.1310 3.8310(m)1.610

P l q ---?===?? (2)若使电偶极矩倒转需要能量为A ,则

1961119

522 1.61010 3.83101.6107.6610(eV)

E l E l A q q qEl

+----=?+?=?????=?=?

4-10 一个细胞的膜电势差为50mV ,膜厚度为103010m -?。若假定膜中场强为匀强电场,问电场强度为多大?当一个钾离子(K +)通过该膜时需作多少功?

解:依题意得:

37-110

5010 1.6710(V m )3010

U E d ---?===??? ①

若令一个钾离子(K +)通过该膜时需做功A ,则

193211.6105010810(J)A qU ---==???=?

4-11 动物的一些神经纤维可视为半径410m -、长0.1m 的圆柱体,其内部的电势要比周围流体的电势低0.09V ,有一层薄膜将神经纤维和这些流体隔开。存在于薄膜上的Na +泵(一种运输Na +的特种蛋白)可以将Na +输送出纤维。若已知每平方厘米薄膜每秒钟可送出11310mol -?的Na +,问 (1) 每小时有多少库仑的电荷被送出纤维? (2) 每小时必须反抗电场力作多少功?

解:(1)由已知得:圆柱体半径210cm r -=,圆柱体长度10cm L =,3600s t =,

11-1-2310mol s cm v -=???,阿伏伽德罗常数236.0210N =?,基本电荷191.610C e -=?。

因此,每小时被送出纤维的电荷量为:

2112319322 3.1410103600310 6.0210 1.6106.5410(C)

q rLtvNe

π----==??????????=? (2)每小时反抗电场力做功A

A = qU = 6.54×10-3×0.09 = 5.89×10-4( J )

4-12 计算练习4-4中Ⅰ、Ⅱ、Ⅲ区域中的电势。 解:(1)由题4-4可得I 、II 、III 区域中的电场分布,则区域I 电势:

12

1

2

2

1

2 1 12

3 112

2

2

00

d d d d d d 44E r

r

R R r

R R R R R U E r E r E r Q Q Q r r

r

r πεπε∞

=?=+++=+???

??

?

解得

12101214Q Q U R R πε??=

+ ???

同理可得区域II 电势分布:

2

2

12223 021 d d d 4E r R r

r

R Q Q U E r E r r R πε∞

???==+=

+ ???

??

? 区域III 电势分布

12

33 0 d d 4E r r

r

Q Q U E r r

πε∞

?+===

?? (2)若12Q Q =-,则区域I 电势:

12

1

2

2

1

1 123 12

01012 d d d d d 4114E r

r

R R r

R R R R U E r E r E r

Q r

r Q R R πεπε∞

=?=++=??

=

- ???

???

??

区域II 电势:

2

122 0211 d d 4E r R r

r

Q U E r r R πε∞

???

===

- ???

??

区域III 电势:

33 d d 0E r r

r

U E r ∞

?===??

4-13 一个半径为R 的均匀带电细圆环,所带总电量为q ,求圆环轴线上距圆心为x 处的电势。

解:环上线电荷密度为 R

q

πλ2=

,在环上取电荷元d d q l λ=,如图4-10所示,其电场在P 点的电势为

0d d 4q U r

πε=

=

对整个环进行积分得:

2 0

R

p U π==

?

4-14 核技术应用中常用的盖革—米勒(G —M)计数管,其外形结构如图4-11所示,它实质上是一个用玻璃圆筒密封的共轴圆柱形电容器。设导线(正极)的半径为a ,金属圆筒(负极)的半径为R ,正、负极之间为真空。当两极加上电压U 时,求导线附近的电场强度和金属圆筒内表面附近的电场强度。

解:设正极的线电荷密度为λ,

作半径为()r a r R <<长度为L 的圆柱高斯面,

据高斯定理得距轴心为处的场强为:

图4-10

q

图4-11

0 2E r

λ

πε=

两极间的电压为

00 d d ln 22R

R a a

R

U r r a

λλπεπε=?==??

E r 联立①②式得

ln U

E r R a

=

故正极附近的场强为

ln r a U

E a R a

→=

圆筒表面的场强为

ln r R U

E R R a

→=

4-15 同轴电缆是由两个很长且彼此绝缘的同轴金属圆柱体构成,如图4-12所示。设内圆柱体的电势为1V ,半径为1R ,外圆柱体的电势为2V ,外圆柱体的内半径为2R ,两圆柱体之间为空气。求两圆柱体的空隙中离轴为r 处(12R r R <<)的电势。

解:(1)设内圆柱体的体电荷密度为ρ。作以为半径r (12R r R <<),长度为l 的圆柱高斯面,依高斯定理得距轴心为r 处场强为

22

1100 2 2R l R E rl r

ρπρπεε==

内 两圆柱间电压为

2

1

2 12

12 01

d ln 2R R R R U U U R ρε?=-==?

E r

联立①②式得:

1221

ln U U E r R R -=

图4-12

2

12

22 21

d ln ln R r r

U U U U R r R R ?--==

?

E r

令内筒电势为零,则距轴心为r 处的电势为

12

221

ln ln r U U U R r R R -=

4-16动物体是利用叫做轴突(axon)的神经纤维中的电脉冲传递信息的。在结构上轴突由圆筒形细胞膜组成。设圆筒形细胞膜的内半径为A R ,外半径为B R ,细胞膜的相对介电常量为r ε,求轴突单位长度的电容。

解:由习题4-15公式②,可得圆筒形细胞膜内外的电压为:

U = 20 ln

2A B

r A

R R R ρεε 轴突单位长度的电容为:

202/ln r l A B A

C l R Ul R R εεπ

ρπ==

4-17一个球形电容器,内外壳半径分别为1R 和2R ,两极板间电介质的相对介电常量为ε,球形电容器内极板所带电量为q ,试计算这一电容器所储存的能量。

解:在两极板间以半径r 作一高斯面,由高斯定理得两极板间场强:

2

4 q E r

πε=

电容器两极板间的电压:

2

1

1211d 4 R R q U R R πε??=?=

- ???

?

E r 则电容器所储存的能量为:

1

21

22821R R R R q qU W e -==πε

212

2 22

212 21

()

11 d 4 d 224 8R e R V R R q q W E V r r r R R εεππεπε-??=== ??????

4-18 两个同轴圆柱面长为l ,半径为1R 和2R (12R R <,且1R 、2R 远小于 l ),

两圆柱面间充满空气。(1)、当内外柱面分别均匀带电Q +和Q -时,求圆柱面间

l

储存的电场能。(2)、由能量关系推算此电容器的电容。

解:(1)由4-15题公式①,可得两圆柱面间场强: rl

Q E 02πε=

两圆柱面间电压:

2

1

d R R U =??

E r =

1

2

0ln 2R R l

Q πε 圆柱面间储存的电场能:

1

202

ln 421R R l Q QU W e πε==

(2)由21

2

e W CU =

得电容器电容: 2

2201

2ln 4e W R Q

C U l R πε=

=

?r 图4-13

高考物理稳恒电流技巧(很有用)及练习题

高考物理稳恒电流技巧(很有用)及练习题 一、稳恒电流专项训练 1.如图,ab 和cd 是两条竖直放置的长直光滑金属导轨,MN 和M′N′是两根用细线连接的金属杆,其质量分别为m 和2m.竖直向上的外力F 作用在杆MN 上,使两杆水平静止,并刚好与导轨接触;两杆的总电阻为R ,导轨间距为l.整个装置处在磁感应强度为B 的匀强磁场中,磁场方向与导轨所在平面垂直.导轨电阻可忽略,重力加速度为g.在t =0时刻将细线烧断,保持F 不变,金属杆和导轨始终接触良好.求: (1)细线烧断后,任意时刻两杆运动的速度之比; (2)两杆分别达到的最大速度. 【答案】(1)1221v v = (2)12243mgR v B l = ;22223mgR v B l = 【解析】 【分析】 细线烧断前对MN 和M'N'受力分析,得出竖直向上的外力F=3mg ,细线烧断后对MN 和M'N'受力分析,根据动量守恒求出任意时刻两杆运动的速度之比.分析MN 和M'N'的运动过程,找出两杆分别达到最大速度的特点,并求出. 【详解】 解:(1)细线烧断前对MN 和M'N'受力分析,由于两杆水平静止,得出竖直向上的外力F=3mg .设某时刻MN 和M'N'速度分别为v 1、v 2. 根据MN 和M'N'动量守恒得出:mv 1﹣2mv 2=0 解得: 1 2 2v v =: ① (2)细线烧断后,MN 向上做加速运动,M'N'向下做加速运动,由于速度增加,感应电动势增加,MN 和M'N'所受安培力增加,所以加速度在减小.当MN 和M'N'的加速度减为零时,速度最大.对M'N'受力平衡:BIl=2mg②,E I R =③,E=Blv 1+Blv 2 ④ 由①﹣﹣④得:12243mgR v B l =、2 22 23mgR v B l = 【点睛】 能够分析物体的受力情况,运用动量守恒求出两个物体速度关系.在直线运动中,速度最大值一般出现在加速度为0的时刻. 2.要描绘某电学元件(最大电流不超过6m A,最大电压不超过7V)的伏安特性曲线,

大学物理稳恒磁场习题及答案 (1)

衡水学院 理工科专业 《大学物理B 》 稳恒磁场 习题解答 一、填空题(每空1分) 1、电流密度矢量的定义式为:dI j n dS ⊥ =v v ,单位是:安培每平方米(A/m 2) 。 2、真空中有一载有稳恒电流I 的细线圈,则通过包围该线圈的封闭曲面S 的磁通量? = 0 .若通过S 面上某面元d S v 的元磁通为d ?,而线圈中的电流增加为2I 时,通过同一面元的元磁通为d ?',则d ?∶d ?'= 1:2 。 3、一弯曲的载流导线在同一平面内,形状如图1(O 点是半径为R 1和R 2的两个半圆弧的共同圆心,电流自无穷远来到无穷远去),则O 点磁感强度的大小是2 02 01 00444R I R I R I B πμμμ- + = 。 4、一磁场的磁感强度为k c j b i a B ? ???++= (SI),则通过一半径为R ,开口向z 轴正方向的半球壳表面的磁通量的大 小为πR 2c Wb 。 5、如图2所示通有电流I 的两根长直导线旁绕有三种环路;在每种情况下,等于: 对环路a :d B l ??v v ?=____μ0I __; 对环路b :d B l ??v v ?=___0____; 对环路c :d B l ??v v ? =__2μ0I __。 6、两个带电粒子,以相同的速度垂直磁感线飞入匀强磁场,它们的质量之比是1∶4,电荷之比是1∶2,它们所受的磁场力之比是___1∶2__,运动轨迹半径之比是_____1∶2_____。 二、单项选择题(每小题2分) ( B )1、均匀磁场的磁感强度B v 垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为 A. 2?r 2B B.??r 2B C. 0 D. 无法确定的量 ( C )2、有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中心产生的磁感强度的大小之比B 1 / B 2为 A. B. C. D. ( D )3、如图3所示,电流从a 点分两路通过对称的圆环形分路,汇合于b 点.若ca 、bd 都沿环的径向,则在环形分路的环心处的磁感强度 A. 方向垂直环形分路所在平面且指向纸内 B. 方向垂直环形分路所在平面且指向纸外

高考必备物理稳恒电流技巧全解及练习题

高考必备物理稳恒电流技巧全解及练习题 一、稳恒电流专项训练 1.材料的电阻随磁场的增强而增大的现象称为磁阻效应,利用这种效应可以测量磁感应强度.如图所示为某磁敏电阻在室温下的电阻—磁感应强度特性曲线,其中R B、R0分别表示有、无磁场时磁敏电阻的阻值.为了测量磁感应强度B,需先测量磁敏电阻处于磁场中的电阻值R B.请按要求完成下列实验. (1)设计一个可以测量磁场中该磁敏电阻阻值的电路,并在图中的虚线框内画出实验电路原理图(磁敏电阻及所处磁场已给出,待测磁场磁感应强度大小约为0.6~1.0 T,不考虑磁场对电路其他部分的影响).要求误差较小.提供的器材如下: A.磁敏电阻,无磁场时阻值R0=150 Ω B.滑动变阻器R,总电阻约为20 Ω C.电流表A,量程2.5 mA,内阻约30 Ω D.电压表V,量程3 V,内阻约3 kΩ E.直流电源E,电动势3 V,内阻不计 F.开关S,导线若干 (2)正确接线后,将磁敏电阻置入待测磁场中,测量数据如下表: 123456 U(V)0.000.450.91 1.50 1.79 2.71 I(mA)0.000.300.60 1.00 1.20 1.80 根据上表可求出磁敏电阻的测量值R B=______Ω. 结合题图可知待测磁场的磁感应强度B=______T. (3)试结合题图简要回答,磁感应强度B在0~0.2 T和0.4~1.0 T范围内磁敏电阻阻值的变化规律有何不同? ________________________________________________________________________. (4)某同学在查阅相关资料时看到了图所示的磁敏电阻在一定温度下的电阻—磁感应强度特性曲线(关于纵轴对称),由图线可以得到什么结论? ___________________________________________________________________________.【答案】(1)见解析图

浙江工业大学大学物理稳恒磁场习题答案.

2014/08/20张总灯具灯珠初步设想 按照要求: 亮度比例关系:蓝光:白光:红光=1:1:8 光源总功率不超过20W。 一、蓝光光源: 1、光源形式:SMD 2835、芯片安萤11*28mil封装、 2、电路连接:2并20串、 3、光电参数: 单颗光源:IF:60mA、VF:3.0-3.2V、WLD:440-450nm、PO:0.2W、IV:3.5-4lm、 电路总输入:IF:120mA、VF:60-64V、WLD:440-450nm、PO:7.5W、IV:140-160lm、 4、成本:68元/K, πμT; 当cm r 5.45.3≤≤时, 2 1、光源形式:SMD 2835、库存光源第1KK或第2KK光源中正白色温、 2、电路连接:1并20串、 3、光电参数: 单颗光源:IF:20mA、VF:3.0-3.2V、CCT:6000K、PO:0.06W、IV:7-8lm、电路总输入:IF:20mA、VF:60-65V、PO:1.2W、IV:140-160lm、 成本:72元/K,

三、红光光源: 1、光源形式:SMD 2835、芯片连胜红光30*30mil封装、 2、电路连接:1并30串、 3、光电参数: 单颗光源:IF:150mA、VF:2.0-2.2V、WLD:640-660nm、PO:0.3W、IV:40- 45lm、 电路总输入:IF:150mA、VF:60-66V、WLD:640-660nm、PO:9.5W、IV:1200-1350lm、 4、成本:约420元/K, --=-?-=∑πσ r r r r r d d r d I B /4101.8(31.01079(24109(105104(24(234 222 423721222220-?=?--????=--=----πππμT; 当cm r 5.4≥时, 0∑=i I , B=0 图略 7-12 解:(1

大学物理习题解答5第五章稳恒电流

第五章 稳恒电流 本章提要 1.电流强度 · 当导体中存在电场时,导体中的电荷会发生定向运动形成电流。如果在t ?时间内通过导体某一截面的电量为q ?,则通过该截面的电流I 为 q I t ?= ? · 如果电流随时间变化,电流I 的定义式为 t q t q I t d d lim 0= ??=→? 2.电流密度 · 导体中任意一点的电流密度j 的大小规定为单位时间内通过该点单位垂直截面的电量,j 的方向规定为通过该点的正电荷运动的方向。根据电流密度的定义,导体中某一点面元d S 的电流密度为 d d I j S ⊥ = · 对于宏观导体,当导体中各点的j 有不同的大小和方向,通过导体任意截面S 的电流可通过积分计算,即 d j S S =???I 3.欧姆定律 · 对于一般的金属导体,在恒定条件下欧姆定律有如下表达形式

R U U I 2 1-= 其中R 为导体的电阻,21U U -为导体两端的电势差 · 欧姆定律的微分形式为 E j σ= 其中ρσ1=为电导率 4.电阻 · 当导体中存在恒定电流时,导体对电流有一定的电阻。导体的电阻与导体的材料、大小、形状以及所处状态(如温度)有关。当导体的材料与温度一定时,对一段截面积均匀的导体,其电阻表达式为 S l R ρ = 其中l 为导体的长度,S 为导体的横截面积,ρ为导体的电阻率 5.电动势 · 非静电力反抗静电力移动电荷做功,把其它种形式的能量转换为电势能,产生电势升高。 q A 非= ε · 当非静电力不仅存在于内电路中,而且存在于外电路中时,整个回路的电动势为 l E l k ??=d ε

稳恒电流测试题

本章测评 一、选择题(本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确.全部选对的得4分,选不全的得2分,有选错或不答的得0分) 1.铅蓄电池的电动势为2 V,这表示() A.电路中每通过1 C电荷量,电源把2 J的化学能转变为电能 B.蓄电池两极间的电压为2 V C.蓄电池在1 s内将2 J的化学能转变成电能 D.蓄电池将化学能转变为电能的本领比一节干电池(电动势为1.5 V)的大 解析:电动势描述的是非静电力做功把其他形式的能转化为电能本领大小的物理量,它在数据上等于从电源负极移动单位正电荷到电源正极非静电力所做的功的大小.电动势越大,说明把其他形式的能转化为电能的本领就越大. 答案: 2.下列说法正确的是() A.欧姆表的每一挡的测量范围是从0到∞ B.用不同挡次的欧姆表测量同一电阻的阻值,误差大小是一样的 C.用欧姆表测电阻,指针越接近刻度盘中央,误差越大 D.用欧姆表测电阻,选不同量程时,指针越靠近右边,误差越小 解析:用欧姆表测电阻,指针越接近刻度盘中央时,误差越小,所以B、C、D错. 答案: 3.如图4-4所示的电路中,电源的电动势E和内电阻r恒定不变,电灯L恰能正常发光,如果变阻器的滑片向b端滑动,则() 图4-4 A.电灯L更亮,安培表的示数减小 B.电灯L更亮,安培表的示数增大 C.电灯L变暗,安培表的示数减小 D.电灯L变暗,安培表的示数增大 解析:如果变阻器的滑片向b端滑动,则外电阻增大,电路总电阻增大,所以总电流减小,内电压减小,从而路端电压增大,灯泡更亮. 答案:A 4.手电筒里的两节干电池,已经用过较长时间,灯泡只发出很微弱的光,把它们取出来用电压表测电压,电压表示数很接近3 V,再把它们作为一台式电子钟的电源,电子钟能正常工作,下列说法中正确的是() A.这两节干电池的电动势减小了很多 B.这两节干电池的内阻增加了很多 C.这个台式电子钟的额定电压一定比手电筒小灯泡额定电压小 D.这个台式电子钟正常工作时的电流一定比小灯泡正常工作时的电流小 解答:电池用旧了,其电动势略有减小,但内阻增加很多.旧电池作为电子钟电源,能正常工作,说明电子钟的额定电流较小.

大学物理第8章-稳恒磁场-课后习题及答案

第8章 稳恒磁场 习题及答案 6. 如图所示,AB 、CD 为长直导线,C B 为圆心在O 点的一段圆弧形导线,其半径为R 。若通以电流I ,求O 点的磁感应强度。 解:O 点磁场由AB 、C B 、CD 三部分电流产生,应用磁场叠加原理。 AB 在O 点产生的磁感应强度为 01 B C B 在O 点产生的磁感应强度大小为 R I B 402 R I R I 123400 ,方向垂直纸面向里 CD 在O 点产生的磁感应强度大小为 )cos (cos 4210 03 r I B )180cos 150(cos 60cos 400 R I )2 31(20 R I ,方向垂直纸面向里 故 )6 231(203210 R I B B B B ,方向垂直纸面向里 7. 如图所示,两根导线沿半径方向引向铁环上的A ,B 两点,并在很远处与电源相连。已知圆环的粗细均匀,求环中心O 的磁感应强度。 解:圆心O 点磁场由直电流 A 和 B 及两段圆弧上电流1I 与2I 所产生,但 A 和 B 在O 点 产生的磁场为零。且 21221R R I I 电阻电阻 1I 产生的磁感应强度大小为 )( 241 01R I B ,方向垂直纸面向外 2I 产生的磁感应强度大小为 R I B 4202 ,方向垂直纸面向里 所以, 1) 2(21 21 I I B B 环中心O 的磁感应强度为 0210 B B B 8. 如图所示,一无限长载流平板宽度为a ,沿长度方向通过均匀电流I ,求与平板共面且距平板一边为b 的任意点P 的磁感应强度。 解:将载流平板看成许多无限长的载流直导线,应用叠加原理求解。 以P 点为坐标原点,垂直载流平板向左为x 轴正方向建立坐标系。在载流平板上取dx a I dI ,dI 在P 点产生的磁感应强度大小为

高考物理稳恒电流练习题及答案

高考物理稳恒电流练习题及答案 一、稳恒电流专项训练 1.材料的电阻随磁场的增强而增大的现象称为磁阻效应,利用这种效应可以测量磁感应强度.如图所示为某磁敏电阻在室温下的电阻—磁感应强度特性曲线,其中R B、R0分别表示有、无磁场时磁敏电阻的阻值.为了测量磁感应强度B,需先测量磁敏电阻处于磁场中的电阻值R B.请按要求完成下列实验. (1)设计一个可以测量磁场中该磁敏电阻阻值的电路,并在图中的虚线框内画出实验电路原理图(磁敏电阻及所处磁场已给出,待测磁场磁感应强度大小约为0.6~1.0 T,不考虑磁场对电路其他部分的影响).要求误差较小.提供的器材如下: A.磁敏电阻,无磁场时阻值R0=150 Ω B.滑动变阻器R,总电阻约为20 Ω C.电流表A,量程2.5 mA,内阻约30 Ω D.电压表V,量程3 V,内阻约3 kΩ E.直流电源E,电动势3 V,内阻不计 F.开关S,导线若干 (2)正确接线后,将磁敏电阻置入待测磁场中,测量数据如下表: 123456 U(V)0.000.450.91 1.50 1.79 2.71 I(mA)0.000.300.60 1.00 1.20 1.80 根据上表可求出磁敏电阻的测量值R B=______Ω. 结合题图可知待测磁场的磁感应强度B=______T. (3)试结合题图简要回答,磁感应强度B在0~0.2 T和0.4~1.0 T范围内磁敏电阻阻值的变化规律有何不同? ________________________________________________________________________. (4)某同学在查阅相关资料时看到了图所示的磁敏电阻在一定温度下的电阻—磁感应强度特性曲线(关于纵轴对称),由图线可以得到什么结论? ___________________________________________________________________________.【答案】(1)见解析图

大学物理习题稳恒磁场

稳恒磁场 一、选择题 1. 一圆电流在其环绕的平面内各点的磁感应强度 B 【 】 (A) 方向相同, 大小相等; (B) 方向不同,大小不等; (C) 方向相同, 大小不等; (D) 方向不同,大小相等。 2. 电流由长直导线流入一电阻均匀分布的金属矩形框架,再从长直导线流出,设图中 321O ,O ,O 处的磁感应强度为 B B B 123,,,则 【 】 (A) B B B 123==; (B) 0B 0B B 321≠== ; (C) 0B ,0B ,0B 321=≠= ; (D) 0B ,0B ,0B 321≠≠= 3. 所讨论的空间处在稳恒磁场中,对于安培环路定律的理解,正确的是 【 】 (A) 若?=?L 0l d B ,则必定L 上 B 处处为零 (B) 若?=?L 0l d B , 则必定L 不包围电流 (C) 若?=?L 0l d B , 则L 所包围电流的代数和为零 (D) 回路L 上各点的 B 仅与所包围的电流有关。 4. 在匀强磁场中,有两个平面线圈,其面积21A 2A =, 通有电流21I 2I =, 它们所受 的最大磁力矩之比M M 12/等于 【 】 (A) 1 (B) 2 (C) 4 (D) 1/4 5. 由N 匝细导线绕成的平面正三角形线圈,边长为a , 通有电流I , 置于均匀外磁场 B 中,当线圈平面的法向与外磁场同向时,该线圈所受的磁力矩M m 值为: 【 】 (2) 选择题

(A) 2/IB Na 32, (B) 4/IB Na 32, (C) 60sin IB Na 32, (D) 0 6. 一带电粒子以速度 v 垂直射入匀强磁场 B 中,它的运动轨迹是半径为R 的圆, 若要半 径变为2R ,磁场B 应变为: 【 】 B 2 2) D (B 2 1 ) C (B 2)B (B 2) A ( 7. 图中所示是从云室中拍摄的正电子和负电子的轨迹照片,均匀磁场垂直纸面向里,由两 条轨 迹 可 以 判 断 【 】 (A) a 是正电子,动能大; (B) a 是正电子, 动能小; (C) a 是负电子,动能大; (D) a 是负电子,动能小。 8. 从电子枪同时射出两电子,初速分别为v 和2v ,方向如图所示, 经均匀磁场偏转后, 先回到出发点的是: 【 】 (A) 同时到达 (B) 初速为v 的电子 (C) 初速为2v 的电子 9. 有一电荷q 在均匀磁场中运动,下列哪种说法是正确的? (A )只要速度大小相同,所受的洛仑兹力就相同; (B )如果电荷q 改变为q -,速度v 反向,则受力的大小方向均不变; (C )已知v 、B 、F 中任意两个量的方向,就能判断第三个量的方向; (D )质量为m 的运动电荷,受到洛仑兹力作用后,其动能和动量均不变。 10. 设如图所示的两导线中的电流1I 、2I 均为5A ,根据安培环路定律判断下列表达式中错 误的是( ) (A )?=?a A l d H 5 ; (B )?=?c l d H 0 ; a b c ?? (7)选择题(8) 选择题

【物理】物理稳恒电流练习题及答案

【物理】物理稳恒电流练习题及答案 一、稳恒电流专项训练 1.如图10所示,P 、Q 为水平面内平行放置的光滑金属长直导轨,相距为L 1 ,处在竖直向下、磁感应强度大小为B 1的匀强磁场中.一导体杆ef 垂直于P 、Q 放在导轨上,在外力作用下向左做匀速直线运动.质量为m 、每边电阻均为r 、边长为L 2的正方形金属框abcd 置于倾斜角θ=30°的光滑绝缘斜面上(ad ∥MN ,bc ∥FG ,ab ∥MG, dc ∥FN),两顶点a 、d 通过细软导线与导轨P 、Q 相连,磁感应强度大小为B 2的匀强磁场垂直斜面向下,金属框恰好处于静止状态.不计其余电阻和细导线对a 、d 点的作用力. (1)通过ad 边的电流I ad 是多大? (2)导体杆ef 的运动速度v 是多大? 【答案】(1)238mg B L (2)1238mgr B B dL 【解析】 试题分析:(1)设通过正方形金属框的总电流为I ,ab 边的电流为I ab ,dc 边的电流为I dc , 有I ab =3 4 I ① I dc = 1 4 I ② 金属框受重力和安培力,处于静止状态,有mg =B 2I ab L 2+B 2I dc L 2 ③ 由①~③,解得I ab = 2234mg B L ④ (2)由(1)可得I =22 mg B L ⑤ 设导体杆切割磁感线产生的电动势为E ,有E =B 1L 1v ⑥ 设ad 、dc 、cb 三边电阻串联后与ab 边电阻并联的总电阻为R ,则R =3 4 r ⑦ 根据闭合电路欧姆定律,有I = E R ⑧ 由⑤~⑧,解得v = 1212 34mgr B B L L ⑨ 考点:受力分析,安培力,感应电动势,欧姆定律等.

大连理工大学大学物理作业10(稳恒磁场四)与答案详解

作业 10 稳恒磁场四 1. 载流长直螺线管内充满相对磁导率为 r 的均匀抗磁质,则螺线管内中部的磁感应强度B 和磁场强度 H 的关系是 [ ] 。 A. B 0 H B. B r H C. B 0H D. B 0 H 答案:【 D 】 解:对于非铁磁质,电磁感应强度与磁场强度成正比关系 B r H 抗磁质: r 1,所以, B H 2. 在稳恒磁场中,关于磁场强度 H 的下列几种说法中正确的是 [] 。 A. H 仅与传导电流有关。 B. 若闭合曲线内没有包围传导电流,则曲线上各点的 H 必为零。 C.若闭合曲线上各点 H 均为零,则该曲线所包围传导电流的代数和为零。 D.以闭合曲线 L 为边界的任意曲面的 H 通量相等。 答案:【 C 】 解:安培环路定理 H dl I 0 ,是说:磁场强度 H 的闭合回路的线积分只与传导电流 L 有关,并不是说:磁场强度 H 本身只与传导电流有关。 A 错。 闭合曲线内没有包围传导电流,只能得到:磁场强度 H 的闭合回路的线积分为零。并 不能说:磁场强度 H 本身在曲线上各点必为零。 B 错。 高斯定理 B dS 0 ,是说:穿过闭合曲面,场感应强度 B 的通量为零,或者说, . S 以闭合曲线 L 为边界的任意曲面的 B 通量相等。对于磁场强度 H ,没有这样的高斯定理。 不能说,穿过闭合曲面,场感应强度 H 的通量为零。 D 错。 安培环路定理 H dl I 0 ,是说:磁场强度 H 的闭合回路的线积分等于闭合回路 L 包围的电流的代数和。 C 正确。 抗磁质和铁磁质的 B H 曲线,则 Oa 表示 3. 图 11-1 种三条曲线分别为顺磁质、 ; Ob 表示 ; Oc 表示 。 答案:铁磁质;顺磁质; 抗磁质。 4. 某铁磁质的磁滞回线如图 11-2 所示,则 图中 Ob (或 Ob ' )表示 ; Oc (或 Oc ' )表示 。 答案:剩磁;矫顽力。

稳恒电流习题

一、电流欧姆定律练习题 一、选择题 5.对于有恒定电流通过的导体,下列说法正确的是[ ] A.导体内部的电场强度为零 B.导体是个等势体 C.导体两端有恒定的电压存在 D.通过导体某个截面的电量在任何相等的时间内都相等 6.有四个金属导体,它们的伏安特性曲线如图1所示,电阻最大的导体是[ D] A.a B.b C.c D.d 二、填空题 8.导体中的电流是5μA,那么在3.2S内有______ C的电荷定向移动通过导体的横截面,相当于______个电子通过该截面。 9.电路中有一段导体,给它加20mV的电压时,通过它的电流为5mA,可知这段导体的电阻为______Ω,如给它加30mV的电压时,它的电阻为______Ω;如不给它加电压时,它的电阻为______Ω。 10.如图2所示,甲、乙分别是两个电阻的I-U图线,甲电阻阻值为______Ω,乙电阻阻值为______Ω,电压为10V时,甲中电流为______A,乙中电流为______A。 11.图3所示为两个电阻的U-I图线,两电阻阻值之比R1∶R2=______,给它们两端加相同的电压,则通过的电流之比I1∶I2______。 12.某电路两端电压不变,当电阻增至3Ω时,电流降为原来的 13.设金属导体的横截面积为S,单位体积内的自由电子数为n,自由电子定向移动速度为v,那么在时间t内通过某一横截面积的自由电子数为______;若电子的电量为e,那么在时间t内,通过某一横截面积的电量为______;若导体中的电流I,则电子定向移动的速率为______。 14.某电解槽内,在通电的2s内共有3C的正电荷和3C的负电荷通过槽内某一横截面,则通过电解槽的电流为______A。 三、计算题 15.在氢原子模型中,电子绕核运动可等效为一个环形电流。设氢原子中电子在半径为r的轨道上运动,其质量、电量分别用m和e来表示,则等效电流I等于多少? 16.在彩色电视机的显像管中,从电子枪射出的电子在加速电压U作用下被加速,且形成电流为I的平均电流,若打在荧光屏上的高速电子全部被荧光屏吸收。设电子质量为m,电量为e,进入加速电场之前的初速不计,则t秒内打在荧光屏上的电子数为多少? 电流欧姆定律练习题答案 一、选择题 1、D 2、C 3、D 4、AD 5、CD 6、D 7、B 二、填空题 8、1.6×10-5,1×10149、4,4,4 10、2.5,5,4,211、4∶1,1∶4 12、2.413、nsvt,ensvt,I/ens 14、3 三、计算题

大学物理练习册-稳恒磁场

九、稳恒磁场 磁感应强度 9-1 如图9-1所示,一条无穷长载流20 A 的直导线在P 点被折成1200的钝角,设d =2cm , 求P 点的磁感应强度。 9-2半径为R 的圆弧形导线与一直导线组成回路,回路中通有电流I ,如图9-2所示,求弧心 O 点的磁感应强度(图中 ? 为已知量)。 9-3 两根长直导线沿半径方向引到铁环上A 、B 两点,并与很远的电源相连。如图9-3所示, 求环中心的磁感应强度。 图 9-1

磁矩 9-4一半径为R的薄圆盘,其中半径为r的阴影部分均匀带正电,面电荷密度为+s,其余部分均匀带负电,面电荷密度为-s(见图9-4)。设此盘以角速度为ω绕其轴线匀速转动时,圆盘中心O处的磁感应强度为零,问R和r有什么关系?并求该系统的磁矩。 图9-4 9-5氢原子处在正常态(基态)时,它的电子可看作是在半径为a=0.53×10-8cm的轨道(称为玻尔轨道)上作匀速圆周运动,若电子在轨道中心处产生的磁感应强度大小为12.5T,求(1)电子运动的速度大小?(2)该系统的磁矩。(电子的电荷电量e=1.6×10-19C)。

磁通量 9-6已知一均匀磁场的磁感应强度B=2T,方向沿x轴正方向,如图9-6所示,已知ab=cd =40cm,bc=ad=ef=30cm,be=cf=30cm。求:(1)通过图中abcd面的磁通量;(2)通过图中befc面的磁通量;(3)通过图中aefd面的磁通量。 图9-6 9-7两平行长直导线相距d=40cm,每根导线载有等量同向电流I,如图9-7所示。求:(1)两导线所在平面内,与左导线相距x(x在两导线之间)的一点P处的磁感应强度。(2)若I=20A,通过图中斜线所示面积的磁通量(r1=r3=10cm,l=25cm)。 图9-7

大学物理稳恒磁场习题及答案

衡水学院理工科专业《大学物理B 》稳恒磁场习题解答 一、填空题(每空1分) 1、电流密度矢量的定义式为:dI j n dS ⊥ = ,单位是:安培每平方米(A/m 2)。 2、真空中有一载有稳恒电流I 的细线圈,则通过包围该线圈的封闭曲面S 的磁通量Φ=0 .若通过S 面上某面元d S 的元磁通为d Φ,而线圈中的电流增加为2I 时,通过同一面元的元磁通为d Φ',则d Φ∶d Φ'=1:2 。 3、一弯曲的载流导线在同一平面内,形状如图1(O 点是半径为R 1和R 2的两个半圆弧的共同圆心,电流自无穷远来到无穷远去),则O 点磁感强度的大小是2 02 01 00444R I R I R I B πμμμ- + =。 4、一磁场的磁感强度为k c j b i a B ++= (SI),则通过一半径为R ,开口向z 轴正方向的半球壳表面的磁通量的大小为πR 2c Wb 。 5、如图2所示通有电流I 的两根长直导线旁绕有三种环路;在每种情况下,等于: 对环路a :d B l ?? =____μ0I__; 对环路b :d B l ?? =___0____; 对环路c :d B l ?? =__2μ0I__。 6、两个带电粒子,以相同的速度垂直磁感线飞入匀强磁场,它们的质量之比是1∶4,电荷之比是1∶2,它们所受的磁场力之比是___1∶2__,运动轨迹半径之比是_____1∶2_____。 二、单项选择题(每小题2分) ( B )1、均匀磁场的磁感强度B 垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为 A. 2πr 2B B. πr 2B C. 0 D.无法确定的量 ( C )2、有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中心产生的磁感强度的大小之比B 1 / B 2为 A. 0.90 B. 1.00 C. 1.11 D.1.22 (D )3、如图3所示,电流从a 点分两路通过对称的圆环形分路,汇合于b 点.若ca 、bd 都沿环的径向,则在环形分路的环心处的磁感强度 A. 方向垂直环形分路所在平面且指向纸内 B. 方向垂直环形分路所在平面且指向纸外

(物理)物理稳恒电流练习题20含解析

(物理)物理稳恒电流练习题20含解析 一、稳恒电流专项训练 1.如图,ab 和cd 是两条竖直放置的长直光滑金属导轨,MN 和M′N′是两根用细线连接的金属杆,其质量分别为m 和2m.竖直向上的外力F 作用在杆MN 上,使两杆水平静止,并刚好与导轨接触;两杆的总电阻为R ,导轨间距为l.整个装置处在磁感应强度为B 的匀强磁场中,磁场方向与导轨所在平面垂直.导轨电阻可忽略,重力加速度为g.在t =0时刻将细线烧断,保持F 不变,金属杆和导轨始终接触良好.求: (1)细线烧断后,任意时刻两杆运动的速度之比; (2)两杆分别达到的最大速度. 【答案】(1)1221v v = (2)12243mgR v B l = ;22223mgR v B l = 【解析】 【分析】 细线烧断前对MN 和M'N'受力分析,得出竖直向上的外力F=3mg ,细线烧断后对MN 和M'N'受力分析,根据动量守恒求出任意时刻两杆运动的速度之比.分析MN 和M'N'的运动过程,找出两杆分别达到最大速度的特点,并求出. 【详解】 解:(1)细线烧断前对MN 和M'N'受力分析,由于两杆水平静止,得出竖直向上的外力F=3mg .设某时刻MN 和M'N'速度分别为v 1、v 2. 根据MN 和M'N'动量守恒得出:mv 1﹣2mv 2=0 解得: 1 2 2v v =: ① (2)细线烧断后,MN 向上做加速运动,M'N'向下做加速运动,由于速度增加,感应电动势增加,MN 和M'N'所受安培力增加,所以加速度在减小.当MN 和M'N'的加速度减为零时,速度最大.对M'N'受力平衡:BIl=2mg②,E I R =③,E=Blv 1+Blv 2 ④ 由①﹣﹣④得:12243mgR v B l =、2 22 23mgR v B l = 【点睛】 能够分析物体的受力情况,运用动量守恒求出两个物体速度关系.在直线运动中,速度最大值一般出现在加速度为0的时刻. 2.对于同一物理问题,常常可以从宏观与微观两个不同角度进行研究,找出其内在联系,

高中物理稳恒电流常见题型及答题技巧及练习题

高中物理稳恒电流常见题型及答题技巧及练习题 一、稳恒电流专项训练 1.在如图所示的电路中,电源内电阻r=1Ω,当开关S 闭合后电路正常工作,电压表的读数U=8.5V ,电流表的读数I=0.5A .求: ①电阻R ; ②电源电动势E ; ③电源的输出功率P . 【答案】(1)17R =Ω;(2)9E V =;(3) 4.25P w = 【解析】 【分析】 【详解】 (1)由部分电路的欧姆定律,可得电阻为:5U R I = =Ω (2)根据闭合电路欧姆定律得电源电动势为E =U +Ir =12V (3)电源的输出功率为P =UI =20W 【点睛】 部分电路欧姆定律U =IR 和闭合电路欧姆定律E =U +Ir 是电路的重点,也是考试的热点,要熟练掌握. 2.如图所示,已知电源电动势E=20V ,内阻r=lΩ,当接入固定电阻R=3Ω时,电路中标有“3V,6W”的灯泡L 和内阻R D =1Ω的小型直流电动机D 都恰能正常工作.试求: (1)流过灯泡的电流 (2)固定电阻的发热功率 (3)电动机输出的机械功率 【答案】(1)2A (2)7V (3)12W 【解析】 (1)接通电路后,小灯泡正常工作,由灯泡上的额定电压U 和额定功率P 的数值 可得流过灯泡的电流为: =2A

(2)根据热功率公式 ,可得固定电阻的发热功率:=12W (3)根据闭合电路欧姆定律,可知电动机两端的电压:=9V 电动机消耗的功率: =18W 一部分是线圈内阻的发热功率:=4W 另一部分转换为机械功率输出,则 =14W 【点睛】(1)由灯泡正常发光,可以求出灯泡中的电流;(2)知道电阻中流过的电流,就可利用热功率方程 ,求出热功率;(3)电动机消耗的电功率有两个去向:一部 分是线圈内阻的发热功率;另一部分转化为机械功率输出。 3.环保汽车将为2008年奥运会场馆服务.某辆以蓄电池为驱动能源的环保汽车,总质量 3310kg m =?.当它在水平路面上以v =36km/h 的速度匀速行驶时,驱动电机的输入电流 I =50A ,电压U =300V .在此行驶状态下 (1)求驱动电机的输入功率P 电; (2)若驱动电机能够将输入功率的90%转化为用于牵引汽车前进的机械功率P 机,求汽车所受阻力与车重的比值(g 取10m/s 2); (3)设想改用太阳能电池给该车供电,其他条件不变,求所需的太阳能电池板的最小面积.结合计算结果,简述你对该设想的思考. 已知太阳辐射的总功率26 0410W P =?,太阳到地球的距离 ,太阳光传播 到达地面的过程中大约有30%的能量损耗,该车所用太阳能电池的能量转化效率约为15%. 【答案】(1)3 1.510W P =?电 (2)/0.045f mg = (3)2101m S = 【解析】 试题分析:⑴31.510W P IU 电==? ⑵0.9P P Fv fv 电机===0.9/f P v =电/0.045f mg = ⑶当太阳光垂直电磁板入射式,所需板面积最小,设其为S ,距太阳中心为r 的球面面积 204πS r = 若没有能量的损耗,太阳能电池板接受到的太阳能功率为P ',则 00 P S P S '= 设太阳能电池板实际接收到的太阳能功率为P , 所以()130%P P =-' 由于15%P P =电,所以电池板的最小面积 ()00 130%P S P S =-

大学物理稳恒磁场解读

大学物理稳恒磁场解读 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第十一章稳恒磁场 磁场由运动电荷产生。 磁场与电场性质有对称性,学习中应注意对比。 §11-1 基本磁现象 磁性,磁力,磁现象; 磁极,磁极指向性,N极,S极,同极相斥,异极相吸。 磁极不可分与磁单极。 一、电流的磁效应 1819年,丹麦科学家奥斯特发现电流的磁效应; 1820年,法国科学家安培发现磁场对电流的作用。 二、物质磁性的电本质 磁性来自于运动电荷,磁场是电流的场。 注:1932年,英国物理学家狄拉克预言存在“磁单极”,至今科学家一直在努力寻找其存在的证据。 §11-2 磁场磁感强度 一、磁场 磁力通过磁场传递,磁场是又一个以场的形式存在的物质。 二、磁感强度 磁感强度B的定义:

(1)规定小磁针在磁场中N极的指向为该点磁感强度B的方向。若正电荷沿此方向运动,其所受磁力为零。 (2)正运动电荷沿与磁感强度B垂直的方向运动时,其所受最大磁力F max与电荷电量q和运动速度大小v的乘积的比值,规定为磁场中某点磁感强度的大小。即: 磁感强度B是描写磁场性质的基本物理量。若空间各点B的大小和方向均相等,则该磁场为均匀磁场;若空间各点B的大小和方向均不随时间改变,称该磁场为稳恒磁场。 磁感强度B的单位:特斯拉(T)。 §11-3 毕奥-萨伐尔定律 一、毕-萨定律 电流元: 电流在空间的磁场可看成是组成电流的所有电流元在空间产生 元磁感强度的矢量和。 式中μ0:真空磁导率,μ0=4π×10-7 NA 2 dB的大小:

d B的方向:d B总是垂直于Id l与r组成的平面,并服从右手定则。 一段有限长电流的磁场: 二、应用 1。一段载流直导线的磁场 说明: (1)导线“无限长”:

大学物理课后习题答案 稳恒磁场

第十一章 稳恒磁场 1、[E]依据()θπμθR I B 40= 和载流导线在沿线上任一点的0=B 得出答案。 2、[E]依据r I B πμ40= 和磁感强度的方向和电流的方向满足右手法则,得出答案。 3、[C]依据()210cos cos 4θθπμ-= R I B 和载流导线在沿线上任一点的0=B , 有:()[]445180cos 45cos 2 401?--= l I B π μ; π μμπl I I l 002222 22= ??,02=B 4、[D]依据()R I R I R I B 444000μππμθπμθ=?== 5、[C] r I B πμ40= 、 2 a r = 、 4 000108.0245sin 122-?==??= a I a I B πμπμ T 6、[D]依据()210 0cos cos 4θθπμ-= r I B ,应用21I I I +=,分别求出各段直导线电流的磁感强度,可知03=B 、方向相反,∴0≠B 7、[D]注意分流,和对L 回路是I 的正负分析得结论。 8、[B]洛伦兹力的方向向上,故从y 轴上方射出,qB m v R = ,轨迹的中心在qB m v y =处故 I I

射出点:qB m v R y 22= = 9、[B] 作出具体分析图是解决该题的关键。从图上看出: D R =αsin qB D qB m v R = = p eBD p qBD = =αsin p eBD sin arg =α 10、[D] 载流线圈在磁场中向磁通量增加的方向移动。当线圈在该状态时,磁通量已达最大,不可能通过转动来增加磁通量,因此不发生转动,而线圈靠近导线AB 磁通量增大。 应用安培力来进行分析:向左的磁力比向右的磁力大,因此想左靠近。 11、[B] 载流线圈在磁场中向磁通量增加的方向转动或移动,该题中移动不能增加磁通量,则发生转动,从上向下看线圈作顺时针方向转动,结果线圈相当一个条形磁铁,右侧呈现S 级,因此靠近磁铁。 12、[D] B P M m ?=,αsin B P M m =, m P 和B 平行, ∴ 0=α,0sin =α,0=M 13、[C] 应用r I B πμ20= 的公式分别计算出电流系统在各导线上代表点处的B ,然后用安培力的公式:B l I F ?=d d 计算出1F ,2F 用r 表示导线间的距离。 r I r I r I B πμπμπμ4743220001=+= r I r I r I B πμπμπμ0002232=+-=

高考物理稳恒电流解题技巧及练习题含解析

高考物理稳恒电流解题技巧及练习题含解析 一、稳恒电流专项训练 1.如图10所示,P 、Q 为水平面内平行放置的光滑金属长直导轨,相距为L 1 ,处在竖直向下、磁感应强度大小为B 1的匀强磁场中.一导体杆ef 垂直于P 、Q 放在导轨上,在外力作用下向左做匀速直线运动.质量为m 、每边电阻均为r 、边长为L 2的正方形金属框abcd 置于倾斜角θ=30°的光滑绝缘斜面上(ad ∥MN ,bc ∥FG ,ab ∥MG, dc ∥FN),两顶点a 、d 通过细软导线与导轨P 、Q 相连,磁感应强度大小为B 2的匀强磁场垂直斜面向下,金属框恰好处于静止状态.不计其余电阻和细导线对a 、d 点的作用力. (1)通过ad 边的电流I ad 是多大? (2)导体杆ef 的运动速度v 是多大? 【答案】(1)238mg B L (2)1238mgr B B dL 【解析】 试题分析:(1)设通过正方形金属框的总电流为I ,ab 边的电流为I ab ,dc 边的电流为I dc , 有I ab =3 4 I ① I dc = 1 4 I ② 金属框受重力和安培力,处于静止状态,有mg =B 2I ab L 2+B 2I dc L 2 ③ 由①~③,解得I ab = 2234mg B L ④ (2)由(1)可得I =22 mg B L ⑤ 设导体杆切割磁感线产生的电动势为E ,有E =B 1L 1v ⑥ 设ad 、dc 、cb 三边电阻串联后与ab 边电阻并联的总电阻为R ,则R =3 4 r ⑦ 根据闭合电路欧姆定律,有I = E R ⑧ 由⑤~⑧,解得v = 1212 34mgr B B L L ⑨ 考点:受力分析,安培力,感应电动势,欧姆定律等.

【物理】物理稳恒电流练习题及答案含解析

【物理】物理稳恒电流练习题及答案含解析 一、稳恒电流专项训练 1.要描绘某电学元件(最大电流不超过6mA,最大电压不超过7V)的伏安特性曲线,设计电路如图,图中定值电阻R为1KΩ,用于限流;电流表量程为10mA,内阻约为5Ω;电压表(未画出)量程为10V,内阻约为10KΩ;电源电动势E为12V,内阻不计。 (1)实验时有两个滑动变阻器可供选择: a、阻值0到200Ω,额定电流 b、阻值0到20Ω,额定电流 本实验应选的滑动变阻器是(填“a”或“b”) (2)正确接线后,测得数据如下表 12345678910U(V)0.00 3.00 6.00 6.16 6.28 6.32 6.36 6.38 6.39 6.40 0.000.000.000.060.50 1.00 2.00 3.00 4.00 5.50I(m A) a)根据以上数据,电压表是并联在M与之间的(填“O”或“P”) b)画出待测元件两端电压UMO随MN间电压UMN变化的示意图为(无需数值) 【答案】(1) a (2) a) P b)

【解析】(1)选择分压滑动变阻器时,要尽量选择电阻较小的,测量时电压变化影响小,但要保证仪器的安全。B电阻的额定电流为,加在它上面的最大电压为10V,所以仪器不能正常使用,而选择a。(2)电压表并联在M与P之间。因为电压表加电压后一定有电流通过,但这时没有电流流过电流表,所以电流表不测量电压表的电流,这样电压表应该接在P点。 视频 2.如图所示的电路中,R1=4Ω,R2=2Ω,滑动变阻器R3上标有“10Ω,2A”的字样,理想电压表的量程有0~3V和0~15V两挡,理想电流表的量程有0~0.6A和0~3A两挡.闭合开关S,将滑片P从最左端向右移动到某位置时,电压表、电流表示数分别为2V和0.5A; 继续向右移动滑片P至另一位置,电压表指针指在满偏的1 3 ,电流表指针也指在满偏的 1 3 .求电源电动势与内阻的大小.(保留两位有效数字) 【答案】7.0V,2.0Ω. 【解析】 【分析】 根据滑动变阻器的移动可知电流及电压的变化,是可判断所选量程,从而求出电流表的示数;由闭合电路欧姆定律可得出电动势与内阻的两个表达式,联立即可求得电源的电动势. 【详解】 滑片P向右移动的过程中,电流表示数在减小,电压表示数在增大,由此可以确定电流表 量程选取的是0~0.6 A,电压表量程选取的是0~15 V,所以第二次电流表的示数为1 3 ×0.6 A=0.2 A,电压表的示数为1 3 ×15 V=5 V 当电流表示数为0.5A时,R1两端的电压为U1=I1R1=0.5×4 V=2 V

相关文档
最新文档