中考数学 几何专题训练:圆的有关性质(含答案)

中考数学 几何专题训练:圆的有关性质(含答案)
中考数学 几何专题训练:圆的有关性质(含答案)

中考数学 几何专题训练:圆的有关性质

一、选择题(本大题共10道小题)

1. 如图,⊙O 过点B 、C ,圆心O 在等腰直角△ABC 的内部,∠BAC =90°,OA =1,BC =6,则⊙O 的半径为( )

A. 10

B. 2 3

C. 13

D. 3 2

2. 如图,AB 是⊙O 的直径,CD 为弦,CD ⊥AB 于点E ,则下列结论中不成立...

的是( )

A .∠COE =∠DOE

B .CE =DE

C .OE =BE

D.BD ︵=BC ︵

3. 如图,AB 是⊙O 的直径,BC ︵=CD ︵=DE ︵

,∠COD =34°,则∠AEO 的度数是( )

A .51°

B .56°

C .68°

D .78°

4. 如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E.若AB =8,AE =1,则弦CD 的长是( )

A.7

B .27

C .6

D .8

5. 在⊙O 中,圆心角∠AOB =3∠COD (∠COD <60°),则劣弧AB ,劣弧CD 的大

小关系是( ) A.AB ︵=3CD ︵

B.AB ︵>3CD ︵

C.AB ︵<3CD ︵

D .3AB ︵

6. 2019·梧州

如图,在半径为13的⊙O 中,弦AB 与CD 交于点E ,∠DEB =75°,

AB =6,AE =1,则CD 的长是( )

A .2 6

B .2 10

C .2 11

D .4 3

7. 如图,有一个水平放置的透明无盖的正方体容器,容器高

8 cm ,将一个球放

在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm.若不计容器壁厚度,则球的半径为( )

A .5 cm

B .6 cm

C .7 cm

D .8 cm

8. 如图,将半径为

6的⊙O 沿AB 折叠,AB ︵

与垂直于AB 的半径OC 交于点D ,

且CD =2OD ,则折痕AB 的长为( )

A .4 2

B .8 2

C .6

D .6 3

9. 2020·武汉模拟

小名同学响应学习号召,在实际生活中发现问题,并利用所学

的数学知识解决问题,他将汽车轮胎如图放置在地面台阶直角处,他测量了台阶

高a为160 mm,直角顶点A到轮胎与地面接触点B的距离AB为320 mm,请帮小名同学计算轮胎的直径为()

A.350 mm B.700 mm

C.800 mm D.400 mm

10. (2019?仙桃)如图,AB为O的直径,BC为O的切线,弦AD∥OC,直线

⊥;CD交的BA延长线于点E,连接BD.下列结论:①CD是O的切线;②CO DB

?=?.其中正确结论的个数有

③EDA EBD

△∽△;④ED BC BO BE

A.4个B.3个

C.2个D.1个

二、填空题(本大题共8道小题)

11. 如图所示,AB为☉O的直径,点C在☉O上,且OC⊥AB,过点C的弦CD 与线段OB相交于点E,满足∠AEC=65°,连接AD,则∠BAD=度.

12. 如图,AB是⊙O的直径,C,D是⊙O上的两点,若∠BCD=28°,则∠ABD =________°.

13. 2018·孝感

已知⊙O 的半径为10 cm ,AB ,CD 是⊙O 的两条弦,AB ∥CD ,

AB =16 cm ,CD =12 cm ,则弦AB 和CD 之间的距离是________cm.

14. 已知:如图,A ,B 是⊙O 上的两点,∠AOB =120°,C 是AB ︵

的中点,则四边形OACB

是________.(填特殊平行四边形的名称)

15. 如图,点A ,B ,C 都在⊙O 上,OC ⊥OB ,点A 在BC ︵

上,且OA =AB ,则∠ABC =________°.

16. 如图,在⊙O

中,BD 为⊙O 的直径,弦AD 的长为3,AB 的长为4,AC 平

分∠DAB ,则弦CD 的长为________.

17. 如图2,一下水管道横截面为圆形,直径为100 cm ,下雨前水面宽为60 cm ,一场大雨

过后,水面宽为80 cm ,则水位上升________cm. 链接听P39例4归纳总结

18. 只用圆规测量∠XOY 的度数,方法是:以顶点

O 为圆心任意画一个圆,与角

的两边分别交于点A ,B(如图),在这个圆上顺次截取AB ︵=BC ︵=CD ︵=DE ︵=EF ︵

=…,这样绕着圆一周一周地截下去,直到绕第n 周时,终于使第m(m >n)次截得的弧的末端恰好与点A 重合,那么∠XOY 的度数等于________.

三、解答题(本大题共4道小题)

19. 如图,直线AB 经过⊙O 上的点C ,直线AO 与⊙O 交于点E 和点D ,OB 与⊙O 交于

点F ,连接DF ,DC.已知OA =OB ,CA =CB. (1)求证:直线AB 是⊙O 的切线; (2)求证:∠CDF =∠EDC ;

(3)若DE =10,DF =8,求CD 的长.

20. 如图,AB

为⊙O 的直径,C 为圆外一点,AC 交⊙O 于点D ,BC 2=CD ·CA ,

ED ︵=BD ︵

,BE 交AC 于点F . (1)求证:BC 为⊙O 的切线;

(2)判断△BCF 的形状并说明理由;

(3)已知BC =15,CD =9,∠BAC =36°,求BD ︵

的长度(结果保留π).

21. 如图,点E是△ABC的内心,线段AE的延长线交BC于点F(∠AFC≠90°),交△ABC的外接圆于点D.

(1)求点F与△ABC的内切圆⊙E的位置关系;

(2)求证:ED=BD;

(3)若∠BAC=90°,△ABC的外接圆的直径是6,求BD的长;

(4)B,C,E三点可以确定一个圆吗?若可以,则它们确定的圆的圆心和半径分别是什么?若不可以,请说明理由.

22. (2019?辽阳)如图,BE是⊙O的直径,点A和点D是⊙O上的两点,连接AE,

∠=∠.

AD,DE,过点A作射线交BE的延长线于点C,使EAC EDA

(1)求证:AC是⊙O的切线;

(2)若23

==,求阴影部分的面积.

CE AE

圆的有关性质-答案

一、选择题(本大题共10道小题)

1. 【答案】C 【解析】延长AO 交BC 于点D ,连接OB.由AB =AC 得点A 在线段BC 的垂直平分线上,因而可得AD ⊥BC ,所以BD =3,不难得出AD =BD =3,于是OD =AD -OA =2,在R t △ODB 中,OB =OD 2+DB 2=22+32=13.

2. 【答案】C

3. 【答案】A [解析] ∵BC ︵=CD ︵=DE ︵

,∠COD =34°,

∴∠BOC =∠COD =∠EOD =34°,

∴∠AOE =180°-∠EOD -∠COD -∠BOC =78°. 又∵OA =OE ,∴∠AEO =∠OAE , ∴∠AEO =12×(180°-78°)=51°.

4. 【答案】B [解析] 连接OC ,则OC =4,OE =3.在Rt △OCE 中,CE =OC2-OE2=

42-32=7.因为AB ⊥CD ,所以CD =2CE =2 7.

5. 【答案】A

[解析] 把∠AOB 三等分,得到的每一份角所对的弧都等于CD ︵

,因

此有AB ︵=3CD ︵.

6. 【答案】C

7. 【答案】A

[解析] 作出该球轴截面的示意图如图所示.依题意,得BE =2 cm ,

AE =CE =4 cm.设OE =x cm ,则OA =(2+x )cm.∵OA 2=AE 2+OE 2,∴(2+x )2=42+x 2,解得x =3,故该球的半径为5 cm.

8. 【答案】B

[解析] 如图,延长CO 交AB 于点E ,连接OB .∵CE ⊥AB ,∴AB

2019中考数学几何证明专题试卷精选汇编(有解析答案)

几何证明 东城区 19.如图,在△ABC中,∠BAC=90°,AD⊥BC于点D.BF平分∠ABC交AD于点E,交AC于点F.求 证:AE=AF. 19.证明:∵∠BAC=90°, ∴∠FBA+∠AFB=90°.-------------------1分 ∵AD⊥BC, ∴∠DBE+∠DEB=90°.----------------2分 ∵BE平分∠ABC, ∴∠DBE=∠FBA.-------------------3分 ∴∠AFB=∠DEB.-------------------4分 ∵∠DEB=∠FEA, ∴∠AFB=∠FEA. ∴AE=AF.-------------------5分 西城区 19.如图,AD平分∠BAC,BD⊥AD于点D,AB的中点为E,AE

∴AE=AB A E C B D 【解析】(1)证明:∵AD平分∠BAC, ∴∠1=∠2, ∵BD⊥AD于点D, ∴∠ADB=90?, ∴△ABD为直角三角形. ∵AB的中点为E, AB ,DE=, 22 ∴DE=AE, ∴∠1=∠3, ∴∠2=∠3, ∴DE∥AC. (2)△ADE. A 12 E C 3 B D 海淀区 19.如图,△ABC中,∠ACB=90?,D为AB的中点,连接C D,过点B作CD的平行线EF,求证:BC平分∠ABF. 2

A D C E B F 19.证明:∵∠ACB=90?,D为AB的中点, 1 ∴CD=AB=BD. 2 ∴∠ABC=∠DCB.…………… ∵DC∥EF, ∴∠CBF=∠DCB. ∴∠CBF=∠ABC. ∴BC平分∠ABF. 丰台区 19.如图,在△ABC中,AB=AC,D是BC边上的中点,DE⊥AB于点E,DF⊥AC于点F.求证:DE=DF. A E F B D C 19.证明:连接AD. ∵AB=BC,D是BC边上的中点,A 3E F

中考数学专题复习最值问题

两点之间线段最短关系密切.在求最短路线时,一般我们先用“对称”的方法化成两点之间的最短距离问题,而两点之间直线段最短,从而找到所需的最短路线.像这样将一个问题转变为一个和它等价的问题,再设法解决,是数学中一种常用的重要思想方法. 类型1 利用“垂线段最短”求最短路径问题 如图所示,AB 是一条河流,要铺设管道将河水引到C ,D 两个用水点,现有两种铺设管道的方案.方案一:分别过C ,D 作AB 的垂线,垂足分别为E ,F ,沿CE ,DF 铺设管道;方案二:连接CD 交AB 于点P ,沿PC 、PD 铺设管道.问:这两种铺设管道的方案中哪一种更节省材料,为什么? 【思路点拨】 方案一管道长为CE +DF ,方案二管道长为PC +PD ,利用垂线段最短即可比较出大小. 本题易错误的利用两点之间线段最短解决,解答时需要准确识图,找到图形对应的知识点. 1.如下左图,点A 的坐标为(-1,0),点B(a ,a),当线段AB 最短时,点B 的坐标为( ) A .(0,0) B .(22,-22) C .(-22,-22) D .(-12,-12 ) 2.在直角坐标系中,点P 落在直线x -2y +6=0上,O 为坐标原点,则|OP|的最小值为( ) A.352 B .3 5 C.655 D.10 3.如上中图,在平面直角坐标系xOy 中,以原点O 为圆心的圆过点A(13,0),直线y =kx -3k +4与⊙O 交于B 、C 两点,则弦BC 的长的最小值为________. 4.如上右图,平原上有A ,B ,C ,D 四个村庄,为解决缺水问题,政府准备投资修建一个蓄水池. (1)不考虑其他因素,请你画图确定蓄水池H 点的位置,使它到四个村庄距离之和最小; (2)计划把河水引入蓄水池H 中,怎样开渠最短并说明根据. 类型2 利用“两点之间线段最短”求最短路径问题 (1)如图1,直线同侧有两点A ,B ,在直线MN 上求一点C ,使它到A 、B 之和最小;(保留作图痕迹不写作法) (2)知识拓展:如图2,点P 在∠AOB 内部,试在OA 、OB 上分别找出两点E 、F ,使△PEF 周长最短;(保留作图痕迹不写作法) (3)解决问题:①如图3,在五边形ABCDE 中,在BC ,DE 上分别找一点M ,N ,使得△AMN 周长最小;(保留作图痕迹不写作法)

【中考必备】最新中考数学试题分类解析 专题35 平面几何基础

2012年全国中考数学试题分类解析汇编(159套63专题) 专题35:平面几何基础 一、选择题 1. (2012北京市4分)如图,直线AB,CD交于点O,射线OM平分∠AOD,若∠BOD=760,则∠BOM 等于【】 A.38?B.104?C.142?D.144? 【答案】C。 【考点】角平分线定义,对顶角的性质,补角的定义。 【分析】由∠BOD=760,根据对顶角相等的性质,得∠AOC=760,根据补角的定义,得∠BOC=1040。 由射线OM平分∠AOD,根据角平分线定义,∠COM=380。 ∴∠BOM=∠COM+∠BOC=1420。故选C。 2. (2012重庆市4分)已知:如图,BD平分∠ABC,点E在BC上,EF∥AB.若∠CEF=100°,则∠ABD 的度数为【】 A.60°B.50°C.40°D.30° 【答案】B。 【考点】平行线的性质,角平分线的定义。 【分析】∵EF∥AB,∠CEF=100°,∴∠ABC=∠CEF=100°。 ∵BD平分∠ABC,∴∠ABD=1 2 ∠ABC= 1 2 ×100°=50°。故选B。 3. (2012山西省2分)如图,直线AB∥CD,AF交CD于点E,∠CEF=140°,则∠A等于【】

A . 35° B . 40° C . 45° D . 50° 【答案】B 。 【考点】平行线的性质,平角定义。 【分析】∵∠CEF =140°,∴∠FED =180°﹣∠CEF =180°﹣140°=40°。 ∵直线AB ∥CD ,∴∠A =∠FED =40°。故选B 。 4. (2012海南省3分)一个三角形的两边长分别为3cm 和7cm ,则此三角形的第三边的长可能是【 】 A .3cm B .4cm C .7cm D .11cm 【答案】C 。 【考点】三角形的构成条件。 【分析】根据三角形的两边之和大于第三边,两边之差小于第三边的构成条件,此三角形的第三边的长应在7-3=4cm 和7+3=10cm 之间。要此之间的选项只有7cm 。故选C 。 5. (2012海南省3分)小明同学把一个含有450 角的直角三角板在如图所示的两条平行线m n ,上,测得0120α∠=,则β∠的度数是【 】 A .450 B .550 C .650 D .750 【答案】D 。 【考点】平行线的性质,平角定义,对顶角的性质,三角形内角和定理。 【分析】∵m n ∥,∴∠ABn =0120α∠=。∴∠ABC =600 。 又∵∠ACB =β∠,∠A =450, ∴根据三角形内角和定理,得β∠=1800-600-450=750。故选D 。 6. (2012广东省3分)已知三角形两边的长分别是4和10,则此三角形第三边的长可能是【 】 A . 5 B . 6 C . 11 D . 16 【答案】C 。 【考点】三角形三边关系。 【分析】设此三角形第三边的长为x ,则根据三角形两边之和大于第三边,两边之差小于第三边的构成条件,得10﹣4<x <10+4,即6<x <14,四个选项中只有11符合条件。故选C 。

中考数学几何证明题大全

几何证明题分类汇编 一、证明两线段相等 1.如图3,在梯形ABCD 中,AD BC ∥,EA AD ⊥,M 是AE 上一点, BAE MCE =∠∠,45MBE =o ∠. (1)求证:BE ME =. (2)若7AB =,求MC 的长. 2、(8分)如图11,一张矩形纸片ABCD ,其中AD=8cm ,AB=6cm ,先沿对角线BD 折叠,点C 落在点C ′的位置,BC ′交AD 于点G. (1)求证:AG=C ′G ; (2)如图12,再折叠一次,使点D 与点A 重合,的折痕EN ,EN 角AD 于M ,求EM 的长. 2、类题演练 3如图,分别以Rt△ABC 的直角 边AC 及斜边AB 向外 作等边 △ACD 、等边△ABE .已知∠BAC =30o,EF ⊥AB ,垂足为F ,连结DF . (1)试说明AC =EF ; (2)求证:四边形ADFE 是平行四边形. 4如图,在△ABC 中,点P 是边AC 上的一个动点,过点P 作直线MN∥BC,设MN 交∠BCA 的平分线于点E ,交∠BCA 的外角平分线于点F . (1)求证:PE =PF ; (2)*当点P 在边AC 上运动时,四边形BCFE 可能是菱形吗?说明理由; 图3 A B C D E F 第20题图

A B C D M N E F P (3)*若在AC 边上存在点P ,使四边形AECF 是正方形,且 AP BC =3 2 .求此时∠A 的大小. 二、证明两角相等、三角形相似及全等 1、(9分)AB 是⊙O 的直径,点E 是半圆上一动点(点E 与点A 、B 都不重合), 点C 是BE 延长线上的一点,且CD ⊥AB ,垂足为D ,CD 与AE 交于点H ,点H 与点A 不重合。 (1)(5分)求证:△AHD ∽△CBD (2)(4分)连HB ,若CD=AB=2,求HD+HO 的值。 2、(本题8分)如图9,四边形ABCD 是正方形,BE ⊥BF ,BE=BF ,EF 与BC 交于点G 。 (1)求证:△ABE≌△CBF ;(4分) (2)若∠ABE=50o,求∠EGC 的大小。(4分) 3、(本题7分)如图8,△AOB 和△COD 均为等腰直角三角形,∠AOB =∠COD =90o,D 在AB 上. (1)求证:△AOC ≌△BOD ;(4分) (2)若AD =1,BD =2,求CD 的长.(3分) 2、类题演练 1、 (8分)如图,已知∠ACB =90°,AC =BC ,BE ⊥CE 于E ,AD ⊥CE 于D ,CE 与 AB 相交于F . (1)求证:△CEB ≌△ADC ; (2)若AD =9cm ,DE =6cm ,求BE 及EF 的长. A B C D 图8 O A B D F E 图9 A O D B H E C

中考数学几何证明压轴题

(i (2)若四边形BEDF 是菱形,则四边形AGBD 是什么特殊四边形?并证明你的结论. 3、如图13- 1, 一等腰直角三角尺 GEF 的两条直角边与正方形 ABCD 勺两条边分别 重合在一起?现正方形 ABCD 保持不动,将三角尺 GEF 绕斜边EF 的中点0(点O 也是 BD 中点)按顺时针方向旋转. (1) 如图13- 2,当EF 与AB 相交于点M GF 与 BD 相交于点N 时,通过观察 或 测量BM FN 的长度,猜想BM FN 满足的数量关系,并证明你的猜想; (2) 若三角尺GEF 旋转到如图13-3所示的位置时x 线段.FE 的延长线与AB 的延长线相交于点 M 线段BD 的延长线与F 时,(1)中的猜想还成立吗?若成立, F O (1)若 s i n / A G ) B( E ) 5 勺延长线相交于点N,此 弭■若不成 辺CD 于E ,连结ADg BD 3 OC OD 且0吐5 E (2)若图/3ADO / EDO= 4: 1,求13形OAC(阴影部分)的面积(结果保留 5、如图,已知:C 是以AB 为直径的半圆 O 上一点,CHLAB 于点H,直线 AC 与过B 点的切线相交于点 D, E 为CH 中点,连接 A ¥ 延长交BD 于点F ,直线 F CF 中考专题训练 1、如图,在梯形 ABCD 中,AB// CD , / BCD=90 ,且 AB=1, BC=2 tan / ADC=2. (1) 求证:DC=BC; ⑵E 是梯形内一点, F 是梯形外一点,且/ EDC 2 FBC DE=BF 试判断△ ECF 的形状,并证明你的结论; (3)在(2)的条件下,当BE: CE=1: 2,Z BEC=135 时,求 sin / BFE 的值. 2、已知:如图,在 □ ABCD 中,E 、F 分别为边 AB CD 的中点,BD 是对角线,AG// DB 交CB 的 (1) 求证:△ ADE^A CBF ; D ( F ) 4、如图, =r D -,求CD 的长 C D M B 勺直径AB 垂 请证 立,请说明理由. A G

中考数学几何题集锦

地区:浙江省金华市年份:2011 分值:12.0 难度:难 如图,在平面直角坐标系中,点A(10,0),以OA为直径在第一象限内作半圆C,点B是该半圆周上的一动点,连结OB、AB,并延长AB至点D,使DB=AB,过点D作x轴垂线,分别交x轴、直线OB于点E、F,点E为垂足,连结CF.(1)当∠AOB=30°时,求弧AB的长; (2)当DE=8时,求线段EF的长; (3)在点B运动过程中,是否存在以点E、C、F为顶点的三角形与△AOB相似,若存在,请求出此时点E 的坐标;若不存在,请说明理由. 地区:浙江省湖州市年份:2011 分值:14.0 难度:难 如图1.已知正方形OABC的边长为2,顶点A、C分别在x、y轴的正半轴上,M 是BC的中点.P(0,m)是线段OC上一动点(C点除外),直线PM交AB的延长线于点D. (1)求点D的坐标(用含m的代数式表示); (2)当△APD是等腰三角形时,求m的值; (3)设过P、M、B三点的抛物线与x轴正半轴交于点E,过点O作直线ME的垂线,垂足为H(如图2).当点P从点O向点C运动时,点H也随之运动.请直接写出点H所经过的路径长.(不必写解答过程)

地区:山东省济宁市年份:2011 分值:10.0 难度:难 如图,第一象限内半径为2的⊙C与y轴相切于点A,作直径AD,过点D作⊙C 的切线l交x轴于点B,P为直线l上一动点,已知直线PA的解析式为:y=kx +3. (1)设点P的纵坐标为p,写出p随K变化的函数关系式. (2)设⊙C与PA交于点M,与AB交于点N,则不论动点P处于直线l上(除点B以外)的什么位置时,都有△AMN∽△ABP.请你对于点P处于图中位置时的两三角形相似给予证明; (3)是否存在使△AMN的面积等于的k值?若存在,请求出符合的k值;若不存在,请说明理由. 地区:湖南省邵阳市年份:2011 分值:10.0 难度:难 如图(十一)所示,在平面直角坐标系Oxy中,已知点A(,0),点C(0,3) 点B是x轴上一点(位于点A右侧),以AB为直径的圆恰好经过点C. (1)求角ACB的度数; (2)已知抛物线y=ax2+bx+3经过A,B两点,求抛物线的解析式; (3)线段BC上是否存在点D,使△BOD为等腰三角形?若存在,则求出所有符合条件的点D的坐标;若不存在,请说明理由.

最全初中数学几何动点问题专题分类归纳汇总训练

最全初中数学几何动点问题专题分类归纳汇总 近几年有关“线段最值”的中考试题层出不穷,形式多样,往往综合了几何变换、函数等方面的知识,具有一定的难度,具有很强的探索性,通过研究发现,这些问题尽管形式多样、背景复杂、变化不断,但都可以通过几何变换转化为常见的基本问题. 最值题目类型多:作图、计算;有求差最大,求和最小;求周长最小、求时间最短;求最值、已知最值求待定系数等;对称载体多:几乎涉及到初中全部的轴对称图形(角、线段、等腰三角形、等腰梯形、菱形、正方形、抛物线、圆、坐标轴). 我们知道“对称、平移、旋转” 是三种保形变换。通过这三种几何变换可以实现图形在保持形状、大小不变的前提下而使其位置发生变化,具有更紧凑的位置关系或组合成新的有利论证的基本图形.通过几何变换移动线段的位置是解决最值问题的有效手段,题目是千变万化的,但是运用几何变换把最值问题转化为基本问题却是不变的。 数学问题是千变万化的,几何变换的应用也不是单一的,有些问题需要多种变换的组合才能解决,看看以下策略对解决问题能否奏效。 (1)去伪存真。刨去不变的线段,看清楚究竟是几段和的最小值问题,必须仔细研究题目的背景,搞清楚哪些是动点、哪些是定点、哪些是定长。 (2)科学选择。捕捉题目的信号,探索变换的基础,选择变换的手段.平移把不“连”的线段“接”起来,旋转把“碰头”的线段“展”开来重“接”,对称把在同侧的线段翻折过去重组,因此“不连——平移、碰头——旋转、同侧——对称”是一般的思路;对称变换的基础是轴对称图形,平移变换的基础是平行线,旋转变换的基础是等线段,所以选择哪种几何变换还要看题目中具备何种变换的基础信息。 (3)怎么变换?对称变换一般以动点所在直线为对称轴,构建定点(直线)的对称点(直线),如有多个动点就必须作多次变换;平移一般是移动没有公共端点的两条线段中的某一条,与另一条对“接”;旋转变换一般以定点为旋转中心旋转60°或90°。 (4)怎么求值?几何变换成了“两折线”或“三折线”后,根据“两点之间线段最

中考中的几何证明专题

中考中几何证明专题 【目标,决定命运】 有什么样的目标,就有什么样的人生。有人做了一个实验,把一只跳骚放在广口瓶中,用透明的盖子盖上。跳骚在瓶子里不停的跳动,并撞到了盖子。经过数次的撞盖子后,跳骚不再跳到足以撞到盖子的高度了。实验职员拿掉盖子,固然跳骚继续在跳,但不会跳出广口瓶以外。由于跳骚已经调节了自己跳的高度,而且适应这种情况,不再改变。人也是一样:有什么样的目标就有什么样的人生。尽管很多人都明白自己该做些什么,但是目标的局限性束缚了他的才能。还有就是安于现状,缺少了奋斗和进取的精神。 一、知识点回顾 1、你能证明它吗? (1)三角形全等的性质及判定 性质:全等三角形的对应边相等,对应角也相等 判定:SSS、SAS、ASA、AAS、 (2)等腰三角形的判定、性质及推论 性质:等腰三角形的两个底角相等(等边对等角) 判定:有两个角相等的三角形是等腰三角形(等角对等边) 推论:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(即“三线合一”)(3)等边三角形的性质及判定定理 性质定理:等边三角形的三个角都相等,并且每个角都等于60度;等边三角形的三条边都满足“三线合一”的性质;等边三角形是轴对称图形,有3条对称轴。 判定定理:有一个角是60度的等腰三角形是等边三角形。或者三个角都相等的三角形是等边三角形。 (4)含30度的直角三角形的边的性质 定理:在直角三角形中,如果一个锐角等于30度,那么它所对的直角边等于斜边的一半。 2、直角三角形 (1)勾股定理及其逆定理 定理:直角三角形的两条直角边的平方和等于斜边的平方。 逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。(2)命题包括已知和结论两部分;逆命题是将倒是的已知和结论交换;正确的逆命题就是逆定理。 (3)直角三角形全等的判定定理 定理:斜边和一条直角边对应相等的两个直角三角形全等(HL) 3、线段的垂直平分线 (1)线段垂直平分线的性质及判定 性质:线段垂直平分线上的点到这条线段两个端点的距离相等。 判定:到一条线段两个端点距离相等的点在这条线段的垂直平分线上。 (2)三角形三边的垂直平分线的性质

2019年中考数学最值问题专题卷(含答案)

2019年中考数学最值问题专题卷(含答案) 一、单选题 1.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A'B'C,M是BC的中点,P是A'B' 的中点,连接PM.若BC=2,∠BAC=30°,则线段PM的最大值是() A. 4 B. 3 C. 2 D. 1 2.如图,点A(a,3),B(b,1)都在双曲线y= 上,点C,D,分别是x轴,y轴上的动点,则四边形ABCD周长的最小值为() A. B. C. D. 3.如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE最小,则这个最小值为() A. B. 2 C. 2 D. 二、填空题 4.如图,四边形ABCD中,∠A=90°,AB=3,AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为________ . 5.如图所示,正方形ABCD的边长为6,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为________. 6.如图,正方形ABCD的边长为1,中心为点O,有一边长大小不定的正六边形EFGHIJ绕点O可任意旋转,在旋转过程中,这个正六边形始终在正方形ABCD内(包括正方形的边),当这个正六边形的边长最大时,AE的最小值为________.

7.如图,AB是⊙O的弦,AB=6,点C是⊙O上的一个动点,且∠ACB=45°.若点M,N分别是AB,BC的中点,则MN长的最大值是________ 三、综合题 8.如图,将边长为6的正三角形纸片ABC按如下顺序进行两次折叠,展平后,得折痕AD,BE(如图①),点O为其交点. (1)探求AO到OD的数量关系,并说明理由; (2)如图②,若P,N分别为BE,BC上的动点. (Ⅰ)当PN+PD的长度取得最小值时,求BP的长度; (Ⅱ)如图③,若点Q在线段BO上,BQ=1,则QN+NP+PD的最小值= .

中考数学之平面几何总结经典习题

平面几何知识要点(一) 【线段、角、直线】 1.过两点有且只有一条直线。 2.两点之间线段最短。 3.过一点有且只有一条直线和已知直线垂直。 4.直线外一点与直线上各点连接的所有线段中,垂直线段最短。 垂直平分线,简称“中垂线”。 定义:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的 垂直平分线(中垂线)。 线段的垂直平分线可看作和线段两端点距离相等的所有点的

集合。 中垂线性质:垂直平分线垂直且平分其所在线段。 垂直平分线定理:垂直平分线上任意一点,到线段两端点的距离相等。 逆定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分 线上。 .三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶 点的距离相等。 角 1.同角或等角的余角相等。

2.同角或等角的补角相等。 3.对顶角相等。 角的平分线性质 角的平分线是到角的两边距离相等的所有点的集合 定理1:角的平分线上的点到这个角的两边的距离相等。 定理2:到一个角的两边距离相等的点,在这个角的平分线上。 三角形各内角平分线的交点,该点叫内心,它到三角形三边距离相等。 【平行线】 平行线性质1:两直线平行,同位角相等。 平行线性质2:两直线平行,内错角相等。

平行线性质3:两直线平行,同旁内角互补。 平行线判定1:同位角相等,两直线平行。 平行线判定2:内错角相等,两直线平行。 平行线判定3:同旁内角互补,两直线平行。 平行线判定4:如果两条直线都和第三条直线平行,这两条直线也互相平行。 平行公理:经过直线外一点,有且只有一条直线与这条直线平行。 平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例。 推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段 成比例。

中考数学专题复习几何最值问题

【典例1】如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC 边上的动点,将△EBF沿EF所在直线折叠得到△EB′F,连结B′D,则B′D的最小值是(). B.6 C. D.4 A. 【解析】∵AE=BE,BE=B′E,由圆的定义可知,A、B、B′在以点E为圆心, AB长为直径的圆上,如图所示. B′D的长最小值= DE =. 22故选A. 【启示】此题属于动点(B′)到一定点(E)的距离为定值(“定点定长”),联想到以E为圆心,EB′为半径的定圆,当点D到圆上的最小距离为点D到圆心的距离-圆的半径.当然此题也可借助三角形三边关系解决,如B D DE B E '' ≤-,当且仅当点E、B′、D三点共线时,等号成立. 【典例2】如图,E、F是正方形ABCD的边AD上两个动点,满足AE=DF,连接CF交BD于点G,连结BE交AG于点H,若正方形的边长是2,则线段DH长度的最小值是 . 【思路探究】根据正方形的轴对称性易得∠AHB=90°,故点H在以AB为直径的圆上.取AB中点O,当D、H、O三点共线时,DH的值最小,此时DH=OD-OH,问

题得解. 【解析】由△ABE≌△DCF,得∠ABE=∠DCF,根据正方形的轴对称性,可得∠DCF=∠DAG,∠ABE=∠DAG,所以∠AHB=90°,故点H在以AB为直径的圆弧上.取AB中点O,OD交⊙O于点H,此时DH最小,∵OH=1 AB=,OD=,∴DH的最 1 2 小值为OD-OH 1. 【启示】此题属于动点是斜边为定值的直角三角形的直角顶点,联想到直径所对圆周角为直角(定弦定角),故点H在以AB为直径的圆上,点D在圆外,DH的最小值为DO-OH.当然此题也可利用DH OD OH ≤-的基本模型解决. 【针对训练】 1. 如图,在△ABC中,∠ACB=90°,AC=2,BC=1,点A,C分别在x轴,y轴上,当点A在x轴正半轴上运动时,点C随之在y轴上运动,在运动过程中,点B到原点O的最大距离为(). B.1.3 A 2.如图,在矩形ABCD中,AB=4,BC=6,E是矩形内部的一个动点,且AE⊥BE,则线段CE的最小值为(). B. C. D.4 A.3 3. 如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P、Q分别是边BC和半圆上的运点,连接PQ,则PQ长的最大值与最小值的和是().

最新中考数学超好几何证明压轴题汇编

1、如图,在梯形ABCD 中,AB ∥CD ,∠BCD=90°,且AB=1,BC=2,tan ∠ADC=2. (1) 求证:DC=BC; (2) E 是梯形内一点,F 是梯形外一点,且∠E DC=∠F BC ,DE=BF ,试判断△E CF 的形 状,并证明你的结论; (3) 在(2)的条件下,当BE :CE=1:2,∠BEC=135°时,求sin ∠BFE 的值. 2、已知:如图,在□ABCD 中,E 、F 分别为边AB 、CD 的中点,BD 是对角线,AG ∥DB 交CB 的延长线于G . (1)求证:△ADE ≌△CBF ; (2)若四边形 BEDF 是菱形,则四边形AGBD 是什么特殊四边形?并证明你的结论. 3、如图13-1,一等腰直角三角尺GEF 的两条直角边与正方形ABCD 的两条边分别重合在一起.现正方形ABCD 保持不动,将三角尺GEF 绕斜边EF 的中点O (点O 也是BD 中点)按顺时针方向旋转. (1)如图13-2,当EF 与AB 相交于点M ,GF 与BD 相交于点N 时,通过观察或测 量BM ,FN 的长度,猜想BM ,FN 满足的数量关系,并证明你的猜想; (2)若三角尺GEF 旋转到如图13-3所示的位置时,线段FE 的延长线与AB 的延长 线相交于点M ,线段BD 的延长线与GF 的延长线相交于点N ,此时,(1)中的猜想还成立吗?若成立,请证明;若不成立,请说明理由. E B F C D A 图13-2 图13-3 图13-1 A ( E )

4、如图,已知⊙O的直径AB垂直于弦CD于E,连结AD、BD、OC、OD,且OD=5。 (1)若sin∠BAD=3 5 ,求CD的长; (2)若∠ADO:∠EDO=4:1,求扇形OAC(阴影部分)的面积(结果保留π)。 5、如图,已知:C是以AB为直径的半圆O上一点,CH⊥AB于点H,直线AC与过B点的切线相交于点D,E为CH中点,连接AE并延长交BD于点F,直线CF交直线AB 于点G. (1)求证:点F是BD中点; (2)求证:CG是⊙O的切线; (3)若FB=FE=2,求⊙O的半径. 6、如图,已知O为原点,点A的坐标为(4,3), ⊙A的半径为2.过A作直线l平行于x轴,点P在直线l上运动. (1)当点P在⊙O上时,请你直接写出它的坐标; (2)设点P的横坐标为12,试判断直线OP与⊙A的位置关系,并说明理由.

初中数学平面几何建系专题讲课讲稿

初中数学平面几何建系专题 一.创设问题情境,引入新课 1.一位居民打电话给供电部门:“卫星路第8根电线杆的路灯坏了,”维修人员很快修好了路灯。 2.地质部门在某地埋下一个标志桩,上面写着“北纬44.2°,东经125.7°”。 3.某人买了一张8排6号的电影票,很快找到了自己的座位。 分析以上情景,他们分别利用那些数据找到位置的。 你能举出生活中利用数据表示位置的例子吗? 二、新课讲授 1、由学生回答以下问题: (1)引入:影院对观众席所有的座位都按“几排几号”编号,以便确定每 个座位在影院中的位置,观众根据入场券上的“排数”和“号数”准确入座。 (2)根据下面这个教室的平面图你能确定某同学的坐位吗?对于下面这个根据教师平面 图写的通知,你明白它的意思吗?“今天以下座位的同学放学后参加数学问题讨论:(1,5),(2,4),(4,2),(3,3),(5,6)。” 学生通过合作交流后得到共识:规定了两个数所表示的含义后就可以表示座位的位置. 思考: (1)怎样确定教室里坐位的位置 ?

(2)排数和列数先后顺序对位置有影响吗?(2,4)和(4,2)在同一位置。 (3)假设我们约定“列数在前,排数在后”,你在图书6 1-1上标出被邀请参加讨论的同学的座位。 让学生讨论、交流后得到以下共识: (1)可用排数和列数两个不同的数来确定位置。 (2)排数和列数先后顺序对位置有影响。(2,4)和(4,2)表示不同的位置,若约定“列数在前排数在后”则(2,4)表示第2列第4排,而(4,2)则表示第4列第2排。因而这一对数是有顺序的。(3)让学生到黑板贴出的表格上指出讨论同学的位置。 2、有序数对:用含有两个数的词表示一个确定的位置,其中各个数表示 不同的含义,我们把这种有顺序的两个数a与b组成的数 对,叫做有序数对,记作(a,b) 利用有序数对,可以很准确地表示出一个位置。 3、常见的确定平面上的点位置常用的方法 (1)以某一点为原点(0,0)将平面分成若干个小正方形的方格,利用点所在的行和列的位置来确定点的位置。 (2)以某一点为观察点,用方位角、目标到这个点的距离这两个数来确定目标所在的位置。(以后学习) 巩固练习:1、教材65页练习 2.如图,马所处的位置为(2,3). (1)你能表示出象的位置吗? (2)写出马的下一步可以到达的位置。

2020中考数学专题汇编 几何最值 含解析

几何最值 一、选择题 1.(2020·泰安)如图,点A ,B 的坐标分别为A (2,0),B (0,2),点C 为坐标平面内一点,BC ﹦1,点M 为线段AC 的中点,连接OM ,则OM 的最大值为( ) A . 2 +1 B . 2 +1 2 C .2 2 +1 D .2 2 —1 2 {答案} B {解析}本题考查了圆的概念、勾股定理、三角形中位线的性质以及动点运动最值问题,因为点C 为坐标平面内一点,BC ﹦1,所以点C 在以点B 为圆心、1长为半径的圆上,在x 轴上取OA ′=OA=2,当A ′、B 、C 三点共线时,A ′C 最大,则A ′C=2 2 +1,所以OM 的最大值为 2 +1 2 ,因此本题选B . 2.(2020·无锡)如图,等边△ABC 的边长为3,点D 在边AC 上,AD =12,线段PQ 在边BA 上运动,PQ =1 2, 有下列结论: ①CP 与QD 可能相等; ②△AQD 与△BCP 可能相似; ③四边形PCDQ 面积的最大值为31316; ④四边形PCDQ 周长的最小值为3+37 2. 其中,正确结论的序号为( ) A .①④ B .②④ C .①③ D .②③ {答案} D {解析}设AQ =x ,则BP =5 2 —x ①如图1,当点P 与B 重合时,此时QD 为最大,过点Q 作QE ⊥AC ,∵AQ =52,∴AE =54,QE =53 4,∴DE = 34,∴此时QD =212,即0≤QD ≤212;而33 2≤CP ≤3,两个范围没有交集,即不可能相等;①错误 ②若△AQD ∽△BCP ,则AD BP =AQ BC ,代入得2x 2—5x +3=0,解得x 1=1,x 2=3 2,∴都存在,∴②正确; ③如图2,过点D 作DE ⊥AB ,过点P 作PF ⊥BC ,S 四边形PCDQ =S △ABC —S △AQD —S △BPC = 34×32-12?x ?34-1 2 ×3 × D Q P C B A

中考数学几何证明题专题复习汇总.doc

eei A(D) 最新中考数学几何证明题专题复习汇总 1、 如图1, E 是边长为1的正方形初仞的对角线劭上一点,且BE= BC, P 为CE 上任意一点,PQLBC 于点0, PRIBE 亍点、R,则PQ+PR 的值是【 】A.二些 B. C. D. 2、 如图2,在梯形初切中,AD//BQ 对角线AC1BD,且J^12,锯9,则此梯形的中位线长是 A. 10 B. — C. — D. 12 2 2 3、小明爸爸的风筝厂准备购进甲、乙两种规格相同但颜色不同的布料生产一批形状如图3所示的风筝,点上; G, 〃 分别是四边形加^.0各边的中点.其中阴影部分用甲布料,其余部分用乙布料(裁剪两种布料时,均不 计余料).若生产这批风筝需要甲布料30匹,那么需要乙布料 A. 15 匹 B. 20 匹 C. 30 匹 D. 60 匹 4、 如图4,若将四根木条钉成的矩形木框变形为平行四边形月测的形状,并使其面积为矩形面积的一半,则这 个平行四边形的一个最小内角的值等于 ___________ . 5、 一个正方形和两个等边三角形的位置如图5所示,若Z3二50。,则Z1+Z2二( ) A. 90° B. 100° C. 130° D. 180° 6、 把三张大小相同的正方形卡片A, B, C 叠放在一个底面为正方形的盒底上,底面未被卡片覆盖的部分用阴影 表示.若按图6-1摆放时,阴影部分的面枳为若按图6-2摆放时,阴影部分的面积为乂,则J —S2(填 “>”、“V” 或“二”). 7、 如图7-1,两个等边△ABD, ACBD 的边长均为1,将AABD 沿AC 方向向右平移到AA' B' D'的位置,得到图 7-2,则阴影部分的周长为 __________ ? 8、 用4个全等的正八边形进行拼接,使相邻的两个正八边形有一条公共边,围成一圈后中间形成一个正方形, 如图8-1,用“个全等的正六边形按这种方式拼接,如图8-2,若阖成一圈后中间也形成一个正多边形,则的 值为 . 9、 如图10,两个正六边形的边长均为1,其中一个正六边形的一边恰在另一个正六边形的对角线上,则这个图 形(阴影部分)外轮廓线的周长是( ) A. 7 B. 8 C. 9 D. 10、 平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图10,则Z3+ Zl-Z2= ____________ . 图7-1 图7-2 图8-2 A D A n C 图3 图6-1 图6-2 A B B B B 图8-1 图10 图11 图12 图13 图14

2017-中考数学-压轴专题-最值问题系列(一)

专题最值问题—— 1(几何模型) 一、归于几何模型,这类模型又分为以下情况: 1. 归于“两点之间的连线中,线段最短”。 凡属于求“变动的两线段之和的最小值”时,大都应用这一模型。 2.归于“三角形两边之差小于第三边”。 凡属于求“变动的两线段之差的最大值”时,大都应用这一模型。 3.利用轴对称知识(结合平移)。 4. 应用“点到直线的距离,垂线段最短。”性质。 5. 定圆中的所有弦中,直径最长;以及直线与圆相切的临界位置等等。 二、基础知识模型 (一)“将军饮马”问题 1.如图1,将军骑马从A出发,先到河边a喝水,再回驻地B,问将军怎样走路程最短? 2.如图,一位将军骑马从驻地M出发,先牵马去草地OA吃草,再牵马去河边OB喝水,最后回到驻地M,问:这位将军怎样走路程最短? 图1 图2 3. 如图,A为马厩,B为帐篷,将军某一天要从马厩牵马,先到草地一处牧马,再到河边饮马,然后回到帐篷,请你帮助确定这一天的最短路线。

(二)“造桥选址”问题(选自人教版七年级下册) 1. 如图1,A和B两地在一条河的两岸,现要在河上造一座桥MN,桥造在何处才能使从A到B的路径AMNB最短?(假设河两岸1l、l2平行,桥MN 与河岸垂直) 练习: 1. 如图,在边长为2㎝的正方形ABCD中,点Q为BC边的中点,点P为对角线AC上一动点, 连接PB、PQ,则△PBQ周长的最小值为____________㎝(结果不取近似值). 1题图2题图 2.已知点A是半圆上的一个三等分点,点B是弧AN的中点,点P是半径ON上的动点, 若⊙O的半径长为1,则AP+BP的最小值为__________. 3.如图3,已知点A的坐标为(-4,8),点B的坐标为(2,2),请在x轴上找到一点P,使PA+PB最小,并求出此时P点的坐标和PA+PB的最小值。

中考数学亮点好题汇编 专题六 平面几何基础专题

平面几何基础专题 一、选择题: 1. (xx?浙江省衢州市,2,2 分)如图,直线a,b 被直线c 所截,那么∠1的同位角是() A.∠2B.∠3C.∠4 D.∠5 【分析】根据同位角就是:两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角解答即可. 【解答】解:由同位角的定义可知, ∠1的同位角是∠4, 故选:C. 【点评】此题考查同位角问题,解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解. 2.(xx?广东省广州市,5,3 分)如图,直线AD,BE 被直线BF 和AC 所截,则 ∠1的同位角和∠5的内错角分别是() A.∠4,∠2B.∠2,∠6C.∠5,∠4D.∠2,∠4 【分析】根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角进行分析即可.根据内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之

间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角进行分析即可. 【解答】解:∠1的同位角是∠2,∠5的内错角是∠6,故 选:B. 【点评】此题主要考查了三线八角,关键是掌握同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形. 3.(xx?广东省深圳市,8,3 分)如图,直线a,b 被c,d 所截,且a∥b,则下列结论中正确的是() A.∠1=∠2B.∠3=∠4 C.∠2+∠4=180°D.∠1+∠4=180° 【分析】依据两直线平行,同位角相等,即可得到正确结论. 【解答】解:∵直线a,b 被c,d 所截,且a∥b, ∴∠3=∠4, 故选:B. 【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等. 4.(xx?广东省,8,3 分)如图,AB∥CD,则∠DEC=100°,∠C=40°,则∠B的大小是() A.30° B.40° C.50° D.60° 【分析】依据三角形内角和定理,可得∠D=40°,再根据平行线的性质,即可得到 ∠B=∠D=40°. 【解答】解: ∵∠DEC=100°,∠C=40°, ∴∠D=40°, 又∵A B∥CD, ∴∠B=∠D=40°, 故选:B. 【点评】本题考查了平行线性质的应用,运用两直线平行,内错角相等是解题的关键.

中考数学压轴题突破:几何最值问题大全

中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡 不归、阿波罗尼斯圆等) 一、基本图形 所有问题的老祖宗只有两个:①[定点到定点]:两点之间,线段最短;②[定点到定线]:点线之间,垂线段最短。 由此派生:③[定点到定点]:三角形两边之和大于第三边;④[定线到定线]:平行线之间,垂线段最短;⑤[定点到定圆]:点圆之间,点心线截距最短(长);⑥[定线到定圆]:线圆之间,心垂线截距最短;⑦[定圆到定圆]:圆圆之间,连心线截距最短(长)。 余不赘述,下面仅举一例证明:[定点到定圆]:点圆之间,点心线截距最短(长)。 已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。

证明:由“两点之间,线段最短”得AP≤AO+PO,AO≤AP+PO,得d-r≤AP≤d+r,AP最小时点P在B处,最大时点P在C处。即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。 上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。 二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。 (一)直接包含基本图形 例1.在⊙O中,圆的半径为6,∠B=30°,AC是⊙O的切线,则CD的最小值是。

简析:由∠B=30°知弧AD一定,所以D是定点,C是直线AC上的动点,即为求定点D到定线AC的最短路径,求得当CD⊥AC时最短为3。 (二)动点路径待确定 例2.,如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是。 简析:A是定点,B'是动点,但题中未明确告知B'点的运动路径,所以需先确定B'点运动路径是什么图形,一般有直线与圆两类。此题中B'的路径是以C为圆心,BC为半径的圆弧,从而转化为定点到定圆的最短路径为AC-B'C=1。 例3.在△ABC中,AB=AC=5,cos∠ABC=3/5,将△ABC绕点C顺时针旋转,得到△A'B'C,点E是BC上的中点,点F为线段AB上

中考几何证明专题

一、中考几何证明题的解法 1、如图,在矩形ABCD中,AD=4,M是AD的中点,点E是线段AB上一动点,连接EM并延长交线段CD的延长线于点F.(1)如图1,求证:AE=DF; (2)如图2,若AB=2,过点M作 MG⊥EF交线段BC于点G,求证:△GEF是等腰直角三角形 (3)如图3,若AB= ,过点M作 MG⊥EF交线段BC的延长线于点G. ①直接写出线段AE长度的取值范围;②判断△GEF的形状,并说明理由. 2、(1)如图(1),正方形AEGH的顶点E、H在正方形ABCD的边上,直接写出HD:GC:EB的结果(不必写计算过程); (2)将图(1)中的正方形AEGH绕点A旋转一定角度,如图(2),求HD:GC:EB;(3)把图(2)中的正方形都换成矩形,如图(3),且已知DA:AB=HA:AE=m:n,此时HD:GC:EB的值与(2)小题的结果相比有变化吗?如果有变化,直接写出变化后的结果).

3、已知梯形ABCD ,AD ∥BC , AB ⊥BC ,AD=1,AB=2,BC=3, 问题1:如图1,P 为AB 边上的一点,以PD ,PC 为边作平行四边形PCQD ,请问对角线PQ ,DC 的长能否相等,为什么? 问题2:如图2,若P 为AB 边上一点,以PD ,PC 为边作平行四边形PCQD ,请问对角线PQ 的长是否存在最小值?如果存在,请求出最小值,如果不存在,请说明理由. 问题3:若P 为AB 边上任意一点,延长PD 到E ,使DE=PD ,再以PE ,PC 为边作平行四边形PCQE ,请探究对角线PQ 的长是否也存在最小值?如果存在,请求出最小值,如果不存在,请说明理由. 4、如图,在Rt △ABC 中,∠ACB =90°,∠ABC =30°.点D 是直线BC 上的一个动点,连接AD ,并以AD 为边在AD 的右侧作等边△ADE . (1)如图①,当点E 恰好在线段BC 上时,请判断线段DE 和BE 的数量关系,并结合图①证明你的结论; (2)当点E 不在直线BC 上时,连接BE ,其它条件不变,(1)中结论是否成立?若成立,请结合图②给予证明;若不成立,请直接写出新的结论; (3)若AC =3,点D 在直线BC 上移动的过程中,是否存在以A 、C 、D 、E 为顶点的四边形是梯形?如果存在,直接写出线段CD 的长度;如果不存在,请说明理由. B D A C E 图① B D A C E 图② B A C 备用图

相关文档
最新文档