尿素生产危险性分析及安全对策

尿素生产危险性分析及安全对策
尿素生产危险性分析及安全对策

毕业设计(论文)开题报告

学生姓名:学号:

所在学院:城市建设与安全工程学院

专业:安全工程

设计(论文)题目:尿素生产危险性

分析及安全对策

指导教师:

2012 年 1 月 7日

开题报告填写要求

1.开题报告(含“文献综述”)作为毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。此报告应在指导教师指导下,由学生在毕业设计(论文)工作前期内完成,经指导教师签署意见及所在专业审查后生效;

2.开题报告内容必须用黑墨水笔工整书写或按教务处统一设计的电子文档标准格式(可从教务处网页上下载)打印,禁止打印在其它纸上后剪贴,完成后应及时交给指导教师签署意见;

3.“文献综述”应按论文的格式成文,并直接书写(或打印)在本开题报告第一栏目内,学生写文献综述的参考文献应不少于15篇(不包括辞典、手册);

4.有关年月日等日期的填写,应当按照国标GB/T 7408—94《数据元和交换格式、信息交换、日期和时间表示法》规定的要求,一律用阿拉伯数字书写。如“2004年4月26日”或“2004-04-26”。

毕业设计(论文)开题报告

毕业设计(论文)开题报告

毕业设计(论文)开题报告

尿素装置危险因素分析及其防范措施

编号:SM-ZD-89774 尿素装置危险因素分析及 其防范措施 Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly. 编制:____________________ 审核:____________________ 批准:____________________ 本文档下载后可任意修改

尿素装置危险因素分析及其防范措 施 简介:该方案资料适用于公司或组织通过合理化地制定计划,达成上下级或不同的人员之间形成统一的行动方针,明确执行目标,工作内容,执行方式,执行进度,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 尿素装置的生产特点是:高温、高压、强腐蚀。原料液氨为易燃、易爆、有毒物质。生产设备采用单系列、大机组,一旦发生故障,易造成事故。装置具有一定的危险性。 (一)装置事故统计分析 我国20世纪70年代引进的大型尿素装置,在投产初期曾频繁发生事故。从统计数字看,自1977年至1979的三年期间,投产的11套尿素装置曾发生重大停车事故674次。其中,外部原因造成事故停车373次,占总事故次数的55.3%;设备事故停车269次,占总事故次数的39.9%。详见表7—22。 外因重大停车事故373次,按事故原因分类,详见表7—23。

设备重大停车事故269次,按设备类别分类统计,见表7—24。其中,二氧化碳压缩机发生停车事故117次,位居第一,占设备重大停车事故总数的43.49%。 设备事故中,主要设备发生重大停车事故160次。按设备类别分,见表7—25。 从上述统计表可以看出,尿素装置发生的重大停车事故674次中,位于首位的是外因引起的停车事故,停车次数为373次,占总数的55.3%。外因事故中,合成氨装置停车造成的有172次,占外因事故总次数的46.1%。由此可见,合成氨装置的生产运行情况对尿素装置的正常生产影响最大。位于第二位的是设备重大停车事故,其次数为269次,占总次数的39.9%。设备事故停车中,以二氧化碳压缩机

尿素重点设备、危险因素及防范措施(最新版)

( 安全技术 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 尿素重点设备、危险因素及防范 措施(最新版) Technical safety means that the pursuit of technology should also include ensuring that people make mistakes

尿素重点设备、危险因素及防范措施(最新 版) 一、重点部位及设备 (一)重点部位 1.高压合成与汽提系统 高压合成与汽提系统主要由合成塔、汽提塔、高压冷凝器、高压洗涤器四台高压设备组成。这四台高压设备集中安装在一个高框架内,是装置的主要设备。合成、汽提系统操作压力14MPa(表),操作温度在160—185℃范围内,工艺介质为氨、二氧化碳、尿素和甲铵液工艺介质具有强腐蚀性。 高压设备密封发生泄漏,设备发生腐蚀而泄漏,都可造成设备事故、装置停运。高压设备由承受高压的外壳及耐腐蚀的内衬组成,一旦内衬腐蚀穿孔,外壳会很快腐蚀损坏。系统在运行中如发生超

温、超压也会加快腐蚀速度,造成重大设备事故。并有可能引发中毒、爆炸、火灾事故。 汽提塔、高压冷凝器、高压洗涤器设备内有换热管束,如管子、管板发生腐蚀泄漏,还会污染蒸汽、冷凝液或调温水;高压洗涤器如操作不当,还可能发生爆炸;合成塔由于操作温度较高,易发生腐蚀。四台高压设备是装置中安全监控的重点设备。 2.高压泵区 高压泵区位于框架的一楼,主要由两台高压氨泵和两台高压甲铵泵组成。生产中,—开一备。 高压氨泵压缩介质为液氨,出口压力为16MPa(表);高压甲铵泵压缩介质为甲铵溶液,出口压力为14.5MPa(表)。一般采用柱塞泵,用背压式汽轮机或电动机驱动。 由于压力高,动密封易发生泄漏。液氨如发生泄漏还可造成着火、爆炸、中毒事故。甲铵液大量泄漏也可造成人员伤害。 高压氨(甲铵)泵运行中如发生重大设备事故,也可造成全装置停车。

聚合工艺危险性分析

编号:SM-ZD-28969 聚合工艺危险性分析Organize enterprise safety management planning, guidance, inspection and decision-making, ensure the safety status, and unify the overall plan objectives 编制:____________________ 审核:____________________ 时间:____________________ 本文档下载后可任意修改

聚合工艺危险性分析 简介:该安全管理资料适用于安全管理工作中组织实施企业安全管理规划、指导、检查 和决策等事项,保证生产中的人、物、环境因素处于最佳安全状态,从而使整体计划目 标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 1固有危险性 固有危险性是指聚合反应中的原料、产品、中间产品等本身具有的危险有害特性。 1.1火灾危险性 参加聚合反应介质的自聚和燃爆危险性: 单烯烃聚合单体包括液态的乙烯、丙烯、氯乙烯、苯乙烯等,都属于甲类火灾危险性易燃液体。二烯聚合所指的单体主要包括丁二烯、双环戊二烯、苯乙烯、丙烯腈、乙烯、丙烯等都是易燃物质,其蒸气能与空气形成爆炸性混合物。有些单体的储存温度低于沸点,所以需要在氮气保护下储存。有些单体是在压力下储存,在向储罐投单体前,应彻底用氮气置换。除乙烯、丙烯外其他单体都有自聚的特性,生成聚合物后容易堵塞输送管道。二烯烃(丁二烯、双环戊二烯)不仅能自聚,而且还能生成过氧化物,这是一种有爆炸危险的不稳定物质。

作业条件危险性分析和预先危险性分析方法简介

作业条件危险性分析和预先危险性分析方法简介 1、预先危险性分析 1.1 方法简介 预先危险性分析法(Preliminary Hazard Analysis,PHA)又称初步危险分析。主要用于对危险物质和装置的主要工艺区域等进行分析。它常被用于评价项目、装置等开发初期阶段的物料、装置、工艺过程以及能量失控时可能出现的危险性类别、条件及可能造成的后果,作宏观的概略分析,其目的是辨识系统中潜在的危险有害因素,确定其危险等级,防止这些危险有害因素失控导致事故的发生。 1.2 预先危险性分析主要作用 1)大体识别与系统有关的主要危险有害因素; 2)分析、判断危险有害因素导致事故发生的原因; 3)评价事故发生对人员及系统产生的影响,事故可能造成的人员伤害和系统破坏、物质损失情况; 4)确定已识别危险有害因素的危险性等级; 5)提出消除或控制危险有害因素的对策措施。 1.3 预先危险性分析步骤 1)对系统的产生目的、操作条件和周围环境进行调研; 2)搜集同类生产过程中发生过的事故,查找能够造成故障、物质损失和人员伤害的危险性; 3)根据经验、技术诊断等方法确定危险源; 4)识别危险形成条件,研究危险因素转变成事故的触发条件; 5)进行危险性分级,确定其危险程度,找出重点控制的危险源; 6)制定危险防范措施。 1.4 预先危险性危险等级 在分析系统危险性时,为了衡量危险性的大小及其对系统的破坏程度,将各类危险性划分为四个等级,见下表。 危险性等级划分表 2、作业条件危险性分析 2.1 简介 作业条件危险性评价法(格雷厄姆——金尼法)是作业人员在具有潜在危险性环境中进行作业时的一

种危险性半定量评价方法。它是由美国人格雷厄姆(K.J.Graham )和金尼(G.F.Kinney )提出的,他们认为影响作业条件危险性的因素有三个: 1)发生事故或危险事件的可能性(L ); 2)人员暴露于危险环境的频繁程度(E ); 3)事故一旦发生可能产生的后果(C )。 用这三个因素分值的乘积 D =L ×E ×C 来评价作业条件的危险性,D 值越大,作业条件的危险性越大。 式中,D 为作业条件的危险性;L 为事故或危险事件发生的可能性;E 为暴露于危险环境的频率;C 为发生事故或危险事件的可能结果。 2.2 取值与计算方法 1)发生事故或危险事件的可能性 事故或危险事件发生的可能性与其实际发生的概率相关。在实际生产条件中,事故或危险事件发生的可能性范围非常广泛,将事故或危险事件发生可能性的分值从实际上不可能的事件为0.1,经过完全意外有极少可能的分值1,确定到完全会被预料到的分值10为止(表2.2-1)。 表2.2-1 事故发生的可能性分值(L ) 2) 暴露于危险环境的频率 作业人员暴露于危险作业条件的次数越多、时间越长,则受到伤害的可能性也就越大。为此,K ·J ·格雷厄姆和G ·F ·金尼规定了连续出现在潜在危险环境的暴露频率分值为10,一年仅出现几次非常稀少的暴露频率分值为1。暴露于潜在危险环境的分值见表 2.2-2。 表2.2-2 暴露于危险环境的频繁程度分值(E ) 3) 发生事故或危险事件的可能结果 造成事故或危险事故的人身伤害或物质损失可在很大范围内变化,以工伤事故而言,可以从轻微伤害到许多人死亡,其范围非常宽广。因此,K ·J ·格雷厄姆和G ·F ·金尼需要救护的轻微伤害的可能结果, 它值规定为1,以此为一个基准点;而将造成许多人死亡的可能结果规定为分值100,作为另一个参考点。在两个参考点1~100之间,插入相应的中间值,列出表2.2-3 所示的可能结果的分值。 表2.2-3 事故造成的后果分值(C )

尿素车间岗位危险因素及安全操作要点

尿素车间岗位危险因素及安全操作要点 一、尿素外操安全操作 1.主要危险因素分析 (1)氨大量泄漏 由于氨系统的法兰或设备(氨泵)泄漏造成的氨大量泄漏。 (2)甲铵液灼伤、氨冻伤 由于氨、甲铵液系统的法兰或设备(氨泵、甲铵泵)泄漏而人员防护不好造成的伤害。 (3)烫伤 由于使用冷凝液、蒸汽或冷凝液、蒸汽设备管道发生泄漏,人员防护不好而造成的人员伤害。 2.安全操作要点 (1)检查泵出口压力,特别是高压泵,如有异常及时处理,检查减速箱缸体、曲轴、电机电流及温升。 (2)检查油箱油位、油质、油温、油压情况,检查各管道振动情况。 (3)检查设备有无泄漏,各泵压力表是否正常,填料密封液是否畅通,冷却水压力是否正常,以及氨水槽、尿液槽、冷凝液槽、冷凝液回收槽液位。3.管理人员检查重点 (1)做好相应预案并演练。 (2)控制好液氨系统温度、压力在指标之内。 (3)控制好现场动火作业,做好火花收集。 (4)做好氨系统各法兰的维护工作,有泄漏点及时消除。 (5)制定好操作规程,做好泵房与巡检、蒸发等岗位配合操作。 (6)控制好液氨、甲铵液系统温度、压力在指标范围内。 (7)做好氨、甲铵液系统各法兰的维护工作,有漏点及时消除。 (8)不使用冷凝液冲洗设备外壁及地面。 (9)使用冷凝液或蒸汽时做好个人防护。

二、尿素总控安全操作 1.主要危险因素分析 (1)高压洗涤器爆炸 由于系统调节失误、压缩机脱氢氢含量过高,高压洗涤器内气体达到爆炸极限而爆炸。 (2)气提塔出液温度低于指标,过度吸收冷凝 由于高洗器设备原因以及系统调节失误,而造成气提塔出液温度过低堵塞。 (3)气提塔、高压洗涤器、高压甲铵冷凝器壳体损坏。 由于气提塔、高压洗涤器、高压甲铵冷凝器壳体爆破板根部阀关闭,高压侧列管泄漏,而造成气提塔、高压洗涤器、高压甲铵冷凝器高压串低压设备损坏。 2.安全操作要点 (1)全面检查各项工艺指标是否在正常范围之内,注意水解系统正常运行。 (2)全面检查控制仪表是否正常,各种报警是否灵活好用,与其它岗位联系信号是否正常。 (3)经常注意液氨压力、原料气二氧化碳的纯度、硫化氢及氧含量是否正常。 (4)随时检查合成塔压力、温度是否在工艺指标范围内,并及时调整优化,以达到较高的二氧化碳转化率。 (5)随时调节吸收系统的各项工艺指标在正常范围之内,严防出气超温。 (6)随时注意中、低压力及调节阀开闭情况,严防中压超压及压力大幅度波动。 (7)随时检查高压蒸汽压力、流量,防止因压力变化引起系统波动及现场阀门开关不当造成蒸汽损失。 (8)注意控制室仪表指示与现场是否相符,各调节阀动作开度与现场是否一致。 (9)经常注意各分析指标是否正常,及时调整优化工艺操作条件。

危险化学品知识及工艺危险性分析.

对本建设项目危险有害因素的辨识,主要依据《企业职工伤亡事故分类》GB6441-1986、《生产过程危险和有害因素分类与代码》GB/T13861-1992、《职业病范围和职业病患者处理办法的规定》(1987年11月5日卫生部、劳动人事部、财政部、中华全国总工会发布)等法规、标准的规定。 3.1 危险有害物质的识别和确认分析结果 3.1.1原料、中间产品、最终产品理化性能指标 本建设项目原料:乙醇、甲酸、乙二醛、硝酸、硫酸、氢氧化钠等。 产品:甲酸乙酯、乙醛酸。副产品:乙二酸、硝酸钠、亚硝酸钠 中间产物:一氧化氮,为有毒气体。 辅助材料:氨,制冷介质,为有毒气体。 本建设项目中主要物质的危险特性见 3.0.0-1、3.0.0-2。

表3.0.0-1 物质的理化特性表 序号名称外观与形状 熔点 (-℃) 沸点(-℃) 饱和蒸气压 (kPa) 相对密度(水=1) 溶解性备注 1 乙醇无色液体,有酒香-114.1 78.3 5.33 0.79 混溶于水,可溶于氯仿、甘油、醚多种有机溶剂 2 甲酸无色透明发烟液体,有强 烈刺激性酸味 8.2 100.8 0.67 1.23 与水混溶,不溶于烃类,可混溶 于乙醇 3 乙二醛淡黄色液体,微有臭味15 50.5 29.3 1.1 4 溶于水、醇、醚 4 硝酸无色透明发烟液体,有酸味-42 86 4.4 1.50 5 硫酸无色透明油状液体,无嗅10.5 330 0.13 1.083 与水混溶 6 甲酸乙酯无色流动液体,有芳香气味-79 54.3 13.33 0.92 微溶于水,溶于苯、乙醇、乙醚等多数有机溶剂 7 乙醛酸淡黄色透明液体,有芳香气 味 98 111 1mmHg 1.42 溶于水,微溶于苯、乙醇、乙醚等 多数有机溶剂 8 氢氧化钠溶液纯品为无色液体无资料无资料无资料无资料与水混溶 9 乙二酸无色透明结晶体189.5 100℃升 华 1.90 易溶于乙醇,溶于水,微溶于乙 醚,不溶于苯和氯仿。 10 硝酸钠 无色透明或白微带黄色的菱 形结晶,味微苦,易潮解。306.8 无资料无资料 2.26水=1 易溶于水、液氨,微溶于乙醇、 甘油。 11 亚硝酸钠 白色或淡黄色细结晶,无臭, 略有咸味,易潮解271 320(分 解) 无资料 2.17水=1 易溶于水,微溶于乙醇、甲醇、 乙醚。 12 氨无色有刺激性气体-77.7 -33.5 506.62(4.7 ℃) 0.6空气=1 易溶于水、乙醇、乙醚。 13 一氧化氮无色气体-163.6-151无资料无资料微溶于水 2

危险性分析方法

第七章危险性分析方法 对于现代化的化工生产装置须实行现代化安全管理,也就是从系统的观念出发,运用科学分析方法识别、评价、控制危险,使系统达到最佳安全。 应用系统工程的原理和方法预先找出影响系统正常运行的各种事件出现的条件,可能导致的后果,并制定消除和控制这些事件的对策,以达到预防事故、实现系统安全的目的。 辨别危险、分析事故及影响后果的过程就是危险性分析。 危险性分析有定性分析和定量分析两种类型: 定性分析 找出系统存在的危险因素,分析危险在什么情况下能发生事故及对系统安全影响的大小,提出针对性的安全措施控制危险。 它不考虑各种危险因素发生的数量多少。(本章主要介绍定性危险分析方法) 定量分析 在定性分析的基础上,进一步研究事故或故障与其影响因素之间的数量关系,以数量大小评定系统的安全可靠性。定量危险性分析也就是对系统进行安全性评价。(在第八章进行讨论) 7.1 安全检查表 7.1.1 概述 安全检查表(SCL,Safety Check List)是进行安全检查和诊断的清单。 在编制安全检查表时,通常是把检查对象作为系统,将系统分割成若干个子系统, 按子系统制定。 安全检查表是最早开发的一种系统危险性分析方法,也是最基础、最简便的识别危险的方法。该法应用最多且广泛。 在我国目前安全检查表不仅用于定性危险性分析,有的还对检查项目给予量化,用于系统的安全评价。 安全检查表的优点: 1.安全检查是进行安全管理的重要手段,安全检查表是由各种专业人员事先经过充分的分析和讨论,集中了大家的智慧和经验而编制出来的,按照安全检查表进行检查就会避 免传统安全检查时的一些弊端,能全面找出生产装置的危险因素和薄弱环节; 2.它简明易懂,易于掌握,实施方便; 3.应用范围广,项目的设计、施工、验收,机械设备的设计、制造,运行装置的日常操作、作业环境、运行状态及组织管理等各个方面都可应用; 4.编制安全检查表的依据之一是有关安全的规程、规范和标准。 安全检查表还可对系统进行安全性评价。 7.1.2 安全检查表编制的步骤和依据 1、编制的步骤: 先组成一个由工艺、设备、操作及管理人员的编制小组,并大致按以下几步开展工作: (1)熟悉系统:详细了解系统的结构、功能、工艺流程、操作条件、布置和已有的安 全卫生设施等。 (2)搜集有关安全的法规、标准和制度及同类系统的事故资料,作为编制安全检查表 的依据。 (3)按功能或结构将系统划分成若干个子系统或单元,逐个分析潜在的危险因素。 (4)确定安全检查表的检查内容和要点,并按照一定的格式列成表。 2、编制的依据:

尿素装置危险因素分析及其防范措施

尿素装置危险因素分析及其防范措施 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

尿素装置危险因素分析及其防范措施尿素装置的生产特点是:高温、高压、强腐蚀。原料液氨为易燃、易爆、有毒物质。生产设备采用单系列、大机组,一旦发生故障,易造成事故。装置具有一定的危险性。 (一)装置事故统计分析 我国20世纪70年代引进的大型尿素装置,在投产初期曾频繁发生事故。从统计数字看,自1977年至1979的三年期间,投产的11套尿素装置曾发生重大停车事故674次。其中,外部原因造成事故停车373 次,占总事故次数的55.3%;设备事故停车269次,占总事故次数的39.9%。详见表7—22。 外因重大停车事故373次,按事故原因分类,详见表7—23。 设备重大停车事故269次,按设备类别分类统计,见表7—24。其中,二氧化碳压缩机发生停车事故117次,位居第一,占设备重大停车事故总数的43.49%。

设备事故中,主要设备发生重大停车事故160次。按设备类别分,见表7—25。 从上述统计表可以看出,尿素装置发生的重大停车事故674次中,位于首位的是外因引起的停车事故,停车次数为373次,占总数的55.3%。外因事故中,合成氨装置停车造成的有172次,占外因事故总次数的46.1%。由此可见,合成氨装置的生产运行情况对尿素装置的正常生产影响最大。位于第二位的是设备重大停车事故,其次数为269次,占总次数的39.9%。设备事故停车中,以二氧化碳压缩机发生的停车事故最多,为117次,占设备事故停车总次数的43.49%,占主要设备事故停车总次数的73.12%,而事故造成的损失也最大。 尿素装置投产初期重大停车事故按厂逐年平均统计见表7—26。 上表中,除1976年由于投产的5套生产装置均在下半年,统计数字显示偏低外。从表中可以看出:尿素装置投产初期事故较多,随着运行趋于正常,事故逐年减少。进入80年代,各厂相继都实现了长周期、安全、稳定运行。 从石化总公司1983年至1993年期间,收集的典型事故中看,收集的774例典型事故中,10套大型尿素装置占11例。其中,人身伤亡事故

尿素生产危险性分析及安全对策实用版

YF-ED-J6418 可按资料类型定义编号 尿素生产危险性分析及安 全对策实用版 Management Of Personal, Equipment And Product Safety In Daily Work, So The Labor Process Can Be Carried Out Under Material Conditions And Work Order That Meet Safety Requirements. (示范文稿) 二零XX年XX月XX日

尿素生产危险性分析及安全对策 实用版 提示:该安全管理文档适合使用于日常工作中人身安全、设备和产品安全,以及交通运输安全等方面的管理,使劳动过程在符合安全要求的物质条件和工作秩序下进行,防止伤亡事故、设备事故及各种灾害的发生。下载后可以对文件进行定制修改,请根据实际需要调整使用。 文献综述 一:尿素生产概述 尿素是目前使用的固体氮肥中,含氮量最 高的化肥,其含氮量为硝酸铵的1.3倍,氯化 铵的1.8倍,硫酸铵的2.2倍,碳酸氢铵的2.6 倍[1]。尿素属中性速效肥料,长期使用不会使 土壤发生板结。其分解释放的CO2也可以被农 作物吸收,促进植物的光合作用。在土壤中, 尿素能增进磷钾镁和钙的有效性,且施入土 壤后无残存废物[2]。

在有机合成工业中,尿素可用来制取高聚物合成材料,尿素甲醛树脂可用于生产塑料漆料以及胶合剂等[2]。在医药工业中,尿素可作为生产利尿剂、镇静剂、止痛剂等的原料[3]。此外,在石油、纺织、纤维素、造纸、炸药、制革、染料和选矿等生产中也要尿素[4]。 目前,中国是世界上最大的化肥生产和消费大国。据统计,5月份全国共生产尿素183万吨(折纯,下同),比去年同期的166万吨相比增长了10.1%,1~5月全国共生产尿素877.4万吨,比去年同期的790.4万吨增长了 11%[5]。 二:尿素的理化性质 尿素:学名为碳酰二胺,分子式为 CO(NH2)2 ,相对分子量为60.06。因最早由人

尿素生产安全技术

尿素生产安全技术 作者:安全管理网来源:安全管理网点击数: 127 更新日期:2011年05月04日尿素(H2NCONH2),又称脲或碳酰胺,白色晶体,相对分子质量在60.055。尿素大量存在于人类和哺乳动物的尿液中。尿素溶于水、乙醇和苯,几乎不溶于乙醚和氯仿。 尿素含氮量居固体氮肥之首,达46%以上为中性速效肥料,施于土壤中不残留使土壤恶化的酸根,而且分解出来的二氧化碳也可为植物所吸收。 尿素在工业上的用途亦很广泛,可用于制造脲醛树脂、聚胺酯等高聚物的原料,(用作塑料、喷漆、粘合剂)。还可作多种用途的添加剂(用作油墨材料、黏结油等),尿素还可用于医药、林业、制革、动物饲料、石油产品精制等方面。 第一座以氨和二氧化碳为原料生产尿素的工业装置是德国法本(I?G?Farben)公司于1922年建成投产的,采用热混合气压缩循环。1932年美国杜邦公司(Du pont)用直接合成法制取尿素氨水,并在1935年开始生产固体尿素,未反应物以氨基甲酸铵水溶液形式返回合成塔,是现今水溶液全循环法的雏形。 中国的尿素工业发展始于1958年,先由南京永利宁厂建成日产10吨尿素的半循环生产法装置,其后又在上海吴泾化工厂建成年产1.5万吨的半循环法装置。1975年中国第一套二氧化碳汽提法装置亦在上海吴泾化工厂建成投产。20世纪70年代以来,我国兴建年产30万吨合成氨、52~60万吨尿素联合生产装置的大型化肥生产厂。至今已建成30余套大化肥生产装置,成为我国主要生产尿素的基地。这些尿素生产厂都以石油化工成品或半成品为原料,因而大都隶属于石油化工行业。由于合成氨一尿素生产的紧密相关性,

其生产工艺过程分别介绍如下。 1.合成氨生产 氮肥生产的主要过程主要环节是制取氢,而合成氨所需要的氮则直接或间接地来源于空气。目前世界上大多数的氮肥厂均采用石化原料或其副产品来制取氢或一氧化碳,只有少数厂家采用电解水法制取氢,由于此法受电力成本制约,难以形成大规模的工业化生产。 用石化原料制取氢和一氧化碳的过程均为化学过程,从其反应类型上来看,大致可分为烃类一蒸汽催化转化法和烃类部分氧化法。前者所用原料一般为天然气、油田气、高炉气、炼厂气、石脑油等轻质烃类;后者以煤和渣油等重质烃类为主。 国内合成氨生产既有以天然气、油田气、石脑油等轻烃作原料的,也有以重油、渣油作原料的,从发展趋势来看,为充分利用资源,应以石油气和重油为原料更为合理。 合成氨两种类型主要工艺流程示意如图1所示。 图1 烃类一蒸汽转化法 烃类一蒸汽转化法其简要的生产过程为:天然气(主要成分为甲烷)经脱硫后与水蒸气混合,先进一段转化炉,在适宜的压力和温度以及镍系催化剂的作用下,大部分甲烷转化

工艺危险性分析报告

山东天泰钢塑有限公司 工艺危险性分析报告 一、产品及工艺简介 1)1、3、4号线生产工艺:将硫磺块放入燃硫炉内燃烧,产生二氧化硫气体,经引风机引入旋风除尘器进行净化,再进入风冷器和水冷器降温冷却,然后进入吸收塔,自吸收塔塔顶喷淋氨水或循环液进行二氧化硫的吸收。该项目吸收采用三级吸收,一级吸收塔吸收约85%,可得到成品液,二级吸收塔吸收约12%,三级吸收塔吸收约3%,经调和后,制得成品亚硫酸铵溶液。 2)2号线生产工艺:将硫磺块放入溶硫池中,再经泵打入焚硫炉内,同时鼓风机向焚硫炉内鼓入空气,液体硫磺与空气在焚硫炉内燃烧,产生二氧化硫气体,吹入旋风除尘器进行净化,再进入余热锅炉、水冷器降温冷却,然后进入吸收塔,自吸收塔塔顶喷淋氨水或循环液进行二氧化硫的吸收。该项目吸收采用三级吸收,一级吸收塔吸收约85%,可得到成品液,二级吸收塔吸收约12%,三级吸收塔吸收约3%,经调和后,制得成品亚硫酸铵溶液。本生产线在焚硫炉后设置的余热锅炉产生的蒸汽,输送回粗硫池和精馏池熔化硫磺,可达到节能降耗的目的。 3)5号线生产工艺:将硫磺块放入粗硫池内用蒸汽熔化,经过过滤器滤去杂质,打入精硫池中,再经泵打入焚硫炉内,同时鼓风机向焚硫炉内鼓入空气,液体硫磺与空气在焚硫炉内燃烧,产生二氧化硫气体,吹入旋风除尘器进行净化,再进入余热锅炉、水冷器降温冷却,然后进入吸收塔,自吸收塔塔顶喷淋氨水或循环液进行二氧化硫

的吸收。该项目吸收采用三级吸收,一级吸收塔吸收约85%,可得到成品液,二级吸收塔吸收约12%,三级吸收塔吸收约3%,经调和后,制得成品亚硫酸铵溶液。本生产线在焚硫炉后设置的余热锅炉产生的蒸汽,输送回粗硫池和精馏池熔化硫磺,可达到节能降耗的目的。 反应方程式为: S+O 2=SO 2 2NH 3·H 2 O+SO 2 =(NH 4 ) 2 SO 3 +H 2 O 3)生产工流程简图如下图所示。 二、工艺的危险性分析及处置措施 1生产装置 1.1生产过程危险因素分析 ①管路输送物料过程中,系统密封不严,发生物料泄漏,可能发生火灾、爆炸、中毒窒息事故。 ②设备、设施防静电设施不合格,物料流速过快,有可能产生静电火花引发火灾爆炸事故。 ③设备、法兰、管道密封不严或锈蚀穿孔,发生高温物料喷溅,可能发生中毒、灼烫事故。 ④作业场所通风不良,可能发生中毒和窒息事故。 ⑤操作人员劳动防护用品穿戴不齐或失效,也可能发生意外事故。 ⑥开停车前后,检修过程系统没有整体置换或置换不完全,系统内物料和空气形成爆炸性混合气体,遇明火、火花有引发火灾爆炸的

尿素生产中的安全措施

编号:SM-ZD-52435 尿素生产中的安全措施Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly. 编制:____________________ 审核:____________________ 批准:____________________ 本文档下载后可任意修改

尿素生产中的安全措施 简介:该方案资料适用于公司或组织通过合理化地制定计划,达成上下级或不同的人员 之间形成统一的行动方针,明确执行目标,工作内容,执行方式,执行进度,从而使整 体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅 读内容。 引言:尿素生产具有高温高压的反应特性,所用蒸汽最大压力14.8兆帕,尿素合成塔内的温度一般为180—183℃,还有腐蚀性的甲胺液,双氧水,甲醛等物质,作为原料的氨不但具有腐蚀性,还有强烈的刺激性气味,浓度稍微大一些,就会引起人员中毒,严重时还有生命危险。二氧化碳压缩机房的噪声很大,严重影响听力。由于存在多种危险因素,所以采取相应的安全防护措施来保证安全生产。 一、开展安全事故学习,吸收经验教训 学习集团公司发生的安全事故和公司内部的事故案例,提高安全意识,分析事故原因,吸取事故教训。对事故进行分类,那些是设备缺陷引起的,那些是操作不当引起的,这样有利于进一步认识事故发生的原因。每个班组每个月要有一次专门的安全集中学习时间,不少于两个小时,每个成员都要发言。每一次学习都要做书面记录,领导参加人员,得

危险性分析方法

第八章危险性分析方法 辨别危险、分析可能发生的事故及其影响后果的过程就是危险性分析。 危险性分析是为防止危险造成事故所采取的手段,其作用是为制定防止事故发生的对策提供依据。 危险性分析需要运用系统工程的原理和方法。危险性分析有定性分析和定量分析两种类型: ①定性分析:找出系统存在的危险因素,分析危险在什么情况下能发生事故,以及对系统安全影响的大小,提出针对性的安全措施控制危险。定性分析不对各种危险因素作定量评价,本章主要介绍定性危险性分析方法。 ②定量分析:在定性分析的基础上,进一步研究事故或故障与其影响因素之间的数量关系,以数量大小评定系统的安全可靠性。在第八章介绍。 危险、危害因素 8.1.1危险因素与危害因素 危险因素是指突发性造成人身伤亡和财产损失的因素。危险因素强调突发性和瞬间作用; 危害因素是指可能造成人身伤害、职业病、财产损失和作业环境破坏的因素。危害因素强调在一定时间范围内的积累作用。 危险因素和危害因素二者有时难以区分,故有时统称为危险因素,更多的是并称为危险、危害因素。 8.1.2危险、危害因素分类 根据GB/T 13816—92《生产过程危险和危害因素分类与代码》的规定,按导致事故和职业危害的直接原因,将生产过程中的危险、危害因素分为6 类: 1、物理性危险、危害因素 (1)设备、设施缺陷如强度不够、刚度不够、运动件外露、制动器缺陷、外形缺陷等。 (2)防护缺陷如无防护、防护不当、防护距离不够、防护设施缺陷等。 (3)电危害 (4)噪声危害 (5)振动危害 (6)电磁辐射 如电离辐射:X 射线、高能电子束等;非电离辐射:激光、紫外线等。 (7)运动物危害如固体抛射物、液体飞溅物、气流冲击、岩土滑动等。 (8)明火 (9)能造成灼伤的高温物质 (10)能造成冻伤的低温物质 (11)粉尘与气溶胶(不包括爆炸性、有毒性粉尘与气溶胶) (12)作用环境不良如采光照明不良、安全过道缺陷、通风不良、气温过高或过低、空气质量差等。 (13)信号缺陷如无信号设施、信号不清、信号失准、信号选用不当等。 (14)标志缺陷如无标志、标志不清、标志不规范、标准位置不当等。 (15)其他物理危险和危害因素 2、化学危险和危害因素

合成氨及尿素生产危险有害因素分析(正式)

编订:__________________ 审核:__________________ 单位:__________________ 合成氨及尿素生产危险有害因素分析(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-6790-12 合成氨及尿素生产危险有害因素分 析(正式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 1、造气工段 造气工段转动设备多、操作上控制点多、受人为因素影响较大、工艺条件相互制约、操作难度大。介质具有腐蚀、有毒、易燃、易爆的性质(氢气、一氧化碳、甲烷、硫化氢等),并具有引爆的火种;由于机械设备易磨损、易腐蚀、易发生容器的损坏、可燃物质的泄漏等;制气周期短,操作程序要求较严等,极易发生煤气发生炉爆炸、气柜抽瘪和爆炸、人员中毒、伤亡等,它是小氮肥厂中发生事故最多的一个工序。该工段曾发生过“7.22”夹套爆炸事故。 2、脱硫工段 由于半水煤气中的H2、CO、CH4、H2S等都是易燃、易爆、有毒气体。在生产过程中常会因设备管道泄漏

发生着火爆炸,造成人员中毒。据统计,该工段发生的火灾爆炸中毒事故占小氮肥厂的30%左右。该工段曾发生过多起着火爆炸事故。 3、变换工段 由于半水煤气转化为变换气后,气体中的氢气含量显著增加,高温气体一旦泄漏,遇空气很容易引起燃烧、爆炸;如果设备或系统形成负压,空气被吸入,与煤气混合,形成爆炸性气体,在高温、摩擦、静电等作用下,也会发生爆炸;特别是在检修过程中,如不能对系统有效地隔绝,也极易发生爆炸事故。该工段曾发生过“4.16”热水饱和塔爆炸事故。 4、碳化工段 碳化过程是合成氨原料气净化处理的中间过程,也是生产碳酸氢铵产品的最后工序。由于碳化反应在常温下进行,压力又不太高,因此安全易被人忽视。特别是氨水槽、贫液槽,既是常温又是常压,且又与大气相通,一旦遇上火源就会发生爆炸。此工段的碳化塔检修多,由于不好置换,碳化塔爆炸事故也是小

气站安全管理及工艺操作危险有害因素辨识及分析

气站安全管理及工艺操作危险有害因素辨识及 分析 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

某气站安全管理及工艺操作危险、有害因素辨识及分析(1)单位主要负责人、安全管理人员及从业人员,安全意识淡漠,工作期间存在违章指挥和违章作业。 (2)安全管理制度制定的不完善或制度完善,但执行不到位有章不遵。 (3)操作人员没有经过相应岗位的技术和安全培训,或者经培训但考核不合格的人员,上岗作业,因其操作能力及事故处理能力差,极易造成操作失误,而引发事故。 (4)采购不合格设备、材料及用品,极易引发事故。 (5)没有制定操作人员巡检制度,操作人员没有对自己管辖的设备进行定期巡检,不易发现事故隐患,从而导致事故扩大化。 (6)操作人员不能坚守岗位,存在串岗、睡岗等不良现象,不能及时发现事故隐患,而导致事故的发生。 (7)由于操作人员大意或失误,操作人员向已经装满液化气的储罐继续充装,储罐在未安装高低液位报警仪及安全阀失灵不能及时卸压情况下,会导致储罐超压爆炸事故。

(8)液化石油气储罐安装的高低液位报警仪失灵或未安装高低液位报警仪以及操作人员未及时观察储罐的液位情况下,储罐的充装量超过了最高安全限度,在高温天气,液化气会大量气化,罐内的压力随之升高,在没有安装喷淋设施或喷淋设施没有及时投用,加之安全阀失灵,会造成储罐超压爆炸。 (9)在向钢瓶充装液化石油气时,操作人员脱离岗位,造成钢瓶超装,又没有检称情况下易造成钢瓶超压爆裂。 (10)操作人员穿普通衣物,尤其是化纤衣物,因产生静电,产生火花;穿钉子鞋,与地面碰撞产生火花,使用易产生静电或火花的设备或工具,很可能引起爆炸。 (11)雷雨天进行操作,很容易受到雷击,引起火灾、爆炸事故。 (12)充装前,未按规定进行检瓶,使用不合格的气瓶充装了液化气,可能造成钢瓶泄漏或爆裂而导致事故的发生。 (13)卸车时,未接气相平衡管,或无高液位自动回流装置,或无高液位报警装置,可能使储罐充装过量,易造成储罐超压而导致储罐超压爆裂,造成火灾事故的发生。

几种安全性分析方法的比较

对安全性分析的几种方法的比较 FMEA故障模式影响分析、FTA故障树分析; PFMEA过程失效模式及后果分析、HAZOP危险与可操作性分析、ZSA区域安全性分析、PHA初步危险分析。 区别: 一、PFMEA(Process Failure Mode and Effects Analysis)过程失效模式及后果分析 PFMEA是由负责制造/装配的工程师/小组主要采用的一种分析技术,用以最大限度地保证各种潜在的失效模式及其相关的起因/机理已得到充分的考虑和论述。 PFMEA的分析原理 PFMEA的分析原理如下所示,它包括以下几个关键步骤: (1)确定与工艺生产或产品制造过程相关的潜在失效模式与起因; (2)评价失效对产品质量和顾客的潜在影响; (3)找出减少失效发生或失效条件的过程控制变量,并制定纠正和预防措施; (4)编制潜在失效模式分级表,确保严重的失效模式得到优先控制; (5)跟踪控制措施的实施情况,更新失效模式分级表。 模式及后果分析 (1)“过程功能/要求”:是指被分析的过程或工艺。该过程或工艺可以是技术过程,如焊接、产品设计、软件代码编写等,也可以是管理过程,如计划编制、设计评审等。尽可能简单地说明该工艺过程或工序的目的,如果工艺过程包括许多具有不同失效模式的工序,那么可以把这些工序或要求作为独立过程列出; (2)“潜在的失效模式”:是指过程可能发生的不满足过程要求或设计意图的形式或

问题点,是对某具体工序不符合要求的描述。它可能是引起下一道工序的潜在失效模式,也可能是上一道工序失效模式的后果。典型的失效模式包括断裂、变形、安装调试不当等; (3)“失效后果”:是指失效模式对产品质量和顾客可能引发的不良影响,根据顾客可能注意到或经历的情况来描述失效后果,对最终使用者来说,失效的后果应一律用产品或系统的性能来阐述,如噪声、异味、不起作用等; (4)“严重性”:是潜在失效模式对顾客影响后果的严重程度,为了准确定义失效模式的不良影响,通常需要对每种失效模式的潜在影响进行评价并赋予分值,用1-10分表示,分值愈高则影响愈严重。“可能性”:是指具体的失效起因发生的概率,可能性的分级数着重在其含义而不是数值,通常也用1—10分来评估可能性的大小,分值愈高则出现机会愈大。“不易探测度”:是指在零部件离开制造工序或装备工位之前,发现失效起因过程缺陷的难易程度,评价指标也分为1—10级,得分愈高则愈难以被发现和检查出; (5)“失效的原因/机理”:是指失效是怎么发生的,并依据可以纠正或控制的原则来描述,针对每一个潜在的失效模式在尽可能广的范围内,列出每个可以想到的失效起因,如果起因对失效模式来说是唯一的,那么考虑过程就完成了。否则,还要在众多的起因中分析出根本原因,以便针对那些相关的因素采取纠正措施,典型的失效起因包括:焊接不正确、润滑不当、零件装错等; (6)“现行控制方法”:是对当前使用的、尽可能阻止失效模式的发生或是探测出将发生的失效模式的控制方法的描述。这些控制方法可以是物理过程控制方法,如使用防错卡具,或者管理过程控制方法,如采用统计过程控制(SPC)技术; (7)“风险级(RPN)”:是严重性、可能性和不易探测性三者的乘积。该数值愈大则表明这一潜在问题愈严重,愈应及时采取纠正措施,以便努力减少该值。在一般情况下,不管风险级的数值如何,当严重性高时,应予以特别注意;

尿素合成塔的主要破坏形式及预防措施示范文本

尿素合成塔的主要破坏形式及预防措施示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

尿素合成塔的主要破坏形式及预防措施 示范文本 使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 尿素合成塔的爆破事故在国内已经发生了多起,事故 现场触目惊心,给人民生命和国家财产造成的损失,应引 起尿素生产企业的高度重视。 一、尿素合成塔的主要破坏形式 水溶液全循环法尿素合成塔是用不锈钢和低合金钢制 造的多层包扎式高压容器,塔体由多个筒节与上、下封头 焊接而成。多层包扎式厚壁圆筒由内筒、盲层与层板3部 分组成,内筒采用超低碳奥氏不锈钢板材,在高压状态下 要求严密不漏,并具有抵抗介质腐蚀的能力。层板则采用 一定的方法使之很好地贴合在内筒上,且与内筒形成一个 整体筒节,塔体质量的好坏往往取决于层板间的贴合程度

和环焊缝装配及焊接的质量。多层包扎式圆筒在包扎层板时,靠钢丝索拉紧与焊接的收缩作用使各层间存在有预应力,内层受到压紧力,当筒体承受内压时,由于预应力的作用可以抵消部分拉应力,使筒壁内应力较相同条件下的单层筒体分布均匀,可以提高筒体的弹性承载能力。从理论上讲多层包扎厚壁圆筒的壁厚应比相同条件下的单层筒体薄,但因预应力的大小与层板纵焊缝宽度、每层层板上纵焊缝数量、焊接规范、焊接材料、包扎的松紧程度等许多因素有关,在设计时尚无法定量计算。另外,多层包扎式筒体的纵焊缝沿壁厚方向是非连续的,对筒体强度的削弱也较单层筒体小。所以,在设计时仍采用单层厚壁圆筒强度计算公式进行应力计算。 尿素合成塔在使用过程中产生的主要破坏形式有2种,一是内筒泄漏引起的破坏;二是筒节层板和环焊缝发生应力腐蚀断裂而引起的破坏。

危险与可操作性分析研究_杜廷召

July 2010现代化工第30卷第7期M oder n Che m ica l Industry 2010年7月 分析测试 危险与可操作性分析研究 杜廷召,田文德,任 伟 (青岛科技大学化工学院,山东青岛266042) 摘要:危险与可操作性分析(HAZOP)是过程工业中广泛应用的识别危险与操作性问题的安全分析技术之一,尤其是在化工、石化等高危行业。概述了危险与可操作性分析方法基本原理的基础上,将HAZOP 产生以来的相关研究做出分类并进行了综述,包括HAZ OP 特征研究、扩展HAZ OP 分析领域、开发自动化HAZ OP 分析专家系统和动态模拟辅助的HAZOP 分析。最后对HAZ OP 技术的研究前景做出了展望。 关键词:HAZ OP ;危险与可操作性分析;过程危险性分析;安全分析中图分类号:X937 文献标识码:A 文章编号:0253-4320(2010)07-0090-04 P rogress and pros pect in hazard and operability analysis DU Ting zhao ,TI AN W en de ,RE N W ei (Co llege of Che m ica l Eng ineer i ng ,Q i ngdao U niversity of Science &T echno l ogy ,Q ingdao 266042,Ch i na)Ab stract :H azard and Operab ility Ana l ys i s(HA ZOP )is one o f t he techn i ques m ost w ide l y used i n safety ana l ys i s to i dentify hazards and ope rability prob l em s in process i ndustry ,especiall y i n i ndustry w ith h i gh risk li ke che m i ca l i ndustry ,petrochem i ca l industry et al .T he funda m enta l pr i nciple ofHA ZOP i s rev ie w ed .T he resea rch re lated to HAZOP around the w orld is c lassified i nto four ca tego ries acco rd i ng to its research scope ,i nc l ud i ng character i stics study ,HAZOP scope ex tendi ng ,deve l opi ng auto m ated HAZOP expert system s and HAZOP aided w it h dyna m ic si m u l a ti on .T he resea rch prospect o fHAZOP i s prev i ewed i n the end . K ey w ords :HAZOP ;hazard and operability ana l y si s ;pro cess hazard analysis ;safe t y ana l ysis 收稿日期:2010-02-08 基金项目:山东省自然科学基金(ZR2009B M 033) 作者简介:杜廷召(1986-),男,硕士生,研究方向为化学工程,du ti ngz h ao @g m ai.l co m;田文德(1973-),男,副教授,博士,硕士生导师,研究方 向为过程系统工程。 HAZOP (H azar d and Operability Analysis)技术 最早是在20世纪60年代中期由英国帝国化学公司(I CI)首先开发应用的。最初定义为:HAZ OP 分析是由各专业人员组成的分析组对工艺过程的危险和操作性进行分析,即对新建或者已有的过程装置及工程本质进行正式的、系统的严格审查来评估单个装置的危险可能性和可能对整套装置造成的影响。HAZOP 分析的目的在于识别已有的高危险性装置的潜在危险,除去导致重大安全的问题,例如有毒物质泄漏、火灾和爆炸等。经过几十年的发展,HAZOP 分析不仅能够识别危险,而且可以辨识操作问题,其应用范围已经扩大到其他领域,例如医疗诊断系统、路况安全监测、可再生能源系统、可编程电子系统等。 1 HAZOP 分析基本原理 HAZOP 的理论依据是:工艺流程的状态参数(如温度、压力、流量等)一旦偏离规定的基准状态,就会发生问题或出现危险。它需要由一个由多学科 且经验丰富的成员组成的分析团队,首先依据过程 流程图和管道装置图将流程分为易处理的节点,以此确保对过程中的每一个装置进行分析;然后针对节点内的每个设备、操作逐一进行检验:匹配引导词(none ,less ,m ore 等)与工艺参数(fl o w,pressure ,te m perature 等)组成有意义的偏差及操作问题,并由偏差进行事故剧情的向前向后分析,最终辨识偏差原因并分析偏差后果。 常规HAZOP 分析流程 [1] 见图1 。 图1 常规HAZOP 分析流程图 90

相关文档
最新文档