为什么量子力学的测不准原理叫原理而不叫定理或公式

为什么量子力学的测不准原理叫原理而不叫定理或公式

为什么量子力学的测不准原理叫原理而不叫定理或公式?

这是历史原因造成的。现在大家通常将它叫做「不确定关系」,而已经不叫作「测不准原理」了。在量子力学被发现的历史上,所谓的「测不准原理」曾经有很重要的地位,它由德国物理学家海森堡于1927年提出,这里的「原理」一次在英文中是principle,在海森堡最初提出这一原理的时候,它是作为某种「原理」存在的。这种物理学上的「原理」其实类似于数学中的「公理」的地位。然而,随着量子力学的发展,一个公理化的体系被建立起来,虽然这种「公理化」跟真正意义上的数学公理的那种严格有一定的差距,但仍然可以看成是一个很大的突破。在狄拉克的《量子力学原理》中,注意狄拉克用的词就是principle,量子力学的基础被归纳为四个基本的公设,例如第一条,叠加原理,它也是被叫做「原理」的。在狄拉克的量子力学框架下,不确定关系(或者测不准原理)已经不再是一条独立的原理,而是「对易关系」的一个推论,所以,我们现在其实可以说,不确定关系已经几乎可以看成是也有一个「定理」了。其实在很多数学教科书中,在介绍傅里叶变换的性质时,也会讨论不确定关系,并且也是以定理的形式来证明的。另外,需要补充的是,对于「能量—时间不确定关系」,由于「时间」在量子力学中不是一个可测量的物理量,所以,「对易关系」和「不确

定关系」之间不能完全重合。

量子力学的概率解释

引言:黑体辐射等实验的研究以及光谱实验的诞生,促使了人们对微观世界的不断认识。经典力学的局限性也日益显著,所面临的一些棘手的问题也越来越多。因此迫使我们不得不抛弃经典力学,而重新建立一个全新的力学体系——量子力学。该力学体系描绘了微观世界中,微观粒子的运动行为及其力学特性。 题目:量子力学的概率解释 内容摘要:在经典力学中,我们知道物体的运动可由牛顿第二定律描述: 22(((),(),()))d r F m r x t y t z t dt ==r u r r ;方程的解即为物体的动力学方程。由此方程的解: ((),(),())r x t y t z t =r ;在给定的初始条件下我们即可以知道任意时刻物体在空间所处的位 置。而在微观领域中,微观粒子的运动并不适用于上述的方程所描述。实验证明他们在某一 时刻出现在空间的哪一点上是不确定的。应该用方程μH E ψ=ψ来描述。比如电子的衍射现象,海森堡的不确定性关系,还有薛定谔为批评哥本哈根学派对量子论的观点而提出的一 个思维实验(薛定谔猫)。本文利用概率与统计的相关概念对量子力学做出一些相关的阐明,并对一些相关的问题(衍射,薛定谔猫等)进行说明。对单电子体系薛定谔方程作出较为详细的讨论,并加以例题进行进一步说明。 关键词:量子力学、概率与统计、电子衍射现象、薛定谔猫、薛定谔方程 概率统计理论的简单介绍: 随机变量X :X 是定义在样本空间Ω上的实值函数;对面门一样本点ω,()X ω是一个实数。X 离散取值时,为离散随机变量。X 连续取值时,为连续型随机变量。本文只介绍连续型随机变量。 概率密度函数:当X 为连续型随机变量时,例如一条直线AB 如图:A 0 1 B 假设现在有一个点落到了AB 上,我们是否能问该点恰好落在0.5x =处的概率是多少?显然这是毫无意义的问题,因为该点恰好落在任意一点上的概率均为零。(基本事件的个数为无穷) 我们只能问该店落在某一区间[,]a b 上的概率是多少?例如[,][0,0.5]a b =;此时概率 10.5/12 p == 。 因此设X 是一随机变量,如果存在非负函数()f x 使得对任意满足a b -∞≤≤+∞的,a b 有 ()()b a p a X b f x dx ≤≤=?;就称()f x 是随机变量X 的概率密度函数。 显然()f x 应该具有如下性质: (1) ()1f x dx +∞ -∞ =? ;(量子力学中波函数的归一化性质) (2)()0.p X a ==于是()()()p a X b p a X b p a X b ≤≤==≤p p p ; (3)对于数集,()()A A p X A f x dx ∈= ?;

量子力学讲义

量子力学的通俗讲座 一、粒子和波动 我们对粒子和波动的概念来自直接的经验。和粒子有关的经验对象:小到石子大到天上的星星等;和波动有关的经验对象:最常见的例子是水波,还有拨动的琴弦等。但这些还不是物理中所说的模型,物理中所谓粒子和波动是理想化的模型,是我们头脑中抽象的对象。 1.1 粒子的图像 在经典物理中,粒子的概念可进一步抽象为:大小可忽略不计的具有质量的对象,即所谓质点。质量在这里是新概念,我们可将其定义为包含物质量的多少,一个西瓜,比西瓜仔的质量大,因为西瓜里包含的物质的量更大。 为叙述的简介,我们现在可把粒子等同于质点。要描述一个质点的运动状态,我们需要知道其位置和质量(x,m ),这是一个抽象的数学表达。 但我们漏掉了时间,时间也是一个直观的概念,这里我们可把时间描述为一个时钟,我们会发现当指针指到不同位置时,质点的位置可能不同,于是指针的位置就定 义了时刻t 。有了时刻 t ,我们对质点的描述就变成了(x,t,m ),由此可定义速度v ,现在我们对质点运动状态的描述是(x,v,t,m )。 在日常经验中我们还有相互作用或所谓力的概念,我们在地球上拎起不同质量物体时肌肉的紧张程度是不同的,或者说弹簧秤拎起不同质量物体时弹簧的拉伸程度是不同的。 以上我们对质量、时间、力等的定义都是直观的,是可以操作的。按照以上思路进行研究,最终诞生了牛顿的经典力学。这里我们可简单地用两个公式:F=ma (牛顿第二定律) 和 2 GMm F x (万有引力公式) 来代表牛顿力学。前者是质点的运动方程,用数学的语言说是一个关于位置x 的二阶微分方程,所以只需要知道初始时刻t=0时的位置x 和速度v 即可求出以后任意时刻t 质点所处的位置,即x(t),我们称之为轨迹。 需要强调的是一旦我们知道t=0时x 和v 的精确值(没任何误差),x(t)的取值也是精确的,即我们得到是对质点未来演化的精确预测,并且这个求 解对t<0也精确成立,这意味着我们还可精确地反演质点的历史。这些结论都是由数学理论严格保证的,即轨迹是一根理想的线。 经典的多粒子系统

量子力学总结

量子力学总结 第一部分 量子力学基础(概念) 量子概念 所谓“量子”英文的解释为:a fixed amount (一份份、不连续),即量子力学是用不连续物理量来描述微观粒子在微观尺度下运动的力学,量子力学的特征简单的说就是不连续性。 描述对象:微观粒子 微观特征量 以原子中电子的特征量为例估算如下: ○1“精细结构常数”(电磁作用常数), 1371~ 10297.73 2-?==c e α ○ 2原子的电子能级 eV a e me c e mc E 27~~02242 2 2==??? ? ?? 即:数10eV 数量级 ○ 3原子尺寸:玻尔半径: 53.0~2 2 0me a =?,一般原子的半径1?

○4速率:26 ~~ 2.210/137 e c V c m s c ?-? ○5时间:原子中外层电子沿玻尔轨道的“运行”周期 秒 160 0105.1~2~-?v a t π 秒 角频率16 102.4~~?a v c ω, 即每秒绕轨道转1016圈 (电影胶片21张/S ,日光灯频率50次/S ) ○6角动量: =??2 2 20~~e m me mv a J 基本概念: 1、光电效应 2、康普顿效应 3、原子结构的波尔理论 波尔2个假设: 定态轨道 定态跃迁 4、物质波及德布洛意假设(德布洛意关系)

“任何物体的运动伴随着波,而且不可能将物质的运动和波的传播分开”,认为物体若以大小为P 的动量运动时,则伴随有波长为λ的波动。 P h =λ,h 为普朗克常数 同时满足关系ω ==hv E 因为任何物质的运动都伴随这种波动,所以称这种波动为物质波(或德布罗意波)。 称P h h E v ==λ 德布罗意波关系 例题:设一个粒子的质量与人的质量相当,约为50kg ,并以12秒的百米速度作直线运动,求粒子相应的德布罗意波长。说明其物理意义。 答:动量v p μ= 波长m v h p h 3634101.1)1250/(1063.6)/(/--?=??===μλ 晶体的晶格常数约为10-10m ,所以,题中的粒子对应的德布罗意波长<<晶体的晶格常数,因此,无法观测到衍射现象。 5、波粒二象性 (1)电子衍射实验 1926年戴维逊(C ·J ·Davisson )和革末(L ·H ·Gevmer )第一个观察到了电子在镍单晶表面的衍射现象,证实了电子的波动性,求出电子的波长λ

量子力学诠释问题(一)

量子力学诠释问题(一) 作者:孙昌璞( 中国工程物理研究院研究生院北京北京计算科学研究中心) 1 引言:量子力学的二元结构和其发展的二元状态上世纪二十年代创立的量子力学奠定了 人类认识微观世界的科学基础,成功地解释和预言了各种相关物理效应。然而,关于波函数的意义,自爱因斯坦和玻尔旷世之争以来众说纷纭,并无共识。直到今天,量子力学发展还是处在这样一种二元状态。对此有人以玻尔的“互补性”或严肃或诙谐地调侃之,以“shut up and calculate”的工具主义观点处之以举重若轻。这样一个二元状态主要是由于附加在玻恩几率解释之上的“哥本哈根诠释”之独有的部分:外部经典世界存在是诠释量子力学所必需的,是它产生了不服从薛定谔方程幺正演化的波包塌缩,使得量子力学二元化了。今天,虽然波包塌缩概念广被争议,它导致的后选择“技术”却被广泛地应用于量子信息技术的各个方面,如线性光学量子计算和量子离物传态的某些实验演示。早年,薛定谔曾经写信严厉批评了当时的物理学家们,他在给玻恩的信中写到:“我确实需要给你彻底洗脑……你轻率地常常宣称哥本哈根解释实际上已经被普遍接受,毫无保留地这样宣称,甚至是在一群外行人面前——他们完全在你的掌握之中。这已经是道德底线了……你真的如此确信人类很快就

会屈从于你的愚蠢吗?”1979 年,Weinberg在《爱因斯坦的错误》一文中批评了玻尔对测量过程的不当处理:“量子经典诠释的玻尔版本有很大的瑕疵,其原因并非爱因斯坦所想象的。哥本哈根诠释试图描述观测(量子系统)所发生的状况,却经典地处理观察者与测量的过程。这种处理方法肯定不对:观察者与他们的仪器也得遵守同样的量子力学规则,正如宇宙的每一个量子系统都必须遵守量子力学规则。”“哥本哈根诠释可以解释量子系统的量子行为,但它并没有达成解释的任务,那就是应用波函数演化方程于观察者和他们的仪器。”最近温伯格又进一步强调了他对“标准”量子力学的种种不满。在量子信息领域,不少人不加甄别地使用哥本哈根诠释导致的“后选择”方案,其可靠性令人怀疑!其实,在量子力学幺正演化的框架内,多世界诠释不引入任何附加的假设,成功地描述了测量问题。由于隐变量理论在理论体系上超越了量子力学框架,本质上是比量子力学更基本的理论,所以本文对Bell 不等式不作系统讨论。自上世纪八十年代初,人们先后提出了各种形式迥异的量子力学新诠释,如退相干、自洽历史、粗粒化退相干历史和量子达尔文主义,但实际上都是多世界诠释的拓展和推广。2 哥本哈根诠释及其推论哥本哈根诠释的核心内容是“诠释量子世界,外部的经典世界必不可少”。波函数描述微观系统的状态,遵循态叠加原理,即:如果|?1>

简述建立量子力学基本原理的思想方法

简述建立量子力学基本原理的思想方法 摘要:量子力学是大学物理专业的一门必修理论基础课程,它研究的对象是分子、原子和基本粒子。本文对建立量子力学基本原理的思想方法作一简单叙述,供学员在学习掌握量子力学的基本理论和方法时参考。 关键词:量子力学;力学量;电子;函数 作者简介 0引言 19世纪末,由于科学技术的发展,人们从宏观世界进入到微观领域,发现了一系列经典理论无法解释的现象,比较突出的是黑体辐射、光电效应和原子线光谱。普朗克于1900年引进量子概念后,上述问题才开始得到解决。爱凶斯坦提出了光具有微粒性,从而成功地解释了光电效应。 1量子力学 量子力学是研究微观粒子的运动规律的物理学分支学科,它主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论,它与相对论一起构成了现代物理学的理论基础。量子力学不仅是近代物理学的基础理论之一,而且在化学等有关学科和许多近代技术中也得到了广泛的应用。 2玻尔的两条假设 玻尔在前人工作的基础上提出了两条假设,成功地解释了氢原子光谱,但对稍微复杂的原予(如氦原子)就无能为力。直到1924年德布罗意提出了微观粒子具有波粒二象性之后才得到完整解释。 1924年,德布罗意在普朗克和爱因斯坦假设的基础上提出了微观粒子具有波粒二象性的假设,即德布罗意关系。1927年,戴维孙和革末将电子作用于镍单晶,得到了与x射线相同的衍射现象,从而圆满地说明了电子具有波动性。 2.1自由粒子的波动性和粒子性 它的运动是最简单的一种运动,它充分地反映了自由粒子的波动性和粒子性,将波(平面波)粒( p,E) 二象性统一在其中。如果粒子不是自由的,而是在一个变化的力场中运动,德布罗意波则不能描写。我们将用一个能够充分反映二象性特点的

量子力学基础简答题(经典)【精选】

量子力学基础简答题 1、简述波函数的统计解释; 2、对“轨道”和“电子云”的概念,量子力学的解释是什么? 3、力学量G ?在自身表象中的矩阵表示有何特点? 4、简述能量的测不准关系; 5、电子在位置和自旋z S ?表象下,波函数??? ? ??=ψ),,(),,(21z y x z y x ψψ如何归一化?解释各项的几率意义。 6、何为束缚态? 7、当体系处于归一化波函数ψ(,) r t 所描述的状态时,简述在 ψ(,) r t 状态中测量力学量F 的可能值及其几率的方法。 8、设粒子在位置表象中处于态),(t r ψ,采用Dirac 符号时,若将ψ(,) r t 改写为ψ(,) r t 有何 不妥?采用Dirac 符号时,位置表象中的波函数应如何表示? 9、简述定态微扰理论。 10、Stern —Gerlach 实验证实了什么? 11、一个物理体系存在束缚态的条件是什么? 12、两个对易的力学量是否一定同时确定?为什么? 13、测不准关系是否与表象有关? 14、在简并定态微扰论中,如 () H 0的某一能级) 0(n E ,对应f 个正交归一本征函数i φ(i =1,2,…, f ),为什么一般地i φ不能直接作为()H H H '+=???0的零级近似波函数? 15、在自旋态χ1 2 ()s z 中, S x 和 S y 的测不准关系( )( )??S S x y 22?是多少? 16、在定态问题中,不同能量所对应的态的迭加是否为定态Schrodinger 方程的解?同一能量 对应的各简并态的迭加是否仍为定态Schrodinger 方程的解? 17、两个不对易的算符所表示的力学量是否一定不能同时确定?举例说明。 18说明厄米矩阵的对角元素是实的,关于对角线对称的元素互相共轭。 19何谓选择定则。 20、能否由Schrodinger 方程直接导出自旋? 21、叙述量子力学的态迭加原理。 22、厄米算符是如何定义的? 23、据[a ?,+ a ?]=1,a a N ???+=,n n n N =?,证明:1 ?-=n n n a 。 24、非简并定态微扰论的计算公式是什么?写出其适用条件。

量子力学的隐变量解释

量子力学的隐变量解释1935 年 5 月, 在 Physical Review 上 Einstein 和他的两位同事 B. Podolsky和 N. Rosen 共同发表了一篇名为「Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?」 (量子力学对物理世界的描述是完备的吗?) 三个人异口同声地回答:「不!」.在这篇著名的文章中,作者首先阐述了他们对物理理论的看法:一个严谨的物理理论应该要区别「客观实体」(object reality) 以及这个理论运作的观点.客观实体应独立于理论而存在.在判断一个理论是否成功时,我们会问自己两个问题:(1) 这个理论是否正确? (2) 理论的描述是否完备?只有当这两个问题的答案是肯定时,这样的理论才是令人满意的.理论的正确性当由实验来决定.而关于量子力学的描述是否完备则是这篇文章探讨的主题.在进一步讨论理论的完备性之前,我们必须先定义什么是完备性.作者们提出了一项判别完备性的条件:每一个物理实体的要素必须在理论中有一对应物(every element of the physical reality must have a counterpart in the physical theory)因此我们决定了什么是「物理实体的要素」,那么第二个问题就容易回答了.那么,究竟什么是「物理实体的要素」呢? 作者们以为: 「如果,在不以任何方式干扰系统的情况下,我们能准确地预测(即机率为一)某一物理量的值,那么必定存在一个物理实体的要素与这个物理量对应.」他们认为,只要不把这个准则视为一必要条件,而看成是一充分的条件,那么这个判别准则同样适用于古典物理以及量子力学中对实在的概念.举例来说,在一维系统中,一个以波函数φ(x) = exp(ip0x/2πh) (其中 p0是一常数,i 表纯虚数,h 为Planck常数)描述的粒子.其动量的算符为 h d ,p = ------ ---- ,2(Pi)i dx,因此: pFI(x) = p0FI(x),所以动量有一确定的值 p0. 因此在这种情形下动量是一物理实体.反之,对位 置算符 q 而言,qFI = xFI ≠ aFI ,因此粒子的位置并没有一确定的值.它是不可预测的,仅能以实验测定之.然而任何一实验的测定都将干扰到粒子而改变其状态,被测后的粒子将再也不具动量 p0了.对于此情况,我们说当一粒子的动量确定时,它的位置并非一物理 实体.一般来说在量子力学中,对两个不可对易的可观察量(observable)而言,知道其中一个物理量的准确知识将排除对另外一个的准确知识.任何企图决定后者的实验都将改变系统的状态而破坏了对前者的知识.至此,作者们发现我们面临了如下的两难局面: (1)或者,在量子力学中波函数对物理实在的描述是不完备的. (2)或者,两个对应于不可对易算符的物理量不能同时是实在的(即具有确定的值).因为,若两个不可对易的物理量同时具有确定的值,根据作者们对完备性的条件,在波函数的描述中应包含这些值.但事实上并非如此,

量子力学练习题

量子力学练习题-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

一. 填空题 1.量子力学的最早创始人是 ,他的主要贡献是于 1900 年提出了 假设,解决了 的问题。 2.按照德布罗意公式 ,质量为21,μμ的两粒子,若德布罗意波长同为 λ,则它们的动量比p 1:p 2= 1:1;能量比E 1:E 2= 。 3.用分辨率为1微米的显微镜观察自由电子的德布罗意波长,若电子的能量 E=kT 23 (k 为玻尔兹曼常数),要能看到它的德布罗意波长,则电子所处的最高温度T max = 。 4.阱宽为a 的一维无限深势阱,阱宽扩大1倍,粒子质量缩小1倍,则能级间距将扩大(缩小) ;若坐标系原点取在阱中心,而阱宽仍为a ,质量仍为μ,则第n 个能级的能量E n = ,相应的波函数 =)(x n ψ()a x a x n a n <<= 0sin 2πψ和 。 5.处于态311ψ的氢原子,在此态中测量能量、角动量的大小,角动量的z 分量的值分别为E= eV eV 51.13 6 .132-=;L= ;L z = ,轨道磁矩M z = 。 6.两个全同粒子组成的体系,单粒子量子态为)(q k ?,当它们是玻色子时波函数为 ),(21q q s ψ= ;玻色体系 为费米子时 =),(21q q A ψ ;费米体系 7.非简并定态微扰理论中求能量和波函数近似值的公式是 E n =() () +-'+'+∑≠0 020m n n m mn mn n E E H H E , )(x n ψ = () ) () +-'+∑≠000 2 0m m n n m mn n E E H ψψ, 其中微扰矩阵元 'mn H =()() ?'τψψd H n m 00?; 而 'nn H 表示的物理意义是 。该方法的适用条 件是 本征值, 。

量子力学和经典力学的区别与联系

量子力学和经典力学在的区别与联系 摘要 量子力学是反映微观粒子结构及其运动规律的科学。它的出现使物理学发生了巨大变革,一方面使人们对物质的运动有了进一步的认识,另一方面使人们认识到物理理论不是绝对的,而是相对的,有一定局限性。经典力学描述宏观物质形态的运动规律,而量子力学则描述微观物质形态的运动规律,他们之间有质的区别,又有密切联系。本文试图通过解释、比较,找出它们之间的不同,进一步深入了解量子力学,更好的理解和掌握量子力学的概念和原理。 经过量子力学与经典力学的对比我们可以发现,量子世界真正的基本特性:如果系统真的从状态A跳跃到B的话,那么我们对着其中的过程一无所知。当我们进行观察的时候,我们所获得的结果是有限的,而当我们没有观察的时候系统正在做什么,我们都不知道。量子理论可以说是一门反映微观运动客观规律的学说。经典物理与量子物理的最根本区别就是:在经典物理中,运动状态描述的特点为状态量都是一些实验可以测量得的,即在理论上这些量是描述运动状态的工具,实际上它们又是实验直接可测量的量,并可以通过测量这些状态量来直接验证理论。在量子力学中,微观粒子的运动状态由波函数描述,一切都是不确定的。但是当微观粒子积累到一定量是,它们又显现出经典力学的规律。 关键字:量子力学及经典力学基本内容及理论量子力学及经典力学的区别与联系

目录 三、目录 摘要 (1) 关键字 (1) 正文 (3) 一、量子力学及经典力学基本内容及理论……………………………………………… 3 经典力学基本内容及理论 (3) 量子力学的基本内容及相关理论 (3) 二、量子力学及经典力学在表述上的区别与联系 (4) 微观粒子和宏观粒子的运动状态的描述 (4) 量子力学中微观粒子的波粒二象性 (5) 三、结论:量子力学与经典力学的一些区别对比 (5) 参考文献 (6)

量子力学基础和原子结构

第一章量子力学基础和原子结构 §1-1量子力学建立的实验和理论背景 1. 黑体辐射问题和普朗克的量子假说 黑体辐射问题:黑体可以吸收全部外来辐射。黑体受热会辐射能量。若以Eν表示黑体辐射的能量,Eνdν表示频率在ν到v+d(范围内、单位时间、单位表面积上辐射的能量。以E(对(作图,得到能量分布曲线。从经典物理推出的公式无法解释黑体辐射的能量分布曲线:1)从粒子角度,由经典热力学得到维恩公式,只适用于高频范围;2)从波动角度,由经典电动力学和统计物理理论得到瑞利-金斯公式,只适用于低频范围。 普朗克的量子假说:普朗克首先提出一个经验公式,和实验结果一致。在寻求理论上的解释时,发现经典物理学是无法解决这个问题。要使新的公式成立,必须假设能量在发射和吸收的时候,不是连续不断,而是分成一份一份的。而经典物理认为一切自然的过程都是连续不断的。 = 1 \* GB3 ①假设黑体内的分子、原子以不同的频率做简谐振动,这种做简谐振动的分子、原子称为谐振子。 = 2 \* GB3 ②对于振动频率为(0的谐振子,能量具有最小单位(0,该谐振子的能量E只能是(0的整数倍,而不能是其它值,即 E=nε0n=1,2,3…(1-1-1) ③能量的最小单位ε0称为能量子,或量子,它和振动频率ν0有如下关系: ε0=hν0(1-1-2) 其中h为常数,大小为6.626×10-34J?s,称为普朗克常数, ④谐振子吸收或发射能量时,能量的变化为 ?E=|E1-E2|=|n1ε0-n2ε0|=|n1-n2|ε0(1-1-3) 即,能量的吸收和发射不是连续的,必须以量子的整数倍一份一份的进行。这种物理量的不连续变化称为量子化。

量子力学基本概念及理解

量子力学基本理论及理解 基本概念 概率波 量子力学最基础的东西就就是概率波了,但我认为对概率波究竟就是什么样一种“波”,却并不就是很容易理解的,这个问题直到理查德,费恩曼(而不就是海森伯或者伯恩)提出了单电子实验,才让我们很清楚的瞧到什么就是概率波?有为什么就是概率波。 什么就是概率波?为什么就是概率波? 要回答这些问题,其实很简单,我们只需瞧下费恩曼的理想电子双缝干涉实验(刚开始时理想实验,不过后来都已经过证明了)就行了,我相信大家都会明白的。 下面我们再瞧一下费恩曼给出了什么结果: 1.单独开启缝1或者缝2都会得到强度分布或者符合衍射的图样, 缝1与缝2都开启时得到强度符合干涉图样 2.由两个单缝的图样无论如何得不到双缝的图样,即 3.每次让一个电子通过,长时间的叠加后就得到一个与一次让很多电子 通过双缝完全相同的图案 4.每次得到的就是“一个”电子 其实从这些结果中我们很容易得到为什么必须就是概率波,并且我们也很容易去除那些对概率波不对的理解,也就就是所谓的向经典靠拢的理解,从而得到必须就是概率波的事实。 概率波从字面上来理解,也就就是这种波表示的就是一种概率分布,还就是在双缝干涉中我们瞧一下很简单的一些表现,若果就是概率波的话,我们很关心的就就是这个粒子分布的具体形状,粒子位置的期望值等,在这里我们可以瞧出来波函数经过归一化之后,就就是说电子还就是只有那一个电子,但就是它的位置不确定了,这才形成在一定的范围内的一个云状分布,您要计算某一个范围内的电荷就是多少,这样您会得到一个分数的电荷量,但这只能告诉您电子在您研究的范围内分布的概率有多大,并不就是说在这一范围内真正存在多少电子。

量子力学基础

《大学物理》作业 No .8量子力学基础 班级 ________ 学号 ________ 姓名 _________ 成绩 _______ 一、选择题:(注意:题目中可能有一个或几个答案正确。) 1. 静止质量不为零的微观粒子作高速运动,这时粒子物质波的波长λ与速度v 有如下关系: [ C ] (A) v ∝λ (B) v 1 ∝λ (C) 2211c v -∝ λ (D) 22v c -∝λ 解:由德布罗意公式和相对论质 — 速公式 2 201 1c v m mv h p -= == λ 得2 20 1 1c v m h - =λ,即2211c v -∝λ 2. 不确定关系式 ≥???x p x 表示在x 方向上 [ D ] (A) 粒子位置不能确定 (B) 粒子动量不能确定 (C) 粒子位置和动量都不能确定 (D) 粒子位置和动量不能同时确定 3. 将波函数在空间各点的振幅同时增大D 倍,则粒子在空间的分布概率将 [ D ] (A) 增大2 D 倍。 (B) 增大2D 倍。 (C) 增大D 倍。 (D) 不变。 4. 已知粒子在一维矩形无限深势阱中运动,其波函数为: )(23cos 1)(a x a a x a x ≤≤-= πψ 那么粒子在6 5a x =处出现的概率密度为 [ A ] a 21(A ) a 1 (B) a 21(C) a 1(D) 解:概率密度 )23(cos 1)(22 a x a x πψ=

将65a x =代入上式,得 a a a a x 21)6523(cos 1)(22=?=πψ 5. 波长 λ = 5000 ?的光沿x 轴正方向传播,若光的波长的不确定量?λ=103-?,则利用不确定关系h p x x ≥???可得光子的x 坐标的不确定量至少为: [ C ] (A) 25cm (B )50cm (C) 250cm (D) 500cm 解:由公式p = λh 知: △322105000 -?-=?-=h h p λλ 利用不确定关系h p x x ≥???,可得光子的x 坐标满足 91025?=?≥ ?x p h x ?=250cm 二、填空题 1. 低速运动的质子和α粒子,若它们的德布罗意波长相同,则它们的动量之比=αP :p p 1:1 ;动能之比=αP :E E 4:1 。 解:由p = λ h 知,动量只与λ有关,所以1:1:αP =p p ; 由非相对论动能公式m p E 22 k =,且αp p p =,所以1:4:αP ==p m m E E α 2. 在B = 1.25×10 2 -T 的匀强磁场中沿半径为R =1.66cm 的圆轨道运动的α粒子的德布罗 意波长是 0.1 ? 。(普朗克常量h = 6.63×10-34J·s ,基本电荷e = 1.6×10-19 C) 解:由牛顿第二定律= evB 2R mv 2得eBR mv p 2==,又由λ h p =得 1.0(m)10998.010 66.11025.1106.121063.62112 21934 ≈?=???????===-----eBR h p h λ? 3. 若令c m h e c = λ (称为电子的康普顿波长,其中m e 为电子静止质量,c 为光速,h 为普

量子力学考博中用到的物理公式(复习时总结的)

初等量子力学的四块容 一、薛氏方程 C1:波函数与薛氏方程 1、付氏变换:(动量→坐标为正) /332 1()()(2)i p r r p e d p ψψπ+∞ ?-∞ = ? 2、δ函数的两个重要极限及一个积分公式 1()2i x x e d αδαπ∞ -∞ = ? (相当于物理中的波粒转换) 其推导过程: 000() 0()()()1 ()()2i x x f x f x x x dx f x dx d f x e αδαπ ∞ -∞ ∞ ∞ --∞ -∞ =-= ? ? ?两式比较得出。 2 4()lim i i x x e πααδ-=(试题1.5用到) 2 4 i i e d ξπ ξ∞ -∞ =? (好像与某个积分是一样的,只是有些变换) 3、证明技巧 等式一边含有V ,而一边没有。2 22V m ?-?+肯定是作为一个整体消去的。 4、波函数平方可积的要求 2 3(3/2) ,()s d r A r r r ψψ-+=?→∞? 全 (0s >) 可以在证明某些概率守恒的式子时(体积分→面积分 V S AdV A ds ??=???) ,可以得到一些式子的积分为0。 5、(,0) (,)x x t ψψ→ 先将(,0)x ψ展为能量本征态的线性组合(自由粒子时即可以通过付氏化为()p ψ),再 / (,)()iEt E n x t C x e ψψ-=∑。

C2:一维势场中的粒子 1、各种势类型 方势、δ势、谐振子、半壁无限谐振子(谐振子奇数解)、半壁无限方势、不对称方势阱。 2、() ()((),())n n n n n x C x C x x ψ??ψ=?=∑。*()()n n C x x dx ?ψ=?(注 意积分围) 22 11222 2 222 1122H C E C E H C E C E =+=+ 3、无限深势阱的解 )()0 n n x x a πψ=? 。222 2 2n n E ma π=(能量可通过22222P E m m -?==求得) 4、谐振子的解 22 12 ()(!)()n x n n x n e H x αψ α-=?其中α=。 5、递推关系 12()2()2()0n n n H x xH x nH x ----= 1()2()n n H x nH x -'= ()(1)()n n n x x ψψ-=-(所以对于半壁无限高的谐振子只有奇数才可以满足) C5:中心力场 1、径向波函数 ()()R r r r χ= 2 2(1)()[(())]()02l l l l r E V r r r χχμ+''?+--= 0r →时,若有20 lim ()0r r V r →=,则() l l R r r 。 2、无限深球方势阱 ○ 1S 态(0l =),其与无限深方势阱一样。 ○20l ≠时,令kr ρ= 则本征方程

量子力学原理及其应用

量子力学原理及其应用 师燕光电8班2012059080029 量子力学是近代自然科学的最重要的成就之一.在量子力学的世界里,一个 量子微观体系的状态是由一个波函数来描述的,而非由粒子的位置和动量描述, 这就是它与经典力学最根本的区别。这是被爱因斯坦和玻尔用“上帝跟宇宙玩掷骰子”来形容的学科,也是研究“极度微观领域物质”的物理学分支,它带来了许许多多令人震惊不已的结论——例如科学家们发现,电子的行为同时带有波和粒子的双重特征(波粒二象性),但仅仅是加入了人类的观察活动,就足以立刻改变它们的特性;此外还有相隔千里的粒子可以瞬间联系(量子纠缠):不确定的光子可以同时去向两个方向(海森堡测不准原理);更别提那只理论假设的猫既死了又活着(薛定谔的猫)?? 诸如以上,这些研究结果往往是颠覆性的,因为它们基本与人们习惯的逻辑思维相违背。以至于爱因斯坦不得不感叹道:“量子力学越是取得成功,它自身就越显得荒诞。” 直到现在,与一个世纪之前人类刚刚涉足量子领域的时候相比,爱因斯坦的观点似乎得到了更为广泛的共鸣。量子力学越是在数理上不断得到完美评分,就越显得我们的本能直觉竟是如此粗陋不堪。人们不得不承认,虽然它依然看起来奇异而陌生,但量子力学在过去的一百年里,已经为人类带来了太多革命性的发明创造。正像詹姆斯·卡卡廖斯在《量子力学的奇妙故事》一书引言中的所述:“量子力学在哪?你不正沉浸于其中吗。” 一、量子计算机 量子力学的海森堡测不准原理决定了粒子的位置和动量是不能同时确定的( )。当计算机芯片的密度很大时(即很小)将导致很大, 电子不再被束缚, 产生 量子干涉效应,而这种干涉效应会完全破坏芯片的功能。为了克服量子力学对计算机发展的限制,计算机的发展方向必然和量子力学相结合,这样不仅可以越过 量子力学的障碍,而且可以开辟新的方向。量子计算机就是以量子力学原理直接 进行计算的计算机.保罗·贝尼奥夫在1981 年第一次提出了制造量子计算机的理论。量子计算机的存储和读写头都以量子态存在的,这意味着存储符号可以是0、1 以及它们的叠加。 近年来的种种试验表明,量子计算机的计算和分析能力都超越了经典计算机。它具有如此优越的性质正在于它的存储读取方式量子化。对量子计算机的原理分析可知,以下两个个特性是令量子计算机优越性的根源所在:存储量大,速度高;可以实现量子平行态。 随着现代科学技术的发展,量子计算机也会逐渐走向现实研制和现实运用。量子计算机不但于未来的计算机产业的发展紧密相关,更重要的是它与国家的保密、电子银行、军事和通讯等重要领域密切相关。实现量子计算机是21 世纪科学技术的最重要的目标之一。 二、晶体管 美国《探索》杂志在线版给出的真实世界中量子力学的一大应用,就是人们早已不陌生的晶体管。1945 年的秋天,美国军方成功地制造出世界上第一台真空管计算机ENIAC。据当时的记载,这台庞然大物总重量超过30 吨,占地面积接近一个小型住宅,总花费高达100 万美元。如此巨额的投入,注定了真空管这种

量子力学常用积分公式

量子力学常用积分公式 (1) dx e x a n e x a dx e x ax n ax n ax n ??--= 11 )0(>n (2) ) cos sin (sin 22bx b bx a b a e bxdx e ax ax -+=? (3) =?axdx e ax cos ) sin cos (22bx b bx a b a e ax ++ (4) ax x a ax a axdx x cos 1sin 1sin 2 -=? (5) =?axdx x sin 2 ax a x a ax a x cos )2(sin 22 22-+ (6) ax a x ax a axdx x sin cos 1cos 2 +=? (7ax a a x ax a x axdx x sin )2 (cos 2cos 3222 -+=?) )ln(2222c ax x a a c c ax x ++++ (0>a ) (8)? = +dx c ax 2 )arcsin( 22 2x c a a c c ax x --+ + (a<0) ? 20 sin π xdx n 2 !!!)!1(π n n - (=n 正偶数) (9) = ? 2 cos π xdx n ! !! )!1(n n - (=n 正奇数) 2π (0>a )

(10)? ∞ =0 sin dx x ax 2π- (0=a n 正整数) (12) a dx e ax π210 2 = ? ∞- (13) 1210 22!)!12(2 ++∞ --= ? n n ax n a n dx e x π (14) 1 122!2 +∞ -+= ?n ax n a n dx e x (15) 2sin 0 22a dx x ax π?∞ = (16) ?∞ -+= 2 22)(2sin b a ab bxdx xe ax (0>a ) ?∞-+-=0 2 22 2 2)(cos b a b a bxdx xe ax (0>a )

(完整word版)量子力学名词解释全集

1.波粒二象性 : 一切微观粒子均具有波粒二象性(2分),满足νh E =(1分),λh P =(1分),其中E 为能量,ν为 频率,P 为动量,λ为波长(1分)。 2、测不准原理 : 微观粒子的波粒二象性决定了粒子的位置与动量不能同时准确测量(2分),其可表达为:2/P x x η≥??,2 /P y y η≥??,2/P z z η≥??(2分),式中η(或h )是决定何时使用量子力学处理问题的判据(1 分)。 3、定态波函数 : 在量子力学中,一类基本的问题是哈密顿算符不是时间的函数(2分),此时,波函数)t ,r (ρψ可写成r ρ函数和t 函数的乘积,称为定态波函数(3分)。 4、算符 使问题从一种状态变化为另一种状态的手段称为操作符或算符(2分),操作符可为走步、过程、规则、数学算子、运算符号或逻辑符号等(1分),简言之,算符是各种数学运算的集合(2分)。 5、隧道效应 在势垒一边平动的粒子,当动能小于势垒高度时,按经典力学,粒子是不可能穿过势垒的。对于微观粒子,量子力学却证明它仍有一定的概率穿过势垒(3分),实际也正是如此(1分),这种现象称为隧道效应(1分)。 6、宇称 宇称是描述粒子在空间反演下变换性质的相乘性量子数,它只有两个值 +1和-1 (1分)。如果描述某一粒子的波函数在空间反演变换(r→-r)下改变符号,该粒子具有奇宇称(P =-1 )(1分),如果波函数在空间反演下保持不变,该粒子具有偶宇称(P =+1) (1分),简言之,波函数的奇偶性即宇称(2分)。 7、Pauli 不相容原理 自旋为半整数的粒子(费米子)所遵从的一条原理,简称泡利原理(1分)。它可表述为全同费米子体系中不可能有两个或两个以上的粒子同时处于相同的单粒子态(1分)。泡利原理又可表述为原子内不可能有两个或两个以上的电子具有完全相同的4个量子数n 、l 、ml 、ms ,该原理指出在原子中不能容纳运动状态完全相同的电子,即一个原子中不可能有电子层、电子亚层、电子云伸展方向和自旋方向完全相同的两个电子(3分)。 8、全同性原理: 全同粒子的不可区分性(1分)使得其组成的体系中,两全同粒子相互代换不引起物理状态的改变(4分)。 9、输运过程: 扩散(1分)、热传导(1分)、导电(1分)、粘滞现象(1分)(系统内有宏观相对运动,动量从高速区域向低速区域的传递过程)统称为输运过程,这是一个不可逆过程(1分) 10、选择定则: 偶极跃迁中角量子数与磁量子数(1分)需满足的选择定则为1±=?l (2分), 1 ,0±=?m (2分) 11、微扰理论 在量子力学中求近似解(1分)的一种方法,核心是先求解薛定谔方程(2分),再引入微小附加项来修正

曾量子力学题库(网用)

曾谨言量子力学题库 一简述题: 1. (1)试述Wien 公式、Rayleigh-Jeans 公式和Planck 公式在解释黑体辐射能量密度随频率分布的问 题上的差别 2. (1)试给出原子的特征长度的数量级(以m 为单位)及可见光的波长范围(以?为单位) 3. (1)试用Einstein 光量子假说解释光电效应 4. (1)试简述Bohr 的量子理论 5. (1)简述波尔-索末菲的量子化条件 6. (1)试述de Broglie 物质波假设 7. (2)写出态的叠加原理 8. (2)一个体系的状态可以用不同的几率分布函数来表示吗?试举例说明。 9. (2)按照波函数的统计解释,试给出波函数应满足的条件 10.(2)已知粒子波函数在球坐标中为),,(?θψr ,写出粒子在球壳),(dr r r +中被测到的几率以及在 ),(?θ方向的立体角元?θθΩd d d sin =中找到粒子的几率。 11.(2)什么是定态?它有哪些特征? 12.(2))()(x x δψ=是否定态?为什么? 13.(2)设ikr e r 1= ψ,试写成其几率密度和几率流密度 14.(2)试解释为何微观粒子的状态可以用归一化的波函数完全描述。 15.(3)简述和解释隧道效应 16.(3)说明一维方势阱体系中束缚态与共振态之间的联系与区别。 17.(4)试述量子力学中力学量与力学量算符之间的关系 18.(4)简述力学量算符的性质 19.(4)试述力学量完全集的概念 20.(4)试讨论:若两个厄米算符对易,是否在所有态下它们都同时具有确定值? 21.(4)若算符A ?、B ?均与算符C ?对易,即0]?,?[]?,?[==C B C A ,A ?、B ?、C ?是否可同时取得确定值?为什么?并举例说明。 22.(4)对于力学量A 与B ,写出二者在任何量子态下的涨落所满足的关系,并说明物理意义。 23.(4)微观粒子x 方向的动量x p ?和x 方向的角动量x L ?是否为可同时有确定值的力学量?为什么? 24.(4)试写出态和力学量的表象变换的表达式 25.(4)简述幺正变换的性质 26.(4)在坐标表象中,给出坐标算符和动量算符的矩阵表示 27.(4)粒子处在222 1 )(x x V μω= 的一维谐振子势场中,试写出其坐标表象和动量表象的定态Schr ?dinger 方程。 28.(4)使用狄拉克符号导出不含时间的薛定谔方程在动量表象中的形式。 29.(4)如果C B A ?,?,?均为厄米算符,下列算符是否也为厄米算符?

量子力学常用公式

《量子力学》考试大纲 一.绪论(3) 1.了解光的波粒二象性的主要实验事实; 2.掌握德布罗意关于微观粒子的波粒二象性的假设。 二.波函数和薛定谔方程(12) (1)理解量子力学与经典力学在关于描写微观粒子运动状态及其运动规律时的不同观念 。 (2)掌握波函数的标准化条件:有限性、连续性、单值性. (3)理解态叠加原理以及任何波函数Ψ(x ,t)按不同动量的平面波展开的方法及其物理意义. (4)了解薛定谔方程的建立过程以及它在量子力学中的地位;薛定谔方程和定态薛定谔方程的关系;波函数和定态波函数的关系. (5)对于求解一维薛定谔方程,应掌握边界条件的确定和处理方法. (6)关于一维定态问题要求如下: a .掌握一维无限阱的求解方法及其物理讨论; b .掌握一维谐振子的能谱及其定态波函数的一般特点: c .了解势垒贯穿的讨论方法及其对隧道效应的解释. 三.力学量用算符表达(17) (1)掌握算符的本征值和本征方程的基本概念;厄米算符的本征值必为实数;坐标算符和动量算符以及量子力学中一切可观察的力学量所对应的算符均为厄米算符. (2)掌握有关动量算符和角动量算符的本征值和本征函数,它们的归一性和正交性的表达形式,以及与这些算符有关的算符运算的对易关系式. (3)电子在正点电荷库仑场中的运动提供了三维中心力场下薛定谔方程求解的范例,学生应由此了解一般三维中心力场下求解薛定谔方程的基本步骤和方法,特别是分离变量法. (4)掌握力学量平均值的计算方法.将体系的状态波函数Ψ(x)按算符F ?的本征函数展开是这些方法中常用的方法之一,学生应掌握这一方法计算力学量的可能值、概率和平均 值.理解在什么状态下力学量F ?具有确定值以及在什么条件下,两个力学量G F ??和同时具有确定值. (5)掌握不确定关系并应用这一关系来估算一些体系的基态能量. (6)掌握如何根据体系的哈密顿算符来判断该体系中可能存在的守恒量如:能量、动量、角动量、宇称等. 四.态和力学量的表象(10) (1)理解力学量所对应的算符在具体的表象下可以用矩阵来表示;厄米算符与厄米矩阵相对应;力学量算符在自身表象下为一对角矩阵; (2)掌握量子力学公式的矩阵形式及求解本征值、本征矢的矩阵方法. (3)理解狄拉克符号及占有数表象 五.微扰理论(16)

相关文档
最新文档