不同槽数槽轮机构运动分析的MATLAB实现

不同槽数槽轮机构运动分析的MATLAB实现
不同槽数槽轮机构运动分析的MATLAB实现

MATLAB程序:已知三个位置设计平面四杆机构求解程序(位移矩阵法)

%MATLAB程序:已知三个位置设计平面四杆机构求解程序(位移矩阵法) clear;clc; %凡是变量名前带v的为数值变量,不带的是符号变量 vxp1=0; vyp1=0; vsita1=0*pi/180; vxp2=-2; vyp2=6; vsita2=40*pi/180; vxp3=-10; vyp3=8; vsita3=90*pi/180; %精确位置P1,P2,P3及各角度 vsita12=vsita2-vsita1; vsita13=vsita3-vsita1; vxa=-10; vya=-2; vxd=-5; vyd=-2; %选定A,D点 %所有数值均在此确定,更改此处即可解出不同数值的四杆机构位移矩阵方程 syms xp1 yp1 xp2 yp2 xp3 yp3 sita12 sita13; syms xa ya xb1 yb1 xb2 yb2 xb3 yb3; f1='(xb2-xa)^2+(yb2-ya)^2=(xb1-xa)^2+(yb1-ya)^2'; f2='(xb3-xa)^2+(yb3-ya)^2=(xb1-xa)^2+(yb1-ya)^2'; %前两个机构方程 f3='xb2=cos(sita12)*xb1-sin(sita12)*yb1+xp2-xp1*cos(sita12)+yp1*sin(sita12)'; f4='yb2=sin(sita12)*xb1+cos(sita12)*yb1+yp2-xp1*sin(sita12)-yp1*cos(sita12)'; %由第一个位移矩阵方程得出 f5='xb3=cos(sita13)*xb1-sin(sita13)*yb1+xp3-xp1*cos(sita13)+yp1*sin(sita13)'; f6='yb3=sin(sita13)*xb1+cos(sita13)*yb1+yp3-xp1*sin(sita13)-yp1*cos(sita13)'; %由第二个位移矩阵方程得出 f1=subs(f1,{xa,ya},{vxa,vya}); f2=subs(f2,{xa,ya},{vxa,vya}); f3=subs(f3,{xp1,xp2,yp1,sita12},{vxp1,vxp2,vyp1,vsita12}); f4=subs(f4,{xp1,yp1,yp2,sita12},{vxp1,vyp1,vyp2,vsita12}); f5=subs(f5,{xp1,xp3,yp1,sita13},{vxp1,vxp3,vyp1,vsita13}); f6=subs(f6,{xp1,yp1,yp3,sita13},{vxp1,vyp1,vyp3,vsita13}); %代入具体数值 [xb1,xb2,xb3,yb1,yb2,yb3]=solve(f1,f2,f3,f4,f5,f6); %解方程 vxb1=vpa(xb1); vyb1=vpa(yb1); vxb2=vpa(xb2); vyb2=vpa(yb2); vxb3=vpa(xb3); vyb3=vpa(yb3); (vxb1-vxa)^2+(vyb1-vya)^2; (vxb2-vxa)^2+(vyb2-vya)^2; (vxb3-vxa)^2+(vyb3-vya)^2; %去掉这三行分号可验证B点三个位置是否距离A点相等 syms xd yd xc1 yc1 xc2 yc2 xc3 yc3;

基于matlab的连杆机构设计

基于matlab的连杆机构设计

————————————————————————————————作者: ————————————————————————————————日期:

目录 1平面连杆机构的运动分析 (1) 1.2 机构的工作原理 (1) 1.3机构的数学模型的建立 (1) 1.3.1建立机构的闭环矢量位置方程...................................................1 1.3.2求解方法.....................................................................2 2基于MATLAB程序设计 (4) 2.1 程序流程图 (4) 2.2 M文件编写 (6) 2.3程序运行结果输出 (7) 3 基于MATLAB图形界面设计 (11) 3.1界面设计……………………………………………………………………………………………11 3.2代码设计……………………………………………………………………………………………12

4 小结 (17) 参考文献 (18) 1平面连杆机构的运动分析 1.1 机构运动分析的任务、目的和方法 曲柄摇杆机构是平面连杆机构中最基本的由转动副组成的四杆机构,它可以用来实现转动和摆动之间运动形式的转换或传递动力。 对四杆机构进行运动分析的意义是:在机构尺寸参数已知的情况下,假定主动件(曲柄)做匀速转动,撇开力的作用,仅从运动几何关系上分析从动件(连杆、摇杆)的角位移、角速度、角加速度等运动参数的变化情况。还可以根据机构闭环矢量方程计算从动件的位移偏差。上述这些内容,无论是设计新的机械,还是为了了解现有机械的运动性能,都是十分必要的,而且它还是研究机械运动性能和动力性能提供必要的依据。 机构运动分析的方法很多,主要有图解法和解析法。当需要简捷直观地了解机构的某个或某几个位置的运动特性时,采用图解法比较方便,而且精度也能满足实际问题的要求。而当需要精确地知道或要了解机构在整个运动循环过程中的运动特性时,采用解析法并借助计算机,不仅可获得很高的计算精度及一系列位置的分析结果,并能绘制机构相应的运动线图,同时还可以把机构分析和机构综合问题联系起来,以便于机构的优化设计。 1.2 机构的工作原理 在平面四杆机构中,其具有曲柄的条件为: a.各杆的长度应满足杆长条件,即: 最短杆长度+最长杆长度≤其余两杆长度之和。 b.组成该周转副的两杆中必有一杆为最短杆,且其最短杆为连架杆或机架(当最短杆为连架杆时,四杆机构为曲柄摇杆机构;当最短杆为机架时,则为双曲柄机构)。 在如下图1所示的曲柄摇杆机构中,构件AB为曲柄,则B点应能通过曲柄与连杆两次共线的位置。

槽轮机构运动学仿真

湖南农业大学工学院 课程设计说明书 课程名称:机械CAD/CAM课程设计 题目名称:槽轮机构运动学仿真 班级:20 11 级机制专业四班 姓名: 学号: 指导教师: 评定成绩: 教师评语: 指导老师签名: 20 年月日

目录 摘要 (1) 关键词 (1) 1 槽轮机构的结构组成和工作原理 (1) 2 零件三维实体模型建立的方法 (1) 2.1 主动转盘三维实体模型建立的方法 (1) 2.2 从动槽轮三维实体模型建立的方法 (3) 2.3 其他零件三维实体模型建立的方法 (4) 3 装配模型建立的方法和步骤 (6) 4 建立装配模型的运动仿真 (9) 5 装配模型的运动仿真分析 (13) 6 装配模型的运动仿真分析结论 (15) 7 装配模型图集 (16) 7.1 总成图 (16) 7.2 爆炸图 (16) 7.3 零件图 (17) 7.4 主动转盘工程图 (18) 8 总结 (19) 参考文献.......................................... (19)

槽轮机构运动学仿真 学生: (工学院,11-机制4班,学号) 摘要:槽轮机构是将主动拨盘的连续转动转化为从动槽轮的间歇转动,以达到间歇进给、转位和分度等工作要求。运用Pro/E软件对槽轮机构进行三维实体建模及装配,并运用模块进行运动仿真分析,得出机构的角速度、角加速度随时间变化的曲线。 关键词:槽轮机构;间歇运动;运动仿真 1、槽轮机构的结构组成和工作原理 槽轮机构由槽轮和圆柱销组成的单向间歇运动机构,又称马尔他机构。它常被用来将主动件的连续转动转换成从动件的带有停歇的单向周期性转动。槽轮机构有外啮合和内啮合以及球面槽轮等。外啮合槽轮机构的槽轮和转臂转向相反,而内啮合则相同,球面槽轮可在两相交轴之间进行间歇传动。槽轮机构典型结构由主动转盘、从动槽轮和机架组成。 2、零件三维实体模型建立的方法 2.1、主动转盘三维实体模型建立的方法 ②选择模板

曲柄连杆机构运动学仿真

课程设计任务书

目录 1 绪论 (1) 1.1CATIA V5软件介绍 (1) 1.2ADAMS软件介绍 (1) 1.3S IM D ESIGNER软件介绍 (2) 1.4本次课程设计的主要内容及目的 (2) 2 曲柄连杆机构的建模 (3) 2.1活塞的建模 (3) 2.2活塞销的建模 (5) 2.3连杆的建模 (5) 2.4曲轴的建模 (6) 2.5汽缸体的建模 (8) 3 曲柄连杆机构的装配 (10) 3.1将各部件导入CATIA装配模块并利用约束命令确定位置关系 (10) 4 曲柄连杆机构导入ADAMS (14) 4.1曲柄连杆机构各个零部件之间运动副分析 (14) 4.2曲柄连杆机构各个零部件之间运动副建立 (14) 4.3曲柄连杆机构导入ADAMS (16) 5 曲柄连杆机构的运动学分析 (17) 结束语 (21) 参考文献 (22)

1 绪论 1.1 CATIA V5软件介绍 CATIA V5(Computer-graphics Aided Three-dimensional Interactive Application)是法国Dassault公司于1975年开发的一套完整的3D CAD/CAM/CAE一体化软件。它的内容涵盖了产品概念设计、工业设计、三维建模、分析计算、动态模拟与仿真、工程图的生成、生产加工成产品的全过程,其中还包括了大量的电缆和管道布线、各种模具设计与分析、人机交换等实用模块。CATIA V5不但能保证企业内部设计部门之间的协同设计功能而且还可以提供企业整个集成的设计流程和端对端的解决方案。CATIA V5大量应用于航空航天、汽车及摩托车行业、机械、电子、家电与3C产业、NC加工等领域。 由于其功能的强大而完美,CATIA V5已经成为三维CAD/CAM领域的一面旗帜和争相遵从的标准,特别是在航空航天、汽车及摩托车领域。法国的幻影2000系列战斗机就是使用CATIA V5进行设计的一个典范;波音777客机则使用CATIA V5实现了无图纸设计。另外,CATIA V5还用于制造米其林轮胎、伊莱克斯电冰箱和洗衣机、3M公司的粘合剂等。CATIA V5不仅给用户提供了详细的解决方案,而且具有先进的开发性、集成性及灵活性。 CATIA V5的主要功能有:三维几何图形设计、二维工程蓝图绘制、复杂空间曲面设计与验证、三维计算机辅助加工制造、加工轨迹模拟、机构设计及运动分析、标准零件管理。 1.2 ADAMS软件介绍 ADAMS即机械系统动力学自动分析(Automatic Dynamic Analysis of Mechanical Systems),该软件是美国MDI公司(Mechanical Dynamics Inc.)开发的虚拟样机分析软件。目前,ADAMS己经被全世界各行各业的数百家主要制造商采用。根据1999年机械系统动态仿真分析软件国际市场份额的统计资料,ADAMS软件销售总额近八千万美元、占据了51%的份额。 ADAMS软件使用交互式图形环境和零件库、约束库、力库,创建完全参数化的机械系统几何模型,其求解器采用多刚体系统动力学理论中的拉格郎日方程方法,建立系统动力学方程,对虚拟机械系统进行静力学、运动学和动力学分析,输出位移、速度、加速度和反作用力曲线。ADAMS软件的仿真可用于预测机械系统的性能、运动范围、

用matlab分析四杆机构

首先创建函数FoutBarPosition,函数fsolve通过他确定。 function t=fourbarposition(th,th2,L2,L3,L4,L1) t=[L2*cos(th2)+L3*cos(th(1))-L4*cos(th(2))-L1;… L2*sin(th2)+L3*sin(th(1))-L4*sin(th(2))]; 主程序如下: disp ' * * * * * * 平面四杆机构的运动分析* * * * * *' L1=304.8;L2=101.6;L3=254.0;L4=177.8; %给定已知量,各杆长L1,L2,L3,L4 th2=[0:1/6:2]*pi; %曲柄输入角度从0至360度,步长为pi/6 th34=zeros(length(th2),2); %建立一个N行2列的零矩阵,第一列存放options=optimset('display','off'); %θ_3,第二列存放θ_3 for m=1:length(th2) %建立for循环,求解θ_3,θ_4 th34(m,:)=fsolve('fourbarposition',[1 1],…%调用fsove函数求解关于θ_3,θ_4 options,th2(m),L2,L3,L4,L1); %的非线性超越方程,结果保存在th34中 end y=L2*sin(th2)+L3*sin(th34(:,1)'); %连杆3的D端点Y坐标值 x=L2*cos(th2)+L3*cos(th34(:,1)'); %连杆3的D端点X坐标值 xx=[L2*cos(th2)]; %连杆3的C端点X坐标值 yy=[L2*sin(th2)]; %连杆3的C端点Y坐标值 figure(1) plot([x;xx],[y;yy],'k',[0 L1],[0 0],…%绘制连杆3的几个位置点 'k--^',x,y,'ko',xx,yy,'ks') title('连杆3的几个位置点') xlabel('水平方向') ylabel('垂直方向') axis equal %XY坐标均衡 th2=[0:2/72:2]*pi; %重新细分曲柄输入角度θ_2,步长为5度 th34=zeros(length(th2),2); options=optimset('display','off'); for m=1:length(th2)

常用的机构观察与运动分析

常用的机构观察与运动分析 一、实验目的 1、掌握平面运动副的分类及其表示方法; 2、结合实例加深理解平面连杆机构的基本类型、判别及其演化; 3、熟悉凸轮机构的分类、间歇机构的工作原理、螺旋机构的结构特点; 4、熟悉齿轮传动机构的类型及其特点。 二、实验设备及工具 1、机械原理陈列柜; 2、各种机构实物模型。 三、实验内容 1、平面运动副类型及其常用符号 (1)转动副,如图1所示。 (a)全为活动构件时 (b)构件1为机架时 图1 转动副 (2)移动副,如图2所示。 (a)全为活动构件时 (b)构件1为机架时 图2 移动副 (3)高副,如图3所示。 (a)全为活动构件时 (b)构件1为机架时 图3 高副 2、平面连杆机构的基本类型 1)全部用转动副组成的平面四杆机构称为铰链四杆机构,如图4所示。铰链四杆机构分

为三种基本型式:曲柄摇杆机构(如图4a 、b )、双曲柄机构(如图4c )和双摇杆机构(如图4d )。 c d 图4 变更机架后机构的演化 2)将4个构件以转动副和移动副连接成的平面四杆机构为移副四杆机构。单移副四杆机构有以下四种类型:滑快机构、导杆机构、摇块机构和定块机构(如图5所示)。 3、凸轮机构的组成及应用 凸轮机构应用广泛,类型很多,通常按如下方法分类: 1) 按凸轮的形状分为: (1)盘形凸轮;(2)移动凸轮;(3)圆柱凸轮。 图5 曲柄滑块机构向导杆机构的演化 a )曲柄滑块机构 b )导杆机构 c )摇块机构 d )定块机构 a b

图6 内燃机气门机构图图7移动凸轮图8 自动车床进刀机构中的凸轮 2)按从动件末端形状分为: (1)尖顶从动件如图9a、d所示;(2)滚子从动件如图9b、e所示;(3)平底从动件如图9c、f 所示。 a b c d e f 图9 从动件末端形状 4、间歇机构的工作原理 常见的间歇运动机构有:棘轮机构、槽轮机构等。 1)棘轮机构主要由棘轮、棘爪和机架组成(如图10所示)。 图10 棘轮机构图11 槽轮机构 2)槽轮机构主要由带圆销的主动拨盘,带径向槽的从动槽轮和机架组成(如图11所示)。 5、螺旋机构 螺旋机构由螺杆、螺母和机架组成(如图12所示)。 图12 螺旋机构 6、齿轮机构

基于matlab的连杆机构设计

目录 1平面连杆机构的运动分析 (1) 1.2 机构的工作原理 (1) 1.3 机构的数学模型的建立 (1) 1.3.1建立机构的闭环矢量位置方程 (1) 1.3.2求解方法................................................................... ..2 2 基于MATLAB程序设计 (4) 2.1 程序流程图 (4) 2.2 M文件编写 (6) 2.3 程序运行结果输出 (7) 3 基于MATLAB图形界面设计 (11) 3.1界面设计 (11) 3.2代码设计 (12)

4 小结 (17) 参考文献 (18) 1平面连杆机构的运动分析 1.1 机构运动分析的任务、目的和方法 曲柄摇杆机构是平面连杆机构中最基本的由转动副组成的四杆机构,它可以用来实现转动和摆动之间运动形式的转换或传递动力。 对四杆机构进行运动分析的意义是:在机构尺寸参数已知的情况下,假定主动件(曲柄)做匀速转动,撇开力的作用,仅从运动几何关系上分析从动件(连杆、摇杆)的角位移、角速度、角加速度等运动参数的变化情况。还可以根据机构闭环矢量方程计算从动件的位移偏差。上述这些内容,无论是设计新的机械,还是为了了解现有机械的运动性能,都是十分必要的,而且它还是研究机械运动性能和动力性能提供必要的依据。 机构运动分析的方法很多,主要有图解法和解析法。当需要简捷直观地了解机构的某个或某几个位置的运动特性时,采用图解法比较方便,而且精度也能满足实际问题的要求。而当需要精确地知道或要了解机构在整个运动循环过程中的运动特性时,采用解析法并借助计算机,不仅可获得很高的计算精度及一系列位置的分析结果,并能绘制机构相应的运动线图,同时还可以把机构分析和机构综合问题联系起来,以便于机构的优化设计。 1.2 机构的工作原理 在平面四杆机构中,其具有曲柄的条件为: a.各杆的长度应满足杆长条件,即: 最短杆长度+最长杆长度≤其余两杆长度之和。 b.组成该周转副的两杆中必有一杆为最短杆,且其最短杆为连架杆或机架(当最短杆为连架杆时,四杆机构为曲柄摇杆机构;当最短杆为机架时,则为双曲柄机构)。 在如下图1所示的曲柄摇杆机构中,构件AB为曲柄,则B点应能通过曲柄与连杆两次共线的位置。

外槽轮机构的运动分析

% 外槽轮机构运动分析 dr=pi/180.0; % 角度与弧度的转换系数 % 销轮2转角范围:-f20

基于MATLAB的双摇杆机构运动分析与仿真模板

本科生毕业设计 基于MATLAB的双摇杆机构运动分析与仿真 Based on the MATLAB double rocker organization movement analysis and simulation

基于MATLAB/SIMULINK的双摇杆机构运动学分析与仿 真 邹凯旋 云南农业大学工程技术学院,昆明黑龙潭650201 摘要 平面连杆机构的应用十分广泛,它的分析及设计一直是机构学研究的一个重要课题。MATLAB的Simulink是一个对动态系统建模和仿真分析的软件包,为信号与系统仿真实验提供了很好的平台。借助其强大的模拟仿真分析功能可以方便的实现机构性能分析和动态仿真,降低分析的难度,有效提高设计工作效率、产品开发质量、降低开发成本。本设计课题以MATLAB的simulink\simMechanics 动态模拟仿真工具为平台,对双摇杆机构进行运动分析。结果表明该仿真方法能方便、准确的得到机构的运动、动力数据,能为机构的选择、优化设计提供参考依据。应用此工具可很好地对机械系统的各种运动进行分析,构造出平面连杆机构的数学模型。通过对此数学模型分析,分离出可独立求解的机构模型,并用相应的机构分析方法对它进行求解,建立了平面连杆机构运动学分析专家系统。系统可完成部分平面连杆机构的运动学分析及动画仿真,从而为机械系统的建模仿真提供一个强大而方便的工具。 关键词:连杆机构;动态仿真;SimMechanics;数学模型

Based on the MATLAB double rocker organization movement analysis and simulation Zou kaixuan Faculty of Engineering and Technology Yunan Agricultural University,Heilongtan Kunming 650201 ABSTRACT Planar linkage mechanism used widely, its analysis and design of the study of institutions has been an important subject. MATLAB Simulink is a dynamic system modeling and simulation software package, for signal and system simulation results provide a good platform. With its powerful simulation analysis function is realized the performance analysis and the dynamic simulation institutions, reduce the difficulties of analysis, effectively improve the design work efficiency and product development quality, reduce development costs. This design task to MATLAB simulink \ simMechanics dynamic simulation tools as the platform, on the double rocker organization motion analysis. The results show that the simulation method can conveniently, accurately to get the kinematic and dynamic data organization, for the choice of institutions, optimum design to provide the reference. This tool can application is mechanical system analysis of all kinds of sports, constructed the mathematical model of the planar linkage mechanism. Through mathematical model to analysis, separating out can be independent of solving mechanism model, and the corresponding institutions analysis method to solve it, a planar linkage mechanism kinematic analysis of the expert system. System can finish part of planar linkage mechanism kinematic analysis and animated simulation, thus for mechanical system modeling simulation provide a strong and convenient tool. Key words: linkage;Dynamic Simulation;SimMechanics;mathematical model

槽轮机构的组成及其特点

槽轮机构的组成及其特点 newmaker (1) 槽轮的组成(Composition of Geneva Mechanism) 如右图所示,主动拨盘上的圆柱销进进槽轮上的径向槽以前,凸锁止弧将凹锁止弧锁住,则槽轮静止不动。圆柱销进进径向槽时,凸、凹锁止弧恰好分离,圆柱销可以驱动槽轮转动。当圆柱销脱离径向槽时,凸锁止弧又将凹锁止弧锁住,从而使槽轮静止不动。因此,当主动拨盘作连续转动时,槽轮被驱动作单向的间歇转动。 (2)槽轮的特点 构造简单,外形尺寸小; 机械效率高,并能较平稳地,间歇地进行转位; 但因传动时存在柔性冲击,故常用于速度不太高的场合。 槽轮机构的类型及应用 (1)槽轮机构的类型(Type of Geneva Mechanism) 外槽轮机构:运动时,拨盘与槽轮为异向回转。 内槽轮机构:运动时,拨盘与槽轮为同向回转。 两种机构均用于平行轴之间的间歇传动。 (2)槽轮机构的应用举例(Application Sample of Geneva Mechanism) 外槽轮机构被广泛应用于电影放映机中。

(3)球面槽轮机构(Sphere Geneva Mechanism) 当需要在两相交轴之间进行间歇传动时,可采用球面槽轮机构。右图为球面槽轮机构。 槽轮机构的运动系数及运动特性 (1)槽轮机构的运动系数k (Motion Factor of Geneva Mechanism) k=td/t 又因拨盘1一般为等速回转,因此时间的比值可以用拨盘转角的比值来表示。可得外槽轮机构运动系数的另一表达式: 由于运动系数k应大于零,所以由上式可知外槽轮径向槽的数目z应大于3。又由上式可知,

基于matlab的平面四连杆机构设计以及该机构的运动分析

基于matlab 的平面四连杆机构设计以及该机构的运动仿真分析 摘要 四连杆机构因其结构方便灵活,能够传递动力并实现多种运动形式而被广泛应用于各个领域,因此对其进行运动分析具有重要的意 义。传统的分析方法主要应用几何综合法和解析综合法,几何综合法简单直观,但是精确度较低;解析法精确度较高,但是计算工作量大。随着计算机辅助数值解法的发展,特别是MATLAB 软件的引入,解析法已经得到了广泛的应用。对于四连杆的运动分析,若应用MATLAB 则需要大量的编程,因此我们引入proe 软件,我们不仅可以在此软件中建立实物图,而且还可以对其进行运动仿真并对其运动分析。 在设计四连杆时,我们利用解析综合法建立数学模型,再根据数学模型在MATLAB 中编程可以求得其他杆件的长度。 针对范例中所求得的各连杆的长度,我们在proe 软件中画出其三维图(如图4)并在proe软件中进行仿真分析得出B,C的角加速度的变化,从而得到B,C两接触处所受到的力是成周期性变化的,可以看出B,C两点处极易疲劳断裂,针对B,C两点处的疲劳断裂,我们提出了在设计四连杆中的一些建议。 关键字:解析法MATLAB软件proe软件运动仿真

建立用解析法设计平面四杆机构模型 对于问题中所给出的连架杆AB的三个位置与连架杆CD的三个位置相对应,即三组对应位置为: f 1」2卜2,「3卜3,其中他们对应的值分别为:135 ,112 ,90 ,82 ,45 ,52,为了便于写代数式,可作出AB与CD对应的关系,其图如下: 图一2 AB与CD三个位置对应的关系 通过上图我们可以通过建立平面直角坐标系并利用解析法来求解,其直角坐标系图如下: 图一3平面机构直角坐标系 通过建立直角坐标系OXY,如上图所示,其中:0与°为AB杆与

汽车曲柄连杆机构设计

摘要 本文以捷达EA113汽油机的相关参数作为参考,对四缸汽油机的曲柄连杆机构的主要零部件进行了结构设计计算,并对曲柄连杆机构进行了有关运动学和动力学的理论分析与计算机仿真分析。 首先,以运动学和动力学的理论知识为依据,对曲柄连杆机构的运动规律以及在运动中的受力等问题进行详尽的分析,并得到了精确的分析结果。其次分别对活塞组、连杆组以及曲轴进行详细的结构设计,并进行了结构强度和刚度的校核。再次,应用三维CAD软件:Pro/Engineer建立了曲柄连杆机构各零部件的几何模型,在此工作的基础上,利用Pro/E软件的装配功能,将曲柄连杆机构的各组成零件装配成活塞组件、连杆组件和曲轴组件,然后利用Pro/E软件的机构分析模块(Pro/Mechanism),建立曲柄连杆机构的多刚体动力学模型,进行运动学分析和动力学分析模拟,研究了在不考虑外力作用并使曲轴保持匀速转动的情况下,活塞和连杆的运动规律以及曲柄连杆机构的运动包络。仿真结果的分析表明,仿真结果与发动机的实际工作状况基本一致,文章介绍的仿真方法为曲柄连杆机构的选型、优化设计提供了一种新思路。 关键词:发动机;曲柄连杆机构;受力分析;仿真建模;运动分析;Pro/E

ABSTRACT This article refers to by the Jeeta EA113 gasoline engine’s related parameter achievement, it has carried on the structural design compution for main parts of the crank link mechanism in the gasoline engine with four cylinders, and has carried on theoretical analysis and simulation analysis in computer in kinematics and dynamics for the crank link mechanism. First, motion laws and stress in movement about the crank link mechanism are analyzed in detail and the precise analysis results are obtained. Next separately to the piston group, the linkage as well as the crank carries on the detailed structural design, and has carried on the structural strength and the rigidity examination. Once more, applys three-dimensional CAD software Pro/Engineer establishing the geometry models of all kinds of parts in the crank link mechanism, then useing the Pro/E software assembling function assembles the components of crank link into the piston module, the connecting rod module and the crank module, then using Pro/E software mechanism analysis module (Pro/Mechanism), establishes the multi-rigid dynamics model of the crank link, and carries on the kinematics analysis and the dynamics analysis simulation, and it studies the piston and the connecting rod movement rule as well as crank link motion gear movement envelopment. The analysis of simulation results shows that those simulation results are meet to true working state of engine. It also shows that the simulation method introduced here can offer a new efficient and convenient way for the mechanism choosing and optimized design of crank-connecting rod mechanism in engine. Key words: Engine;Crankshaft-Connecting Rod Mechanism;Analysis of Force; Modeling of Simulation;Movement Analysis;Pro/E

用matlab分析四杆机构

首先创建函数FoutBarPosition,函数fsolve通过他确定。 function t=fourbarposition(th,th2,L2,L3,L4,L1) t=[L2*cos(th2)+L3*cos(th(1))-L4*cos(th(2))-L1;… L2*sin(th2)+L3*sin(th(1))-L4*sin(th(2))]; 主程序如下: disp '* ** *** 平面四杆机构的运动分析*** ***' L1=304.8;L2=101.6;L3=254.0;L4=177.8;%给定已知量,各杆长L1,L2,L3,L4 th2=[0:1/6:2]*pi; %曲柄输入角度从0至360度,步长为pi/6 th34=zeros(length(th2),2); %建立一个N行2列的零矩阵,第一列存放options=optimset('display','off'); %θ_3,第二列存放θ_3 for m=1:length(th2) %建立for循环,求解θ_3,θ_4 th34(m,:)=fsolve('fourbarposition',[1 1],…%调用fsove函数求解关于θ_3,θ_4 options,th2(m),L2,L3,L4,L1); %的非线性超越方程,结果保存在th34中 end y=L2*sin(th2)+L3*sin(th34(:,1)');%连杆3的D端点Y坐标值 x=L2*cos(th2)+L3*cos(th34(:,1)');%连杆3的D端点X坐标值 xx=[L2*cos(th2)]; %连杆3的C端点X坐标值 yy=[L2*sin(th2)]; %连杆3的C端点Y坐标值 figure(1) plot([x;xx],[y;yy],'k',[0 L1],[0 0],…%绘制连杆3的几个位置点 'k--^',x,y,'ko',xx,yy,'ks') title('连杆3的几个位置点') xlabel('水平方向') ylabel('垂直方向') axis equal %XY坐标均衡 th2=[0:2/72:2]*pi; %重新细分曲柄输入角度θ_2,步长为5度 th34=zeros(length(th2),2); options=optimset('display','off'); form=1:length(th2)

基于matlab GUI的平面四杆机构的运动分析

基于matlab GUI的平面四杆机构的运动分析 一、目的 通过matlab对平面四杆机构进行运动仿真,并以GUI界面方式实现输入输出的参数化,对平面四杆机构进行位置分析、速度分析、加速度分析和静力学分析。此外,通过动画演示,更加形象直观地观察机构的运动过程。最后,将程序编译成.exe独立可执行文件,可以在其它没有安装matlab的机器上运行。 二、设计思路 通过matlab的GUI功能模块,创建一个图形用户界面,在自动生成的代码框架中对初始化函数和回调函数等进行编辑,建立与控件相关联的程序:控件属性、位置分析、速度分析、加速度分析、静力学分析、动画演示等。 图1是平面四杆机构的示意图,输入角q的运动规律为q=pi/50*t^2+q0,r1、r2是从动角。对t时刻沿着杆长距离原点A的任意一点进行分析。 注意:输入输出角的单位为度,时间t的取值范围为0:0.05:10,任意点lx的取值范围为0~a1+a2+a3,估算的从动角r1、r2的迭代初始值不能偏离平衡位置太大。 图1、平面四杆机构示意图 三、设计流程 1、通过GUI模块创建图形用户界面

命令方式:在Matlab命令窗口键入>>guide;菜单方式:在Matlab的主窗口中,选择File>New>GUI命令,就会显示GUI的设计模板。如图1所示。 图2、创建图形界面 2、设计图形界面 在创建之后的图形界面中插入坐标轴axes,静态文本框static text,编辑文本框edit text,按钮push button等等。如图所示。 图3、图形界面设计

3、编辑回调函数 1)位置分析:输入角的函数为:q=pi/50*t^2+q0。在时间t=0~10s内,每一个时间点估算两个初始从动角,根据牛顿-拉普森迭代得到准确的机构位置。10s刚好主动角经历了360度,记录每一时刻的位置,便可以动画演示。 2)速度分析:输入角速度为:dq=pi/25*t。选择杆件上的任意一点(坐标表示为质点沿着杆件到原点A的距离)做分析,正确表达出角速度系数和速度系数,便可以求出质点的速度。 3)加速度分析:输入角加速度为:ddq=pi/25。正确表达出向心系数和角加速度系数,便可以求出质点的加速度。 4)静力学分析:由虚功原理可知,当广义力Q(V,H)=0(或近似为零)时机构达到平衡,记录该平衡条件下的位置数据。 四、结果演示 1、机构杆长条件判断 1)不符合杆长条件。如图4所示。 图4、不符合杆长条件

曲柄摇杆机构的运动分析

% 曲柄摇杆机构运动分析 % (1)-计算连杆的输出角th3和摇杆的输出角th4 % 设定各杆的长度(单位:毫米) rs(1)=304.8; % 设定机架1长度 rs(2)=101.6; % 设定曲柄2长度 rs(3)=254.0; % 设定连杆3长度 rs(4)=177.8; % 设定摇杆4长度 dr=pi/180.0;% 角度与弧度的转换系数 % 设定初始推测的输入 % 机构的初始位置 th(1)=0.0; % 设定曲柄2初始位置角是0度(与机架1共线) th(2)=45*dr; % 连杆3的初始位置角是 45度 th(3)=135*dr; % 摇杆4的初始位置角是135度 % 摇杆4的初始位置角可以用三角形的正弦定理确定 th(3)=pi-asin(sin(th(2))*rs(3)/rs(4)); dth=5*dr; % 循环增量 % 曲柄输入角从0度变化到360度,步长为5度,计算th34 for i=1:72 [th3,th4]=ntrps(th,rs); % 调用牛顿—辛普森方程求解机构位置解非线性方程函数文件 % Store results in a matrix-th34,in degrees % 在矩阵th34中储存结果,以度为单位;(i,:)表示第i行所有列的元素;(:,i)表示第i 列所有行的元素 th34(i,:)=[th(1)/dr th3/dr th4/dr]; % 矩阵[曲柄转角连杆转角摇杆转角] th(1)=th(1)+dth; % 曲柄转角递增 th(2)=th3; % 连杆转角中间计算值 th(3)=th4; % 摇杆转角中间计算值 end % 求解曲柄摇杆机构中连杆的输出角th(3)和摇杆的输出角th(4)—函数文件 function [th3,th4]=ntrps(th,rs) % 使用基于牛顿—辛普森方程解答四杆机构位置的非线性问题 % 变量设置 % th(1)=theta_2 % 输入变量 % th(2)=theta_3_bar(starting guess) % 输出变量 % th(3)=theta_4_bar(starting guess) % 输出变量 % rs(1)=r_1,机架长度;rs(2)=r_2,曲柄长度;rs(3)=r_3,rs(4)=r_4,摇杆长度 th2=th(1); th3bar=th(2); th4bar=th(3); % 设定收敛条件 epsilon=1.0E-6; % 计算二维矢量的函数 % 四杆机构闭环矢量方程的矩阵形式

相关文档
最新文档