高考不等式的一些方法与技巧

高考不等式的一些方法与技巧
高考不等式的一些方法与技巧

有关不等式的一些方法与技巧

不等式问题中涉及的方法与技巧很多,这几年高考中对不等式的要求有所降低。但我们对一些较常见的方法与技巧也必须要有一定的了解。下面通过几个具体的例题,来说明一下,希望对学生解题能力的培养与方法的提升有所帮助。 一、配凑系数的技巧

例1设x 、y、z都是正数,则

2

222z

y x yz

xy +++的最大值为( )。 A、1 B、2 C、

25 D、5

52 分析:在我们用均值不等式时,经常会用到配凑系数来求最值。显然如果我们直接处理

2

524222

222222z y x z y y x yz xy ++=+++≤+,显然与分母的比值不是常数。我们很希

望通过利用均值不等式将分子中2

y 的系数调整为1,如何实现这个目标呢?我们注意到xy 的系数为1,而yz 2的系数为2。联想到三角函数中的化一公式(或称辅助角公式),)sin(cos sin 22?++=+x B A x B x A ,

(其中)tan ,0A

B

AB =≠?。我们不妨可以借鉴这里所使用的方法来处理,从而对y 的系数进行调整。提出52122=+来,这样

yz xy 2+)2(5)25425(5)5

25(

52222

22

2z y x z y x y z y x y ++=+++≤+=。这样y 2的系数调整成1,分子与分母的比值为常数2

5

。也实现了我们的最初目的。这里我们处理的手段就是配凑系数。 解法略。

二、常值代换的技巧. 例2、已知y x y

x y x +=+>>则且

,19

1,0,0的最小值为 。 分析:有些不等式问题中在求最值和范围时要利用常数“1”的代换技巧 解:19

1,0,0=+>>y

x y x 且

Θ, 169210910))(91(=?+≥++=++=+∴y

x

x y y x x y y x y x y x ,

当且仅当

号等时取即""12,49===y x y

x

x y .故最小值为16.

评析:本题除此法外,还可以用三角换元的方法。 三、巧妙赋值.

例3. 设实数a 使得不等式|2x ?a |+|3x ?2a |≥a 2对任意实数x 恒成立,则满足条件的a 所组成的集合是( )

A. ]31,31[-

B. ]2

1,21[-

C. ]31

,41[-

D. [?3,3] 分析:我们可用附值法可若令a x 32

=,则有31||≤a ,排除B 、D 。由对称性排除C ,从而

只有A 正确。注意若仅令x=0或2

a

将会得到错误结果。

我们有更一般的解决方法吗?对k ∈R ,不妨令ka x 2

1

=,(当然也可令ka x =),则原

不等式为2

|||3

4|||23|1|||a k a k a ≥-?+-?,

由此易知原不等式等价于|3

4

|23|1|||-+-≤k k a ,对任意的k ∈R 成立。由于

?????????<-<≤-≥-=-+-12

533

4

121134325

|34|23|1|k k k k k k k k ,

所以31|}34|23|1{|min R =-+-∈k k k ,从而上述不等式等价于3

1

||≤a 。

四、函数与数形结合思想的运用

例4. 已知2

1

,)11(,1,02

<

--∈≠>x

a x ,x a a 若不等式时当且恒成立,则a 的取值范围为 .

分析: 此不等式是一个超越不等式,要求出a 的范围有些同学可能会想到反解a ,但是这显然做不到。这样我们不妨将原不等式变形为

.)1,1(,2

1

2时恒成立在-∈->x x a x

设函数2

1

)(,)(2

-

==x x g a x f x

,这两个函数我们还是较熟悉的。在同一坐标系内,分别作出它们的图像。由函数的单调性及图像可知:

当21),1()1(,1≤<-≥->a g f a 得需时

当12

1

),1()1(,10≤≤≥<

1[Y . 五、两边夹的思想方法

两边夹的方法,对于解决不能通过计算准确求解的不等式问题是一种很好的方法。在以前的高考中也曾出现过。这种方法很好的考查了学生的思维。 例5.已知函数)(x f 满足)1(2

1)(2

+≤

≤x x f x ,对一切实数x 恒成立,则=)1(f

X

分析:因为)1(2

1)(2

+≤

≤x x f x 对一切实数x 恒成立,不妨令1=x ,则有1)1(,1)11(2

1

)1(12=∴=+≤≤f f 。

另外,还有构造法及一些特殊不等式如柯西不等式.有兴趣的同学可以参考一些课外资料学习一下.

跟踪练习:

1、已知+

∈R r q p ,,,则

2

223r

q p qr

pq +++的最大值为( )。 A、1 B、2 C、

25 D、5

52 2、命题p :关于x 的不等式2

420x

e x x m +-->对于一切实数x 均成立,命题q :3m ≤,则p 是q 成立的( )。

(A) 充分而不必要条件 (B) 必要而不充分条件 (C) 充分必要条件 (D) 既不充分也不必要条件

3、已知函数2

()21f x x x =++,若存在实数t ,当[1,]x m ∈时()f x t x +≤恒成立,则实数m 的最大值为

(A) 2 (B) 3 (C) 4 (D) 5 4、已知))((,1

,,,z y y x xyz

z y x R z y x ++=

++∈则且的最小值为 . 5、 设二次函数)0,,,()(2

≠∈++=a R c b a c bx ax x f 且满足条件: (1)当R x ∈时,;)(),2()4(x x f x f x f ≥-=-且 (2)当2

)2

1(

)(),2,0(+≤∈x x f x 时; (3))(x f 在R 上的最小值为0. 则)(x f = .

新高考总复习 数学 第二章 函数 第3节 函数的奇偶性与周期性 习题

多维层次练9 [A级基础巩固] 1.(多选题)(2020·广东肇庆检测)下列函数中,既是奇函数,又在其定义域上单调递增的是() A.y=-1 x B.y=2 x-2-x C.y=sin x D.y=x|x| 解析:C项在定义域上有增有减,A选项定义域为(-∞,0)∪(0,+∞),单调区间是(-∞,0)和(0,+∞)不能写成并集,所以A选项错误.对于B选项,f(-x)=2-x-2x=-f(x)是奇函数,并且在定义域上为增函数.D项,当x≥0,y=x2是增函数;x≤0时,y=-x2也是增函数,且y=x|x|是奇函数. 答案:BD 2.(2020·广东湛江模拟)已知函数g(x)=f(2x)-x2为奇函数,且f(2)=1,则f(-2)=() A.-2 B.-1 C.1 D.2 解析:因为g(x)为奇函数,且f(2)=1,所以g(-1)=-g(1), 所以f(-2)-1=-f(2)+1=-1+1=0,所以f(-2)=1. 答案:C 3.若函数y=f(2x-1)是偶函数,则函数y=f(2x+1)的图象的对称轴是() A.x=-1 B.x=0 C.x=1 2D.x=- 1 2

解析:因为函数y =f (2x -1)是偶函数,所以函数y =f (2x -1)的图象关于y 轴对称,因为函数y =f (2x +1)的图象是由函数y =f (2x - 1)的图象向左平移一个单位得到,故y =f (2x +1)的图象关于x =-1对称. 答案:A 4.已知函数f (x )是定义在R 上的奇函数,其最小正周期为4, 且当x ∈? ?? ??-32,0时,f (x )=log 2(-3x +1),则f (2 021)等于( ) A .4 B .2 C .-2 D .log 27 解析:因为函数f (x )是定义在R 上的奇函数,其最小正周期为4,所以f (2 021)=f (4×505+1)=f (1)=-f (-1). 因为-1∈? ????-32,0,且当x ∈? ?? ??-32,0时, f (x )=log 2(-3x +1), 所以f (-1)=log 2[-3×(-1)+1]=2, 所以f (2 021)=-f (-1)=-2. 答案:C 5.(一题多解)已知奇函数f (x )在R 上是增函数,g (x )=xf (x ).若a =g (-log 25.1),b =g (20.8),c =g (3),则a ,b ,c 的大小关系为( ) A .a

高考数学经典专题:绝对值不等式含参数成立问题(含详解答案)

高考数学经典专题:绝对值不等式中含参数成立问题 1.已知函数()|1||2|f x x x m m =-+-∈R ,. (1)当3m =时,解不等式()3f x ≥; (2)证明:当0m <时,总存在0x 使00()21f x x <-+成立 2.已知函数()32f x x =-. (1)若不等式213f x t ? ?+≥- ???的解集为11,,33????-∞-?+∞ ??????? ,求实数t 的值; (2)若不等式()3133y y f x x m -≤+++?对任意x ,y 恒成立,求实数m 的取值范 围. 3.已知函数()2f x x a =-,()|1|g x a x =-,a R ∈. (Ⅰ)若1a =,求满足()(1)1g x g x +->的实数x 的取值范围; (Ⅱ)设()()()h x f x g x =+,若存在12,[2,2]x x ∈-,使得()()216h x h x -≥成立,试求实数a 的取值范围. 4.已知()|3|f x ax =-,不等式()6f x …的解集是{|13}x x -剟 . (1)求a 的值; (2)若()()3 f x f x k +-<存在实数解,求实数k 的取值范围. 5.已知函数f (x )=|2x ﹣a |+|x ﹣a +1|. (1)当a =4时,求解不等式f (x )≥8; (2)已知关于x 的不等式f (x )2 2 a ≥在R 上恒成立,求参数a 的取值范围. 6.已知定义在R 上的函数2 ()|24|f x x a x a =-+-. (1)当1a =时,解不等式()5f x ≥; (2)若2()4f x a -≥对任意x ∈R 恒成立,求a 的取值范围. 7.已知,a b 均为实数,且3410a b += . (Ⅰ)求22a b +的最小值; (Ⅱ)若2232x x a b +--≤+对任意的,a b ∈R 恒成立,求实数x 的取值范围.

高考数学真题分类汇编专题不等式理科及答案

专题七 不等式 1.【2015高考四川,理9】如果函数()()()()21 281002 f x m x n x m n = -+-+≥≥, 在区间122?????? ,上单调递减,则mn 的最大值为( ) (A )16 (B )18 (C )25 (D )812 【答案】B 【解析】 2m ≠时,抛物线的对称轴为82n x m -=--.据题意,当2m >时,8 22 n m --≥-即212m n +≤ .26,182 m n mn +≤ ≤∴≤Q .由2m n =且212m n +=得3,6m n ==.当2m <时,抛物线开口向下,据题意得,81 22 n m -- ≤-即218m n +≤ .281 9,22 n m mn +≤ ≤∴≤Q .由2n m =且218m n +=得92m =>,故应舍去.要使得mn 取得最大值,应有218m n +=(2,8)m n <>.所以 (182)(1828)816mn n n =-<-??=,所以最大值为18.选B.. 【考点定位】函数与不等式的综合应用. 【名师点睛】首先弄清抛物线的开口方向和对称轴,结合所给单调区间找到m 、n 满足的条件,然后利用基本不等式求解.本题将函数的单调性与基本不等式结合考查,检测了学生综合运用知识解题的能力.在知识的交汇点命题,这是高考的一个方向,这类题往往以中高档题的形式出现. 2.【2015高考北京,理2】若x ,y 满足010x y x y x -?? +??? ≤, ≤,≥,则2z x y =+的最大值为( ) A .0 B .1 C . 3 2 D .2 【答案】D 【解析】如图,先画出可行域,由于2z x y = +,则11 22 y x z =- +,令0Z =,作直线1 2 y x =- ,在可行域中作平行线,得最优解(0,1),此时直线的截距最大,Z 取

广东省高考数学复习专题汇编 不等式(试题)

不等式 2007 2008 2009 2010 2011 2012 2013 2014 22分 12分 10分 5分 5分 5分 (2008年高考广东卷第10小题) 设a 、b ∈R ,若a - |b | > 0,则下列不等式中正确的是(D ) A. b - a > 0 B. a 3 + b 3 < 0 C. a 2 - b 2 < 0 D. b + a > 0 (2008年高考广东卷第12小题) 若变量x 、y 满足24025000 x y x y x y +≤??+≤? ?≥??≥?,则32z x y =+的最大值是__70_____。 (2008年高考广东卷第17小题)某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房。经测算,如果将楼房建为x (x ≥10)层,则每平方米的平均建筑费用为560 + 48x (单位:元)。为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?(注:平均综合费用 = 平均建筑费用 + 平均购地费用,平均购地费用 = 购地总费用/建筑总面积)。 【解析】设楼房每平方米的平均综合费为f (x )元,则 ()()21601000010800 56048560482000f x x x x x ?=++=++()10,x x Z +≥∈ ()2 10800 48f x x '=- , 令 ()0f x '= 得 15x = 当 15x > 时,()0f x '> ;当 015x <<时,()0f x '< 因此 当15x =时,f (x )取最小值()152000f =; 答:为了楼房每平方米的平均综合费最少,该楼房应建为15层。 (2010年高考广东卷第19小题) 某营养师要为某个儿童预定午餐和晚餐.已知一个单位的午餐含12个单位的碳水化合物,6个单位的蛋白质和6个单位的维生素C ;一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质和10个单位的维生素C .另外,该儿童这两餐需要的营养中至少含64个单位的碳水化合物,42个单位的蛋白质和54个单位的维生素C .如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐? 19.解:设应当为该儿童分别预订x 个单位的午餐,y 个单位的晚餐,所花的费用为z ,则依题意得:

绝对值不等式,高考历年真题

温馨提示: 高考题库为Word 版,请按住Ctrl ,滑动鼠标滚轴,调节合适的观看比例,点击右上角的关闭按钮可返回目录。 【考点35】绝对值不等式 2009年考题 1、(2009全国Ⅰ)不等式 1 1 X X +-<1的解集为( )(A ){x }}01{1x x x ??? (B){ }01x x ??(C ){}10x x -?? (D){ }0x x ? 【解析】选D. 0040)1()1(|1||1|11 1 22

【解析】原不等式等价于不等式组①221(2)0x x x ≥??---解得 又 0,x x <∴不存在; 当1 02 x ≤< 时,原不等式可化为211,0x x x -+<+>解得 又11 0,0;22 x x ≤<∴<< 当1 11 ,211,222 22 x x x x x x ≥-<+<≥∴≤<原不等式可化为解得又 综上,原不等式的解集为|0 2.x x <<

高考数学真题分类汇编专题不等式理科及答案

高考数学真题分类汇编专题不等式理科及答案 Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】

专题七 不等式 1.【2015高考四川,理9】如果函数()()()()21 281002 f x m x n x m n = -+-+≥≥, 在区间122?? ???? ,上单调递减,则mn 的最大值为( ) (A )16 (B )18 (C )25 (D )812 【答案】B 【解析】 2m ≠时,抛物线的对称轴为82n x m -=- -.据题意,当2m >时,8 22 n m --≥-即212m n +≤.226,182 m n m n mn +?≤ ≤∴≤.由2m n =且212m n +=得3,6m n ==.当2m <时,抛物线开口向下,据题意得,81 22 n m -- ≤-即218m n +≤.281 29,22 n m n m mn +?≤ ≤∴≤.由2n m =且218m n +=得92m =>,故应舍去.要使得mn 取得最大值,应有218m n +=(2,8)m n <>.所以 (182)(1828)816mn n n =-<-??=,所以最大值为18.选B.. 【考点定位】函数与不等式的综合应用. 【名师点睛】首先弄清抛物线的开口方向和对称轴,结合所给单调区间找到m 、n 满足的条件,然后利用基本不等式求解.本题将函数的单调性与基本不等式结合考查,检测了学生综合运用知识解题的能力.在知识的交汇点命题,这是高考的一个方向,这类题往往以中高档题的形式出现. 2.【2015高考北京,理2】若x ,y 满足010x y x y x -?? +??? ≤, ≤,≥,则2z x y =+的最大值为 ( ) A .0 B .1 C .32 D .2 【答案】D

2013年全国高考理科数学试题分类汇编16:不等式选讲

2013年全国高考理科数学试题分类汇编16:不等式选讲 一、填空题 1 .(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))若关于实数x 的不等式 53x x a -++<无解,则实数a 的取值范围是_________ 【答案】(],8-∞ 2 .(2013年高考陕西卷(理))(不等式选做题) 已知a , b , m , n 均为正数, 且a +b =1, mn =2, 则 (am +bn )(bm +an )的最小值为_______. 【答案】2 3 .(2013年高考江西卷(理))(不等式选做题)在实数范围内,不等式211x --≤的解集为_________ 【答案】[]0,4 4 .(2013年高考湖北卷(理))设 ,,x y z R ∈,且满足:2221x y z ++=,23x y z ++=,则x y z ++=_______. 【答案】 二、解答题 5 .(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))选修4—5;不等式选讲 设,,a b c 均为正数,且1a b c ++=,证明: (Ⅰ)13ab bc ca ++≤; (Ⅱ)222 1a b c b c a ++≥. 【答案】 6 .(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))选修4-5:不等式选讲 已知函数()f x x a =-,其中1a >.

(I)当=2a 时,求不等式()44f x x ≥=-的解集; (II)已知关于x 的不等式()(){} 222f x a f x +-≤的解集为{}|12x x ≤≤,求a 的值. 【答案】 7 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))不等式选讲:设不等式 *2()x a a N -<∈的解集为A ,且32A ∈,12 A ?. (1)求a 的值; (2)求函数()2f x x a x =++-的最小值. 【答案】解:(Ⅰ)因为32A ∈,且12A ?,所以322a -<,且122 a -≥ 解得1322 a <≤,又因为*a N ∈,所以1a = [来源:12999数学网] (Ⅱ)因为|1||2||(1)(2)|3x x x x ++-≥+--= 当且仅当(1)(2)0x x +-≤,即12x -≤≤时取得等号,所以()f x 的最小值为3 8 .(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))D.[选修4-5: 不定式选讲]本小题满分10分. 已知b a ≥>0,求证:b a ab b a 223322-≥- [必做题]第22、23题,每题10分,共20分.请在相应的答题区域内作答,若多做,解答时应写出文字说明、证明过程或演算步骤. 【答案】D 证明:∵=---b a ab b a 223322()=---)(223223b b a ab a () )(22222b a b b a a ---

高考数学(一轮复习)最基础考点:函数的周期性

专题6 函数的周期性 函数的周期性 ★★★ ○○○○ 1.周期函数 对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期. 2.最小正周期 如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.周期函数y=f(x)满足: (1)若f(x+a)=f(x-a),则函数的周期为2a; (2)若f(x+a)=-f(x),则函数的周期为2a; (3)若f(x+a)=-1 f x,则函数的周期为2 a; (4)若f(x+a)=1 f x,则函数的周期为2 a; (5)若函数f(x)关于直线x=a与x=b对称,那么函数f(x)的周期为2|b-a|; (6)若函数f(x)关于点(a,0)对称,又关于点(b, 0)对称,则函数f(x)的周期是2|b-a|; (7)若函数f(x)关于直线x=a对称,又关于点(b,0)对称,则函数f(x)的周期是4|b-a|; (8)若函数f(x)是偶函数,其图象关于直线x=a对称,则其周期为2a; (9)若函数f(x)是奇函数,其图象关于直线x=a对称,则其周期为4a.

函数周期性的判定与应用 (1)判定:判断函数的周期性只需证明f(x +T)=f(x)(T≠0)即可. (2)应用:根据函数的周期性,可以由函数的局部性质得到函数的整体性质,在解决具体问题时,要注意结论:若T 是函数的周期,则kT(k ∈Z 且k≠0)也是函数的周期. [典例] (1)(·郑州模拟)已知函数f (x )=?? ? 21-x ,0≤x ≤1, x -1,1

高考数学不等式专题

基本不等式专题 一、知识点总结 1、基本不等式原始形式 (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ 2、基本不等式一般形式(均值不等式) 若*,R b a ∈,则ab b a 2≥+ 3、基本不等式的两个重要变形 (1)若* ,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则2 2? ? ? ??+≤b a ab 总结:当两个正数的积为定植时,它们的和有最小值; 5、常用结论 (1)若0x >,则1 2x x +≥ (当且仅当1x =时取“=”) (2)若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) (3)若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) (4)若R b a ∈,,则2 )2(222b a b a ab +≤ +≤ (5)若*,R b a ∈,则22111 22b a b a ab b a +≤+≤≤+ (6),、、)(3 33 333 3 3 +∈++≤?≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立; (7))(333 3+ ∈?? ? ??++≤?≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时, “ =”号成立. (1)若,,,a b c d R ∈,则22222()()()a b c d ac bd ++≥+ (2)若123123,,,,,a a a b b b R ∈,则有: 22222221231123112233()()()a a a b b b a b a b a b ++++≥++

高考含绝对值不等式的解法

高考中常见的七种含有绝对值的不等式的解法 类型一:形如)()(,)(R a a x f a x f ∈><型不等式 解法:根据a 的符号,准确的去掉绝对值符号,再进一步求解.这也是其他类型的解题基础. 1、当0>a 时, a x f a a x f <<-?<)()( a x f a x f >?>)()(或a x f -<)( 2、当0=a a x f <)(,无解 ?>a x f )(使0)(≠x f 的解集 3、当0a x f )(使)(x f y =成立的x 的解集. 例1 (2008年四川高考文科卷)不等式22<-x x 的解集为( ) A.)2,1(- B.)1,1(- C.)1,2(- D.)2,2(- 解: 因为 22<-x x ,

所以 222<-<-x x . 即 ?????<-->+-0 20222x x x x , 解得: ? ??<<-∈21x R x , 所以 )2,1(-∈x ,故选A. 类型二:形如)0()(>><><<)()0()( 或a x f b -<<-)( 需要提醒一点的是,该类型的不等式容易错解为: b x f a a b b x f a <><<)()0()( 例2 (2004年高考全国卷)不等式311<+

2017-18全国卷高考真题 数学 不等式选修专题

2017-2018全国卷I -Ⅲ高考真题 数学 不等式选修专题 1.(2017全国卷I,文/理.23)(10分) [选修4—5:不等式选讲](10分) 已知函数f (x )=–x 2+ax +4,g (x )=│x +1│+│x –1│. (1)当a =1时,求不等式f (x )≥g (x )的解集; (2)若不等式f (x )≥g (x )的解集包含[–1,1],求a 的取值范围. 【答案解析】 解:(1)当1a =时,()24f x x x =-++,是开口向下,对称轴12 x = 的二次函数. ()211121121x x g x x x x x >??=++-=-??-<-?,,≤x ≤,, 当(1,)x ∈+∞时,令242x x x -++= ,解得x =()g x 在()1+∞, 上单调递增,()f x 在()1+∞,上单调递减 ∴此时()()f x g x ≥ 解集为1? ?? . 当[]11x ∈-, 时,()2g x =,()()12f x f -=≥. 当()1x ∈-∞-, 时,()g x 单调递减,()f x 单调递增,且()()112g f -=-=. 综上所述,()()f x g x ≥ 解集1?-??? . (2)依题意得:242x ax -++≥在[]11-, 恒成立. 即220x ax --≤在[]11-, 恒成立. 则只须()()2211201120 a a ?-?-??----??≤≤,解出:11a -≤≤. 故a 取值范围是[]11-, .

2.(2017全国卷Ⅱ,文/理.23)(10分) [选修4-5:不等式选讲](10分) 已知0a >,222ba b +==2.证明: (1)()22()4a b a b ++≥; (2)2a b +≤. 【答案解析】 3.(2017全国卷Ⅱ,文/理.23)(10分) [选修4—5:不等式选讲](10分) 已知函数f (x )=│x +1│–│x –2│. (1)求不等式f (x )≥1的解集; (2)若不等式f (x )≥x 2–x +m 的解集非空,求m 的取值范围. 【答案解析】 解:(1)()|1||2|f x x x =+--可等价为()3,121,123,2--??=--<

不等式高考真题汇编(含答案)

【2010 课标卷】设函数f(x)= 2x 4 1 (Ⅰ) 画出函数y=f(x) 的图像; (Ⅱ)若不等式f(x) ≤ax 的解集非空,求 a 的取值范围. 【答案】 【2011 课标卷】设函数 f ( x) x a 3x , 其中a 0。 (Ⅰ)当a 1时,求不等式 f (x) 3x 2 的解集 (Ⅱ)若不等式 f (x) 0的解集为x| x 1 ,求 a 的值。 解:(Ⅰ)当a 1时,f (x) 3x 2可化为| x 1| 2。 由此可得x 3或x 1。故不等式 f (x) 3x 2的解集为{ x | x 3或x 1} 。( Ⅱ) 由f (x) 0得:x a 3x 0 x a x a 此不等式化为不等式组x a x a 3x 0 或 x a a x 3x 0 即 a x 或 4 a a 2 a 因为 a 0,所以不等式组的解集为| x x 由题设可得 2 a 2 = 1,故a 2 1

【2012 课标卷】已知函数 f (x) x a x 2 (1)当a 3时,求不等式 f ( x) 3的解集; (2)若 f (x) x 4 的解集包含[1,2] ,求a 的取值范围。【解析】(1)当a 3时, f ( x) 3 x 3 x 2 3 x 2 3 x 2 x 3 或 2 x 3 或 3 x x 2 3 x 3 x 3 x 2 3 x 1或x 4 (2)原命题f (x) x 4 在[1,2] 上恒成立x a 2 x 4 x在[1,2] 上恒成立 2 x a 2 x在[1,2] 上恒成立 3 a 0 【2013 课标Ⅰ卷】已知函数 f (x) =|2x 1| | 2x a |, g(x) = x 3 . (Ⅰ)当 a =2 时,求不等式 f (x) <g( x) 的解集; (Ⅱ)设 a >-1, 且当x ∈[ a 2 , 1 2 ) 时, f (x) ≤g(x) , 求a 的取值范围. 【解析】当 a =-2 时,不等式 f (x) <g (x) 化为|2x 1| | 2x 2 | x 3 0 , 5x, x 1 2 设函数y =|2x 1| |2x 2 | x 3 ,y = 1 x 2, x 1 2 ,3x 6, x 1 其图像如图所示,从图像可知,当且仅当x (0,2) 时,y <0 ∴原不等式解集是{ x | 0 x 2} . a (Ⅱ)当x ∈[ , 2 ∴x a 2对x∈[ 1 2 ) 时, f (x) =1 a ,不等式 f (x) ≤g( x) 化为1 a x 3, 4 a 1 a ) 都成立,故, a 2,即a ≤ , 2 2 2 3 ∴a 的取值范围为(-1 ,4 3 ]. 【2013 课标Ⅱ卷】设a、b、c均为正数,且 a b c 1,证明:

高中数学 函数周期性总结

函数的周期性 一、周期函数的定义 对于函数()f x ,如果存在一个非零常数....T ,使得当x 取定义域内的每一个值.... 时,都有()()f x T f x +=, 那么函数()f x 就叫做周期函数,非零常数T 叫做这个函数的周期。 说明:(1)T 必须是常数,且不为零; (2)对周期函数来说()()f x T f x +=必须对定义域内的任意x 都成立。 二、常见函数的最小正周期 正弦函数 y =sin (ωx +φ)(w>0)最小正周期为T= ωπ2 y=cos (ωx+φ)(w>0)最小正周期为T= ω π 2 y =tan (ωx +φ)(w>0)最小正周期为T= ω π y =|sin (ωx +φ)|(w>0)最小正周期为T= ω π f(x)=C(C 为常数)是周期函数吗?有最小正周期吗? 三、抽象函数的周期总结 1、)()(x f T x f =+ ?)(x f y =的周期为T 2、)()(x b f a x f +=+ )(b a < ?)(x f y =的周期为a b T -= 3、)()(x f a x f -=+ ?)(x f y =的周期为a T 2= 4、) ()(x f c a x f =+ (C 为常数) ?)(x f y =的周期为a T 2= 5 ) (1) (1)(x f x f a x f +-=+ ?)(x f y =的周期为a T 2= 6、 1)(1 )(+- =+x f a x f ?)(x f y =的周期为a T 4= 7、) (1) (1)(x f x f a x f -+=+ ?)(x f y =的周期为a T 4= 8、)()()2(x f a x f a x f -+=+ ?)(x f y =的周期为a T 6= 9、)1()()2(++=++++n x f n x f n x f ;(它是周期函数,一个周期为6) 10、)(x f y =有两条对称轴a x =和b x =()b a < ?)(x f y = 周期)(2a b T -= 11、)(x f y =有两个对称中心)0,(a 和)0,(b ?)(x f y = 周期)(2a b T -=

绝对值不等式解法问题—7大类型专题

绝对值不等式解法问题—7大类型 类型一:形如型不等式 解法:根据的符号,准确的去掉绝对值符号,再进一步求解.这也是其他类型的解题基础. 1、当时, 或 2、当 ,无解 使的解集 3、当时, ,无解 使成立的的解集. 例1不等式的解集为() A. B. C. D. 解: 因为,所以. 即 , 解得:

, 所以,故选A. 类型二:形如型不等式 解法:将原不等式转化为以下不等式进行求解: 或 需要提醒一点的是,该类型的不等式容易错解为: 例2 不等式的解集为() A. B. C. D. 解: 或 或,故选D 类型三:形如,型不等式,这类不等式如果用分类讨论的方法求解,显得比较繁琐,其简洁解法如下解法:把看成一个大于零的常数进行求解,即: , 或 例3设函数,若,则的取值范围是 解:

,故填:. 类型四:形如型不等式 解法:可以利用两边平方,通过移项,使其转化为:“两式和”与“两式差”的积的方法进行,即: 例4不等式的解集为 解: 所以原不等式的解集为 类型五:形如型不等式 解法:先利用绝对值的定义进行判断,再进一步求解,即: ,无解 例5解关于的不等式 解:

(1)当时,原不等式等价于: (2)当时,原不等式等价于: (3)当时,原不等式等价于: 或 或 综上所述 (1)当时,原不等式的解集为: (2)当时,原不等式的解集为: (3)当时,原不等式的解集为: 类型六:形如使恒成立型不等式. 解法:利用和差关系式:,结合极端性原理

即可解得,即: ; ; 例6不等式对任意的实数恒成立,则实数a 的取值范围是() A. B. C. D. 解: 设函数 所以 而不等式对任意的实数恒成立 故,故选择A 类型七:形如 , , 1、解法:对于解含有多个绝对值项的不等式,常采用零点分段法,根据绝对值的定义分段去掉绝对值号,最后把各种情况综合得出答案,其步骤是:找出零点,确定分段区间;分段求解,确定各段解

高考数学专题练习:不等式与线性规划

高考数学专题练习:不等式与线性规划 1。若不等式(-2)n a -3n -1-(-2)n <0对任意正整数n 恒成立,则实数a 的取值范围是( ) A 。? ? ???1,43 B 。? ???? 12,43 C 。? ? ???1,74 D 。? ?? ??12,74 答案 D 解析 当n 为奇数时,要满足2n (1-a )<3n -1恒成立, 即1-a <13× ? ????32n 恒成立,只需1-a <13×? ????321,解得a >1 2; 当n 为偶数时,要满足2n (a -1)<3n -1恒成立, 即a -1<13× ? ????32n 恒成立,只需a -1<13×? ????322,解得a <7 4。 综上,12<a <7 4,故选D 。 2。已知a >0,b >0,且a ≠1,b ≠1,若log a b >1,则( ) A 。(a -1)(b -1)<0 B 。(a -1)(a -b )>0 C 。(b -1)(b -a )<0 D 。(b -1)(b -a )>0 答案 D 解析 取a =2,b =4,则(a -1)(b -1)=3>0,排除A ;则(a -1)(a -b )=-2<0,排除B ;(b -1)(b -a )=6>0,排除C,故选D 。 3。设函数f (x )=??? x 2-4x +6,x ≥0, x +6,x <0,则不等式f (x )>f (1)的解集是( ) A 。(-3,1)∪(3,+∞) B 。(-3,1)∪(2,+∞) C 。(-1,1)∪(3,+∞) D 。(-∞,-3)∪(1,3) 答案 A 解析 f (1)=3。由题意得??? x ≥0,x 2-4x +6>3或??? x <0, x +6>3, 解得-33。 4。 若a ,b ,c 为实数,则下列命题为真命题的是( ) A 。若a >b ,则ac 2>bc 2 B 。若a <b <0,则a 2>ab >b 2

最新新课标2013年全国高考理科数学试题分类汇编6:不等式

最新新课标2013年全国高考理科数学试题分类汇编6:不等式 一、选择题 1 .(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))设正实数 ,,x y z 满足 22340x xy y z -+-=,则当xy z 取得最大值时,212x y z +- 的最大值为 ( ) A .0 B .1 C .94 D .3 【答案】B 2 .(2013年高考陕西卷(理))设[x ]表示不大于x 的最大整数, 则对任意实数x , y , 有 ( ) A .[-x ] = -[x ] B .[2x ] = 2[x ] C .[x +y ]≤[x ]+[y ] D .[x -y ]≤[x ]-[y ] 【答案】D 3 .(2013年高考湖南卷(理))若变量,x y 满足约束条件211y x x y y ≤?? +≤??≥-? ,2x y +则的最大值是 ( ) A .5- 2 B .0 C . 53 D . 52 【答案】C 4 .(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))已知函数()(1||)f x x a x =+. 设关 于x 的不等式() ()f x a f x +< 的解集为A , 若11,22 A ?? -????? , 则实数a 的取值范围是 ( ) A . ????? B .? ???? C . ?? ????? ?? D .?- ?? ∞ 【答案】A 5 .(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))已知0a >,,x y 满足约 束条件1 3(3)x x y y a x ≥?? +≤??≥-? ,若2z x y =+的最小值为1,则a = ( ) A . 14 B . 12 C .1 D .2 【答案】B 6 .(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))设变量x , y 满足约束条件360,20, 30,x y y x y ≥--≤+-?-≤? ???

高考中常见的七种含有绝对值的不等式的解法

常见的七种含有绝对值的不等式的解法 类型一:形如)()(,)(R a a x f a x f ∈><型不等式 解法:根据a 的符号,准确的去掉绝对值符号,再进一步求解.这也是其他类型的解题基础. 1、当0>a 时, a x f a a x f <<-?<)()( a x f a x f >?>)()(或a x f -<)( 2、当0=a a x f <)(,无解 ?>a x f )(使0)(≠x f 的解集 3、当0a x f )(使)(x f y =成立的x 的解集. 例1 不等式22<-x x 的解集为( ) A.)2,1(- B.)1,1(- C.)1,2(- D.)2,2(- 解: 因为 22<-x x , 所以 222<-<-x x . 即 ?????<-->+-0 20222x x x x , 解得: ???<<-∈2 1x R x , 所以 )2,1(-∈x ,故选A.

类型二:形如)0()(>><><<)()0()( 或a x f b -<<-)( 需要提醒一点的是,该类型的不等式容易错解为: b x f a a b b x f a <><<)()0()( 例2 不等式311<+型不等式,这类不等式如果用分类讨论的方法求解,显得比较繁琐,其简洁解法如下 解法:把)(x g 看成一个大于零的常数a 进行求解,即: )()()()()(x g x f x g x g x f <<-?<, )()()()(x g x f x g x f >?>或)()(x g x f -< 例3 设函数312)(++-=x x x f ,若5)(≤x f ,则x 的取值范围是 解: 53125)(≤++-?≤x x x f 2122212+-≤-≤-?+-≤-?x x x x x ???+-≤--≥-?2 12212x x x x 1111≤≤-?? ??≤-≥?x x x ,故填:[]1,1-. 类型四:形如)()(x g x f <型不等式

2018年高考数学—不等式专题

不等式 (必修5P80A3改编)若关于x 的一元二次方程x 2-(m +1)x -m =0有两个不相等的实数根,则m 的取值范围是________. 解析 由题意知Δ=[(m +1)]2+4m >0.即m 2+6m +1>0, 解得m >-3+22或m <-3-2 2. 答案 (-∞,-3-22)∪(-3+22,+∞) (2016·全国Ⅱ卷)若x ,y 满足约束条件???x -y +1≥0, x +y -3≥0,x -3≤0, 则 z =x -2y 的最小值为 ________. 解析 画出可行域,数形结合可知目标函数的最小值在直线x =3与直线x -y +1=0的交点(3,4)处取得,代入目标函数z =x -2y 得到-5. 答案 -5 (2016·全国Ⅲ卷)设x ,y 满足约束条件???2x -y +1≥0, x -2y -1≤0,x ≤1, 则z =2x +3y -5的最小值为_____. 解析 画出不等式组表示的平面区域如图中阴影部分所示.由题意可知, 当直线y =-23x +53+z 3过点A (-1,-1)时,z 取得最小值,即z min =2×(-1)+3×(-1)-5=-10.

(2017·西安检测)已知变量x ,y 满足???2x -y ≤0, x -2y +3≥0,x ≥0, 则z =(2)2x +y 的最大值为________. 解析 作出不等式组所表示的平面区域,如图阴影部分所示.令m =2x +y ,由图象可知当直线y =-2x +m 经过点A 时,直线y =-2x +m 的纵截距最大,此时m 最大,故z 最大.由?????2x -y =0,x -2y +3=0,解得?????x =1,y =2, 即A (1,2).代入目标函数z =(2)2x +y 得,z =(2)2×1+2=4. 答案 4 (2016·北京卷)若x ,y 满足???2x -y ≤0,x +y ≤3,x ≥0, 则2x +y 的最大值为( ) A.0 B.3 C.4 D.5 解析 画出可行域,如图中阴影部分所示, 令z =2x +y ,则y =-2x +z ,当直线y =-2x +z 过点A (1,2)时,z 最大,z max =4. 答案 C (2016·山东卷)若变量x ,y 满足???x +y ≤2, 2x -3y ≤9,x ≥0, 则x 2+y 2的最大值是( )

高考数学真题汇编8 不等式 理( 解析版)

2012高考真题分类汇编:不等式 1.【2012高考真题重庆理2】不等式 01 21 ≤+-x x 的解集为 A.??? ??- 1,21 B.??????-1,21 C.[)+∞???? ??-∞-,121. D.[)+∞???? ? ? -∞-,121, 对 【答案】A 【解析】原不等式等价于0)12)(1(<+-x x 或01=-x ,即12 1 <<-x 或1=x ,所以不等式的解为12 1 ≤<- x ,选A. 2.【2012高考真题浙江理9】设a 大于0,b 大于0. A.若2a +2a=2b +3b ,则a >b B.若2a +2a=2b +3b ,则a >b C.若2a -2a=2b-3b ,则a >b D.若2a -2a=a b -3b ,则a <b 【答案】A 【解析】若2223a b a b +=+,必有2222a b a b +>+.构造函数:()22x f x x =+,则 ()2ln 220x f x '=?+>恒成立,故有函数()22x f x x =+在x >0上单调递增,即a >b 成立.其 余选项用同样方法排除.故选A 3.【2012高考真题四川理9】某公司生产甲、乙两种桶装产品。已知生产甲产品1桶需耗A 原料1千克、B 原料2千克;生产乙产品1桶需耗A 原料2千克,B 原料1千克。每桶甲产品的利润是300元,每桶乙产品的利润是400元。公司在生产这两种产品的计划中,要求每天消耗A 、B 原料都不超过12千克。通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是( ) A 、1800元 B 、2400元 C 、2800元 D 、3100元 【答案】C. 【解析】设生产x 桶甲产品,y 桶乙产品,总利润为Z , 则约束条件为???????>>≤+≤+0 012 2122y x y x y x ,目标函数为300400Z x y =+,

相关文档
最新文档