《SCR脱硝-技术方案2-采用低温板式催化剂》讲解

《SCR脱硝-技术方案2-采用低温板式催化剂》讲解
《SCR脱硝-技术方案2-采用低温板式催化剂》讲解

SCR 烟气脱硝

术技方案

(采用低温催化剂)

日12月9年2016.

一设计概述

1.1 设计背景

本设计方案为山东xxxx玻璃科技有限公司玻璃窑烟气SCR脱硝处理项目。

1.1.1烟气参数

33/h(标况)37000m73000Nm /h(工况);(1)烟气流量:(2)烟气温度:248~260℃;

(3)氮氧化物含量:2769~2948 mg/m3

(4)SO2含量:226~738 mg/m3

(5)O2浓度:10~11.7%

1.1.2烟气排放指标:

氮氧化物含量:50 mg/Nm3(《山东省工业窑炉大气污染物排放标准》DB37/2375-2013)

1.2 SCR烟气脱硝技术介绍

1.2.1 SCR工艺原理:

选择性催化还原法(SCR)是指在催化剂的作用下,在锅炉排放的烟气中均匀地喷入氨气,从而将烟气中的NO还原生成N和HO。2x2SCR 是一个连续的化学工艺过程,其中含氮还原剂例(如氨气)加入到含NO的烟气中。x主要的化学反应如下:

→4N+ 6HO 4NH+ 4NO + O (1.2-1) 23 22

→3N+ 6HO O (1.2-2) 4NH+ 2NO+ 23 222

4NH+ 6NO →5N+ 6H(1.2-3)

O 22 3

8NH+ 6NO →7N+ 12HO (1.2-4)

22 23

烟气中的NO主要是由NO和NO组成的,其中NO总量的95%x2x

为NO,其余的5%基本上为NO。所以脱硝反应的主要化学反应方2程式是(1.2-1),它的反应特性如下:

①NH和NO的反应摩尔比为1左右;3②脱硝反应中离不开O的参与;2③最为典型的反应温度窗口:300℃~400℃;

除了以上提及的化学反应方程式,其实脱硝反应中还存在着有害反应,具体如下:

SO被氧化成SO的反应:32(1.2-5)SO?O?22SO322NH 的氧化反应:3(1.2-6)O?6H?4NH?5O??4NO223(1.2-7)ON?6H?ONH4?3??22223催化剂的选择性成分为NOx的还原反

应提供了很高的催化活性。

氮气和水是脱硝反应的主要产物。SCR技术需要的反应温度窗口为300℃~400℃。在反应温度较高的情况下,会导致催化剂产生结晶或着烧结等现象;在反应温度较低的情况下,硫酸铵在催化剂表面凝结,催化剂的微孔被堵塞,催化剂的活性会降低。

SCR技术具有脱硝效率高,氨消耗少、脱硝性能稳定、运行平稳、成熟等优点,是世界公认的烟气脱硝主流技术。

1.2.2 SCR烟气脱硝系统选择

1)SCR反应塔布置方案

)高温侧高飞灰烟气段布置。1(.

在设计的过程中,将SCR反应器直接安装在了省煤器出口和预热器

入口中间的位置,也就是要将其设置在空气预热器和静电除尘器的前面,它在运行中最为明显的特点就是烟气在经过省煤器之后进入到SCR反应器中,其温度一般会在300-430℃之间,可以满足很多催化剂的使用需要。采用这种方案的时候,烟气在进入到SCR反应塔之前是不需要再加热的,所以在成本投入方面存在着较为明显的优势,当前也成为了很多燃煤电厂锅炉安装SCR烟气脱硝装置的一种非常常见的方案。

但是在离开锅炉省煤器之后,烟气当中的飞灰和二氧化硫浓度相对较高,催化剂容易受到飞灰颗粒和副产物的影响,催化剂表面极易破损,所以设备的性能也会受到极大的影响。所以,SCR采用高温侧飞灰烟气段布置的时候,在催化剂的选择上要尤其注意,一定要选择那些性能比较好的催化剂,如果有需要的话还可以对催化剂进行硬化处理,催化剂的数量一定要充足。

本技术方案即采用高温侧高飞灰烟气段布置。

(2)高温侧低飞灰烟气段布置。

SCR反应塔安装在高温静电除尘器出口和空气预热器入口中间的位置,也就是高温静电除尘器的后侧,其在运行过程中最主要的一个特点就是烟气在进入到SCR反应塔之前实际上已经经过了除尘处理,粉尘的水平相对较低,但是其二氧化硫的浓度还处在比较高的水平,细灰颗粒比较容易产生粘结,此外还有可能在这一过程中出现自所以在应用的过程中需要用比较催化剂的功能就会受损,清扫现象,

快的清扫速度来对催化剂的表面进行清理。高温静电除尘器的运行温

度一般在300-400℃之间,如果在进入到SCR反应塔之前已经有了较高的温度,就不需要对其进行二次重复加热。

(3)低温侧低飞灰尾部烟气段布置。

SCR反应塔设置在空气预热器和静电除尘器以及烟气脱硫装置的下半部分,也就是说设置在除尘器和脱硫装置的后面。烟气在经过高温除尘器和脱硫装置的处理之后,SCR入口的二氧化硫浓度非常低,所以催化剂不容易腐蚀或者是堵塞,所以在催化剂的选择上可以采用中等口径的催化剂,此外喷氨对飞灰质量和脱硫废水也基本上不会产生负面的影响。

由于烟气经过脱硫塔后进入SCR反应塔时温度较低(55~70℃),需采用昂贵的气-气加热器对烟气进行再加热( 加热至250 ℃以上),并需采用燃油或燃气进一步提高烟气温度,其投资费用与运行费用较高,目前很少采用这种方案。

2)SCR反应塔优化设计

SCR反应塔中的催化剂通常垂直布置,烟气自SCR反应塔顶部垂直向下平行于催化剂表面流动。烟气在SCR反应塔中的空塔速度是SCR 的一个关键设计参数,它是烟气体积流量(标准状态下的湿烟气)与SCR反应塔中催化剂体积比值,反映了烟气在SCR反应塔内的停留时间的大小。

3)SCR催化剂的选取

催化剂类型及其使用温度范围:氧化钛基催化剂:SCR.

270-400℃;氧化铁基催化剂380-430℃;沸石催化剂:300-430摄氏

度;

上述催化剂的使用温度一般在300℃以上。因为本项目烟气温度在250℃左右,因此,本设计方案选取低温板式催化剂,主要的活性成

分是V-W-Ti或者V-Mo-Ti,载体是不锈钢网。

催化剂的更换方案)SCR4SCR反应塔中的催化剂在运行一段时间后其反应活性会降低,导致氨逃逸量大。为了使催化剂得到充始理利用,一般设计硝效率在SCR反应塔中布置2-4层催化剂。工程设计中通

常在反应塔底部或顶部预留1-2层备用层空间,即2+1或3+1方案。采用SCR反应塔预留备用层方案可延长催化剂更换周期,一般节省

高达25%的需要更换的催化剂体积用量,但缺点是烟道阻力损失有所增大。

5)供氨与喷氨系统

现有SCR脱硝领域中,使用液氨,尿素溶液和氨水作为还原剂,在

投资和运行过程中都有各自的优缺点。其中,液氨作为还原剂,运行成本低,但是由于液氨是属于高危化学物品,国家对它的运输,储存以及使用都有非常严格的要求,所以氨区造价成本很高,而且在居民区内或附近国家禁止使用液氨作为还原剂。尿素溶液作为还原剂的话,需要热解或水解,投资成本和运行成本高。

目前氨水作为还原剂,需要蒸发器的话,把氨水蒸发成气体后通过喷氨格栅喷入烟气中,再导入到反应塔中进行脱硝。以一台75吨3/h,热源为4MPaG,340°C烟气量为流化床锅炉为例,110000Nm的包

括管道,(万元人民币60~70过热蒸汽,蒸发器的投资成本大约是

电器仪表以及安装费用等),每小时用量250~300kg/h蒸汽(换算为热

量为130Mcal/h),蒸汽价格以每吨170元计算,运行成本1020~1224元/天,372300~428400元/年。如果用电作为热源的话,运行成本更高。

本技术方案不使用氨水蒸发器和喷氨格栅,通过使用一种特殊的氨水喷嘴,将氨水雾化成小于60~120μm的颗粒直接喷到高温烟气中,

氨水与高温烟气进行混合的同时,蒸发掉其中的水分,形成氨气进入反应塔中与氮氧化物进行还原反应。这种装置设备简洁,不设蒸发器,节省投资成和运行成本。.

二本项目SCR方案设计

2.1方案选取

本设计方案SCR反应器采用低温板式催化剂。因为在低温下,烟气

中的SO2容易与NOx生产硫酸铵盐,堵塞催化剂,从而影响SCR脱硝装置寿命。

为了解决低温情况下,催化剂容易堵塞而引起失活的问题。本设计方案设置热风炉,通过热风炉产生的高温烟气(最高温度可达到600℃)与焦炉烟气(250℃)混合,将烟气温度提升到300~350℃左右,每

隔一段时间持续吹扫催化剂,将附着在低温催化剂上的硫铵盐分解掉,以实现催化剂的再生。吹扫时间:5次/年,1天/次,共计120小时/年。

2.1 工艺流程简述

本技术方案即采用高温侧高飞灰烟气段布置。本设计项目SCR脱硝系统由6个模块组成:氨水溶液储存模块、在线稀释模块、计量分配模块、氨水喷射模块、SCR反应模块、控制模块。

本工程采用20%浓度的氨水溶液,储存在氨水溶液储罐中,通过在线稀释成10%浓度左右浓度喷入烟道中。

1)氨水溶液储存模块

20%的氨水溶液经槽车卸入氨水储罐。本工程设置1个氨水溶液储罐(罐容积满足3天的用量要求)。设置有2台氨水泵(1用1备),将氨水输送至在线稀释模块。

)在线稀释模块2.

当锅炉负荷或炉膛出口的NOx浓度变化时,送入炉膛的氨水溶液的量也应随之变化,这将导致送入喷射器的流量发生变化。若喷射器的流量变化太大,将会影响到雾化喷射效果,从而影响脱硝率和氨残余。因此,设计了在线稀释模块,用来保证在运行工况变化时喷嘴中流体流量基本不变。20%浓度氨水溶液和稀释水(工艺水)通过静态混合器稀释成10%稀氨水后喷入炉膛。

3)计量与分配模块

设置计量分配模块,包括氨水溶液计量分配模块和压缩空气计量分配模块。

由在线稀释模块输送过来的稀氨水溶液(10%)进入氨水溶液计量分配模块。计量分配模块中安装有流量计、压力变送器等,通过流量计控制调节阀的开度,从而控制反应器需要的氨水溶液的流量。经过计

量后的氨水溶液在由模块中的分配母管分为4路,分别通向4支喷枪。在每个支路氨水溶液管上安装有压力表、流量计等装置,用于监控、调整每支喷枪所需的氨水溶液的流量。

喷入SCR反应器的氨水溶液是经过雾化后喷入的。来自空气压缩机的压缩空气经过除水除油、调压处理后(0.6MPa)被分为4条支路通向反应器喷枪。在每条压缩空气支路管中也设有压力表、流量计等装置,用于监控、调整每只喷枪雾化所需的压缩空气用量。

4)喷射模块

由各个计量分配模块输送过来的氨水溶液进入氨水喷枪,经过喷反应器。SCR枪的雾化后送入.

雾化用的喷枪采用二流体喷枪,二流体喷枪主要由枪体和喷嘴组成,枪体分为内管和外管两个部分,溶液走内管,压缩空气走外管,压缩空气在外管中呈螺旋装前进,在喷嘴出口处呈涡流装高速喷出与溶液充分混合,通过调节压缩空气用量与氨水溶液用量的比例使之达到完全雾化的效果。

(1)雾化介质的作用是加强氨水溶液与炉内烟气混合,充分混合有利于保证脱硝效果、提高氨水溶液利用率减少尾部氨残余。雾化介质主要是提高还原剂喷射速度、增加喷射动量,而不要求把氨水溶液全部雾化成很小的液滴,而是一定比例的不同尺寸液滴。雾化介质的主要作用是提高液滴的喷射动量。喷射动量取决于喷射速度和喷射物的质量,显然靠增加雾化介质的质量来提高喷射动量是不经济的。为了提高喷射动量,则主要集中在提高喷射速度上。

本项目的雾化介质采用压缩空气,到喷射器前的压力在0.6左右。(2)冷却风

喷枪一旦装上,只要不停炉,需持续向喷枪外套管内通如冷却风,以保护喷枪。本项目冷却风来自空压机的压缩空气。

5)SCR反应模块

由氨水喷射模块喷出的雾化氨水,进入进口烟道,遇到高温烟气(350℃)迅速气化成NH。反应器中装有催化剂,在催化剂作用下,3NH与来自锅炉省煤器烟气中的NO反应,生产氮气和水蒸气。在

X3SCR反应器最上面有整流栅格,使流动烟气分布均匀。烟气经过烟气脱硝后经空气预热器热回收后进入静电除尘器和FGD湿法脱硫系统后排入大气。

反应器催化剂层间安装声波吹灰器用来吹除沉积在催化剂SCR.

上的灰尘和SCR反应副产物,以减少反应器压力降。

6)控制模块

采用DCS控制室集中监控方式,在控制室内,可实现机组的启、停,运行工况的监视和调整以及事故处理等。运行人员可直接通过控制室中DCS操作员站完成整个脱硝系统的运行。当系统发生异常或事故时,通过保护、联锁或人工干预,系统能在安全工况下运行或停机。具体工艺见附图的《管道与仪表工艺流程图》。.

2.2 主要设备

2.2.1 烟道

烟道根据可能发生的最差运行条件进行设计。

烟道设计能够承受如下负荷:烟道自重、风荷载、地震荷载、灰尘积累、内衬和保温的重量等。

烟道壁厚按6mm设计,烟道内烟气流速不超过15m/s。催化剂区域内流速不超过6 m/s,不低于3m/s。

所有烟道在适当位置配有足够数量和大小的人孔门和清灰孔,以便于烟道(包括膨胀节和挡板门)的维修和检查以及清除积灰。

在外削角急转弯头和变截面收缩急转弯头处等,以及根据设计方提供的其他烟气流动模型研究结果要求的地方,设置导流板。

为了使与烟道连接的设备的受力在允许范围内,特别要注意考虑烟道系统的热膨胀,热膨胀通过膨胀节(采用非金属膨胀节)进行补偿。框架材质为Q235采用板材经剪、折、焊、制孔等工序制成,框架深度为200mm,导流板及压板材料采用Q235厚6mm,膨胀节蒙皮材料从外到内为硅橡胶布、四氟布、夹不锈钢丝纤维布、无碱布、氟橡胶布用不锈钢丝网双层包扎硅酸铝陶瓷纤维作保温。

烟道在适当位置配有足够数量测试孔。

烟道接口原则上按锅炉厂提供的接口图进行连接,设计方根据自己脱硝的具体布置提出烟道布置方案。

2.2.2 还原剂制备与储存系统(共用)

本工程的还原剂为氨水,系统设置卸料泵作为卸料设施。氨水溶液存储罐容积应满足一台炉100%BMCR工况3天所需的氨水量。

阀门、氨水泵、氨水储罐、氨水储存及供应系统包括氨水卸料泵、.管路及附件等。氨水的储存、供应及排放过程如下:

氨水的供应由氨水槽车运送,槽车与氨水储存系统之间用挠性软管连接,利用泵由槽车输入储罐内;

氨水直接由泵打到SCR区,经设置在烟道内的喷射系统喷入烟道。2.2.3 氨水喷射系统(每台)

设置1套氨水直喷装置,通过喷枪及喷嘴分布到反应器前的烟道满足SCR反应器对气氨的需求,通过进出口NOx浓度来调节氨水的使用量。

氨喷射系统的容量及配置满足脱除烟气中NO最大值的要求,X并留

有适当的余量。

提供一套完整的氨喷射系统,保证NH/NO沿烟道截面均匀的X3分布。喷射系统应设置流量调节阀,能根据烟气不同的工况进行调节。汽化的氨水在喷入烟气,为保证安全可靠,允许的最大氨浓度小于10%。喷射系统具有良好的热膨胀性、抗热变形性和和抗振性。氨喷射孔不积灰。

设计方根据烟道的截面、长度、SCR反应器本体的结构型式等进行氨/烟气混合系统的设计(NH/NOX摩尔比最大偏差不大于平均值3的±5%),使得注入烟道的氨与烟气在进入SCR反应器本体之前充分混合,使催化剂均匀发挥效用。

氨水混合均布系统的设计充分考虑到其处于锅炉的高含尘区域的因素,所选用的材料为耐磨材料或充分考虑防磨措施加以保护。

氨注入格栅分布管上设有压缩空气管道,当注入格栅喷头发生堵塞时可进行吹扫。

在停工检修时用于在进氨装置分管阀后设有氮气预留阀及接口,

吹扫管内氨气。

2.2.4 SCR反应器及附属系统

SCR反应器催化剂按照3层设置,SCR反应器催化剂层间安装声波吹灰器,用来吹除沉积在催化剂上的灰尘和SCR反应副产物,以减少反应器压降。反应器设置在锅炉与除尘器之间。

(1)SCR反应器

SCR反应器安装在独立的金属构架平台上,截面为2000×3000×9000mm(具体尺寸由设计方根据设计布置确定),并且由起到加强作用的钢板托起,反应器的载荷通过它的侧墙均匀地分布,向下传递,利用它的弹性和滑动轴承垫传到它的支撑结构上。SCR反应器被固定在中心并向外膨胀,使水平膨胀位移量最小。SCR反应器外壁一侧在催化剂层处有检修门,用于将催化剂模块装入催化剂层。每个催化剂层都设有人孔,在机组停运时允许进入检查催化剂模块。

烟气水平地进入反应器的顶部并且垂直向下通过反应器,进口导流板使进入的烟气更均匀地分布。整流格栅安装在反应器上部,其最佳几何尺寸、安装形式及设置的必要性通过流体模拟试验方法确定。催化剂层的外部由支承催化剂模块的钢梁组成,反应器横截面和催化剂的层间距设计,符合电厂煤质的特点要求、催化剂的运行要求及脱硝装置运行维护与检修的要求。

SCR反应器的设计应充分考虑与周围设备布置的协调性及美观性。反应器应设计成烟气竖直向下流动,反应器入口应设气流均布装置,反

应器入口及出口段应设导流板,对于反应器内部易于磨损的部位应设计必要的防磨措施。反应器内部各类加强板、支架应设计成不易积灰的型式,同时必须考虑热膨胀的补偿措施。

2。1.6t/m每层催化剂的面荷载应该不低于

反应器的设计必须保证氨喷射系统前烟气流动的均匀性,烟气进入第一层催化剂前的烟气温度分布、速度分布的均匀性(烟气流速最大偏差不大于平均值±15%,温度最大偏差值不大于平均值±10%)以及烟气流出最后一层催化剂的NO浓度分布和氨浓度分布的均匀性。X 反应塔设计考虑防止大颗粒灰尘进入催化剂的措施。

SCR反应器的使用寿命应不小于30年。

(2)催化剂起吊装置

反应器顶部设置单轨吊,用来将催化剂起吊至相应的检修平台,然后通过转运小车将催化剂运至催化剂支撑平台上安装。

(3)吹灰系统

设计方设计的吹灰器数量和布置能将催化剂中的积灰吹扫干净,避免因死角而造成催化剂失效导致脱硝效率的下降。

催化剂表面与吹灰器喷嘴之间的距离由设计方确定。

吹灰器的控制由DCS系统进行控制。

就地设置压缩空气储罐,设计压力0.6MPa,用来提供声波吹灰器工作所需气源,

由设计方提供布置方案和压缩空气技术参数。

(4)氨气泄漏检测器

氨水储存、供应系统、反应装置以及其他可能发生氨气泄漏的区域周边应设有氨气检测器,以检测氨气的泄漏,并显示大气中氨的浓度。当检测器测得大气中氨浓度过高时,在机组控制室会发出警报,操作人员采取必要的措施,以防止氨气泄漏的异常情况发生。氨区应采取措施与周围系统作适当隔离。

2.2.5 催化剂

层的布置3脱硝反应器采用本工程催化剂采用低温板式催化剂,

方式,催化剂的模块每层按3×1的模式布置,脱硝效率按98%设计。催化剂吊装孔分别设置在各反应器的侧面,催化剂安装门设置在反应器的侧墙。设计方提供专用装卸工具用于催化剂模块的装卸。

2.2.6 吹灰及控制系统

吹灰器的数量和布置应能将催化剂中的积灰吹扫干净,避免因死角而造成催化剂失效导致脱硝效率的下降。

吹灰器的控制由DCS系统进行控制。

2.2.7 检修、起吊设施

设计方设计SCR装置检修和维护用的全部固定式和移动式起吊设施(吊钩/环、电动/手动葫芦及行车等),包括起吊位置、起吊重量、提升高度和设备选择等,并且提交业主方确认。

可移动手动链式葫芦仅用于2t重量以内和最高提升高度5m的情况,在使用所有可移动手动链式葫芦的地方提供永久性固定的轨道,并需业主方确认。

SCR装置检修和维护用的全部固定式和移动式起吊设施的生根结构

及检修用轨道梁由设计方提供。

本工程主要设备一览表见表3-1。

三烟气脱硫脱硝一体化装置投资估算

对SCR烟气脱硝系统有关设备、电气、仪表等的固定投资估算见表3-1:

表3-1 SCR烟气脱硝装置投资费用一览表

序单价合价材质单位设备名称规格数量(万元)(万元)号

0 设备一、

0 1

吸收剂输送系统3800 Φ3400×2 1.1 CS 2 1 个氨水罐35m3

Q=0.72m3/h

2 0.4

0.8 CS

H=65m 1.2 台氨水泵N=2.2Kw

Φ3400×3800 1 Q235B 2 2 1.3 个工艺水罐35m3

Q=0.72m3/h

CS

1.4 2

0.8

H=65m 0.4

工艺水N=2.2Kw

氨水计量混合模

28阀门包括设备管道仪表等整套系04氨水喷射系240.5316L流225L/h氨水喷

50SC反应1300020009000

Q245B6

6

本SCTi//填3

O m320.152.754.4

催化剂基材:不锈

60烟道系1.1Q345R0.22m51100进口烟160Q345R0.225

m

1.11100160出口烟Q345R1.51.511100进口膨胀16011.51.5Q345R160出口膨胀110070吹灰系HSQ-80

3

3.3

304

1.1

声波吹灰,膜片30扩声筒.

序单价合价材质设备名称规格单位数量(万元)号(万元)

合金;2-2.28Nm3/min

0.5~0.6MPa

8 6m3/min,37Kw

1

Q235B 1.5 1.5 个空气压缩机

0.6

1 Q345R 0.6

个压缩空气储罐,φ1200x1800 2m3热风量:3万Nm3/h,最高温度:600℃,1

9 28 28

组合件台热风炉系统:耗量气焦炉煤500~750kg/h

10 二、工艺管道与阀门0 三、自控仪表0.48 1 12 0.04 压力表1.8 2 0.45 4 流量计1.68 3 0.56 3 温度30.564调节烟气在线分析0150烟气出(业主负责36

13其他辅3四电

五12设备安

0六土建及设备框

11.530.5反应器框(吨

3

0.12

3

25

设备、平台基C3m3

钢筋

总概七人民币154.0万

投资估算补充说明:

1、本投资估算不包括公用工程界区外管道(工艺水等)、界区外电缆外线及桥架、界区外管及管廊等。

2、本投资估算不包括前期场地准备费用(假如场地需要大量回填或平整等)。

、本投资估算中电气开关使用中档产品,比如人民电器、士林3.等,若采用施耐德或ABB等高端产品,则价格另协商。

4、本投资估算中仪表及控制系统采用DCS系统。

四物料消耗、运行费用计算

表4.1-1 SCR烟气脱硝装置运行费用

序号名称单耗单价(元) 运行费用(元/h)备注

32.4 /kWh 0.6元54 Kw/h 1 电费注216 2 500元/t 432 kg/h 2 氨水20% 元/t 0.45 t/h 3 1.89 4.2工业用水1201000 Nm3/h

小时/ 4 年元焦炉煤气 0.2/m3

5

万元合计202.6注:1、此表中运行费用均按照业主提供参数的最大值计算。

2、年运行时间按照330天,8000小时计算。

IBIS模型详解中文版

目录 §1 绪论 (1) 1.1 IBIS模型的介绍 (1) 1.2 IBIS的创建 (3) §2 IBIS模型的创建 (3) 2.1 准备工作 (3) 2.1.1 基本的概念 (3) 2.1.2 数据列表的信息 (4) 2.2 数据的提取 (4) 2.2.1 利用Spice模型 (4) 2.2.2 确定I/V数据 (4) 2.2.3 边缘速率或者是V/T波形的数据的测量 (7) 2.2.4 试验测量获取I/V和转换信息的数据 (7) 2.3 数据的写入 (8) 2.3.1 IBS文件的头I信息 (8) 2.3.2 器件和管脚的信息 (8) 2.3.3 关键词Model的使用 (9) §3 用IBIS模型数据验证模型 (10) 3.1 常见的错误 (10) 3.2 IBIS模型的数据验证 (12) 3.2.1 Pullup、Pulldown特性 (12) 3.2.2 上升和下降的速度(Ramp rate) (12) 3.2.3 上下拉特性和Ramp rate的关系 (12)

3.3 用IBIS模型数据验证模型参数的实例 (12)

§1 绪论 1.1 IBIS模型的介绍 IBIS(Input/Output Buffer Informational Specifation)是用来描述IC器件的输入、输出和I/OBuffer行为特性的文件,并且用来模拟Buffer和板上电路系统的相互作用。在IBIS模型里核心的内容就是Buffer的模型,因为这些Buffer产生一些模拟的波形,从而仿真器利用这些波形,仿真传输线的影响和一些高速现象(如串扰,EMI等。)。具体而言IBIS描述了一个Buffer的输入和输出阻抗(通过I/V曲线的形式)、上升和下降时间以及对于不同情况下的上拉和下拉,那么工程人员可以利用这个模型对PCB板上的电路系统进行SI、串扰、EMC以及时序的分析。 IBIS模型中包含的是一些可读的ASCII格式的列表数据。IBIS有特定的语法和书写格式。IBIS模型中还包括一些电气说明如V、V、V以及管脚的寄生参数(如管脚的引线R、L、C)等。有一点需要注意的是IBIS模型并不提供IC器件:功能信息、逻辑信息、输入到输出的时间延迟等。也就是说,IBIS模型只是提供了器件的输入、输出以及I/O Buffer的行为特性,而不是在IC器件给定不同的输入,测量对应不同的输出波形;而是在描述器件有一个输入时,我们看不同情况下输出的特性(具体的说我们可以在输出端接一个电压源,这样我们在确保器件输出高电平或者是低电平时,调整电压源的数值,可以测出不同的电流,这样我们就可以在确保输出管脚输出某一个状态时得出一些I/V的数值,至于电压源具体的变化范围后面的内容会涉及到)。所以对于器件商家而言IBIS模型不会泄漏器件的内部逻辑电路的结构。 要实现上面提到的对系统的SI和时序的仿真,那么需要的基本的信息就是Buffer的I/V曲线和转换特性。IBIS模型中Buffer的数据信息可以通过测量器件得出也可以通过器件的SPICE 模型转换得到。IBIS是一个简单的模型,当做简单的带负载仿真时,比相应的全Spice三极管级模型仿真要节省10~15倍的计算量。IBIS模型是基于器件的。也就是说一个IBIS模型是对于整个器件的管脚而言的,而不是几个特殊的输入、输出或者是I/O管脚的Buffer。因此,IBIS模型中除了一些器件Buffer的电气特性,还包括pin-buffer的映射关系(除了电源、地和没有连接的管脚外,每个管脚都有一个特定的Buffer),以及器件的封装参数。IBIS提供两条完整的V-I曲线分别代表驱动器为高电平和低电平状态,以及在确定的转换速度下状态转换的曲线。V-I曲线的作用在于为IBIS提供保护二极管、TTL推拉驱动源和射极跟随输出等非线性效应的建模能力。 一般而言,IC器件的输入、输出和I/O管脚的Buffer的行为特性是通过一定的形式描述的。下面分别对于输入、输出和I/O管脚Buffer的表述形式作一个介绍。 对于一个输出或者是I/O管脚的Buffer需要下列的相关数据: ●在输出为逻辑低时,输出管脚Buffer的I/V特性 ●在输出为逻辑高时,输出管脚Buffer的I/V特性 ●在输出的电平强制在V以上和GND以下时,输出管脚Buffer 的I/V特性 ●Buffer由一个状态转换为另一个状态的转换时间 ●Buffer的输出电容 对于一个输入管脚的Buffer需要以下的数据: ●输入Buffer的I/V曲线(包括电平高于V或者是低于GND) ●Buffer的输入电容 一般情况,IBIS模型包含以下一些信息,IBIS模型的结构如下图1.1所示。 1.关于文件本身和器件名字的信息。这些信息用以下的关键词描述:[IBIS Ver] IBIS的版本号, [File Name] 文件的名称, [File Rev] 文件的版本号, [Component] 器件的名称和[Manufacturer]. 器件的制造商。 2.关于器件的封装电气特性和管脚与Buffer模型的映射关系。可以使用关键词[Package] 和[Pin] 描述。

工程测量课程设计报告书

工程测量课程设计

桥梁平面控制网设计 1.概述 以矿大北门的桥为原型,假定北门河流宽1.4km,现准备修建一条跨河大桥,桥梁轴线位置自定,控制点自选。 桥梁平面控制网分两级布设。首级控制网主要控制桥的轴线;为了满足施工中放样每个桥墩的需要,在首级控制网下要加设一定的差点或插网,构成第二级控制。由于放样墩台的精度要求较髙,故第二级控制网的精度应不低于首级网。 2.桥轴线长度精度与桥梁墩台定位精度的确定 (1)桥轴线长度精度 设计该大桥钢梁长度为100m,而由5个20m长的节间所组成。《铁路钢桥制造规 则》规定:怯=土炉时如=±2.12加丿节间拼装孔距误差为土 0.5mm;每一下鬥对刖jig.的倂衣阮左川 (一般取2 mm)对n节间拼装的一跨或一联甫人厂=+、/”人#装误差L和支座安装容许误差(7mm)长).Ar/ = ±J+ 5, = 土/込厂+ 每跨(联)钢梁安装后的容许误差为:对于钢板梁及短跨(W64m)简支钢桁梁、钢筋混凝土梁与预应力混凝土梁等. 长度拼装误差按规取为:±L/5000 每跨(联)钢梁安装后的容许误差为:±8. 3mm 有14跨,则全长极限误差为:±31. lmm 取1/2极限误差为中误差,则全桥轴线长的相对中误差为:md/D=AD/2D=l/90032 由此,便可根据《测规》的“控制测边网的等级和精度”的规定来选择施测的测边网 桥梁墩台中心放样的精度要求 桥墩中心位置偏移,将为架设造成困难,而且会使墩上的支座位置偏移,改变桥墩的应力,影响墩台的使用寿命和行车安全。因此,建立控制网不但要保证桥轴线长度有必要的精度,而且要保证墩台中心定位的精度。 工程上对放样桥墩的位置要:钢梁墩台中心在桥轴线方向的位置中误差不应大于1. 5cm?2. 0cm。 根据"控制点误差对放样点位不发生显著影响”的原则,当要求控制网点误差影响仅占总误差的1/10时,对控制网的精度要求分析如下: 设M为放样后所得点位的总误差;

2台200kVA的厂用变压器课程设计内容讲解

一、课题的内容和要求: (一)、工程概况 1、工程建设规模: (1)主变压器:2×60MV A。 (2)电压等级:110/35/10kV (3)各级电压出线回路数: 1)110kV:电源进线2回,分别距本站13.6km、18.5km。 2)35kV:远期出线10回。35kV最大线路负荷为9.2MW。 3)10kV:远期出线12回10kV单回架空线路最大负荷为3MW,电缆线路最大负荷为1.5MW。 (4)站用变台数及容量 选用2台200kV A的厂用变压器。 2、系统电源 根据本变电所接入电网情况,假设110kV系统电源为无穷大电源。 3、环境条件 (1)当地年最高温度35°C;年最低温度-8°C;最热月平均最高温度26°C; 最热月平均地下0.8m土壤最高温度18°C。 第一章电气主接线选择 1.1电气主接线设计的要求 电气主接线是发电厂、变电站设计中的重要部分,电气主接线又称电气一次接线,它是将电气设备用规定的表示符号将电能生产、传输、分配的顺序及相关要求绘制成的单相接线图。电气主接线的设计要求有以下几点:1、可靠性保证供电的可靠性是电力系统的基本要求,停电不仅给人民的生活造成混乱,更会造成严重的经济损失,人员伤亡,因此必须考虑主接线的可靠性。2、灵活性主要从一下几个方面考虑:操作的方便性、调度的方便性、扩建的方便性。3经济性、主要考虑一下方面:节省一次投资、占地面积少、电能损耗少。电气主接线方案的选择主要从可靠性,灵活性和经济性等几个方面去论证,综合各个方面的影响,最后通过论证得到工程要求的最优方案。

1.2电气主接线方案选择 1.2.1110K V侧电气主接线 方案一桥型接线方案二双母接线 QF1QF2 QF3 T1T2 WL1 T1 WL2 QF3 T2 QF1 QS1 QF2 QS2 双母接线内桥接线外侨接线 分析:双母线接线有两组母线,并且可以互为备用,每一回出线或进线有一个断路器和两个隔离开关,这两个隔离开关分别与两组母线连接,两组母线通过母联断路器联系。桥型接线适合于两台主变和两条线路的情况,分为外桥和内桥,外桥适用于线路较短和变压器经常切换的情况,内桥适用于线路较长,变压器不经常切换的情况。 比较:双母接线可靠性高,调度灵活,扩建方便,但是缺点是占地面积大,所需的开关设备比较多,投资大,与双母接线相比,桥型接线所用的开关设备少,较为经济,但是桥型接线可靠性差,操作复杂,假若110kV侧停电,不考虑35kV侧连接的两座变电站倒送电,则会出现很大的停电范围,因此,110kV侧可靠性要求高一点,所以采用双母接线方式。 1.2.235K V侧电气主接线 考虑到该侧连接有两座变电站,并且出线较多,断路器故障几率大,为了不停电检修断路器考虑一下方案。方案一双母带旁路方案二单母分段带旁路方案三单母带旁路 分析:双母线带旁路接线可靠性高,两组母线互为备用,但所需的设备较多,价格昂贵,占地面积大;单母分段带旁路可靠性较高,可以对断路器进行检修,增加旁路占地面积大,设备较多。单母带旁路可靠性差,但是比较经济,由于35kV连接两座变电站,所以必须要求有较高的可靠性,必须保证不停电检修断路器,综合考虑经济性和可靠性,考虑用单母带旁路,为了解决经济性问题,用分段断路器兼做旁路断路器的接线。综上35kV侧采用分段断路器兼做旁路短路器的单母带旁路接线。

工程测量课程设计报告

课程编号:SJ000350 2016年6 月3 日至2016 年6 月10 日 课程性质:必修 工程测量学课程设计报告 --建筑场地施工控制网的建立及建筑物放样方案设计 学 院: _____________ 矿业工程学院 _______________ 专 业: _______________ 测绘工程 _________________ 地 点: 太原理工大学虎峪校区 _____________________ 班 级: ______________ 测绘1301班 _______________ 姓 名: __________________________________________ 学 号: __________________________________________ 指导教师: _______________________________________

、工程概况 (1) 1.1 工程任务 (1) 1.2 工程的地理位置 (1) 1.3 工程简介 (1) 1.4 已有的测绘成果 (1) 二、............................................................. 体育馆施工控制网的建立 2 2.1 概述 (2) 2.1.1 建筑施工控制网的特点 (2) 2.1.2 施工控制网的精度 (2) 2.2 平面控制方案 (4) 2.2.1 点位布置方案 (4) 2.2.2 控制网网形简介、网形选择,控制网布设方案及示意图 (4) 2.3高程控制方案 (5) 2.3.1 点位布置方案 (6) 2.3.2 控制网布设方案及示意图 (6) 三、体育馆施工放样方案 7 3.1施工放样方法 (7) 3.2体育馆施工放样方案设计 (7) 3.3实施步骤及应注意的事项 (9) 3.4方案评价 (10) 四、............................................................................... 总结 10

走进IBIS模型

AN-715 应用笔记 One Technology Way ? P.O. Box 9106 ? Norwood, MA 02062-9106 ? Tel: 781/329-4700 ? Fax: 781/326-8703 ? https://www.360docs.net/doc/d17246195.html, 走近IBIS 模型:什么是IBIS 模型?它们是如何生成的? 作者:Mercedes Casamayor 简介 在进行系统设计时节省时间和降低成本是很关键的。在原型制作之前,系统设计人员可以用模型来进行设计仿真。在高速系统设计中正是如此,进行信号完整性仿真来分析不同条件下传输线中的电路行为,在设计初期就能预防并检测出典型的问题,例如过冲、欠冲、阻抗不匹配等。然而,可用的数字IC 模型非常少。当半导体厂商被索要SPICE 模型时,他们并不愿意提供,因为这些模型会包含有专有工艺和电路信息。 这个问题已经通过采用IBIS 模型来 (输入/输出缓冲器信息规范)解决,IBIS 也被称为ANSI/EIA-656,这是一个建模的新标准,在系统设计人员中越来越流行。 什么是IBIS ? IBIS 是一个行为模型,通过V/I 和V/T 数据描述器件数字输入和输出的电气特性,不会透露任何专有信息。IBIS 模型与系统设计人员对传统模型的理解不同,例如其它模型中的原理图符号或多项式表达式。IBIS 模型包括由输出和输入引脚中的电流和电压值以及输出引脚在上升或下降的转换条件下电压与时间的关系形成的表格数据。这些汇总的数据代表了器件的行为。 IBIS 模型用于系统板上的信号完整性分析。这些模型使系统设计人员能够仿真并预见到连接不同器件的传输线路中基本的信号完整性问题。潜在的问题可以通过仿真进行分析,潜在的问题包括由传输线上阻抗不匹配导致的到达接收器的波形反射到驱动器的能量;串扰;接地和电源反弹;过冲;欠冲;以及传输线路端接分析等等。 Rev. 0 | Page 1 of 8 IBIS 是一种精确的模型,因为它考虑了I/O 结构的非线性,ESD 结构和封装寄生效应。它相对于其它传统模型(例如SPICE )有几项优势。例如,仿真时间最多可缩短25倍,IBIS 没有SPICE 的不收敛的问题。此外,IBIS 可以在任何行业平台运行,因为大多数电子设计自动化(EDA)供应商都支持IBIS 规范。 IBIS 的历史 IBIS 由Intel?公司在90年代初开发。IBIS 1.0版本于1993年6月发布,IBIS 开放式论坛也在那时成立。 IBIS 开放式论坛包括EDA 厂商、计算机制造商、半导体厂商、大学和终端用户。它负责提议进行更新和评审、修订标准,组织会议。它促进IBIS 模型的发展,在IBIS 网站上提供有用的文档和工具。1995年,IBIS 开放式论坛与电子工业联盟(EIA)合作。 已经发布了几个IBIS 版本。第一个版本描述了CMOS 电路和TTL I/O 缓冲器。每个版本都增加并支持新的功能、技术和器件种类。所有版本都互相兼容。IBIS 4.0版本由IBIS 开放式论坛在2002年7月批准,但它还不是ANSI/EIA 标准。 如何生成IBIS 模型 可以通过仿真过程中或基准测量中收集的数据来获得IBIS 模型。如果选择前一种方法,可以使用SPICE 进行仿真,收集每个输出/输出缓冲器的V/I 和V/T 数据。这样可以在模型中包含过程转折数据。然后,使用IBIS 网站上的SPICE 至IBIS 转换程序可以由SPICE 生成IBIS 模型。

工程测量课程设计概论

工程测量学课程设计报告 学院:资源学院 专业:测绘工程 班级:测绘xxxx 姓名:xxxx 学号: 1105xxxx 2014年6月23日至 2014年6月30日

(一) 课程设计介绍 1、课程设计的目的 课程设计是课程学习后的一个学术性实践环节,将采取理论联系实际的方法,针对具体的工程项目进行设计,从而加深学生对工程测量学基本理论的理解,着重培养学生分析问题和解决问题的能力,是对课程理论的综合和补充,对加深课程理论的理解和应用具有重要意义。 2、课程设计的任务: (1)课程设计安排在本课程学习结束之后的进行。 (2)通过课程设计,培养学生运用本课程基本理论知识和技能,分析和解决课 程范围内的实际工程问题的能力,加深对课程理论的理解与应用。 (3)在指导老师的指导下,要求每个学生独立完成本课程设计的全部内容。 3、课程设计的基本要求 工程测量学课程设计要求每一个学生必须遵守课程设计的具体项目的要求,独立完成设计内容,并按时上交设计报告。在学习知识、培养能力的过程中,树立严谨、求实、勤奋、进取的良好学风。课程设计前学生应认真复习教材有关内容和《工程测量学》课程设计大纲与课程设计指导书,务必弄清基本概念和本次课程设计的目的、要求及应注意的事项,以保证按质、按量、按时完成设计任务。

(二) 支漳河区段工程测量设计方案设计 1、工程概况 1.1 地理概况 测区为邯市南湖公园附近的支漳河河段,支漳河位于邯郸县东部,其最近点,在县政府驻地南偏东一公里处。测区位于东经114°17′~114°21′、北纬36°41′~36°44′。支漳河于1957年开挖,因原系漳河支流故道,故称支漳河。河水自西南流向东北,上连南湖,贯穿东湖,下接广府湿地;河道自然弯曲,河岸两旁花草盈盈,意境优雅。支漳河市内段从南湖至规划中的东湖全长为14.9公里,占地面积6000亩。“支漳河治理工程主要对该段河道进行清淤疏浚、堤防加固、梯级拦蓄。”支漳河综合治理工程现已开工建设,届时将成为我市城市内最大最美的生态景观河流。测区位置如图1-1

数据库系统原理课程设计内容讲解学习

《数据库系统原理》 课程设计 题目图书管理系统 班级 学号 姓名 指导老师 2012年 12 月 20 日

目录 一、概述 (1) 1.1 课程设计的目的 (1) 1.2 课程设计的内容 (1) 1.3 课程设计的要求 (1) 二、需求分析 (2) 2.1 系统需求 (2) 2.1.1、数据需求 (2) 2.1.2、事务需求 (3) 2.2 数据字典 (4) 三、系统总体设计 (5) 3.1系统总体设计思路 (5) 3.2 概念模型设计 (6) 3.2.1 局部E-R图 (7) 3.2.2 全局E-R图 (9) 3.3 逻辑结构设计 (9) 3.4 数据库建立实施 (9) 3.4.1 建立数据库 (9) 3.4.2建立关系表 (10) 3.4.3连接数据库 (10) 四、系统实现 (10) 4.1主窗体设计 (10)

4.1.1设计登录界面 (10) 4.1.2添加数据组件 (10) 4.1.3生成数据集 (11) 4.1.4设计代码 (11) 4.2 读者信息 (12) 4.2.1设计显示界面 (12) 4.2.2添加数据组件 (12) 4.2.3功能实现 (12) 4.3 显示报表 (13) 4.3.1添加读者信息报表 (13) 4.3.2添加借阅情况报表 (14) 4.4 综合查询的实现 (14) 4.4.1添加数据组件 (14) 4.4.2窗体功能实现 (15) 4.5系统流程图 (16) 4.6程序调试情况 (16) 4.7 功能显示 (16) 五、系统评价 (20) 六、课程设计心得、总结 (21) 参考文献: (21) 附录:源代码: (22)

《工程测量学》课程设计与实习指导书解析

《工程测量学》 课程设计与实习指导书 中国矿业大学环境与测绘学院 测绘与地理信息系

目录 一、设计与实习目的 (1) 二、设计与实习要求 (1) 三、设计与实习主要内容 (1) 1、桥梁施工控制网的建立及桥台、桥墩放样方案设计 (1) 2、线路工程测量 (6) 3、建筑物方格网建立 (9)

、设计与实习目的 巩固和深化课堂教学内容,培养学生实际动手操作能力和分析问题解决问题能力。通过工程测量实习,使学生进一步加强对工程测量内容的理解,掌握工程控制网设计及精度估算、线路工程测量及建筑物控制网建立的方法;根据具体的工程要求,能编写出测量技术方案。 二、设计与实习要求 要求每一个学生必须遵守课程设计与实习的具体项目的要求,独立完成设计内容,并按时上交设计报告。以分组的形式提交实习报告。在学习知识、培养能力的过程中,树立严谨、求实、勤奋、进取的良好学风。课程设计与实习前学生应认真复习教材有关内容和《工程测量学》课程设计与实习大纲及课程设计与实习指导书,务必弄清基本概念和本次课程设计及实习的目的、要求及应注意的事项,以保证按质、按量、按时完成设计与实习任务。 三、设计与实习主要内容 1、桥梁施工控制网的建立及桥台、桥墩放样方案设计 (一)工程概况 如图1所示,某地区大桥位于某条江上,桥梁全长约1000m,桥面总宽18m, 结构形式为(30+5 X 40+30)m普通钢筋混凝土双悬臂加挂梁结构。桥的横断面由8 根变截面T 型梁组成。 (二)已有测绘成果 (1)桥址及周边1:500 地形图; (2)桥两岸有国家二等水准点各两个; (3)桥两岸有国家三角测量控制点各两个(可满足桥梁控制及施工测量要求)。

IBIS模型学习笔记

IBIS模型学习笔记 一、I BIS 模型的信息 IBIS模型架构包括: |-- [IBIS Ver] |-- [File Name] |-- [File Rev] |-- [Date] |-- [Source] |-- [Notes] |-- [Disclaimer] |-- [Copyright] |-- [Component] |-- [Manufacturer] |-- [Package] |-- [Pin] |-- [Diff Pin] |-- [Model Selector] |-- [Model] |-- [End] 二、各个部分的定义 1. [IBIS Ver] 从目前仿真的过程看,使用HyperLynx Simulation Software 9.4版本仿真,IBIS模型需要使用Version 4.0以上版本。在Version 3.2版本中,不包含Vinh_ac等定义,在仿真中会提示不支持这些语句。现在使用的是V4.1. 2. [File Name] IBIS模型的名字,例如:ic.ibs 3. [File Rev] 文件版本,例如:[File Rev] 1.0

4. [Date] 编写时间:[Date] 1/22/2013 5. [Source],[Disclaimer],[Copyright],[Component] 来源,免责声明,版权,组成的一些说明 [Source] Sigrity SpeedPKG Suite XtractIM 4.0.4.09231 [Disclaimer] The model given below represents a 73-pin package. [Copyright] [Component] ddr_ctrl 6. [Package] 包含在封装厂提取的IBIS文件中。 [Package] | variable typ min max R_pkg 0.76859 0.48527 0.95543 L_pkg 3.608e-9 2.259e-9 4.39e-9 C_pkg 1.088e-12 9.004e-13 1.741e-12 7. [Pin] 定义各个Pin的RLC,模型类型。 例如DDR部分pin,[Pin]定义pin脚名称,Signal_name定义pin脚对应的网络名称,model_name定义pin脚所对应的模型。 [Pin] Signal_name model_name R_pin L_pin C_pin C8 A0 DDRIO 0.68982 3.37e-9 1.059e-12 E13 A1 DDRIO 0.74574 3.549e-9 1.095e-12 B13 A2 DDRIO 0.69867 3.392e-9 9.785e-13 C13 A3 DDRIO 0.61485 3.102e-9 9.88e-13 B9 A4 DDRIO 0.66266 3.285e-9 1.001e-12 C10 A5 DDRIO 0.53032 2.407e-9 1.06e-12 A9 A6 DDRIO 0.7457 3.571e-9 1.044e-12 B10 A7 DDRIO 0.63557 3.174e-9 1.002e-12 E12 A8 DDRIO 0.63692 3.085e-9 1.17e-12 A10 A9 DDRIO 0.77584 3.802e-9 9.004e-13 C17 A10 DDRIO 0.66777 2.996e-9 1.303e-12 A13 A11 DDRIO 0.78207 3.963e-9 9.209e-13 A12 A12 DDRIO 0.78921 3.9e-9 9.229e-13 B12 A13 DDRIO 0.69073 3.368e-9 9.85e-13 C12 A14 DDRIO 0.60718 3.087e-9 1.019e-12

工程测量学设计指导书

《工程测量学》设计指导书〈供测绘工程专业使用〉

《工程测量学》课程设计指导书 《工程测量学》是高等学校中测绘工程专业本科生的一门重要专业技术课。根据我院测绘工程专业本科教学计划及该课程教学大纲的要求,学生在完成《工程测量学》理论学习后,必须进行为期一周的课程设计。由于本学科是集理论和实践为一体的学科,理论教学必须与工程实践紧密相结合,因此《工程测量学》课程设计将采取理论联系实际的方法,针对具体的工程项目进行设计,从而加深学生对工程测量学基本理论的理解,着重培养学生分析问题和解决实际工程问题的能力。 《工程测量学》课程设计是一次具体的、生动的、全面的、综合性的技术实践活动,在传授知识、开发智力、培养能力方面,具有更加重要的意义。尤其在培养学生独立工作能力方面,是其它任何教学环节所不能代替的。 一、课程设计班级、时间、地点和指导教师 本次《工程测量学》课程设计班级、时间、地点和指导教师如下:班级:测绘工程2011班,共70人; 时间:本学期的20周(2015年1月12日--1月16日),总计1周; 地点:本次课程设计计划在春晖书院和图书馆进行;

指导教师:为保证课程设计的顺利进行,安排燕志明、张会战、郭义、孙同贺、王翔分别带队指导1、2班,另安排党晓晶辅助指导设计工作。 二、课程设计的目的 《工程测量学》课程设计是该课程理论学习后的一个学术性实践环节,是对课程理论的综合和补充,对加深课程理论的理解和应用具有重要意义。 通过具体的工程项目设计,熟悉工程测量方案编写的要求,独立进行工程测量技术方案和施工方案的设计; 根据《工程测量规范》和相关的施工设计规范设计要求,保证设计的施工控制网和施工测量方案满足精度要求,并力求做到经济合理。 三、课程设计的任务 (1)该课的课程设计安排在理论学习和综合性实习结束之后进行的;时间为一周。 (2)通过课程设计,培养学生运用本课程基本理论知识和技能,分析和解决本课程范围内的实际工程问题的能力,加深对课程理论的理解与应用。 (3)在指导老师的指导下,要求每个学生独立完成本课程设计的全部内容。 四、课程设计任务及要求

语文课程设计思路解读

语文课程设计思路解读 来源:原创发布时间:2012-9-3 14:58:11 作者:罗昆霞点击:118 -------------------------------------------------------------------------------- 语文课程设计思路解读 第一节三个维度相互渗透融为一体 课程目标是每一门课程的设计首先要考虑的问题,“知识与能力、方法与过程、情感态度与价值观”三个维度的课程目标,是本世纪之初我国第八次基础教育课程改革的纲领性文件《基础教育课程改革发展纲要》中提出的。三维目标作为语文课程的设计思路,是在2001年7月出版的《全日制义务教育语文课程标准》中首次被正式表述的,后在课程标准的修订过程中作为总目标呈现,但其课程设计思路的导向作用实质上是没有变的,我们可以把它看作是课程目标设计思路。这个课程目标设计思路的基础是:对广大语文教师教育教学实践的总结提炼,对我国语文教育的优良传统的继承,对当代中外先进教育理论的汲取。三个维度的课程目标被广大语文教师和语文教育研究者认为是科学的、全面的、发展的课程目标。三个维度目标相互渗透融为一体也是《语文课程标准》课程设计的一大特色。 三个维度课程目标的确定,在一定程度上折射出我国语文教育改革的发展变化。在相当长的时间里,甚至在早期课程改革的某些阶段,都存在将知识的传授作为教学的主要目的和教学评价的首要内容,将知识与能力人为地分离开来,语文教学的目的就是识记被分解出的几十成百的知识点,极端的做法是教师根据知识点命题并做出标准答案,学生死记硬背标准答案,考试时再原封不动地复述出来,完全把学生当作知识的容器。这样的知识是死的知识,是难以运用的知识,是不能解决实际问题的知识,更别说发挥语文课程“学好其他课程的基础”的作用了。许多语文教育的有识之士深刻地认识到:知识爆炸的近几十年,科技文化的发展和知识的更新,比过去几千年发展的总和还要多,每一个人穷其一生也难得知识冰山之一角,我们不应该把学生当作知识的容器,把其有限的生命用来储存无限的知识。教育的目的是促进人的发展,知识素养尤其是能力素养是人持续发展的基础。我们要精选有利于学生持续发展的知识供学生学习,更要着力于学生能力素养的提高,因此,在语文课程的实施中,绝不能忽视学生的能力培养。认识到这一点,我们对学生的能力培养普遍重视起来,尤其是学生的自学能力的培养。有关学生能力培养的专题研究也风靡一时。通常知识目标的表述往往运用“了解、明确、知道、认识、积累”等词语,而能力目标表述的方式通常是“能……”或“能够……”。 知识的学习是为了运用,是为了解决实际问题。运用知识解决问题是人类生存发展不可或缺的重要能力,也只有在运用知识的过程中学习新知、解决问题,知识才会学得牢记忆深,才会逐渐形成能力,才会使学习活动事半功倍。因此,对于人的发展来说,知识素养和能力素养缺一不可,知识素养和能力素养的培养不可分离,应有机融合相互促进。义务教育语文课程目标设计就体现了这一

IBIS模型及其应用

I B I S模型及其应用CDMA事业部眭诗菊 摘要:本文介绍了用于高速系统信号完整性分析的IBIS模型的历史背景、IBIS模型的结 构、IBIS模型的建模过程、IBIS模型的参数、语法格式,以及在使用IBIS模型 时常遇到的问题和解决方法。 关键词:IBIS模型、EDA、信号完整性、缓冲器、单调性、收敛 高时钟频率下运行的并行处理系统或其它功能更加复杂的高性能系统,对电路板的设计提出了极其严格的要求。按集总系统的方法来设计这些系统的线路板已不可想象。许多EDA(电子设计自动化)供应商都提供能进行信号完整性分析和EMC分析的PCB设计工具。这些工具需要描述线路板上元器件的电气模型。IBIS (I/OBufferInformationSpecification)模型是EDA供应商、半导体器件供应商和系统设计师广泛接受的器件仿真模型。 一、IBIS的背景及其发展 在IBIS出现之前,人们用晶体管级的SPICE模型进行系统的仿真,这种方法有以下三个方面的问题:第一,结构化的SPICE模型只适用于器件和网络较少的小规模系统仿真,借助这种方法设定系统的设计规则或对一条实际的网络进行最坏情况分析。第二,得到器件结构化的SPICE模型较困难,器件生产厂不愿意提供包含其电路设计、制造工艺等信息的SPICE模型。第三,各个商业版的SPICE软件彼此不兼容,一个供应商提供的SPICE模型可能在其它的SPICE仿真器上不能运行。因此,人们需要一种被业界普遍接受的、不涉及器件设计制造专有技术的、并能准确描述器件电气特性的行为化的、“黑盒”式的仿真模型。

1990年初,INTEL公司为了满足PCI总线驱动的严格要求,在内部草拟了一种列表式的模型,数据的准备和模型的可行性是主要问题,因此邀请了一些EDA供应商参与通用模型格式的确定。这样,IBIS1.0在1993年6月诞生。1993年8月更新为IBIS1.1版本,并被广泛接受。此时,旨在与技术发展要求同步和改善IBIS 模型可行性的IBIS论坛成立,更多的EDA供应商、半导体商和用户加入IBIS论坛。1995年2月IBIS论坛正式并入美国电子工业协会 EIA(ElectronicIndustriesAssociation)。1995年12月,IBIS2.1版成为美国工业标准ANSI/EIA-656。1997年6月发布的IBIS3.0版成为IEC62012-1标准。1999年9月通过的IBIS3.2版为美国工业标准ANSI/EIA-656-A。目前大量在使用中的模型为IBIS2.1、IBIS3.2版本。 二、IBIS模型 IBIS模型是一种基于全电路仿真或者测试获得V/I曲线而建立的快速、准确的行为化的电路仿真模型。它的仿真速度是SPICE模型仿真速度的25倍以上。人们可以根据标准化的模型格式建立这种模拟IC电气特性的模型,并可以通过模型验证程序型验模型格式的正确性。IBIS模型能被几乎所有的模拟仿真器和EDA工具接受。由于来自测量或仿真数据,IBIS模型较容易获得,IBIS模型不涉及芯片的电路设计和制造工艺,芯片供应商也愿意为用户提供器件的IBIS模型。所以IBIS模型被广泛应用于系统的信号完整性分析。 IBIS模型是以I/O缓冲器结构为基础的。I/O缓冲器行为模块包括:封装RLC参数,电平箝位、缓冲器特征(门槛电压、上升沿、下降沿、高电平和低电平状态)。图1为IBIS模型结构。 图1:IBIS模型结构 说明虚线的左边为输入的模型结构,右边为输出的模型结构

课程设计题目资料讲解

课程设计题目

题目一 题目:广告公司网络的设计 1.基本背景描述 某广告公司现有分公司1(50台pc)和分公司2(40台pc),分公司1和分公司2都拥有各自独立的部门。分公司1和分公司2包括:策划部、市场部、设计部。为提高办公效率,该广告公司决定建立一个内部网络。 该广告公司内部使用私有IP地址192.168.160.0/23,要求该广告公司的分公司1和分公司2之间使用路由器进行连接(不使用vpn技术),使用动态的路由协议(RIP)。分公司1和分公司2内部通过划分vlan技术,使不同的部门在不同的局域网内。 2.方案设计 写题为“广告公司的网络解决方案”的网络方案设计书。包括: ①完整的校园网络拓扑图(网络拓扑图要求使用visio工具进行设计绘制); ②结合网络拓扑图进行IP地址的规划; ③分公司1的VLAN的设计与规划。 ④分公司2的VLAN的设计与规划。 ⑤分公司1和分公司2的网络互连互通。 设计内容及工作量 1、写题为“广告公司的网络解决方案”的网络方案设计书。要求画出完整的企业网络拓扑图(网络拓扑图要求使用visio工具进行设计绘制)。 2、结合网络拓扑图进行IP地址的规划,要求通过表格的形式体现。 3、按照任务书的具体要求书写相应的设计书及实现的过程纪录。

题目二 某学院有1900台个人计算机,50台服务器,其中办公用计算机60台,教学用计算机60台,科研用计算机120台,研究生计算机200台。其余为学生实验电脑。 分配的IP地址为: 服务器: 172.16.1.1—172.16.1.61/26 网关为:172.16.1.62/26 个人计算机:192.168.0.0—192.168.7.255 学院现在三层交换机6台,每台三层交换机可划VLAN(虚拟局域网)个数为100。24口二层交换机若干台。 1.请为学院的全部计算机分配IP地址,并使用上述设备为学院设计网络。 2.要求: a.画出网络拓扑图。 b.给出每个网段的IP范围,子网掩码,默认网关。 c.为三层交换机规划VLAN。给每个VLAN接口分配IP地址。 d.做好三层交换机之间的路由设计(可使用静态路由和RIP) e.设计学院网站,写出功能版块及初步描述。 题目三 校园网络总体规划设计方案

IBIS模型详解中文版

§ 绪论 (1) 1.1 IBIS模型的介绍 (1) 1.2 IBIS的创建 (3) § IBIS模型的创建 (3) 2.1 准备工作 (3) 2.1.1 基本的概念 (3) 2.1.2 数据列表的信息 (4) 2.2数据的提取 (4) 2.2.1 利用Spice模型 (4) 2.2.2 确定I/V数据 (4) 2.2.3边缘速率或者是V/T波形的数据的测量 (7) 2.2.4试验测量获取I/V和转换信息的数据 (7) 2.3数据的写入 (8) 2.3.1 IBS文件的头I信息 (8) 2.3.2器件和管脚的信息 (8) 2.3.3 关键词Model的使用 (9) §3 用IBIS 模型数据验证模型 (10) 3.1 常见的错误 (10) 3.2 IBIS模型的数据验证 (12) 3.2.1 Pullup、Pulldown 特性 (12) 3.2.2 上升和下降的速度(Ramp rate) (12)

3.2.3 上下拉特性和Ramp rate的关系 (12)

3.3用IBIS模型数据验证模型参数的实例 (12)

§ 绪论 1.1 IBIS模型的介绍 IBIS (Input/Output Buffer Informational Specifation )是用来描述IC 器件的输入、输出和l/OBuffer 行为特性的文件,并且用来模拟Buffer和板上电路系统的相互作用。在IBIS模型里核心的容就是Buffer的模型,因 为这些Buffer产生一些模拟的波形,从而仿真器利用这些波形,仿真传输线的影响和一些高速现象(如串 扰,EMI等。)。具体而言IBIS描述了一个Buffer的输入和输出阻抗(通过I/V曲线的形式)、上升和下降时间以及对于不同情况下的上拉和下拉,那么工程人员可以利用这个模型对PCB板上的电路系统进行SI、串扰、EMC以及时序的分析。 IBIS模型中包含的是一些可读的ASCII格式的列表数据。IBIS有特定的语法和书写格式。IBIS模型中还包 括一些电气说明如V、V、V以及管脚的寄生参数(如管脚的引线R、L、C)等。有一点需要注意的是IBIS模型并不提供IC器件:功能信息、逻辑信息、输入到输岀的时间延迟等。也就是说,IBIS模型只是提供了器件的输入、输出以及I/O Buffer的行为特性,而不是在IC器件给定不同的输入,测量对应不同的 输出波形;而是在描述器件有一个输入时,我们看不同情况下输出的特性(具体的说我们可以在输出端接一个电压源,这样我们在确保器件输岀高电平或者是低电平时,调整电压源的数值,可以测岀不同的电流, 这样我们就可以在确保输岀管脚输岀某一个状态时得岀一些I/V的数值,至于电压源具体的变化围后面的 容会涉及到)。所以对于器件商家而言IBIS模型不会泄漏器件的部逻辑电路的结构。 要实现上面提到的对系统的SI和时序的仿真,那么需要的基本的信息就是Buffer的I/V曲线和转换特性。IBIS模型中Buffer的数据信息可以通过测量器件得出也可以通过器件的SPICE模型转换得到。IBIS是一 个简单的模型,当做简单的带负载仿真时,比相应的全Spice三极管级模型仿真要节省10?15倍的计算量。IBIS模型是基于器件的。也就是说一个IBIS模型是对于整个器件的管脚而言的,而不是几个特殊的输入、 输出或者是I/O管脚的Buffer。因此,IBIS模型中除了一些器件Buffer的电气特性,还包括pin-buffer的映射关系(除了电源、地和没有连接的管脚外,每个管脚都有一个特定的Buffer),以及器件的封装参数。IBIS提供两条完整的V —I曲线分别代表驱动器为高电平和低电平状态,以及在确定的转换速度下状态转换的曲线。V —I曲线的作用在于为IBIS提供保护二极管、TTL推拉驱动源和射极跟随输出等非线性效应的建模能力。 一般而言,IC器件的输入、输出和I/O管脚的Buffer的行为特性是通过一定的形式描述的。下面分别对于输入、输出和I/O管脚Buffer的表述形式作一个介绍。 对于一个输出或者是I/O管脚的Buffer需要下列的相关数据: 在输岀为逻辑低时,输岀管脚Buffer的I/V特性 在输出为逻辑高时,输出管脚Buffer的I/V特性 在输出的电平强制在V以上和GND以下时,输出管脚Buffer的I/V特性Buffer由一个状态转换为另一 个状态的转换时间 Buffer的输出电容 一般情况,IBIS模型包含以下一些信息,IBIS模型的结构如下图1.1所示。 1. 关于文件本身和器件名字的信息。这些信息用以下的关键词描述:[IBIS Ver] IBIS的版本号, [File Name]文件的名称,[File Rev] 文件的版本号,[Component]器件的名称和[Manufacturer]. 器件的制造 商。 2. 关于器件的封装电气特性和管脚与Buffer模型的映射关系。可以使用关键词[Package]和[Pin] 描述。

工程测量课程设计讲解(20210317030411)

《工程测量学》课程设计讲稿 一、课程设计的目的 工程测量学课程设计是该课程理论部分学习后的一个必要的带有学术性的实践环节,是对课程理论综合与补充。通过课程设计,培养同学们运用本课程基本理论知识,分析解决现场工程技术问题的能力,加深对课程理论的理解和应用,提高工程测量现场服务的技能。对同学们的创新能力的提高、加深课程理论的理解和应用均具有十分重要的意义。 二、课程设计的要求 在课程设计前,每位同学应认真复习教材有关内容,按照指导教师要求,在掌握基本理论的基础上并在指导教师的指导下,每位同学应独立保质、保量、按时完成本课程设计的全部内容。 三、课程设计的依据 依据《工程测量规范》、《建筑物变形测量规范》、《全球定位系统(GPS测量规范-2009》。 四、课程设计的任务 (一)桥梁施工控制网的建立及桥梁墩台放样方案设计 1. 工程概况 该桥梁工程位于焦作市南约9km处的大沙河上,大桥全长500米,主跨120米(实际300 米)、深10余米,工程现已经完工。桥梁跨越结构为4孔(实际为10孔)简支梁,支座间距米。本工程具体位置如下页图1-1所示。 2. 已有测绘成果 在工程范围内(沙河桥北、世纪路与迎宾路交叉口、河南理工大学)有三个GPS空制点,标志保存完好,可以作为控制基准。三个GPS空制点及有关导线点的坐标如下:

为把课程设计有效结合起来,现给出十条桥轴线,测绘1、3班各组按顺序选取奇数编号的桥轴线设计,测绘2、4班选取偶数编号的桥轴线设计。桥轴线起止点坐标从AutoCAD 图上量取。 3. 施工控制网的建立 (1)桥梁施工控制网的建立特点 (2)控制网的网形结构 (3)精度估算与技术指标(从桥墩放样的容许误差来估算施工控制网精度) (4)平面控制方案的实施(包括人员组织、仪器选择等) (5)高程控制方案的实施(包括人员组织、仪器选择等) 4. 桥墩、桥台放样方案 包括精度确定、测量方案选择、测量方案实施等。 5. 提交资料 (1)施工控制网平面图、高程线路图 (2)桥墩、桥台设计平面图 图1-1 桥梁施工控制网建立及桥梁墩台放样原址示意图

相关文档
最新文档