感应加热电源的调频调功研究

感应加热电源的调频调功研究
感应加热电源的调频调功研究

龙源期刊网 https://www.360docs.net/doc/d17774601.html,

感应加热电源的调频调功研究

作者:范文涛

来源:《科技视界》2016年第18期

【摘要】针对感应加热电源的调功关键问题,本文设计了一种基于调频调功理论的感应

加热电源调功理论。通过大量的仿真实验,实验结果表明,本文所设计的调功电路能都达到调节输出功率的目的。

【关键词】感应加热;调频调功;调功电路;输出功率

0 引言

感应加热由于具有加热效率高、升温快、可控性好等诸多有点,目前广泛应用于熔炼、透热、淬火、弯管、焊接和加热等工业生产领域,已成为冶金、国防、机械加工、锻造和船舶、飞机制造业等不可缺少的加热技术,取得了明显的经济效益和社会效益[1-3]。

随着电力电子技术和开关器件的发展,感应加热电源正朝着高频化、轻量化和数字化的方向发展;随着大量整流设备的引入,电网的谐波污染问题越来越严重,对感应加热电压的需求提出了更高的要求。感应加热的电源和加热负载作为一个有机整体,每一种负载具有其独特的负载匹配结构。当感应加热电源与负载不匹配时,其电源的利用效率和可靠性都会降低。合适的负载匹配可以提高感应加热电源的利用率和减小电源损耗。

感应加热电源输出功率控制电路是整个控制电路中的核心电路,根据调功的位置,可将逆变器输出功率的控制方式分为:直流侧控制和逆变侧控制。

直流侧控制可以通过调节晶闸管整流器的移相角来控制输出直流电压的大小,从而达到控制逆变侧输出功率的目的;也可以在整流系统和逆变系统之间加入一个斩波调功环节,斩波调功利用buck变换拓扑,通过控制功率开关器件的占空比,来调节逆变系统的输入电压,从而控制逆变侧的输出功率。直流侧调功是通过调节逆变侧的输入电压来对逆变系统输出功率进行调节,为了达到低损耗和最大输出功率,此方法需要对负载侧进行精确锁相。

逆变侧调功可分为:调频调功(PFM)、移相调功和脉冲宽度调功(PDM)。脉冲宽度

调功(PDM)是通过改变脉冲密度来实现对逆变器输出功率的调功,此方法适用于负载较大

的应用场合,在小功率开环控制也有一定的应用,特别是家用电磁炉中。调频调功(PFM)是利用负载的频率特性,通过调节逆变器的输出频率来实现对逆变器输出功率的调节[4-5]。

本文采用逆变侧调频调功的方式,来对感应加热电源的输出功率进行调节和研究。

1 调频调功理论

高频电源技术要求(精)

高频电源技术要求 1、输入电源:三相三线制,电压380V,50Hz。 2、变换器形式:全桥串并联混合谐振。 3、谐振频率:30kHz~50kHz。 4、变换器效率:≥0.92。 5、功率因数:在额定输出电压、电流条件下大于0.9。 6、高频电源结构特性:整机一体化。高频控制柜和变压器采用上下结构方式,以便于变压器检修、吊装换油等。 7、高频电源设备必须确保密闭,防护等级IP55,必须加装大功率工业空调,确保控制柜内主辅电及控制器须与外界空气完全隔绝,防水、防尘,防盐雾。、 8、为确保功率器件(IGBT、整流桥)可靠散热,散热器必须采用热管散热器。 9、设备具有纯直流供电、间歇供电两种供电方式,间歇供电比任意可调。 10、输出直流电压调节范围:0~100%的最大输出电压值或起晕电压~100%的最大输出电压值。 11、输出直流电流调节范围:0~100%额定值。 12、控制系统:采用16位单片机控制,具有与上位机通讯、远程控制功能。 13、设备具有自动和手动两种运行方式。 14、设备具有高低压一体化断电振打接口,能自动接收来自低压振打系统的振打信号,并自动响应,实现复合式功率控制振打,明显改善振打清灰效果。 15、设火花检测控制功能灵敏可靠。闪络特性参数可根据需要设定。 16、设备设置启动、停止按钮,设置“本地/远控”转换开关,将“本地/远控”开关置于本地位置时,本地启停高频电源,将“本地/远控”开关置于远控位置时,可在上位机操作界面上启停控制高频电源。 17、设备应设置运行、报警、停机指示灯。 18、设备应设置母线电压表、一次电流表、二次电压表、二次电流表,以方便直观地监视设备的重要参数。 19、设备能向上位机传送运行的母线电压、电流、二次电压、二次电流、火花率、设备启、停状态、变压器油温、IGBT温度超限等设备故障信号。 20、设备具有重载、轻载保护功能。设备重载、轻载时,设备的二次电流、二次

感应加热电源发展前景及市场分析_感应加热电源特点

感应加热电源发展前景及市场分析_感应加热电源特点 感应加热电源简介感应加热电源对金属材料加热效率最高、速度最快,且低耗环保。它已经广泛应用于各行各业对金属材料的热加工、热处理、热装配及焊接、熔炼等工艺中。感应加热电源由两部分组成,一部分是提供能量的交流电源,也称变频电源;另一部分是完成电磁感应能量转换的感应线圈,称感应器。 感应加热电源它不但可以对工件整体加热,还能对工件局部的针对性加热;可实现工件的深层透热,也可只对其表面、表层集中加热;不但可对金属材料直接加热,也可对非金属材料进行间接式加热。等等。因此,感应加热技术必将在各行各业中应用越来越广泛。 用感应电流使工件局部加热的表面热处理工艺。这种热处理工艺常用于表面淬火,也可用于局部退火或回火,有时也用于整体淬火和回火。随着钢、铁、铜、铝及合金各各行业的需要,感应熔化设备受到了青睐,越来越多的行业运用到了感应加热设备,越来越多进入感应加热设备行业,越来越多品牌进入中国市场,20世纪30年代初,美国、苏联先后开始应用感应加热方法对零件进行表面淬火。随着工业的发展,感应加热热处理技术不断改进,应用范围也不断扩大。 感应加热是目前人类所知的最快的加热方式,传统的加热方式是热传导,即由一个热的物体将自身的热能量传递给另一个物体,而感应加热则是通过交变电流在电感线圈中产生电流漩涡,也就是涡流,使处于线圈中的导磁性物体内的电子空穴运动从而产生热量。感应加热是传统加热方式的一次伟大的革命! 感应加热电源性能特点1、采用谐振变频技术使设备整体效率90%,高效、节能,耗电量仅为电子管感应加热设备的20%-30%。 2、采用IGBT器件逆变,频率高、体积小、重量轻。体积与重量为可控硅整流器的1/5-1/10,便于您规划、扩建、移动、维护和安装。 3、采用数字锁相技术实现频率自动跟踪,能自动适应各种感应器。 4、采用驱动模块控制,确保设备的可靠性、易维修。

SG3525调频控制的感应加热电源

SG3525调频控制的感应加热电源 文件大小:更新时间:2012.08.11 下载地址:DOWNLOAD 感应加热技术具有加热温度高、加热效率高、速度快、加热温度容易控制、易于实现机械化、自动化、无空气污染等优点,现在感应加热电源已广泛用于金属熔炼、透热、热处理和焊接等工业过程。 根据功率调节量的不同感应加热电源有多种调功方式,调频调功是通过改变逆变器工作频率从而改变负载输出阻抗以达到调节输出功率的目的[1]。这种调功方式控制比较简单,可以对电路的工作频率进行直接控制,而且能对功率连续调整。本文正是基于调频调功这种方式,由PWM控制芯片SG3525控制实现的加热电源。 2.主电路拓扑结构和控制原理: 2.1 主电路结构: 本文设计的感应加热电源为串联谐振式全桥IGBT逆变电源,其逆变主电路结构如图1所示。输入采用三相AC/DC不控整流,输出采用负载串联谐振式全桥DC/AC逆变电路。整流输出的电压经高压大电容C1滤波,逆变器主开关器件Q1、Q2、Q3、Q4为IGBT,D1、D2、D3、D4为反并联二极管。

图1 主电路结构图 2.2控制原理 调频控制的原理就是:通过改变逆变器开关频率来改变输出阻抗以达到调节输出功率的目的。串联谐振等效电路图如图2所示。 图2 负载等效电路图

负载等效阻抗为Z=1/jωC +jωL+R ;则|Z|= = ,其中f=1/(2 π)谐振频率。f=f0时,负载等效阻抗最小,|Z|=R,此时功率输出最大;f >f0时,负载呈感性,且频率越大感抗越大,功率减小;f

高频感应加热电源工作原理

高频感应加热电源工作原理【大比特导读】高频感应加热电源在工作原理方面,也与普通的加热电源有 着很大不同,本文将会通过对其工作原理的叙述,为大家解读高频感应加热电源加热快、效率高的秘密所在。 感应加热电源的研发在最近几年呈现出专业化和快速的趋势,高频感应加热电源凭借着加热速度快、加热均匀等优势,被广泛的应用在工业及生活领域。高频感应加热电源在工作原理方面,也与普通的加热电源有着很大不同,本文将会通过对其工作原理的叙述,为大家解读高频感应加热电源加热快、效率高的秘密所在。 高频感应加热电源与普通的感应加热模块一样,也是采用了导体磁束加热的模式。用交流电流流向被卷曲成环状的导体,这种导体通常情况下会采用铜管这种材料,由此产生磁束。将金属放置其中,磁束就会贯通金属体,在与磁束自缴的方向产生涡电流,也就是大家所熟悉的旋转电流,于是感应电流在涡电流的影响下产生发热,用这样的加热方式就是感应加热。由此,对金属等被加热物体在无需直接接触的状态下就能获得加热效果。 此时,窝电流将会在线圈接近的物体上集中,感应加热表现出在物体的表面上较强里边较弱的特点,用这样的原理来对被加热体的必要的地方集中加热,达到瞬间加热的效果,从而提高生产效率和工作量等。 当然了,使用高频感应加热电源进行加热的成功与否,直接取决于感应线圈设置是否合理,以及加热体的大小、形状、间距等等。感应线圈是要做到均匀加热、加热效果好,并且要有强度和准确度。感应线圈是一般用一圈或数圈的铜管来做,一般采用水冷的方式对线圈进行冷却。 结语: 高频感应加热电源的感应线圈是高效加热的关键所在,而无需直接触碰就可以快速加热 的优势,也让这个感应加热电源的家族新成员迅速获得了生产商的认可。

基于KA3525的高频感应加热电源的设计

基于KA3525的高频感应加热电源的设计 【摘要】本文根据电流型PWM控制芯片KA3525的特点,并利用三星单片机S3F9454的辅助控制功能,设计了一种高频感应加热电源电路,并可实现输出功率可调。本文详细介绍了它的功率调整电路、主电路、控制电路等,并描述了它们的实现原理与方法。 【关键词】KA3525;三星单片机S3F9454;PWM;感应加热电源 0.引言 在当今工业生产中,很多地方都要用到中小功率的感应加热电源,例如对工件进行淬火、熔炼贵金属等。这类电源大多为并联谐振型电源,由电流源直接供电,通过直流侧的控制电路实现功率调节,即通过调节整流晶闸管的移相触发角来实现功率调节。这类电源在制作时需要消耗大量材料,入端功率因数低,包含比较大的平波电抗器,对电网也有较大的谐波干扰,效率低。因此,这类电源如今越来越不符合人们对具有高品质的感应加热电源的要求。本文就这一问题,设计出了一种容易实现、高品质的中小功率感应加热电源。 本文结合KA3525和三星单片机S3F9454的特点,研制出了一种基于KA3525并利用单片机辅助控制的高频感应加热电源。对高频感应加热电源的工作原理作了详细分析,并对它的功率调整电路、主电路、控制电路等作了主要阐述。 1.感应加热电源原理及总体结构 首先通过不控整流电路,将220V的交流电转换为脉动直流,再经过电容滤波得到平直的直流电压,然后通过高速V-MOS功率场效应管组成的桥式逆变电路,得到高频方波交流电压,利用变压器隔离实现阻抗匹配,将高频高压电变为低压大电流,从而对金属进行加热。 系统主要由七个部分组成: 不控整流电路:本文采用不控整流将220V的交流电变为不可调的直流电。 滤波电路:逆变谐振一般采用电容滤波,这里为减小体积,采用了电感,为防止电流冲击破坏电路,特在电路中设置了延迟环节。 桥式逆变电路:本文装置频率较高,必须采用高速V-MOS场效应管;由于单管电流容量受到限制,而场效应管具有易并联的特点,因此在满足耐压的前提下,采用多管并联方式来满足输出功率的要求。 高频变压器隔离:串联谐振一般Q值较大,谐振时,电压可达千伏以上,

(完整版)高频开关电源设计毕业设计

目录 引言......................................................... 1本文概述 ................................................. 1.1选题背景............................................................................................................................ 1.2本课题主要特点和设计目标 ........................................................................................... 1.3课题设计思路.................................................................................................................... 2SABER软件................................................ 2.1SABER简介 ..................................................................................................................... 2.2SABER仿真流程 ............................................................................................................. 2.3本章小结............................................................................................................................ 3三相桥式全控整流器的设计.................................. 3.1工作原理............................................................................................................................ 3.1.1 三相桥式全控整流电路的特点 ..................................................................................... 3.2保护电路............................................................................................................................ 3.2.1 过电压产生的原因.......................................................................................................... 3.2.2 过压保护 (1) 3.2.3 过电流产生的原因 (1) 3.2.4 过流保护 (1) 3.3SABER仿真 (1) 3.3.1 设计规范 (1) 3.3.2 建立模型 (1)

感应加热电源的控制与驱动电路

感应加热电源的控制与驱动电路 感应加热电源中电力电子控制电路的构成,显现出多样化组成方式,其控制方案主要是根据感应电源调功方式、加热负载特性要求等不同,控制电路的结构会有所不同。 感应加热电源的功率控制调节方式总体上可分为直流侧调功和逆变侧调功两种。直流侧调功又分为三相全控整流器调功和直流斩波器调压调功。逆变侧调功的控制电路方案根据加热工艺特性要求,可以采用的控制方式更灵活, 常用的有调频功(PFM )、移相调功(PSM)、脉宽调制恒频调功(PWM )、脉冲密度调制调功(PDM )、调宽调制加调频调功(PWM+PFM )、脉宽调制加脉冲密度调制调功(PWM+PDM )等各种调功方式。 下面就感应加热电源控制电路的基本组成和原则作简单叙述,其具体内容将在相关章节中介绍。 (1)控制方式根据感应加热电源负载特性不同,调功方法不同,通常可采用电压反馈控制、电流反馈控制。 1)采用电压控制,其目的是保证输出直流母线电压恒定,也就是说加在感应加热绕组的端电压恒定。控制采样可以取自直流母线电压或逆变器电感绕组或谐振补偿电容上的电压。取样一般采用隔离式电压传感器(TV),经道算、比较处理,控制品闸管的导通角或逆变器开关管PWM 驱动脉冲的相移或脉宽,达到改变直流输出到逆变器直流母线上的电压或改变逆变器输出电压的平均值(或有效值),最终因闭环负反馈的作用维持输出电压恒定。输人电压的波动,对加热电源的输出功率也就是对工件的加热温度产生较大影响,将直接影响到加热工件的产品工艺质量要求。 加热电源的输出功率为P =u 2/Z,在负载不变的条件下,功率P 与电压组或谐振补偿电容上的电压。u 的平方成正比。也就是说,加热温度与电压的平方成正比。如果电压不稳定,加热温度就不均匀,对于毛坯工件加热、淬火要求温度稳定性较高的场合,必须要有自动稳压功能,否则产品质單得不到保证。 2)采用电流控制,其目的是保证输出直流或高频输出电流恒定。控制采样可取自直流母线电流或逆变器感应加热绕组中的电流。取样一般采用隔离式电流传感器感(TA ),电流反馈信号控制的对象同电压控制,目的是达到输出电流的变化,也就是输出功率P 的变化、加热温度的 变化。这是因为P=IU u z u z u =?? ? ??=2,因此可以看出,电压U 或负载阻抗Z 的变化,会引起电流I 的变化,即功率或加热温度的变化。 3)采用功率控制,其目的是为了保证感应加热电源的恒功率输出。采样信号同时取样电压和电流信号,经乘法器处理后,经PI 调节器输出与功率给定相比较,控制晶闸管的导通角或逆变器驱动脉冲信号的宽度、相移,或采用动态阻抗匹配法控制电源侧的等效阻抗与负载相等,达到功率的恒定,保证加热温度在给定的功率下恒定,满足工件加热工艺特性和质量要求。 (2)采用直流侧调月i 调功方案的感应加热电源,其控制电路需要有锁相频率自动跟踪系统。无.论是逆变器采用脉宽调制(PwM)控制技本调功,还是采用移相(PSM)调功等,如果逆变侧不进行频率自动照際,会出现两大问题:①逆变器的开关功率器件不能很好地工作在软开关状态,开关器件承受的电压和电流应力大,除了危及器件安全外,开关损耗也增大;②因为逆变器工作频率与谐振电路的固有谐振频率不相等,逆变器回路或者说开关器件中流过较大的无功电流,而且功率因数下降,达不到最大功率输出,逆变器的效率降。频率跟踪的目的是保证逆变器的开关频

高频开关电源设计与应用

电源网讯传统的工频交流整流电路,因为整流桥后面有一个大的电解电容来稳定输出电压,所以使电网的电流波形变成了尖脉冲,滤波电容越大,输入电流的脉宽就越窄,峰值越高,有效值就越大。这种畸变的电流波形会导致一些问题,比如无功功率增加、电网谐波超标造成干扰等。 功率因数校正电路的目的,就是使电源的输入电流波形按照输入电压的变化成比例的变化。使电源的工作特性就像一个电阻一样,而不在是容性的。 目前在功率因数校正电路中,最常用的就是由BOOST变换器构成的主电路。而按照输入电流的连续与否,又分为DCM、CRM、CCM模式。DCM模式,因为控制简单,但输入电流不连续,峰值较高,所以常用在小功率场合。C CM模式则相反,输入电流连续,电流纹波小,适合于大功率场合应用。介于DCM和CCM之间的CRM称为电流临界连续模式,这种模式通常采用变频率的控制方式,采集升压电感的电流过零信号,当电流过零了,才开通MO S管。这种类型的控制方式,在小功率PFC电路中非常常见。 今天我们主要谈适合大功率场合的CCM模式的功率因数校正电路的设计。 要设计一个功率因数校正电路,首先我们要给出我们的一些设计指标,我们按照一个输出500W左右的APFC电路来举例: 已知参数: 交流电源的频率fac——50Hz 最低交流电压有效值Umin——85Vac 最高交流电压有效值Umax——265Vac 输出直流电压Udc——400VDC 输出功率Pout——600W 最差状况下满载效率η——92% 开关频率fs——65KHz 输出电压纹波峰峰值Voutp-p——10V 那么我们可以进行如下计算: 1,输出电流Iout=Pout/Udc=600/400=1.5A 2,最大输入功率Pin=Pout/η=600/0.92=652W 3,输入电流最大有效值Iinrmsmax=Pin/Umin=652/85=7.67A 4,那么输入电流有效值峰值为Iinrmsmax*1.414=10.85A 5,高频纹波电流取输入电流峰值的20%,那么Ihf=0.2*Iinrmsmax=0.2*10.85=2.17A 6,那么输入电感电流最大峰值为:ILpk=Iinrmsmax+0.5*Ihf=10.85+0.5*2.17=11.94A 7,那么升压电感最小值为Lmin=(0.25*Uout)/(Ihf*fs)=(0.25*400)/(2.17*65KHz)=709uH 8,输出电容最小值为:Cmin=Iout/(3.14*2*fac*Voutp-p)=1.5/(3.14*2*50*10)=477.7uF,实际电路中还要考虑hold up时间,所以电容容量可能需要重新按照hold up的时间要求来重新计算。实际的电路中,我用了1320uF,4只330uF的并联。 有了电感量、有了输入电流,我们就可以设计升压电感了! PFC电路的升压电感的磁芯,我们可以有多种选择:磁粉芯、铁氧体磁芯、开了气隙的非晶/微晶合金磁芯。这几种磁芯是各有优缺点,听我一一道来。

感应加热电源发展趋势

感应加热电源的发展水平与半导体功率器件的发展密切相关,因此随着功率器件在性能上的不断完善,使得感应加热电源的发展趋势也呈现出以下几个方面的特点。 (1)大功率 电力半导体器件的大功率与其使用频率有着极密切的关系。早期的晶闸管由于受到容量与频率互相制约的影响,不能达到同时获得大功率、高频率的效果。随着新型器件的发展,如MOSFET、IGBT、MCT等,将来的感应加热电源必将朝着大功率和高频率两者相统一的方向发展,在这方面仍有许多技术需要进一步研究[22]。 (2)低损耗、高功率因数 新型功率器件的通态电阻很小,通态压降小,所以损耗首先表现在基极或者门极驱动电路的损耗上。随着功率器件的发展,再加上驱动电路的不断完善和优化,使得整个装置的损耗明显降低。另外,由于感应加热电源一般功率都很大,随着对电网无功要求的提高,具有高功率因数的电源是今后的发展趋势。目前谐振技术的引入,一方面降低了电源中开关器件的开通和关断损耗,同时利用锁相技术将逆变器的工作频率锁定在负载的固有谐振频率内,使得该电源始终运行在功率因数接近1.0的状态[23]。 (3)应用范围扩大化 采用感应加热方法对锻造钢坯透热,节水节电且无污染;在铸造熔炼方面可以实现普通钢、特种钢、非铁金属材料的精细熔炼,同时可提高效率、无污染且金属成分可控;用于焊接时效率高,对被焊母材无损伤,适用于精度高、批量大的工件和大体积母材的局部焊接及各类金属管材的焊接;各类零部件的表面热处理也大量采用感应加热方法;钢塑材料制造、铝塑薄膜加工以及食品工业、医药工业的封口工艺也大量采用感应加热方法[24]。 (4)集成化、智能化 集成化、智能化主要是针对感应加热电源的控制部分,采用智能化的集成电路将使元器件数量减少,可以降低成本,电路本身具有的诊断与保护等功能也提高了可靠性。随着感应加热生产线自动化控制程度及电源可靠性的提高,感应加热电源正朝着智能化、集成化控制方向发展,高度集成化以及全数字化感应加热电源正成为下一代发展目标。神经网络与模糊控制是当前两种主要的智能控制技术,它们既有共性又有互补性,两者的结合成为当今智能控制领域的研究热点[25]。 1

感应加热基本原理

二感应加热基本原理 1.电磁感应原理 1831年,英国物理学家faraday发现了电磁感应现象,并且提出了相应的理论解释。其内容为,当电路围绕的区域内存在交变的磁场时,电路两端就会感应出电动势,如果闭合就会产生感应电流。 利用高频电压或电流来加热通常有两种方法: (1)电介质加热:利用高频电压(比如微波炉加热) (2)感应加热:利用高频电流(比如密封包装) 2.电介质加热(dielectric heating) 电介质加热通常用来加热不导电材料,比如木材。同时微波炉也是利用这个原理。原理如图1: 图1 电介质加热示意图 当高频电压加在两极板层上,就会在两极之间产生交变的电场。需要加热的介质处于交变的电场中,介质中的极分子或者离子就会随着电场做同频的旋转或振动,从而产生热量,达到加热效果。 3.感应加热(induction heating) 感应加热原理为产生交变的电流,从而产生交变的磁场,再利用交变磁场来产生涡流达到加热的效果。如图2: 图2 感应加热示意图 基本电磁定律:

法拉第定律:d e N dt φ= 安培定律:Hdl NI ?= 其中:BdS φ=?,0r B u u H = 如果采用MKS 制,e 的单位为V ,?的单位为Wb ,H 的单位为A/m ,B 的单位为T 。 以上定律基本阐述了电磁感应的基本性质, 集肤效应: 当交流的电流流过导体的时候,会在导体中产生感应电流(如图3),从而导致电流向导体表面扩散。也就是导体表面的电流密度会大于中心的电流密度。这也就无形中减少了导体的导电截面,从而增加了导体交流电阻,损耗增大。工程上规定从导体表面到电流密度为导体表面的1/e =0.368的距离δ为集肤深度。 在常温下可用以下公式来计算铜的集肤深度: 7.5 δ= 式(1) 图3 涡流产生示意图 从以上可以看到,如果增大电流和提高频率都可以增加发热效果,是加热对象快速升温。所以感应电源通常需要输出高频大电流。 参考文献:fundalmentals of power electronics, R.W .Erickson (讲义) TPIH2500 Textbook Tetra Pak Technical Training Centre 三 感应加热电源常见框图结构和控制方法 1.感应加热电源常见框图

感应炉综述

1、前言 虽然感应加热的原理发现的比较早,但人类真正广泛应用该项技术还是近三十年的事情。现在它的重要性越来越被人们所认识。 早在十九世纪科学家就发现了电磁感应现象:1831年法拉第(Michael Faraday)发现电磁感应规律;1868年福考特(Foucault)提出涡流理论;1840年焦耳-楞茨确定了电阻发热的关系式,,这些都是感应加热的理论基础。 感应加热装置由两部分组成,一部分是提供能量的交流电源,也称变频电源,变频电源有低频、工频、中频、超音频和高频之分;另一部分是完成电磁感应能量转换的感应线圈及机械结构,称感应炉。早期的感应加热电源有工频固态(50或60Hz)电源、中频有发电机旋转和固态电源、高频电子管电源。第二次世界大战前后的感应加热设备基本上是上述的初级发展水平。 制约感应加热发展的主要是感应加热电源,而电源受制于高频或大功率的开关器件。电力电子功率器件的发展,才真正促进了感应加热电源的发展。1957年美国研制出世界上第一只普通的阻断型可控硅,我们现在称为晶闸管(SCR),经过60至70年代工艺完善和产品开发,70年代后期已形成从低电压小电流到高压大电流的系列产品,从而使固态感应加热电源产生了革命,走向实用化的阶段。与此同时,世界各国研制了大量的派生器件。如逆导晶闸管(RCT),门极辅助关断晶闸管(GATT),光控晶闸管(LTSCR)、及80年代发展的可关断晶闸管(GTO)等。 今天的电力半导体功率器件的发展更是琳琅满目,简单归纳一下有:①、大功率二极管:②、晶闸管(SCR);③、双向晶闸管;④、门极关断(GTO)晶闸管(最大 8500V ,3500A);⑤、双极结型晶体管(BTT或BPT);⑥、电力MOSFET;⑦、静电感应晶体管(SIT),(最大1000V ,300A,50MHz);⑧、绝缘双极型晶体管(IGBT)(最大6500V,2500A);⑨、MOS控制晶闸管(MCT);⑩、集成门极换向晶闸管(IGCT)。这些器件还正在不断更新和完善中,这些电力半导体器件是现代电力电子设备的核心,更是感应加热电源赖以发展的基础。它为感应加热电源设备带来前所未有的活力和广阔的发展前景。 2、感应加热应用范围和优越性 感应加热的历史,算起来也不过一百多年,在我国大规模应用是在改革开放以后,但发展前景非常看好。 1890年瑞典人发明了第一台感应炉---开槽式有心炉。1916年美国人制

利用SG3525实现调频控制的感应加热电源

利用SG3525实现调频控制的感应加热电源 1.引言: 感应加热技术具有加热温度高、加热效率高、速度快、加热温度容易控制、易于实现机械化、自动化、无空气污染等优点,现在感应加热电源已广泛用于金属熔炼、透热、热处理和焊接等工业过程。 根据功率调节量的不同感应加热电源有多种调功方式,调频调功是通过改变逆变器工作频率从而改变负载输出阻抗以达到调节输出功率的目的[1]。这种调功方式控制比较简单,可以对电路的工作频率进行直接控制,而且能对功率连续调整。本文正是基于调频调功这种方式,由PWM控制芯片SG3525控制实现的加热电源。 2.主电路拓扑结构和控制原理: 2.1 主电路结构: 本文设计的感应加热电源为串联谐振式全桥IGBT逆变电源,其逆变主电路结构如图1所示。输入采用三相AC/DC不控整流,输出采用负载串联谐振式全桥DC/AC逆变电路。整流输出的电压经高压大电容C1滤波,逆变器主开关器件Q1、Q2、Q3、Q4为IGBT,D1、D2、D3、D4为反并联二极管。

图1 主电路结构图 2.2控制原理 调频控制的原理就是:通过改变逆变器开关频率来改变输出阻抗以达到调节输出功率的目的。串联谐振等效电路图如图2所示。 图2 负载等效电路图 负载等效阻抗为Z=1/jωC +jωL+R ;则|Z|= = ,其中f=1/(2π)谐振频率。f=f0时,负载等效阻抗最小,|Z| =R,此时功率输出最大;f >f0时,负载呈感性,且频率越大感抗越大,功率减小;f

感应加热电源常见问题解读

感应加热电源常见问题解读 在感应加热电源的设备调试和日常使用过程中,工程师常常需要临时解决其出现的突发情况,这就需要工程师结合感应加热电源的设计方案和理论知识,及时进行处理。在今天的文章中,我们为大家总结了三种在平时比较常遇到的问题并进行解读,下面就让我们一起来看看这些问题都有哪些吧。 常见问题一:感应加热电源的烟气问题应该怎么处理比较稳妥? 对于感应加热电源来说,想要正确处理其烟气问题,我们可以从两个方面来入手,即通常所说的烟气净化或设置烟气捕集装置。先来看烟气净化方式,想要实现对感应加热设备的烟气净化,只有靠除尘器来实现,而除尘器选择的优劣直接影响到除尘系统的捕集效果、除尘电耗以及整个系统能否长期稳定、可靠运行、除尘器的形式繁多,各有利弊。关键在于如何扬长避短,与系统工艺及粉尘组成相适应以获得最佳效果。而设置烟气捕集装置则相对来说繁琐一些,其设置的内容主要包括回转式伞顶吸罩、低阻、大流量管道+调温电动蝶阀、 离线气管式脉冲除尘器、锅炉引风机等。这两种方法的选择,需要工程师依据实际情况进行判断。 常见问题二:感应加热电源在开机工作时有哪些问题需要特别注意一下? 通常情况下,在感应加热电源的工作过程中,有三类问题需要我们特别注意,分别是水资源短缺、电压过高和电气接地阴极电容设置。先来看水资源短缺问题,在长期使用感应加热设备的过程中,可能会出现因冷却水管水垢或阻塞电容而引起的电力电容器过热和燃烧问题,因此,我们应特别注意在水流量的排放情况,一旦发现排放不正常,则应该使用适当的措施。电气接地阴极电容也是需要特别注意的,电绝缘电容一旦发生损坏,很容易造成故障,因此需要工程师及时排查问题,及时处理故障的电容柜绝缘点。电压过高的情况也同样需

超音频(高频)感应加热电炉使用书明书

精诚电炉 超音频感应加热设备使用说明书

目录 感谢您购买潍坊精诚机电设备有限公司超音频感应加热电源 为了正确使用该电源并防患于未燃,安装前请详细阅读本说明书。并妥善保管以备查阅。 超音频感应加热电源 一、安装前准备 二、安装方法 三、开机及使用操作 四、使用注意事项 五、故障及排除方法 六、技术参数

一、安装前准备 1、认清面板功能 面板功能表.

2、电源要求及配线 电压:输入电压的范围是:16KW----------------------------- ---------------单相:180—240V 26KW、50KW、80KW、120KW、160KW-----------------------三相四线制:320—420V 切勿接错,以免造成设备损坏。当电网电压超出范围时,请不要开机。电线:本系列产品属于大功率设备,用户在使用时应保证足够线径及接线可靠,以避免连接点因接触电阻大而发热严重。请参照下表选择电源线的规格。 电源线的耐压500V,铜芯线。 ☆设备必须按要求可靠接地!三相四线制供电的单位,即可必须可靠接零。严禁把地线接在自来水管上。 ☆线路必须由专业人员按国家布线规则进行安装,供电电源末级必须加装相应的空气开关。 ☆不使用设备时必须切断供电电源。 3、冷却水要求 高频加热设备内部及感应器必须通水冷却,并且确保水质清洁,以免阻塞冷却管道。如供水采用水泵抽水,请在水泵进水口安装过滤网,冷却水温度不能高于45C,否则会导致设备报警,甚至过热损坏。具体要求须按表二配制。

二、安装方法 前后面板都有明显标识:按标识安装即可。如有不清楚之处,请参阅下图安装。 16KW安装示意图 26/50KW安装示意图

高频高压电源的调试

符号(ZDK ),开始时,自 动调宽电位器顺时针开到 最大。在保护点范围内,逐 渐开大内调宽电位器并逐 渐关小自动调宽电位器,直 至, 调宽电位器最大,自动 调宽电位器小到一定程度, 以达到额定电流为度。 符号(TK )正时针 宽度大 (总电流大)反时针宽度 小(总电流小)当电流过 大,电路保护时,关机, 将宽度电位器略微调小, 开机。配合自动调宽电位 器,自动调宽电位器逐渐 关小,宽度电位器逐渐开 大,直至最大(不超过额 定电流) 三龙臭氧电源调试 连接好的三龙臭氧电源经过细心调 试可以发挥它的最大潜能,做到长 期稳定的工作 1先认识四只电位器 频率调整电位器: 紧靠加密盒, 宽度微调电位器: 为1k_1.5k/1w 转柄电位器固定在 符号⑴,正时针频率高, 反时针频率低,总电流 为最大值时,频率为最 佳点,此时,声音最小。 如果总电流超过额定 值,用ZDK 调到额定自 值。 机壳面板上,调整电路时,首先把他 正时针开到最大值。 调宽电位器: 为10k 实芯电位器,离高压包较近。 固定在电路板上。 宽度调整电位器: 为4.7k 实芯电位器。固定在电路板 故障保护电位器:为200欧姆实芯电位 器。固定在电路板上。

将自动调宽电位器(ZDK)和挂长 勺手动电位器正时针调到最大,调宽 1器(TK)反时针调到最小。 开启电源,此时,电流表指示应远 小于电路工作正常值。细心听取,应该 有发生器工作时所固有的沙沙声或高压包的 轻微叫声。否则,应检查电路连接。检查电 路连接时应首先关掉电源。 2调整过程: A试运行。检查电路连接确实无误,在 交流输入端,一定要串联匹配的电流 交流电流表一定 要用磁电式 水路连接完好,并且水路中应有水在流动,确保 调试过程中功率管散热良好。 B正常工作电流的调整。宽度电位器 (TK 4.7k )徐徐开大,当电流达到额定植 的一半时(2.5kw,5kw,10kw 则应该在额定 值的1 /3时)调整频率,方法是:不论正时 针或是反时针调整频率电位器,使电流增至最 大,暂时锁定频率电位器。 再徐徐开大宽度电位器(TK 4.7k )使 电流表指针达到额定值,调节频率电位器 (f),不论正时针或反时针,使电流值达到最 大,超过额定植用自动限宽电位器(ZDK)拉 回到额定值。如果是2.5Kw,5kw,10kw 应该 分三次调整频率,第二次应该在额定电流的2 /3 处进行。 调整频率的目的是在寻找负载回路的谐振 符号(BH )开始反时针放到最小 值,逐渐开大调宽电位器,使岀现 保护。正时针调大线的保护电位 器30度角,重启。 再调大宽度,再调大保护3电位 度角,再重启。直至保护点为额定 电流值的1.2倍。

中频感应加热电源设计

洛阳理工学院 毕业设计(论文) 题目中频感应加热电源的设计 姓名王强 系(部)电气工程与自动化系 专业应用电子技术 指导教师张刚 2013 年6月1 日

中频感应加热电源的设计 摘要 感应加热电源具有加热效率高,速度快,可控性好,易于实现高温和局部加热,易于实现机械化和自动化等优点,目前已在金属熔炼、工件透热、淬火、焊接、铸造、弯管、表面热处理等行业得到了广泛的应用。 本设计研究了中频感应加热及其相关技术的发展、现状和趋势,并在较全面的论述基础上,对2.5kHz/250kW可控硅中频感应加热电源的整流电路以及控制电路进行了设计。本文设计的电源电路可用于大型机械热加工设备的感应加热电源。整流电路采用三相桥式全控整流电路,其电路结构简单,使电源易于推广;控制策略选用双闭环反馈控制系统,改善了信号迟滞的缺点,为以后研制大功率、超音频的感应加热电源打下了基础。 关键词:可控硅中频电源,感应加热,逆变,保护电路

Design Of Induction Heating Power Of MediumFrequency ABSTRACT Induction heating power is equipped with lots of advantages such as high heating efficiency, fast speed, good controllability, which is prone to make heating of high and partial temperature ,and realize mechanization and automation. At present metal melting, work piece heat penetration, quenching, welding, casting, elbow piece, surface heating processing has been widely applied. Induction heating of medium frequency and development, current situation, and tendency related technology has been studied,and have made quite comprehensive and in the profound elaboration foundation, this article has carried on the design to main circuit and the inversion control of the 2.5kHz/250kW silicon-controlled rectifier intermediate frequency induction heating power. This design is used for big facility of mechanical heating processing. Structure of rectification circuit is easy, which makes power popularized easily. Three-phase bridge rectification circuit is used in Rectification circuit. Rectification circuit uses feedback control of two closed loop, improving the disadvantages. The foundation for inventing induction heating power of big power and super audio is made. KEY WORDS:Controllable silicon medium power,Induction heating,Inverter,Protect circuit 目录

高频感应加热电源分析

高频感应加热电源分析-机电论文 高频感应加热电源分析 张皓然侯超 (中国人民公安大学,中国北京102623) 【摘要】随着感应加热电源的问世,其凭借着高效、节能以及污染低等优势在工业热处理等方面具有的巨大优势,很快就应用到经济生产的各个领域中来。我国作为能源使用大国,加强对于感应加热电源的研究,尤其是对于高频感应加热电源的研究有着非常重要的意义。本文从高频感应加热电源的拓扑结构出发,并详细探析了高频感应加热电源的功率控制以及控制系统设计的问题。 关键词高频感应加热电源;拓扑结构;功率控制 0 引言 高频感应加热电源技术目前对金属材料加热效率最高、速度最快,且低耗环保。它已经广泛应用于各行各业对金属材料的热加工、热处理、热装配及焊接、熔炼等工艺中。它不但可以对工件整体加热,还能对工件局部的针对性加热;可实现工件的深层透热,也可只对其表面、表层集中加热;不但可对金属材料直接加热[1],也可对非金属材料进行间接式加热等方面。所以,可以说感应加热技术必将在各行各业中应用越来越广泛,因此了解高频感应加热电源的拓扑结构,探析高频感应加热电源的功率控制以及控制系统设计等问题以提升高频感应加热电源技术就有着重要的现实意义。 1 高频感应加热电源的拓扑结构 高频感应加热电源随着电力电子技术以及器件的不断发展逐步完善,其基本上已经形成了一定的固定拓扑模式,即交流-直流-交流的整个变换过程,在这一过

程中其通过输出一定的频率的电压电流,以达到加热工件的目的从整流电路、滤波电路以及逆变电路三个层面来分析高频感应加热电源的拓扑结构[2],具体有以下两点: 1.1 感应加热电源整流电路和滤波电路 一般而言整流电路是将交流的电信号转变为直流电的信号,其具体可以分为不可控的整流电路、半可控整流电路以及全控的整流电路三类,基于整流电路在输出信号的过程中因为逆变电路的输入,因此在预设整流电路的过程中需要满足选择合适的滤波电路、具有必要的保护电路和根据负载的变化三个要求。另一方面,对于高频感应加热电源平滑滤波电路,在这一选择过程中需要保持逆变器工作状态的稳定,所以需要对粗糙的直流电信号进行加工处理,而对于平滑滤波器其工作原理是可以阻挡交流信号,却可以允许直流信号的通过,这一过程中就会大大的减少信号中所包含的交流成分,最终达到减少脉动的目的[3]。 1.2 逆变电路 逆变器作为感应加热电源的核心的组成部分,其最主要的组成部件就是逆变桥和谐振回路这两个部分,在传统意义上逆变器分为两类即电压型逆变桥和电流型逆变桥,作为感应加热电源的主体电路之一,对于电源功率的调节是其最重要的功能,所以要加强对感应加热电源的研究最主要的研究方面还是要放在对于逆变器功能的不断提升上面,而且因为并联谐振逆变器和串联谐振逆变器都有着不同适用的场合,所以在选择电源系统的过程中需要根据所要侧重的因素进行必要的选择。 2 高频感应加热电源的功率控制 高频感应加热电源的功率控制所包含的内容和层面很多,本文主要从功率调节

中频感应加热调压调功和调频调功的区别

中频感应加热调压调功和调频调功的区别 一、在感应加热中的中频电炉加热中频电源采用调压调功 调压调功就是通过调整整流电路输出电压或电流的大小来调整负载功率负载就通过锁相措施让其工作在谐振或者接近谐振的工作频率处。调整整流电路输出电压或电流的方法一般有下面两种一是在整流部分采用全控器件整流二是整流部分采用不控整流得到的电压用斩波器进行调压。调压调功电路简单成熟,控制比较方便,但是它的功率因数比较低,动态响应响应较慢。近年来随着开关器件的大规模的发展,斩波调压被不断的应用于开关电源中,具有电压转化频率高,易保护,但是整机的效率和可靠性可能会降低。器件处在大电流开关的条件下工作,对器件要求很高,相对损耗较大。 二、在感应加热中的中频电炉加热中频电源采用调频调功 供给负载使用的交流电压直接由逆变桥中的功率器件的触发脉冲所决定脉冲的频率就决定了输出电压的频率在负载等效参数R L和C 一定的情况下负载阻抗随逆变器频率变化而变化。 主要的优点:调功部分不需要调压环节,简化了设备,降低了成本。主要的缺点: 1、整个整流部分采用不控整流,逆变原件承受了较高的浪涌电压和浪涌电流: 2、由于负载自身的一些因素不能良好适应大范围的频率变化,只有在负载的Q值比较高或者功率调解范围不大采用这种方法才比较好;

3、在高频低负载情况下换流时会出现开关器件的拖尾电流或者二极管的反向电流比较大,产生的开关损耗比较明显,另外调频调功的功率因数一般都不高效率比较低。 三、在感应加热中的中频电炉加热电源采用脉冲密度调功 脉冲密度PDM调功方法是通过控制逆变桥中的开关器件的脉冲密度从而控制逆变桥的工作状态,实际上就是控制向负载馈送能量的时间来控制输出功率。脉冲密度调节具有以下的优点:输出频率基本不变,开关损耗相对较小,易于实现数字化控制,比较适用于开环工作场合。同样由于工作原理,脉冲密度调节的缺点也是十分明显的:由于逆变桥输出功率的频率不完全等于负载的自然谐振频率,所以在需要功率闭环的场合中,工作稳定性较差。另外一个缺点就是功率调节特性不理想呈有级调功方式,因此这种方法不太常用。 四、在感应加热中的中频电炉加热中频电源采用脉冲宽度调功 脉冲宽度调功是通过控制逆变桥功率器件的触发脉冲的开通相位来 进行调功,调压原理是通过调节逆变桥移相桥臂触发脉冲信号与定相桥臂触发脉冲信号之间的相位差而改变输出电压脉宽,输出电压与输出电流之间的相位差就是移相桥臂脉冲信号与定相桥臂脉冲信号之 间的相位差,逆变桥电路和桥臂各开关脉冲波形及输出电压波形(分别为感性负载和容性负载)。脉宽调质调功方式克服了相控调压和斩波的缺点,但是它自身也存在一些缺点,桥臂开关在工作时属于硬开关状态,而且频率的跟踪不易实现,负载不易保持工作在谐振频率附

相关文档
最新文档