实验8-切削用量对切削温度的影响

实验8-切削用量对切削温度的影响
实验8-切削用量对切削温度的影响

切削用量对切削温度的影响

一、实验目的及要求

1、掌握用自然热电偶法测量切削区平均温度的方法。

2、研究车削时,切削热和切削温度的变化规律及切削用理(包括切削速度、走刀量f、切削深度ap)对切削θ的影响。

3、用正交试验设计,确定在切削用量的三个因素中,影响切削温度的主次因素。

二、实验内容

用高速钢车刀和45#钢工件组成的热电偶,以正交试验计法实验切削温度的变化规律。

三、实验设备及用具

1、设备:CA6140型变通车床。

2、仪器:VJ37型直流电位差计(或毫伏表)。

3、刀具:高速钢外圆车刀。

4、工件:45#钢。

四、自然热电偶法测量温度的基本原理和方法

用热电偶测量温度的基本原理是:当两种化学成份不同的金属材料,组成闭合同路时,如果在这两种金属的两个接点上存在温度差(通常温度高的一端称为热端,温度低的一端称为冷端)。在电路上就产生热电势,实验证明,在一定的温度范围内,该热电热与温度具有某种线性关系。

热电偶的特性是:

(1)任何两种不同金属都可配制成热电偶。

(2)任何两种均质导体组成的热电偶,其电动热的大小仅与热电极的材料和两接点的温度T、To有关,而与热电偶的几何形状及尺寸无关。

(3)当热电偶冷端温度保持一定,即To=C时,热电势仅是热端温度T的单值数,E= (t),这样,热电偶测量端的温度与热电势建立了——对应关系。

用自然热电偶法测量切削温度时,是利用刀具与工件化学成份的不同而组成热电偶的两级,如图(一)所示。(刀具和工件均与机床绝缘,以消除寄生热电偶的两极的影响),切削时,工件与刀具接触区的温度升后,就形成了热电偶的热端,而工件通过同材料的细棒或切屑再与导体连接形成一冷端,刀具由导线引出形成另一冷端,如在冷端处接入电位差计,即可测得热电势的大小,通过热电热——温度的换算从而反映出刀具与工件接触处的平均温度。

为了将测得的切削温度毫伏值换算成温度值,必须事先对实验用的自然热电偶进行标定热出“毫伏值——温度”的关系曲线,标定装置如图(二)所示,标定时取两根与刀具及工件材料完全相同的金属丝,在其一端进行焊接后,使其组成一对被校热电偶,然后将被校热电偶与标准热电偶放入加热炉内同一位置处,以保证两个热电偶的热端温度相同,与此同时

将两个热电偶的冷端,插入有冰块的容器中,以保持冷端恒温0℃,冷端的引出导线分别接入标准电位差计及被校毫伏计上,当炉温升高时,标准热电偶的热电势,通过电位差计,读出它的标准温度值,而自然热电偶的热电势则通过被校毫伏计读出毫伏值。炉温从室温升至350℃,每间隔50℃读出对应的毫伏值,画成关系曲线就是所求的热电势——温度的标定曲线,如图(三)所示。

标定曲线是换算温度的依据,它的准确程度成热电偶的材质,引出导线的材质、直径、联接形式,炉温控制,冷端的温度以及测试仪表的校正有很大关系。

五、实验步骤

1、安装试件、刀具、接好线路(按图一接)。

2、进行切削用量各要素对切削温度的影响实验。

(1)确定试验指标和试验因素。

a、试验指标:切削温度。

b、试验因素:切削速度V、切削深度ap、进给量f。

(2)确定各因素水平,列出因素水平表。

因素水平表

注:工件直径D为定值。

(3)选用L(3)正交表,进行试验。

切削温度试验结果表

注:(1)I(或II、或III)为各因素在1(或2、或3)水平下所得切削温度θ的数据和。

(2)R为I、II、III之间的极差。

(3)根据极差R的厌上,确定影响切削温度的主、次因素。

切削用量试题有答案

单元四数控机床加工的切削用量习题 一判断题 1.切削用量包括进给量、背吃刀量和工件转速。( ) 2.用中等切削速度切削塑性金属时最容易产生积屑瘤。() 3.跟刀架是固定在机床导轨上来抵消车削时的径向切削力的。() 4.数控机床进给传动机构中采用滚珠丝杠的原因主要是为了提高丝杠精度。() 5.切削中,对切削力影响较小的是前角和主偏角。() 6.粗加工时,限制进给量提高的主要因素是切削力;精加工时,限制进给量提高的主要因素是表面粗糙度。() 7.铣削用量选择的次序是:铣削速度、每齿进给量、铣削层宽度,最后是铣削层深度。() 8.粗加工时,限制进给量提高的主要因素是切削力;精加工时,限制进给量提高的主要因素是表面粗糙度。() 9.切削用量中,影响切削温度最大的因素是切削速度。() 10.使用水性切削液可吸收热量,防止变形,并可提高切削速度。() 11.切削速度会显著的影响刀具寿命。() 12.一般车刀的前角愈大,愈适合车削较软的材料。() 13. 减小车刀的主偏角,会使刀具耐用度降低。() 14.刀具前角越大,切屑越不易流出,切削力越大,但刀具的强度越高。() 15.精加工时首先应该选取尽可能大的背吃刀量。() 16.主偏角减小,刀具刀尖部分强度与散热条件变好。() 17.在各方面条件足够时,应尽可能一次铣去全部的加工余量。() 二填空题 1.车削细长轴时,为了避免振动,车刀的主偏角应取。 2.切削用量三要素是指主轴转速, , 。对于不同的加工方法,需要不同的,并应编入程序单内。 3.切削用量中对切削温度影响最大的是,其次是,而影响最小。 4.为了降低切削温度,目前采用的主要方法是切削时冲注切削液。切削液的作用包括、、和清洗作用。 5.铣削过程中所选用的切削用量称为铣削用量,铣削用量包括铣削宽度、铣削深度、、进给量。 6.工件材料的强度和硬度较低时,前角可以选得些;强度和硬度较高时,

水温自动控制系统实验报告汇总

水温控制系统(B题) 摘要 在能源日益紧张的今天,电热水器,饮水机和电饭煲之类的家用电器在保温时,由于其简单的温控系统,利用温敏电阻来实现温控,因而会造成很大的能源浪费。但是利用AT89C51 单片机为核心,配合温度传感器,信号处理电路,显示电路,输出控制电路,故障报警电路等组成的控制系统却能解决这个问题。单片机可将温度传感器检测到的水温模拟量转换成数字量,并显示于1602显示器上。该系统具有灵活性强,易于操作,可靠性高等优点,将会有更广阔的开发前景。 水温控制系统概述 能源问题已经是当前最为热门的话题,离开能源的日子,世界将失去一切颜色,人们将寸步难行,我们知道虽然电能是可再生能源,但是在今天还是有很多的电能是依靠火力,核电等一系列不可再生的自然资源所产生,一旦这些自然资源耗尽,我们将面临电能资源的巨大的缺口,因而本设计从开源节流的角度出发,节省电能,保护环境。 一、设计任务 设计并制作一个水温自动控制系统,控制对象为 1 升净水,容器为搪瓷器皿。水温可以在一定范围内由人工设定,并能在环境温度降低时实现自动控制,以保持设定的温度基本不变。 二、要求 1、基本要求 (1)温度设定范围为:40~90℃,最小区分度为1℃,标定温度≤1℃。 (2)环境温度降低时温度控制的静态误差≤1℃。 (3)能显示水的实际温度。 第2页,共11页

2、发挥部分 (1)采用适当的控制方法,当设定温度突变(由40℃提高到60℃)时,减小系统的调节时间和超调量。 (2)温度控制的静态误差≤0.2℃。 (3)在设定温度发生突变时,自动打印水温随时间变化的曲线。 (4)其他。 一系统方案选择 1.1 温度传感器的选取 目前市场上温度传感器较多,主要有以下几种方案: 方案一:选用铂电阻温度传感器。此类温度传感器线性度、稳定性等方面性能都很好,但其成本较高。 方案二:采用热敏电阻。选用此类元器件有价格便宜的优点,但由于热敏电阻的非线性特性会影响系统的精度。 方案三:采用DS18B20温度传感器。DS18B20是DALLAS公司生产的一线式数字温度传感器,具有3引脚TO-92小体积封装形式;温度测量范围为-55℃~+125℃,可编程为9位~12位A/D转换精度,测温分辨率可达0.0625℃,被测温度用符号扩展的16位数字量方式串行输出远端引入。此器件具有体积小、质量轻、线形度好、性能稳定等优点其各方面特性都满足此系统的设计要求。 比较以上三种方案,方案三具有明显的优点,因此选用方案三。 1.2温度显示模块 方案一:采用8个LED八段数码管分别显示温度的十位、个位和小数位。数码管具有低能耗,低损耗、寿命长、耐老化、对外界环境要求低。但LED八度数码管引脚排列不规则,动态显示时要加驱动电路,硬件电路复杂。 方案二:采用带有字库的12864液晶显示屏。12864液晶显示屏具有低功耗,轻薄短小无辐射危险,平面显示及影像稳定、不闪烁、可视面积大、画面

温度源的温度控制实验

实验二(1)温度源的温度控制调节实验 一、实验目的:了解温度控制的基本原理及熟悉温度源的温度调节过程。 二、基本原理:当温度源的温度发生变化时,温度源中的P t100热电阻(温度传感器)的阻值发生变化,将电阻变化量作为温度的反馈信号输给智能调节仪,经智能调节仪的电阻——电压转换后与温度设定值比较再进行数字PID运算输出可控硅触发信号(加热)或继电器触发信号(冷却),使温度源的温度趋近温度设定值。温度控制原理框图如图1所示。 三、需用器件与单元:主机箱、温度源、Pt100温度传感器。 图1温度控制原理框图 四、实验步骤: 温度源简介:温度源是一个小铁箱子,内部装有加热器和冷却风扇;加热器上有二个测温孔,加热器的电源引线与外壳插座(外壳背面装有保险丝座和加热电源插座)相连;冷却风扇电源为+24vDC,它的电源引线与外壳正面实验插孔相连。 温度源外壳正面装有电源开关、指示灯和冷却风扇电源+24vDC插孔;顶面有二个温度传感器的引入孔,它们与内部加热器的测温孔相对,其中一个为控制加热器加热的传感器Pt100的插孔,另一个是温度实验传感器的插孔;背面有保险丝座和加热器电源插座。使用时将电源开关打开(O为关,-为开)。从安全性、经济性且不影响学生掌握原理的前提下温度源设计温度≤200℃。 1、调节仪的简介及调节仪的面板按键说明。 1.1面板说明。 面板上有PV测量显示窗、SV给定显示窗、4个指示灯窗和4个按键组成。如图2所示。

图2调节仪面板图 面板中1、PV——测量值显示窗 2、SV——给定值显示窗 3、AT——自整定灯 4、ALM1——AL1动作时点亮对应的灯 5、ALM2——手动指示灯(兼程序运行指示灯) 6、OUT——调节控制输出指示灯 7、SET——功能键 8、?——数据移位(兼手动/自动切换及参数设置进入) 9、▼——数据减少键(兼程序运行/暂停操作) 10、▲——数据增加键(兼程序复位操作) 仪表上电后,上显示窗口显示测量值(PV),下显示窗口显示给定值(SV)。在基本状态下,SV窗口能用交替显示的字符来表示系统某些状态,如下: 1、输入的测量信号超出量程(因传感器规格设置错误、输入断线或短路均可能引起)时,则闪动显示:“orAL”。此时仪表将自动停止控制,并将输出固定在参数oPL 定义的值上。 2、有报警发生时,可分别显示“HIAL”、“LoAL”、“dHAL”或“dLAL”,分别表示发生了上限报警、下限报警、正偏差报警和负偏差报警。报警闪动的功能是可以关闭的(参看bAud参数的设置),将报警作为控制时,可关闭报警字符闪动功能以避免过多的闪动。仪表面板上的4个LED指示灯,其含义分别如下: (1)OUT输出指示灯:输出指示灯在线性电流输出时通过亮/暗变化反映输出电流的大小,在时间比例方式输出(继电器、固态继电器及可控硅过零触发输出)时,通过闪动时间比例反映输出大小。 (2)ALM1指示灯:当AL1事件动作时点亮对应的灯。 (3)ALM2指示灯:当手动指示灯。 (4)AT灯:自整定开启时点亮对应的灯。

切削用量对切屑变形的影响word资料20页

切削用量对切屑变形的影响: 切削速度:切削塑性金属材料时,切削速度对切削变形的影响呈波浪形; 进给量:进给量增大,则切削厚度增大,切削变形减小,变形因数减小; 背吃刀量:对切屑变形的影响较小。 切屑卷曲和折断机理: 切屑沿刀具前面流出的过程中,受到前面的挤压和摩擦而进一步变形,使得切屑底部被挤而伸长,切屑背面相对缩短,切屑就自然会逆时针卷曲。 如果刀具的前角较小,则切屑流出过程中受到的挤压和摩擦变大,切屑就会卷得更紧。切屑卷曲过程中,若切屑中的弯曲应力达到材料的弯曲强度极限,则切屑就会自行折断。 切屑卷曲与折断的机理解释 ①自由切屑的卷曲机理 由于前刀面和剪切面上对切屑的作用力大小相等,方向相反,但是不共线,因而产生了弯矩,导致切屑卷曲。(刘培德) ②受控切屑的卷曲机理 图1-12a为带倒棱的全圆弧形卷屑槽的卷屑机理,图1-12b为直线形卷屑槽的卷屑机理。都采用卷屑槽的方式实现切屑卷曲的控制。 ③切屑折断的机理 图1-13分别为螺卷屑、发条状屑和C形屑折断的机理,其主要原因

是由于切屑环的内侧拉应力大于切屑材料的弯曲应力极限。 影响切屑卷曲和折断的主要因素: 工件材料性能:工件材料的屈服极限、弹性模量越小,塑性越低,越易折断; 切削用量:切削厚度小,背吃刀量大,切削速度高,断屑难; 刀具前角:前角小,变形大,易折。 影响切削力的因素: 工件材料的影响(系数CF 或单位切削力kc体现) 工件材料的强度、硬度、塑性和韧性越大,切削力越大。 (二)切削用量的影响 背吃刀量ap↑→Ac成正比↑, kc不变, ap的指数约等于1,因而切削力成正比增加; 进给量f↑→Ac成正比↑,但 kc略减小, f 的指数小于1,因而切削力增加但与f 不成正比。 速度v 对F 的影响分为有积屑瘤和无积屑瘤两种情况,在无积屑瘤阶段, v ↑→变形程度↓→切削力减小 切削温度的分布规律: 1.剪切面上各点的温度基本一致; 2.前、后刀面上的最高温度都处于离刀刃一定距离的地方;后刀面的温度降低和升高在极短时间内完成; 3.在剪切区域内,垂直于剪切方向上的温度梯度较大;垂直于前刀面的切屑底层的温度梯度较大;

51系列单片机闭环温度控制 实验报告

成绩: 重庆邮电大学 自动化学院综合实验报告 题目:51系列单片机闭环温度控制 学生姓名:蒋运和 班级:0841004 学号:2010213316 同组人员:李海涛陈超 指导教师:郭鹏 完成时间:2013年12月

一、实验名称: 51系列单片机闭环温度控制实验 ——基于Protuse仿真实验平台实现 基本情况: 1. 学生姓名: 2. 学号: 3. 班级: 4. 同组其他成员: 二、实验内容(实验原理介绍) 1、系统基本原理 计算机控制技术实训,即温度闭环控制,根据实际要求,即加温速度、超调量、调节时间级误差参数,选择PID控制参数级算法,实现对温度的自动控制。 闭环温度控制系统原理如图: 2、PID算法的数字实现 本次试验通过8031通过OVEN 是模拟加热的装置,加一定的电压便开始不停的升温,直到电压要消失则开始降温。仿真时,U形加热器为红色时表示正在加热,发红时将直流电压放过来接,就会制冷,变绿。T端输出的是电压,温度越高,电压就越高。

8031对温度的控制是通过可控硅调控实现的。可控硅通过时间可以通过可控硅控制板上控制脉冲控制。该触发脉冲想8031用软件在P1.3引脚上产生,受过零同步脉冲后经光偶管和驱动器输送到可控硅的控制级上。偏差控制原理是要求对所需温度求出偏差值,然后对偏差值处理而获得控制信号去调节加热装置的温度。 PID控制方程式: 式中e是指测量值与给定值之间的偏差 TD 微分时间 T 积分时间 KP 调节器的放大系数 将上式离散化得到数字PID位置式算法,式中在位置算法的基础之上得到数字PID 增量式算法: 3、硬件电路设计 在温度控制中,经常采用是硬件电路主要有两大部分组成:模拟部分和数字部分,对这两部分调节仪表进行调节,但都存在着许多缺点,用单片机进行温度控制使构成的系统灵活,可靠性高,并可用软件对传感器信号进行抗干拢滤波和非线性补偿处理,可大大提高控制质量和自动化水平;总的来说本系统由四大模块组成,它们是输入模块、单片机系统模块、计算机显示与控制模块和输出控制模块。输入模块主要完成对温度信号的采集和转换工作,由温度传感器及其与单片机的接口部分组成。利用模拟加热的

温度测量实验报告

温度测量实验报告 上海交通大学材料科学与工程学院 实验目的 1.掌握炉温实时控制系统结构图及其电压控制原理; 2.通过数据采集板卡,对温度信号(输入为电压模拟量)采集和滤波; 3.通过数据采集板卡,输出模拟电压量到调节器; 4.通过观测温度曲线,实施手动调节输出电压,使得温度曲线与理想波形尽量接近; 5.用增量式PID控制算法控制炉温曲线。 实验原理 (一)炉温实时控制系统结构图 (二)输出控制电压与工作电压的关系 加热炉加热电压=板卡输出控制电压×220 10 (三)电压控制原理 (四)温度与电压的关系

温度=电压× 700℃ (五)PID控制算法公式 ?u k= Ae k? Be k ? 1+ Ce(k ? 2) 其中:A=K P(1+ T T I + T D T );B=K P(1+2T D T );C=K P T D T 。 u k=u k ? 1+ ?u(k) 手动控制炉温参数选择及理由 加热电压:4V 理由:本套实验装置加热速度很快,若加热电压过高(高于5V)则会导致升温过快从而有可能损坏实验装置,而若加热电压过低则会导致升温过慢,浪费时间。综合实际情况以及上述分析,本组成员决定将加热电压设置为4V。 PID炉温控制参数选择及理由 表1 PID炉温控制参数 选取理由 周期:由于温度滞后性较大,因此周期应当大一些。此处本组采用了推荐值0.2s。 K P:由实际经验可知,K P的最佳范围在0.5-1.5之间。此处本组取了中间值1。 T I:实际操作过程中,本组同学发现若T I较小,超调量就会很大。所以这里将T I取得大一些,设置为20s。T D:小组成员发现炉温滞后现象非常严重,因此T D不得不调大一些,取成0.9s。

浅议切削用量对加工精度的影响

浅议切削用量对加工精度的影响 机械零件的加工必须要保证零件达到图样的要求,满足其加工精度。而尺寸精度、形位精度和表面粗糙度是检验零件加工精度最主要的三个方面。三者任何一项达不到要求都会造成零件质量的下降或报废等问题。其中形状和位置精度可以通过设备,夹具,刀具,工艺等来加以保证,而尺寸精度和表面粗糙度的控制就成了很多人较为伤脑筋的难点!他们往往控制了表面粗糙度,尺寸精度却超差了,而控制了尺寸精度后,表面粗糙度又下降了。本人通过多年的实践总结及潜心研究,知道了造成零件加工误差的因素很多,以下是机械零件在切削加工时造成尺寸误差的原因分析,也是我综合较多书本资料后再结合自己的理解汇总叙述的(仅以车削加工为说明对象)。 1、尺寸计算错误或刻度盘操作错误 这里包含看错图纸;图纸尺寸链计算错误;机床刻度盘松动(不能与手柄作同步运动);操作刻度盘时,未消除其传动间隙等几个方面。 2、量具误差或测量技术误差 这里包含使用量具前未校准量具和没有正确学会使用量具造成的:

比方说常用量具游标卡尺的使用,其尺身上锁紧螺钉的松紧度是影响测量误差的关键因素;使用千分尺时,测量力的手感也很关键;测量时的量点位置是否正确和阅读数值时的视线是否正对刻线等等也会有误差。 以上两方面的误差是初学者容易产生的,下面的几方面的误差因隐蔽性较大,所以不容易引起切削加工人员注意,有时即使我们注意了,也不容易把握它的度。 3、刀具角度误差和刀具磨损钝了产生误差 刀具角度对切削加工的多方面影响都很大,刀具角度要根据其本身材料结合工件材料和加工性质等多方面综合选择的。刀具角度的改变对切削刃口的锋利程度,切削力的大小,切屑厚薄和切屑变形的大小,表面粗糙度的优劣影响都比较明显,对刀尖强度和散热性能的影响也较突出,但是其对尺寸精度的影响是比较隐蔽的,如刀具磨损钝了产生尺寸误差和刀尖装得是否对准机床的旋转中心,对尺寸和表面粗糙度的影响也是比较大的,在数控机床加工中,书上曾经特别提到过车刀要严格对准中心这一点。 4、加工系统的刚性不足导致误差; 加工系统的刚性包含机床、工件和刀具三个方面。机床的功率与切削

温度控制电路实验报告

温度控制电路实验报告 篇一:温度压力控制器实验报告 温度、压力控制器设计 实 验 报 告 设计题目:温度、压力控制器设计 一、设计目的 1 ?学习基本理论在实践中综合运用的初步经验,掌握微机控制系统设计的基本方法; 2.学会单片机模块的应用及程序设计的方法; 3?培养实践技能,提高分析和解决实际问题的能力。 二、设计任务及要求 1.利用赛思仿真系统,以MCS51单片机为CPU设计系统。 2?设计一数据采集系统,每5分钟采集一次温度信号、10分钟采集一次压力信号。并实时显示温度、压力值。 3.比较温度、压力的采集值和设定值,控制升温、降温及升压、降压时间,使温度、压力为一恒值。 4?设温度范围为:-10—+40°C、压力范围为0—100P&;升温、降温时间和温度上升、下降的比例为1°C/分钟,升压、降压时间和压力上升、下降的比例为10P"分钟。

5?画出原理图、编写相关程序及说明,并在G6E及赛思 仿真系统上仿真实现。 三、设计构思 本系统硬件结构以80C51单片机为CPU进行设计,外围扩展模数转换电路、声光报警电路、LED显示电路及向上位PC机的传输电路,软件使用汇编语言编写,采用分时操作的原理设计。 四、实验设备及元件 PC机1台、赛思仿真系统一套 五、硬件电路设计 单片微型计算机又称为微控制器,它是一种面向控制的大规模集成电路芯片。使用80C51来构成各种控制系统,可大大简化硬件结构,降低成本。 1.系统构架 2.单片机复位电路 简单复位电路中,干扰易串入复位端,在大多数情况下不会造成单片机的错误复位,但会引起内部某些寄存器的错误复位,故为了保证复位电路的可靠性,将RC电路接斯密特电路后再接入单片机和外围IC的RESET引脚。 3.单片机晶振电路 晶振采用12MHz,即单片机的机器周期为1卩so 4.报警电路

温度控制

PT100温度控制实验 一、实验目的: 了解PID智能模糊+位式调节温度控制原理。 二、实验仪器: 智能调节仪、PT100、温度源。 三、实验原理: 位式调节 位式调节(ON/OFF)是一种简单的调节方式,常用于一些对控制精度不高的场合作温度控制,或用于报警。位式调节仪表用于温度控制时,通常利用仪表内部的继电器控制外部的中间继电器再控制一个交流接触器来控制电热丝的通断达到控制温度的目的。 PID智能模糊调节 PID智能温度调节器采用人工智能调节方式,是采用模糊规则进行PID调节的一种先进的新型人工智能算法,能实现高精度控制,先进的自整定(AT)功能使得无需设置控制参数。在误差大时,运用模糊算法进行调节,以消除PID饱和积分现象,当误差趋小时,采用PID算法进行调节,并能在调节中自动学习和记忆被控对象的部分特征以使效果最优化,具有无超调、高精度、参数确定简单等特点。 温度控制基本原理 由于温度具有滞后性,加热源为一滞后时间较长的系统。本实验仪采用PID智能模糊+位式双重调节控制温度。用报警方式控制风扇开启与关闭,使加热源在尽可能短的时间内控制在某一温度值上,并能在实验结束后通过参数设置将加热源温度快速冷却下来,可节约实验时间。 当温度源的温度发生变化时,温度源中的热电阻Pt100的阻值发生变化,将电阻变化量作为温度的反馈信号输给PID智能温度调节器,经调节器的电阻-电压转换后与温度设定值比较再进行数字PID运算输出可控硅触发信号(加热)和继电器触发信号(冷却),使温度源的温度趋近温度设定值。PID智能温度控制原理框图如图25-1所示。 图25-1 PID智能温度控制原理框图 三、实验内容与步骤 1.在控制台上的“智能调节仪”单元中“控制对象”选择“温度”,并按图25-2接线。 2.将2~24V输出调节调到最大位置,打开调节仪电源。 3.按住3秒以下,进入智能调节仪A菜单,仪表靠上的窗口显示“”,靠下窗口显示待设置的设定值。当LOCK等于0或1时使能,设置温度的设定值,按“”可改变小数点位置,按或键可修改靠下窗口的设定值。否则提示“”表示已加锁。再按3

切削用量三要素—7

课题切削用量三要素 教学目标1、了解切削用量三要素。 2、掌握切削用量计算公式。 教材分析重点削用量三要素、切削用量计算公式、切削用量的初步选择难点切削速度及其计算公式 教学方法讲授法教学用具 教学过程 切削用量是指背吃刀量p a qqqqc(或切削深度)、进给量f (或进给速度v f )、切削速度c v三者的总称,也称为切削用量三要素。它是调整刀具与工件间相对运动速度和相对位置所需的工艺参数。 一、背吃刀量(p a )(或切削深度) 背吃刀量是指切削时已加工表面与待加工表面之间的垂直距离,用符号ap 表示,单位为mm。 思考题:现有Φ30的毛坯,一次走刀加工成Φ26,试问背吃刀量是多少? p a =(30-26)/2=2mm 背吃刀量的选择: 余量不大,一次走刀切除多余的材料,只留下精加工余量。 1、粗加工 余量太大,可分多次切削,但第一次的背吃刀量尽可能大。 2、精加工粗加工后留下的余量,精加工时应一次进给切削完成。 2 m w p d d a - = w d:待加工表面直径mm m d:已加工表面直径mm

c v 教 学 过 程 二、进给量(f )(或进给速度 v f ) 进给量是指刀具在进给方向上相对工件的位移量,即工件每转一圈,车刀沿进给方向移动的距离,用符号 f 表示,单位为 mm/r ,如图所示。 进给量的选择: 1、为了缩短加工时间,提高效率: 粗加工时应选用较大的进给量。 2、为了保证表面质量及加工精度: 精加工时应选用较小的进给量。 三、切削速度(c v ) 切削速度是指切削刃上选定点相对于工件主运动的瞬时速度,用符号c v 表示,单位为m/min 。当主运动是旋转运动时,切削速度是指圆周运动的线速度,即: ——切削速度,m/min n ——主轴转速,r/min d ——工件待加工表面直径,mm π ——圆周率, 3.14 例1:车削直径为50mm 的工件,若选主轴转速为600r/min ,求切削速度的大小? 解:由公式得: 练习: 车削直径为300mm 的铸铁带轮外圆,若切削速度为60m/min ,求车床主轴转速? 解:由公式 得: d v n c π1000=min /2.94min /1000 5014.36001000m m d n V c =??==πmin /69.63min /300 14.36010001000r r d v n c =??==π

温度控制电路设计---实验报告

温度控制电路设计一、设计任务 设计一温度控制电路并进行仿真。 二、设计要求 基本功能:利用AD590作为测温传感器,T L 为低温报警门限温度值,T H 为高 温报警门限温度值。当T小于T L 时,低温警报LED亮并启动加热器;当T大于 T H 时,高温警报LED亮并启动风扇;当T介于T L 、T H 之间时,LED全灭,加热器 与风扇都不工作(假设T L =20℃,T H =30℃)。 扩展功能:用LED数码管显示测量温度值(十进制或十六进制均可)。 三、设计方案 AD590是美国ANALOG DEVICES公司的单片集成两端感温电流源,其输出电流与绝对温度成比例。在4V至30V电源电压范围内,该器件可充当一个高阻抗、恒流调节器,调节系数为1μA/K。AD590适用于150℃以下、目前采用传统电气温度传感器的任何温度检测应用。低成本的单芯片集成电路及无需支持电路的特点,使它成为许多温度测量应用的一种很有吸引力的备选方案。应用AD590时,无需线性化电路、精密电压放大器、电阻测量电路和冷结补偿。 主要特性:流过器件的电流(μA) 等于器件所处环境的热力学温度(K) 度数;AD590的测温范围为- 55℃~+150℃;AD590的电源电压范围为4~30 V,可以承受44V正向电压和20V反向电压,因而器件即使反接也不会被损坏;输出电阻为710mΩ;精度高,AD590在-55℃~+-150℃范围内,非线性误差仅为±0.3℃。 基本使用方法如右图。 AD590的输出电流是以绝对温度零度(-273℃)为基准, 每增加1℃,它会增加1μA输出电流,因此在室温25℃时,其 输出电流I out =(273+25)=298μA。 V o 的值为I o 乘上10K,以室温25℃而言,输出值为 10K×298μA=2.98V 。 测量V o 时,不可分出任何电流,否则测量值会不准。 温度控制电路设计框图如下: 温度控制电路框图 由于Multisim中没有AD590温度传感器,根据它的工作特性,可以采用恒流源来替代该传感器,通过改变电流值模拟环境温度变化。通过温度校正电路得

居里温度的测定_实验报告

钙钛矿锰氧化物居里温度的测定 物理学院 111120160 徐聪 摘要:本文阐述了居里温度的物理意义及测量方法,测定了钙钛矿锰氧化物样品 在不同实验条件下的居里温度,最后对本实验进行了讨论。 关键词:居里温度,钙钛矿锰氧化物,磁化强度,交换作用 1. 引言 磁性材料的自发磁化来自磁性电子间的交换作用。在磁性材料内部,交换作用总是力图使原子磁矩呈有序排列:平行取向或反平行取向。但是随着温度升高,原子热运动能量增大,逐步破坏磁性材料内部的原子磁矩的有序排列,当升高到一定温度时,热运动能和交换作用能量相等,原子磁矩的有序排列不复存在,强磁性消失,材料呈现顺磁性,此即居里温度。 不同材料的居里温度是不同的。材料居里温度的高低反映了材料内部磁性原子之间的直接交换作用、超交换作用、双交换作用。因此,深入研究和测定材料的居里温度有着重要意义。 2.居里温度的测量方法 测量材料的居里温度可以采用许多方法。常用的测量方法有: (1)通过测量材料的饱和磁化强度的温度依赖性得到曲线,从而得到降为零时对应的居里温度。这种方法适用于那些可以用来在变温条件下直接测量样品饱和磁化强度的装置,例如磁天平、振动样品磁强计以及等。 (2)通过测定样品材料在弱磁场下的初始磁导率的温度依赖性,利用霍普金森效应,确定居里温度。 (3)通过测量其他磁学量(如磁致伸缩系数等)的温度依赖性求得居里温度。 (4)通过测定一些非磁学量如比热、电阻温度系数、热电势等随温度的变化,随后根据这些非磁学量在居里温度附近的反常转折点来确定居里温度。 3. 钙钛矿锰氧化物 钙钛矿锰氧化物指的是成分为(R是二价稀土金属离子,为一价碱土金属离子)的一大类具有型钙钛矿结构的锰氧化物。理想的型(为稀土或碱土金属离子,为离子)钙钛矿具有空间群为的立方结构,如以稀土离子作为立方晶格的顶点,则离子和离子分别处在体心和面心的位置,同时,离子又位于六个氧离子组成的八面体的重心,如图1(a)所示。图1(b)则是以离子为立

浅析切削加工中影响切削温度的主要因素

浅析切削加工中影响切削温度的主要因素 发表时间:2018-01-15T12:14:25.140Z 来源:《知识-力量》2017年10月上作者:潘勇吴志慧 [导读] 本文主要从切削用量、刀具几何参数、刀具磨损、工件材料等几个方面进行分析和阐述,从而了解这些因素在切削加工时所产生的切削温度所带来的影响。 潘勇吴志慧 重庆市机械高级技工学校 摘要:在金属切削加工中,切削温度是一个难以回避的重要问题,而影响切削温度的因素主要是刀具参数和被加工材料等。本文主要从切削用量、刀具几何参数、刀具磨损、工件材料等几个方面进行分析和阐述,从而了解这些因素在切削加工时所产生的切削温度所带来的影响。 关键词:切削用量几何参数刀具磨损工件材料 在金属切削的过程中刀具进行切削所消耗的功率大部分都转变为了热能。研究数据表明,切削过程中所需消耗掉的能量绝大部分都是要转换成热量的,而在这一过程中,所产生的切削热会让整个切削区域的温度逐渐地变高,进而影响到整个刀具的磨损和工件的尺寸精度并造成零件废品的出现。所以,我们对切削温度进行研究将对提高生产效率和产品质量有着重要的意义。下面就着手分析影响切削温度的主要因素。 一、切削用量对切削温度的影响 1.切削速度 切削时,我们将切削速度不断提高,这时切削温度数值会明显地上升。因为切屑在通过前刀面时高速的流出,它们之间会这个过程中发生剧烈的摩擦并随之产生大量的切削热能,如果将切削速度设定在很高的数值,就会在较短的时间范围内,因摩擦生成的热量就不能及时向切屑自身传导,而将大量切削热积聚在刀具和工件上,使它们之间相接触位置的切削温度极大地升高。 2.进给量 当我们增大进给量时,在一定的时间范围内金属材料的切除量将会不断地增多,这时切削热会急剧地增多,切削温度也就会不断地上升。与切削速度相比较,进给量在增大时,切削温度不会随着幅度值的升高而显著提高很多。 3.背吃刀量 研究表明,在切削用量中背吃刀量在切削时对切削温度的影响是非常小的。因为背吃刀量在增大之后,在切削区域所产生的热量虽然会成正比例的增加,但是整个切削刃的工作长度在这时会参与到切削加工中去,从而改善切削的散热条件,因此在这个过程中切削温度并不会显著地升高。 由上可知,刀具磨损和寿命受到切削温度的影响很较大,为能够有效地将切削温度控制在一定的范围内以提高刀具寿命,就需选择较大的背吃刀量和进给量,而选择一个合理的的切削速度来控制切削温度,提高刀具使用寿命,从而提升加工效率。 二、刀具几何参数对切削温度的影响 1.前角γo 切削过程中的工件的变形以及刀具之间的摩擦会因前角的大小而发生变化,当前角加大,切削温度就会降低;反之切削温度就会升高。当前角选择在20°左右时,此时切削温度的影响会小很多,原因是楔角发生变小的情况促使散热面积减小。所以刀具前角的选择将会对切削温度产生比较大的影响。 2.主偏角κr 当我们将主偏角进行加大后,这时刀具切削刃的实际工作长度就会变短,而造成切削热集中在一定的范围内;但如果刀尖角这时减小,就会使散热条件变差,造成切削温度上升。 由上可知,当增大刀具的前角,虽然可以使切屑变形加大,切屑与刀具前刀面之间的摩擦值减小,从而达到减少切削热,降低切削温度的效果。但如果前角选择过于太大,刀具自身的传导热条件也会变得很差,反而造成散热不利的情况,达不到降低切削温度的作用。而当主偏角选择较小时,切削时实际参与切削的刀刃长度就会增加,这样就能够形成利于散热的条件,从而降低切削温度。 三、刀具磨损对切削温度的影响 在切削进行到一定程度时,刀具慢慢地发生磨损,然后刀刃变钝,金属变形程度增大,此时加工刀具的后刀面在和工件相互接触处的摩擦也会大大的增加,所以,切削温度的上升往往发生在刀具磨损之后。当后刀面上的磨损量越来越大时,其上升的速度就会越来越快。我们通过试验得知,在车削加工的过程中,动态的切削温度会随着刀具的磨损增大而快速地升高。当刀具磨损较小时,动态的切削温度会随刀具的磨损而慢慢地上升,当刀具磨损程度达到一定数值时,在这个过程中会促使其动态切削温度加快上升的速度。 四、工件材料对切削温度的影响 1.当加工材料的硬度、强度数值都很高时,切削时需要消耗的功率自然就会越多,它在这时所产生的切削热也会越多,造成切削温度升高的情况出现。 2.工件材料自身的导热系数值,也会对散热产生直接且明显的影响。 3.在切削脆性材料时,比如说灰铸铁,它在切削时其金属变形的可能性很小,但从金属材料上切除的切屑会呈现出细小的崩碎形状,这样它与刀具前刀面之间产生的摩擦就会变小,故只会产生比较少的切削热,反之,切削塑性材料时产生的切削温度会比脆性材料时的温度高一些。 五、切削液对切削温度的影响 为积极改善刀具和工件之间的散热条件。在切削加工时,可以浇注一定数量的切削液来有效地降低切削温度。切削液在生产中除了能够起到冷却作用外,它还能够有效地起润滑、清洗和防生锈的作用。因此,合理使用切削液能有效地降低切削温度。 综上所述,切削用量、刀具几何参数、刀具磨损、工件材料、切削液对切削温度都会产生重要的影响,进而影响生产加工效率、产品质量以及增加加工成本。因此,在实际生产加工中,如何降低加工时的切削温度,以此来提高产品质量有着重要的现实意义。

温度测量控制系统的设计与制作实验报告(汇编)

北京电子科技学院 课程设计报告 ( 2010 – 2011年度第一学期) 名称:模拟电子技术课程设计 题目:温度测量控制系统的设计与制作 学号: 学生姓名: 指导教师: 成绩: 日期:2010年11月17日

目录 一、电子技术课程设计的目的与要求 (3) 二、课程设计名称及设计要求 (3) 三、总体设计思想 (3) 四、系统框图及简要说明 (4) 五、单元电路设计(原理、芯片、参数计算等) (4) 六、总体电路 (5) 七、仿真结果 (8) 八、实测结果分析 (9) 九、心得体会 (9) 附录I:元器件清单 (11) 附录II:multisim仿真图 (11) 附录III:参考文献 (11)

一、电子技术课程设计的目的与要求 (一)电子技术课程设计的目的 课程设计作为模拟电子技术课程的重要组成部分,目的是使学生进一步理解课程内容,基本掌握电子系统设计和调试的方法,增加集成电路应用知识,培养学生实际动手能力以及分析、解决问题的能力。 按照本专业培养方案要求,在学完专业基础课模拟电子技术课程后,应进行课程设计,其目的是使学生更好地巩固和加深对基础知识的理解,学会设计小型电子系统的方法,独立完成系统设计及调试,增强学生理论联系实际的能力,提高学生电路分析和设计能力。通过实践教学引导学生在理论指导下有所创新,为专业课的学习和日后工程实践奠定基础。 (二)电子技术课程设计的要求 1.教学基本要求 要求学生独立完成选题设计,掌握数字系统设计方法;完成系统的组装及调试工作;在课程设计中要注重培养工程质量意识,按要求写出课程设计报告。 教师应事先准备好课程设计任务书、指导学生查阅有关资料,安排适当的时间进行答疑,帮助学生解决课程设计过程中的问题。 2.能力培养要求 (1)通过查阅手册和有关文献资料培养学生独立分析和解决实际问题的能力。 (2)通过实际电路方案的分析比较、设计计算、元件选取、安装调试等环节,掌握简单实用电路的分析方法和工程设计方法。 (3)掌握常用仪器设备的使用方法,学会简单的实验调试,提高动手能力。 (4)综合应用课程中学到的理论知识去独立完成一个设计任务。 (5)培养严肃认真的工作作风和严谨的科学态度。 二、课程设计名称及设计要求 (一)课程设计名称 设计题目:温度测量控制系统的设计与制作 (二)课程设计要求 1、设计任务 要求设计制作一个可以测量温度的测量控制系统,测量温度范围:室温0~50℃,测量精度±1℃。 2、技术指标及要求: (1)当温度在室温0℃~50℃之间变化时,系统输出端1相应在0~5V之间变化。 (2)当输出端1电压大于3V时,输出端2为低电平;当输出端1小于2V时,输出端2为高电平。 输出端1电压小于3V并大于2V时,输出端2保持不变。 三、总体设计思想 使用温度传感器完成系统设计中将实现温度信号转化为电压信号这一要求,该器件具有良好的线性和互换性,测量精度高,并具有消除电源波动的特性。因此,我们可以利用它的这些特性,实现从温度到电流的转化;但是,又考虑到温度传感器应用在电路中后,相当于电流源的作用,产生的是电流信号,所以,应用一个接地电阻使电流信号在传输过程中转化为电压信号。接下来应该是对产生电压信号的传输与调整,这里要用到电压跟随器、加减运算电路,这些电路的实现都离不开集成运放对信号进行运算以及电位器对电压调节,所以选用了集成运放LM324和电位器;最后为实现技术指标(当输出端1电压大于3V时,输出端2为低电平;当输出端1小于2V时,输出端2为高电平。输出端1电压小于3V并大于2V时,输出端2保持不变。)中的要求,选用了555定时器LM555CM。 通过以上分析,电路的总体设计思想就明确了,即我们使用温度传感器AD590将温度转化成电压信号,然后通过一系列的集成运放电路,使表示温度的电压放大,从而线性地落在0~5V这个区间里。最后通过一个555设计的电路实现当输出电压在2与3V这两点上实现输出高低电平的变化。

实验室温湿度控制

实验室温湿度控制很重要 在实验室的监控项目中,不同实验室对温湿度都有要求,大部分实验都是在明确的温湿度环境中展开。在医药、生化、仪器校准、农业、建筑与电器等领域中,实验室环境条件直接影响着各种实验或检测的结果,每项实验的进行都需要精确可靠的监测仪器来提供准确的环境参数数据。 精品文档,你值得期待 实验室要求适宜的温度和湿度。室内的小气候,包括气温、湿度和气流速度等,对在实验室工作的人员和仪器设备有影响。夏季的适宜温度应是18-28℃,冬季为16-20℃,湿度最好在30%(冬季)-70%(夏季)之间。除了特殊实验室外,温湿度对大多数理化实验影响不大,但是天平室和精密仪器室应根据需要对温湿度进行控制。 环境条件温湿度的控制方面考虑的要素就是保证实验操作的环境温湿度是能够满足实验程序各个过程的需要。我们主要从以下几个方面来制定实验室环境温湿度控制范围。 首先,识别各项工作对环境温湿度的要求。 主要识别仪器的需要、试剂的需要、实验程序的需要,以及实验室员工的人性化考虑(人体在温度18-25℃ 相对湿度在35-80%范围内总体感觉舒适,并且从医学角度来看环境干燥和喉咙的炎症存在一定的因果关系)四个方面要素综合考虑,列出对温湿度控制范围要求的清单。 第二,选择并制定有效的环境温湿度控制范围。从以上各要素所有要求清单中摘取最窄范围作为该实验室环境控制的允许范围,制定环境条件控制方面的管理程序,并依据该科室实际情况制定合理有效的SOP。 第三,保持和监控。通过各项措施保证环境的温湿度在控制的范围内,并对环境温湿度进行监控和做好监控的记录,超过允许范围及时采取措施,开空调调节温度,开除湿机控制湿度。 试剂室温度10-30℃,湿度35-80% 样品存放室温度10-30℃,湿度35-80% 天平室温度10-30℃,湿度35-80% 水分室温度10-30℃,湿度35-65% 红外室温度10-30℃,湿度35-60% 中心实验室温度10-30℃,湿度35-80% 留样室温度10-25℃,湿度35-70% 各个领域实验室的温湿度最佳范围 1

影响切削用量的因素

影响切削用量的因素有: 机床切削用量的选择必须在机床主传动功率、进给传动功率以及主轴转速范围、进给速度范围之内。机床—刀具—工件系统的刚性是限制切削用量的重要因素。切削用量的选择应使机床—刀具—工件系统不发生较大的“振颤”。如果机床的热稳定性好,热变形小,可适当加大切削用量。 刀具刀具材料是影响切削用量的重要因素。表1是常用刀具材料的性能比较。 数控机床所用的刀具多采用可转位刀片(机夹刀片)并具有一定的寿命。机夹刀片的材料和形状尺寸必须与程序中的切削速度和进给量相适应并存入刀具参数中去。标准刀片的参数请参阅有关手册及产品样本。 表1 常用刀具材料的性能比较 工件不同的工件材料要采用与之适应的刀具材料、刀片类型,要注意到可切削性。可切削性良好的标志是,在高速切削下有效地形成切屑,同时具有较小的刀具磨损和较好的表面加工质量。较高的切削速度、较小的背吃刀量和进给量,可以获得较好的表面粗糙度。合理的恒切削速度、较小的背吃刀量和进给量可以得到较高的加工精度。 冷却液冷却液同时具有冷却和润滑作用。带走切削过程产生的切削热,降低工件、刀具、夹具和机床的温升,减少刀具与工件的摩擦和磨损,提高刀具寿命和工件表面加工质量。使用冷却液后,通常可以提高切削用量。冷却液必须定期更换,以防因其老化而腐蚀机床导轨或其他零件,特别是水溶性冷却液。

以上讲述了机床、刀具、工件、冷却液对切削用量的影响。切削用量的选择原则,下面主要论述铣削加工的切削用量选择原则。 铣削加工的切削用量包括:切削速度、进给速度、背吃刀量和侧吃刀量。从刀具耐用度出发,切削用量的选择方法是:先选择背吃刀量或侧吃刀量,其次选择进给速度,最后确定切削速度。 1.背吃刀量a p或侧吃刀量a e 背吃刀量a p为平行于铣刀轴线测量的切削层尺寸,单位为㎜。端铣时,a p为切削层深度;而圆周铣削时,为被加工表面的宽度。侧吃刀量a e为垂直于铣刀轴线测量的切削层尺寸,单位为㎜。端铣时,a e为被加工表面宽度;而圆周铣削时,a e为切削层深度,见下图。 铣削加工的切削用量图 背吃刀量或侧吃刀量的选取主要由加工余量和对表面质量的要求决定: ①当工件表面粗糙度值要求为Ra=12.5~25μm时,如果圆周铣削加工余量小于5㎜,端面铣削加工余量小于6㎜,粗铣一次进给就可以达到要求。但是在余量较大,工艺系统刚性较差或机床动力不足时,可分为两次进给完成。 ②当工件表面粗糙度值要求为R a=3.2~12.5μm时,应分为粗铣和半精铣两步进行。粗铣时背吃刀量或侧吃刀量选取同前。粗铣后留0.5~1.0㎜余量,在半精铣时切除。

计算机温度控制实验报告1

目录 一、实验目的---------------------------------2 二、预习与参考------------------------------- 2 三、实验(设计)的要求与数据------------------- 2 四、实验(设计)仪器设备和材料清单-------------- 2 五、实验过程---------------------------------2 (一)硬件的连接- --------- ----------------------- 2 (二)软件的设计与测试结果--------------------------3 六、实验过程遇到问题与解决--------------------11 七、实验心得--------------------------------12 八、参考资料-------------------------------12

一、实验目的 设计制作和调试一个由工业控制机控制的温度测控系统。通过这个过程学习温度的采样方法,A/D变换方法以及数字滤波的方法。通过时间过程掌握温度的几种控制方式,了解利用计算机进行自动控制的系统结构。 二、预习与参考 C语言、计算机控制技术、自动控制原理 三、实验(设计)的要求与数据 温度控制指标:60~80℃之间任选;偏差:1℃。 1.每组4~5同学,每个小组根据实验室提供的设备及设计要求,设计并制作出实际电路组成一个完整的计算机温度控制测控系统。 2.根据设备情况以及被控对象,选择1~2种合适的控制算法,编制程序框图和源程序,并进行实际操作和调试通过。 四、实验(设计)仪器设备和材料清单 工业控制机、烘箱、温度变送器、直流电源、万用表、温度计等 五、实验过程 (一).硬件的连接 图1 硬件接线图

温度控制器实验报告

单片机课程设计实验报告 ——温度控制器 班级:学号: 电气0806 姓名: 08291174 老师: 李长城 合作者: 姜久春 李志鹏

一、实验要求和目的 本课程设计的课题是温度控制器。 ●用电压输入的变化来模拟温度的变化,对输入的模拟电压通过 ADC0832转换成数字量输出。输入的电压为0.00V——5.00V, 在三位数码显示管中显示范围为00.0——99.9。其中0V对应00.0,5V对应99.9 ●单片机的控制目标是风机和加热器。分别由两个继电器工作来 模拟。系统加了一个滞环。适合温度为60度。 ◆当显示为00.0-50.0时,继电器A闭合,灯A亮,模拟加热 器工作。 ◆当显示为为50.0-55.0时,保持继电器AB的动作。 ◆当显示为55.0-65.0时,继电器A断开,灯A熄灭,模拟加 热器停止工作。 ◆当显示为65.0-70.0时,保持继电器AB的动作 ◆当显示为70.0-99.9时,继电器B闭合,灯B亮,模拟风机的 工作。 二、实验电路涉及原件及电路图 由于硬件系统电路已经给定,只需要了解它的功能,使用proteus 画出原理图就可以了。 实验设计的电路硬件有: 1、AT89S52 本温度控制器采用AT89C52单片机作为CPU,12MHZ晶振

AT89C52的引脚结构图: AT89C52是一个低电压,高性能CMOS 8位单片机,片内含8k bytes 的可反复擦写的Flash只读程序存储器和256 bytes的随机存取数据存储器(RAM),器件采用ATMEL公司的高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,片内置通用8位中央处理器和Flash 存储单元,功能强大的AT89C52单片机可为您提供许多较复杂系统控制应用场合。 AT89C52有40个引脚,32个外部双向输入/输出(I/O)端口,同时内含2个外中断口,3个16位可编程定时计数器,2个全双工串行通信口,2个读写口线,AT89C52可以按照常规方法进行编程,也可以在线编程。其将通用的微处理器和Flash存储器结合在一起,特别是可反复擦写的Flash存储器可有效地降低开发成本。 此外,AT89S52设计和配置了振荡频率可为0Hz并可通过软件设置

相关文档
最新文档