汽车发动机罩用气弹簧设计规范

汽车发动机罩用气弹簧设计规范
汽车发动机罩用气弹簧设计规范

最新发动机罩设计与建模

发动机罩设计与建模

图书分类号: 密级: 毕业设计(论文) 发动机罩设计与建模 ENGINE HOOD DESINGN AND MODELING

学位论文原创性声明 本人郑重声明:所呈交的学位论文,是本人在导师的指导下,独立进行研究工作所取得的成果。除文中已经注明引用或参考的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品或成果。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标注。 本人完全意识到本声明的法律结果由本人承担。 论文作者签名:日期:年月日 学位论文版权协议书 本人完全了解关于收集、保存、使用学位论文的规定,即:本校学生在学习期间所完成的学位论文的知识产权归所拥有。有权保留并向国家有关部门或机构送交学位论文的纸本复印件和电子文档拷贝,允许论文被查阅和借阅。可以公布学位论文的全部或部分内容,可以将本学位论文的全部或部分内容提交至各类数据库进行发布和检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 论文作者签名:导师签名: 日期:年月日日期:年月日

摘要 汽车产业是中国经济的重要产业,在21世纪的今天,也是汽车产业爆炸的时代,而中国的汽车市场已经成为全球发展最快的市场。汽车产品产品的更新包括车身、底盘开发以及发动机的研发。对于发动机的研发,国内主要依靠国外的发动机,主要因为国内这方面基础薄弱,发动机研发周期长、困难,研发经费多,需突破的难关较多,但近年来也有厂家在研发。所以在国内,各大厂家想要赢得并主导市场,车身的研发成为必争之地,所以也必须要研发安全、舒服、污染小、节能型等这些适应中国市场的高品质车,同时高效,高质量,低成本是厂家所贯彻的方针。 本课题主要是针对车身设计中发动机罩的设计与建模进行研究的。遵循汽车车身生产工艺和工序原则,制定发动机罩的开发流程,并运用达索公司的CATIA软件对各个工艺环节进行参数化建模设计。对于新产品的研发,主要是依靠正向设计,同时也可以参考一些先进车型。在参数化建模之前,需要进行大量的准备工作,对发动机罩进行设计输入、可行性分析、结构断面图的构想与评审,最后再与客户确认。当这些步骤完成了,发罩的设计就算完成了一大半。 本课题来源于国内某个厂家对发罩设计的需求,由实际出发进行研发。依靠 CAD/CAE/CAM技术来完成工艺数模、产品数模,然后通过有关专家评审这个环节通过后,就可以出发动机罩设计图纸与相关建模文件,最后得到总的评审验收,这样发罩就可以进行量产使用。这种现代汽车研发方法大大区别与过去,不仅提高了产品研发效率,而且缩短研发发动机罩周期,从而使产品更快适应现在的市场需求,这个过程很好的衔接了计算机仿真与产品成型一体化,增强企业竞争力。 关键词发动机罩建模;正向设计;参数化建模;CATIA软件

汽车发动机罩用气弹簧设计规范

汽车发动机罩用气弹簧设计规范 1范围 木标准规定了发动机罩用T艸簧的术軒和定义、标记方式、状态方程=Sili1?.C 木标准适用于木公司开发设计的各类千型的发动机罩用气亦黄(以下简称“气并黄”)? 2规范性引用文件 下列文件对于木文件的应用是必不可少的.凡是注日期的引用文件P仅所注日期的版木适用于木文件?凡是不注日期的引用文件.其呆新版木〔包姑所有的條改申)适用于木文件? GD/T 2348—1993液压岂动系統及元件知內径及活塞杆外徒 JB/T 8061. 1—1996用缩气弹簧技术条件 Q/CC JTo52—2012汽弔用气加貧技术条件 3术语和定义 JD/T 8064. 1—1996. Q/CC JT052—2012界定的术语和定文适用于木标准?4型式 4.1气弹簧外形和位移曲线(力〉 气那簧的外形示总图和力——位移曲线见图1所示= 图1力——位移曲线示Si图

<2接头型式(折荐使用) 气师黄按头型式见图2所示。 3 J≡ U- an Of 图2气弹黄接头型式 5结构特征 般气禅資的原理为∣?jπq 体被密封在缸筒内,占1简內有卻为油液起液力甲尼卄用「8?向节流問 连 通有杆腔和无杆腔,白由状态沾塞杆始终伸出.呈伸展状态.其給构待征见图3所示吕 气律 r* KW 1—亀氏节流阀;2——?S : 3― Sh 4——梧基仟? Λ-W* J 4

6标记方式 气弾黄的标记由代号、活窒杆宜廉、缸筒外住、行程、伸展氏度、接头型式、公称丿JaI 成A 规定如 下: XXXX 公你力 ft* Art ―?— I 示例,气弹黃的活≡ttK1÷ 10 ≡,讯筒外f÷22≡< frG2βO≡,伸展长?650≡4接头型式0-0,公称Λ 550N. 标记为t YQ 10/22 2&0 650 CU-O) 550 7状态方程 7 1 T 弾黄的设计让算应以环境温度C2O±2>r 为条件,同时应考虑温度对气弾貧性能的WO 7.2在环境温l ?不变的条件下,气弹簧的T 作过程可以君作是尊温变化过程,应逍循气体状态方程一 波盘尔定律.并采用下列公式(1〉或公式C2): PV=C (1) 或: 砒=那 ............................................. ⑵ 式中, 宀一容器内片力.单位为兆柏(MPa) I J ?—客碟内初始HUJ,单位为兆伯(MPiI) S J J r 客州内用缩后乐力,单位为兆帕(MPG : V-~~体体积?单位为立方耒(■'》: J'r~c l 体切始体弘 单位为立方米 W): I l - 丸体斥细后体积.单位为立方用(^): C-—冷数. 8设计计算 8 1计算内容 X X (X-X) &I 筒外K 寺後代号

汽车发动机曲轴材料的选择及工艺的设计说明

专业课程设计任务书 学生:班级: 设计题目:汽车发动机曲轴材料的选择及工艺设计 设计容: 1、根据零件工作原理,服役条件,提出机械性能要求和技术要求。 2、选材,并分析选材依据。 3、制订零件加工工艺路线,分析各热加工工序的作用。 4、制订热处理工艺卡,画出热处理工艺曲线,对各种热处理工艺进行分 析,并分析所得到的组织,说明组织及性能的检测方法与使用的仪器设备。 5、分析热处理过程中可能产生的缺陷及补救措施。 6、分析零件在使用过程中可能出现的失效方式及修复措施。

目录 0 前言 (1) 1 汽车发动机曲轴的工作条件及性能要求 (2) 1.1 汽车发动机曲轴的工作条件 (3) 1.2 汽车发动机曲轴的性能要求及技术要求 (3) 2 汽车发动机曲轴的材料选择及分析 (4) 2.1 零件材料选择的基本原则 (4) 2.2 曲轴常用材料简介 (5) 2.3 汽车发动机曲轴材料的确定 (5) 3 曲轴的加工工艺路线及热处理工艺的制定 (6) 3.1 35CrMo曲轴热处理要求 (6) 3.2 汽车曲轴的热处理工艺的制定 (6) 3.2.1 调质处理 (7) 3.2.2 去应力退火 (8) 3.2.3 圆角高频淬火和低温回

火 (9) 4 曲轴热处理过程中可能产生的缺陷及预防措施 (11) 4.1 校直过程引起材料原始裂纹 (11) 4.2 曲轴圆角淬火不当引起裂纹源 (12) 4.3 淬火畸变与淬火裂纹 (12) 4.4 淬火导致氧化、脱碳、过热、过烧 (13) 4.5 淬火硬度不足............................................................. (13) 5 曲轴在使用过程中可能产生的失效形式及分析 (13) 6 课程设计的收获与体会 (14) 7 参考文献……………………………………....................... 15 8 工艺卡................................................................. . (16)

气弹簧工作原理

气弹簧 弹簧不受外力时,自然伸长为最小行程(指压缩行程)处,即最大伸长处; 活塞两边气压相等,由于受力面积不同,产生压力差提供气弹簧的支撑力; 气弹簧运动中瞬时提供的总支撑力包括两部分:压力差产生的支撑力和摩擦力。 外力压缩气弹簧,由于撑杆在气室内体积增大,压缩气体的有效容积变小,气室气压变大,压力差产生的支撑力变大; 摩擦力变化: 气室压力越大,摩擦力越大, 撑杆运动越快,摩擦力越大, 离自然伸长处越远,摩擦力越大; 气温影响气弹簧支撑力:气温越低,气室压力越低,气弹簧提供的支撑力越小。 气弹簧是以气体和液体为工作介质的一种弹性元件,由压力管,活塞,活塞杆及若干联接件组成,其内部充有高压氮气,由于在活塞内部设有通孔,活塞两端气体压力相等,而活塞两侧的截面积不同,一端接有活塞杆而另一端没有,在气体压力作用下,产生向截面积小的一侧的压力,即气弹簧的弹力,弹力的大小可以通过设置不同的氮气压力或者不同直径的活塞杆而设定。与机械弹簧不同的是,气弹簧

具有近乎线性的弹性曲线。标准气弹簧的弹性系数X介于1.2和1.4之间,其他参数可根据要求及工况灵活定义 气弹簧(gas spring)是一种可以起支撑、缓冲、制动、高度调节及角度调节等功能的配件。目前,该产品在医疗设备、汽车、家具、纺织设备、加工行业等领域都得到了广泛地应用。根据不同的特点及应用领域,气弹簧又被称为支撑杆、调角器、气压棒、阻尼器等. 气弹簧的基本原理是在密闭的腔体内压入惰性气体和油、或则油气混合物。根据气弹簧的结构和功能,气弹簧主要有自由型气弹簧、自锁型气弹簧、随意停气弹簧、牵引式气弹簧、阻尼器几种。 产品展示 气弹簧介绍 一、自由型气弹簧(支撑杆)是应用最为广泛的气弹簧。它主要起支撑作用,只有最短、最长两个位置,在行程中无法自行停止。在汽车、纺织机械、印刷设备、办公设备、工程机械等行业应用最广。 二、自锁型气弹簧(调角器、气压棒)在医疗设备、座椅等产品上应用的最多。该种气弹簧借助一些释放机构可以在行程中的任意位置停止,并且停止以后有很大的锁紧力(可以达到10000N以上)。 三、随意停气弹簧(摩擦式气弹簧)主要应用在厨房家具、医疗器械等领域。它的特点介于自由型气弹簧和自锁型气弹簧之间:不需要任何的外部结构而能停在行程中的任意位置,但没有额外的锁紧力。(选型参数基本可以参考自由型气弹簧)

汽车气弹簧设计指导

汽车气弹簧设计指导 1.简要说明 1.1 基本的原理 在密闭的缸筒内充入和外界大气压有一定压差的惰性气体或者油气混合物,进而利用作用在活塞上的压力差完成气弹簧的自由运动。 该件为标准件,可以从产品系列目录中查询缸筒、活塞杆等匹配参数。 1.2 气弹簧和一般机械弹簧的最大区别: 一般性的机械弹簧,其弹簧弹力随着弹簧的运动有着非常大的变化,而气弹簧在整个运动行程中力值变化相对较小。1.3 其主要零部件及名字(如图所示)。 1.4零部件材料及工艺 序号零件名常见材料外观要求/表面处理 1 球头销45#渗氮、镀锌、达克罗(耐腐蚀强)处理 2弹簧卡片65Mn 3活塞杆 35# 镀铬(银色)或渗氮(黑色)〈出口欧洲 的车必须渗氮处理,以满足其环保要求〉 4缸筒精轧钢管20 喷漆处理5导向环Q2356 密封件 NBR(丁晴橡胶) 球头 球头销 支架 缸筒 活塞杆 弹簧卡片

7活塞Q235 8球头PA66+30%GF 1.5机构原理 1.5.1同样尺寸的气弹簧可以根据缸筒内部存储的气体压力大小来调整举力的大小。 1.5.2气弹簧举升速度的大小可以根据活塞上的过油孔的大小来调整,一般分为¢0.3mm¢ 0.5mm¢0.6mm等,过油孔越大,举升速度越快,造成的冲击越大,比如:举升速 度过大可采用¢0.3mm。(阻尼油在气弹簧运动到阻尼区时才通过过油孔,此前只有 气体流过,该特性由油的运动特性:高压区低压区决定)。 1.5.3阻尼油、举力、密封圈材料影响气弹簧低温性能,例如:出口俄罗斯的气弹簧所用 阻尼油型号HS32,凝固点-50℃;密封圈材料丁晴橡胶的低温脆性温度由原来的 -40℃改为-50℃。 1.5.4如有支架,建议料厚为3mm,可以根据力的大小对支架进行工艺处理如:冲压出凹 槽来增加强度。 1.6安装方式 1.6.1气弹簧整车布置位置分为:前机盖支撑和后备门支撑两种。前机盖支撑有B11、T11 等车型,后备门支撑有A15、S11、B14等车型。 1.6.2气弹簧支撑方式的布置可分为:直立支撑和旋转支撑,目前我公司采用直立支撑的 有:S21S22旋转支撑的有:S11S12A11A18B11。支撑方式的布置是由后备门 铰链轴所处的位置来决定的。 1.6.3尼龙球头可根据与气弹簧联接的两个钣金平面进行设计:分为普通直式和斜倾式 (下图),当球窝转动角度小于20°时,选用直球窝;当球窝转动角度大于等于20° 小于35°时,选用斜球窝;当球窝转动角度大于等于35°时,选用支架。一般尽 量不用支架,支架容易出现晃动,定位麻烦,且增加价格。

推荐-汽车发动机齿轮材料的选择及工艺设计课程设计 精品

专业课程设计任务书 姓名:吕永丹班级:材科102 设计题目:汽车发动机齿轮材料的选择及工艺设计 设计内容: 1、根据零件工作原理,服役条件,提出机械性能要求和技术要求。 2、选材,并分析选材依据。 3、制订零件加工工艺路线,分析各热加工工序的作用。 4、制订热处理工艺卡,画出热处理工艺曲线,对各种热处理工艺进行分析,并分析所得到的组织,说明组织及性能的检测方法与使用的仪器设备。 5、分析热处理过程中可能产生的缺陷及补救措施。 6、分析零件在使用过程中可能出现的失效方式及修复措施。

目录

1前言 本课程设计了20CrMnTi适用于汽车发动机齿轮的可靠性。汽车发动机齿轮作为汽车发动机中的重要零部件,其材料是保证其本身工作性能和可靠性的基础。对发动机齿轮的失效形式分析,其主要承受交变载荷,冲击载荷,剪切应力和接触应力大等,因此对齿轮在材料、精度、强度、耐久性和可靠性等方面提出了更高要求。20CrMnTi合金钢是一种优良的渗碳钢,有高的淬透性,经渗碳淬火加低温回火后,表面硬度很高,心部强度和塑性,韧性配合很好。 关键词:发动机齿轮,20CrMnTi,锻造,淬火+低温回火

2 汽车发动机齿轮工作条件及性能要求 2.1 汽车发动机齿轮工作条件 发动机和汽车的起动系统、燃油系统、滑油系统、液压系统等主要附件都是由发动机转子通过齿轮传动装置带动的。在整个行驶过程中,齿轮传动都必须可靠地工作,以保证发动机和汽车所有附件的转速、转向和所需功率符合设计要求。随着汽车发动机性能和可靠性要求的不断提高,齿轮承受的交变载荷和剧烈冲击载荷在不断增加,所受应力复杂,工况恶劣。因此,要使齿轮在工作时,从它的失效形式方面的考虑,就必须保证它能在一定的高温环境中工作。齿轮是机械工业中应用最广泛的重要零件之一。其主要作用是传递动力,改变运动速度和方向。是主要零件。其服役条件如下: 齿轮工作时,通过齿面的接触来传递动力。两齿轮在相对运动过程中,既有滚动,又有滑动。因此,齿轮表面受到很大的接触疲劳应力和摩擦力的作用。在齿根部位受到很大的弯曲应力作用;在运转过程中的过载产生振动,承受一定的冲击力或过载;变速齿轮在换档时,端部受冲击,承受一定冲击力;在一些特殊环境下,受介质环境的影响而承受其它特殊的力的作用。 2.2 汽车发动机齿轮的机械性能要求及技术要求 根据齿轮的受力情况和失效分析可知 ,齿轮一般都需经过适当的热处理 ,以提高承载能力和延长使用寿命 ,齿轮在热处理后应满足下列性能要求 : ①高的弯曲疲劳强度和接触疲劳强度 ( 抗疲劳点蚀 ) 。 ②齿面具有较高的硬度和耐磨性。 ③齿轮心部具有足够的强度和韧性。

汽车发动机材料动态

1.现代车用发动机材料的发展趋势 随着公路建设的发展,交通管理条件的改善,汽车性能的提高,汽车平均行驶速度增大,高速行驶越来越多。汽车不单自身处在高速运动状态下,而且汽车的各种运动零部件就更处在高速运动之中。这就对汽车的各种零部件,提出了各种严苛的要求。 近年来 现代汽车及其发动机逐步向轻量化方向发展 轻量化的材料具有代表性的有轻金属、高弹力钢、塑料等。在构成材料中,这些材料所占有的比例渐渐增加。特别是美国被日本和欧洲制小型车占据了市场以后,在汽车的小型轻量化方面投入了巨大的研究开发费用,以与外国汽车公司相抗争,根据通用汽车公司的战略,今后将转向使用铝和塑料的轻量化材料。在这之前,有很多例追求轻量化极限的车样,例如菲亚特VSS车发动机罩盖使用与聚酯和塑料的特性相适应的材料。以塑料复合材料为主体的复合式发动机在美国汽车公司已试制成功。这种发动机的特性是大量使用玻璃纤维和碳纤维增强环氧、聚酰亚胺、聚酰亚胺基树脂77kg,占全体的65%,金属部件仅用于缸套、曲轴、凸轮轴、阀弹簧、排气阀、燃烧室等。 在构造上,波尔舍和奔驰汽车公司采用五构件发动机,用螺栓、衬垫、粘合剂将28个复合材料板粘合在一起,因此,福特用发动机2300mL有187kg,但试制发动机已被大幅度减轻76kg,而且这种发动机在3000r/min全负荷条件下能连续运转100h,有足够的实用性。各汽车制造厂和研究所对轻型新材料研究虽十分盛行,但对大批量生产还存在成本平衡问题。在汽车界价格激烈竞争的情况下,轻量化带来的成本提高是不容易得到认可的。要进行轻量化,有必要用铝和塑料来代替铸铁和钢板,但同时成本也要上升,特别是轻量化20%以上,将带来成本大幅度提高是不容质疑的。为此,实施轻量化,应尽可能降低成本的提高,是设计者们的目标,如凯迪拉克和别克发动机的油底壳,原采用深冲压钢板,制造时不得不将其分成两部分再作焊接,但改用成型性良好的尼龙,并将它热压成型一体化,就可避免成本的提高,从而达到轻量化的目的。 2.机用塑料零件 塑料在汽车发动机的制造中扮演着重要的角色。从空气进气系统、冷却系统到发动机部件,塑料不仅使发动机系统更容易设计和装配,而且也使发动机重量更轻。聚酰胺和PP可用来制造空气的净化系统,从不洁空气中分离出尘埃和微粒。近来生产的输气管和节流阀已使用了PBT,制造的塑料摇杆、封盖合二为一,这不仅节约了制造材料和装配成本,也减轻了发动机的重量,有益于整个发动机的轻量化和提高燃料的利用率。塑料吸进管几乎全部由PA构成。PA表面光滑平整,在使汽车功能最大化的同时,能有效地降低噪音和震动。塑料在汽车输油管的应用中也有着重要的意义。塑料燃油管成本低、并具有耐腐蚀、质轻、形状稳定的特点。为了开发新一代空气、燃气混合舱,可采用更多的塑料部件,包括空气净化器、电子控制装置、燃料管、喷射头、模拟压力传感器、气体温度传感器、压力调节器、节流阀等零部件可配置成一个部件单位,因而方便了汽车装配,降低了装备成本。 对发动机零件来说,采用塑料调速阀是一项革新。塑料电子调速阀被用来代替目前的机械调速阀。发动机的机油盘由乙烯基酯树脂和PA制成,可以制造包括气流盘、垫圈、过滤器和对接传感器等整体的、容易装配的组件。由于冷却技术的

汽车发动机曲轴材料的选择及工艺设计

专业课程设计任务书 学生姓名:班级: 设计题目:汽车发动机曲轴材料的选择及工艺设计 设计内容: 1、根据零件工作原理,服役条件,提出机械性能要求和技术要求。 2、选材,并分析选材依据。 3、制订零件加工工艺路线,分析各热加工工序的作用。 4、制订热处理工艺卡,画出热处理工艺曲线,对各种热处理工艺进行分 析,并分析所得到的组织,说明组织及性能的检测方法与使用的仪器设备。 5、分析热处理过程中可能产生的缺陷及补救措施。 6、分析零件在使用过程中可能出现的失效方式及修复措施。

目录 0 前言 (1) 1 汽车发动机曲轴的工作条件及性能要求 (2) 1.1 汽车发动机曲轴的工作条件 (3) 1.2 汽车发动机曲轴的性能要求及技术要求 (3) 2 汽车发动机曲轴的材料选择及分析 (4) 2.1 零件材料选择的基本原则 (4) 2.2 曲轴常用材料简介 (5) 2.3 汽车发动机曲轴材料的确定 (5) 3 曲轴的加工工艺路线及热处理工艺的制定 (6) 3.1 35CrMo曲轴热处理要求 (6) 3.2 汽车曲轴的热处理工艺的制定 (6) 3.2.1 调质处理 (7) 3.2.2 去应力退火 (8) 3.2.3 圆角高频淬火和低温回火 (9) 4 曲轴热处理过程中可能产生的缺陷及预防措施 (11) 4.1 校直过程引起材料原始裂纹 (11) 4.2 曲轴圆角淬火不当引起裂纹源 (12) 4.3 淬火畸变与淬火裂纹 (12) 4.4 淬火导致氧化、脱碳、过热、过烧 (13) 4.5 淬火硬度不足 (13) 5 曲轴在使用过程中可能产生的失效形式及分析 (13) 6 课程设计的收获与体会 (14) 7 参考文献 (15) 8 工艺卡 (16)

民用飞机气弹簧计分析

民用飞机气弹簧设计分析-机械制造论文 民用飞机气弹簧设计分析 唐行微 (上海飞机设计研究院结构部,中国上海201210) 【摘要】气弹簧是性能可靠和安装方便的定制结构件,相对于民机上使用的传统机械弹簧单元在重量上具备优势。本文介绍了气弹簧的组成结构和工作方式,通过民用飞机舱门设计中的工程实例简要描述了在民机舱门上气弹簧设计的方法,通过CATIA仿真来模拟气弹簧的安装及运行来优化气弹簧的各项基本参数,并且给出了民机气弹簧的可靠性计算标准。 关键词气弹簧;民机舱门;可靠性 0 前言 气弹簧是一种可以实现支撑、缓冲、制动、高度及角度调节等功能的零件,在工程机械中,主要应用于雷达罩、口盖、舱门等部位。气弹簧主要由活塞杆、活塞、密封导向套、填充物、压力缸和接头等部分组成,在密闭的缸体内充入和外界大气压有一定压差的惰性气体或者油气混合物,进而利用在活塞杆横截面上的压力差完成气弹簧自由运动。工作时,惰性气体、油液通过活塞上的阻尼孔时产生阻尼作用,控制气弹簧的运行速度,其运行速度相对缓慢、动态力变化不大。在飞机结构舱门设计中经常使用弹簧作为机构功能实现的一部分单元,通常用于提供手柄回弹的回复力,机构运作的助力以及防止机构意外运动的过中心阻力。其中用于提供助力和阻力的弹簧通常为压缩弹簧,舱门设计中通常采用传统机械弹簧,这种设计存在两方面的劣势:一是传统机械弹簧其材料通常为321固溶钢或者15-5PH不锈钢,在重量上需要付出一定代价,二是目前航空领域弹

簧制造主要通过辅助工具手工弯制,其实际力学性能通常与设计目标存在一定差异且不稳定。气弹簧由于其安装方便,工作平稳,使用安全,成为汽车和机械制造等领域的标准配件。相对于传统机械弹簧,定制气弹簧在确保满足设计需求和重量上具备明显的优势,舱门机构中使用的多处弹簧单元均可使用气弹簧来替代。 本文根据实际舱门的结构特点及气弹簧在舱门上的具体应用,对安装在舱门上的气弹簧的运动状态进行了分析和研究,给出了具体舱门气弹簧的设计步骤,同时对于民机舱门在使用条件及可靠性方面做了基本的分析。 1 工程实例 某型民用飞机设计舱门重量为8.39kg。舱门重心与铰链臂中心转轴的距离为:360.367mm。由于门体、铰链臂(门体进行开关运动的中心) 和气弹簧构成一个杠杆系统。在门打开过程中,通过门体本身重力和气弹簧阻力的双重作用,控制门下降速度门在完全打开位置时,伸展到极限程度。 根据周边结构的实际可安装空间情况确定使用两个气弹簧,并将气弹簧的完全压缩力初步设计为门体重量的3 倍左右,考虑摩擦力等影响,将气弹簧的完全压缩力初步确定为300N。 下图为飞机航截面投影面,两侧气弹簧的安装相对于门体对称面为对称结构。

气弹簧安装方式

气弹簧的安装方式怎么计算? 气弹簧气动支撑杆的安装方法 1 气弹簧的特点 气弹簧是一根举力(本文用F表示)近似不变的伸缩杆,在汽车,飞机,医疗器械,宇航器材,纺织机械等领域都有广泛的应用。它的内部构造是一条可在密闭筒腔内作直线运动的活塞杆。密闭筒腔内充满由高压气体和可溶解部分高压气体的液体所构成的液2气两相混合体。气弹簧的举力由高压气体推动活塞杆产生。推动力决定于高压气体的压强。高压气体在液体中的溶解量随气体压缩增加(此过程对应气弹簧工作于压缩阶段),随气体膨胀而减少(此过程对应气弹簧工作于伸长阶段),使得密闭筒腔内的高压气体的密度始终维持一个近似恒值,也就是气压近似不变(即举力近似不变)。 2 气弹簧的安装研究 表面上看,将气弹簧安装到客车舱门上非常简单,实际上安装设计所要解决的问题远非所想象的简单。气弹簧在舱门上的一般安装状态已知安装信息只有门体(几何形状,质量,重心,材料等),铰链和开度α要求,未知安装信息却多达6个(X1,X2,Y1,Y2,Z,F)。而由数学理论知道,要解出6个未知数,必须要解出由这6个未知数构成的6个方程式组成的方程组。由此可见,要求设计人员从纯理论形态入手解决气弹簧的安装几乎是不可能的。因此,从工程角度切入,深挖安装信息,简化未知数,是解决气弹簧安装设计问题的关键所在。 2-11 力学分析 门体,铰链(门体作开关运动的中心)和气弹簧构成一个杠杆系统。由于气弹簧对铰心的力臂远小于门重对铰心的力臂,所以这是一个费力杠杆系统。即是说,气弹簧举力必须远大于门重才可以将门体支撑起来。这是一个很重要的隐蔽条件。有了这个条件,才可以初选多大举力的气弹簧。气弹簧的举力可以确定为门重的3倍左右。当然也可以确定为门重的2倍,4倍,5倍,6倍左右。对同一个门体来说,相对于气弹簧举力取3倍门重,当气弹簧举力取2倍门重时,气弹簧力臂要增大,工作行程要增大,总长度要增加,安装空间增大;反之,当气弹簧举力取4倍以上门重时,气弹簧力臂要减小,工作行程要减小,总长度要减小,安装空间减小。这可根据实际安装空间选取气弹簧举力。笔者在实际设计中常用3倍数。 2-12 确定气弹簧的上下安装点 气弹簧的总长度,工作行程是在确定上下安装点过程中确定的。确定气弹簧上下安装点是整个气弹簧安装设计的最难点。下面以单轴铰链门体为例来说明"两圆法"在进行气弹簧安装设计的应用。安装示意图及有关参数如图2所示。下面的计算是以门体为规则,匀质的理想模型(重心=几何中心)为基础进行的。门体在开门过程中对铰心O的力矩不断变化(小→大→小),有两个峰值,一个是最大值,位于门体处于水平位置(α=90°)时;一个是固定值,位于门体处于开尽位置(α=最大值)时。根据物理学杠杆平衡原理可知,门体要在气弹簧的作用下自动打开和开尽以后长时间不掉下来,气弹簧在门体处于这两个特殊位置时对铰心O的瞬时力矩必须大于等于门体在这两个特殊位置时门重对铰心O的瞬时力矩。由此可以确定气弹簧所需的最大力臂(R),最小力臂(r)分别为(列式,计算过程略): 最大力臂R=G (H/2-h)2F≈G H4F,(当Hmh时)最小力臂r=G (H/2-h) cos(α-90°)2F≈G H cos(α-90°)4F,(当Hmh时)式中G为门重,N;F为气弹簧举力,N;H为门高,mm;h为门顶到铰心的垂距,mm;α为门体最大开度,°;2为每个门使用两支气弹簧作支撑。以铰心O为圆心,以最力臂R,最小力臂r为半径分别作大小两个圆。作小圆的一条切线的延长线交大圆于A点,则A 点为气弹簧的上安装点。气弹簧的下安装点B则必然在此切线下方的某一点上。AB两点的距离L为气弹簧的总长度。需要说明的是:A点必须落在门体内侧并离门面板竖直距离20mm

汽车发动机项目申报材料

汽车发动机项目 申报材料 规划设计/投资分析/产业运营

汽车发动机项目申报材料说明 2016年全球汽车产量为9,498万辆,按照每辆汽车都配置一台发动机、每台发动机配置一个曲轴扭转减振器计算,2016年全球汽车发动机用曲轴 扭转减振器主机配套市场需求量为9,498万支。 该汽车发动机项目计划总投资17065.62万元,其中:固定资产投资15129.25万元,占项目总投资的88.65%;流动资金1936.37万元,占项目 总投资的11.35%。 达产年营业收入18216.00万元,总成本费用13989.75万元,税金及 附加301.56万元,利润总额4226.25万元,利税总额5110.74万元,税后 净利润3169.69万元,达产年纳税总额1941.05万元;达产年投资利润率24.76%,投资利税率29.95%,投资回报率18.57%,全部投资回收期6.88年,提供就业职位301个。 消防、卫生及安全设施的设置必须贯彻国家关于环境保护、劳动安全 的法规和要求,符合相关行业的相关标准。项目承办单位所选择的产品方 案和技术方案应是优化的方案,以最大程度减少建设投资,提高项目经济 效益和抗风险能力。项目承办单位和项目审查管理部门,要科学论证项目 的技术可靠性、项目的经济性,实事求是地做出科学合理的研究结论。 ......

报告主要内容:项目基本信息、背景及必要性研究分析、市场分析、产品规划分析、选址评价、项目工程方案分析、工艺技术、项目环境影响分析、企业卫生、风险评价分析、节能概况、实施进度计划、项目投资方案分析、经济收益分析、项目总结、建议等。 发动机是汽车的动力源。汽车发动机大多是热能动力装置,简称热力机。热力机是借助工质的状态变化将燃料燃烧产生的热能转变为机械能。

汽车发动机概述

欢迎共阅 汽车发动机概述 发动机——是将某一种形式的能量转换为机械能的机器。其功用是将液体或气体的化学能通过燃烧后转化为热能,再把热能通过膨胀转化为机械能并对外输出动力。汽车的动力来自发动机。发动机是汽车的心脏,为汽车的行走提供动力,汽车的动力性、经济性、环保性。简单讲发动机就是一个能量转换机构,即将汽油(柴油)的热能,通过在密封汽缸内燃烧气体膨胀时,推动活塞作功,转变为机械能,这是发动机最基本原理。汽车发动机大多是热能动力装置,简称热力机。热力机是借助工质的状态变化将燃料燃烧产生的热能转变为机械能。按活塞运动方式分类:活塞式内燃机可分为往复活塞式和旋转活塞式两种。前者活塞在汽缸内作往复直线运动,后者活塞在汽缸内作旋转运动。 1876 一. (1) 。真空度,由。 (2) pc 可达800 (3) 高温高压的燃气推动活塞从上止点向下止点运动,并通过曲柄连杆机构对外输出机械能。随着活塞下移,汽缸容积增加,气体压力和温度逐渐下降,到达b 点时,其压力降至300~500kPa ,温度降至1200~1500K 。在做功冲程,进气门、排气门均关闭,曲轴转动180°。在示功图上,做功行程为曲线c-Z-b 。 (4)排气冲程(exhauststroke) 排气冲程时,排气门开启,进气门仍然关闭,活塞从下止点向上止点运动,曲轴转动180°。排气门开启时,燃烧后的废气一方面在汽缸内外压差作用下向缸外排出,另一方面通过活塞的排挤作用向缸外排气。由于排气系统的阻力作用,排气终点r 点的压力稍高于大气压力,即pr=(1.05~ 1.20)p0。排气终点温度Tr=900~1100K 。活塞运动到上止点时,燃烧室中仍留有一定容积的废气无法排出,这部分废气叫残余废气。 二.四冲程柴油机工作原理

气弹簧结构

弹簧不受外力时,自然伸长为最小行程(指压缩行程)处,即最大伸长处; 活塞两边气压相等,由于受力面积不同,产生压力差提供气弹簧的支撑力; 气弹簧运动中瞬时提供的总支撑力包括两部分:压力差产生的支撑力和摩擦力。 外力压缩气弹簧,由于撑杆在气室内体积增大,压缩气体的有效容积变小,气室气压变大,压力差产生的支撑力变大; 摩擦力变化: 气室压力越大,摩擦力越大, 撑杆运动越快,摩擦力越大, 离自然伸长处越远,摩擦力越大; 气温影响气弹簧支撑力:气温越低,气室压力越低,气弹簧提供的支撑力越小。 气弹簧是以气体和液体为工作介质的一种弹性元件,由压力管,活塞,活塞杆及若干联接件组成,其内部充有高压氮气,由于在活塞内部设有通孔,活塞两端气体压力相等,而活塞两侧的截面积不同,一端接有活塞杆而另一端没有,在气体压力作用下,产生向截面积小的一侧的压力,即气弹簧的弹力,弹力的大小可以通过设置不同的氮气压力或者不同直径的活塞杆而设定。与机械弹簧不同的是,气弹簧具有近乎线性的弹性曲线。标准气弹簧的弹性系数X介于1.2和1.4之间,其他参数可根据要求及工况灵活定义 气弹簧(gas spring)是一种可以起支撑、缓冲、制动、高度调节及角度调节等功能的配件。目前,该产品在医疗设备、汽车、家具、纺织设备、加工行业等领域都得到了广泛地应用。根据不同的特点及应用领域,气弹簧又被称为支撑杆、调角器、气压棒、阻尼器等. 气弹簧的基本原理是在密闭的腔体内压入惰性气体和油、或则油气混合物。根据气弹簧的结构和功能,气弹簧主要有自由型气弹簧、自锁型气弹簧、随意停气弹簧、牵引式气弹簧、阻尼器几种。 产品展示 气弹簧介绍 一、自由型气弹簧(支撑杆)是应用最为广泛的气弹簧。它主要起支撑作用,只有最短、最长两个位置,在行程中无法自行停止。在汽车、纺织机械、印刷设备、办公设备、工程机械等行业应用最广。(具体参数见本网站或来电索取) 二、自锁型气弹簧(调角器、气压棒)在医疗设备、座椅等产品上应用的最多。该种气弹簧借助一些释放机构可以在行程中的任意位置停止,并且停止以后有很大的锁紧力(可以达到10000N以上)。(具体参数见本网站或来电索取) 三、随意停气弹簧(摩擦式气弹簧)主要应用在厨房家具、医疗器械等领域。它的特点介于自由型气弹簧和自锁型气弹簧之间:不需要任何的外部结构而能停在行程中的任意位置,但没有额外的锁紧力。(选型参数基本可以参考自由型气弹簧) 四、阻尼器在汽车和医疗设备上都用得比较多,其特点是阻力随着运行的速度而改变。可以明显的对相连的机构的速度起阻尼作用。(具体参数请来电索取) 五、牵引式气弹簧是一种特殊的气弹簧:别的气弹簧在自由状态的时候都处在最长的位置,即在受到外力后是从最长的位置向最短的位置运动,而牵引式气弹簧的自由状态在最短的位置,受到牵引时从最短处向最长处运行。牵引式气弹簧中也有相应的自由型、自锁型等。 橡胶空气弹簧工作时,内腔充入压缩空气,形成一个压缩空气气柱。随着振动载荷量的增加,弹簧的高度降低,内腔容积减小,弹簧的刚度增加,内腔空气柱的有效承载面积加大,此时弹簧的承载能力增加。当振动载荷量减小时,弹簧的高度升高,内腔容积增大,弹簧的刚度减小,内腔空气柱的有效承载面积减小,此时弹簧的承载能力减小。这样,空气弹簧在有效的行程内,空气弹簧的高度、内腔容积、承载能力随着振动载荷的递增与减小发生了平稳的柔性传递、振幅与震动载荷的高效控制。还可以用增、减充气量的方法,调整弹簧的刚度和承载力的大小,还可以附设辅助气室,实现自控调节。

气弹簧工作原理

气弹簧是以气体和液体为工作介质的一种弹性元件,由压力管,活塞,活塞杆及若干联接件组成,其内部充有高压氮气,由于在活塞内部设有通孔,活塞两端气体压力相等,而活塞两侧的截面积不同,一端接有活塞杆而另一端没有,在气体压力作用下,产生向截面积小的一侧的压力,即气弹簧的弹力,弹力的大小可以通过设置不同的氮气压力或者不同直径的活塞杆而设定。与机械弹簧不同的是,气弹簧具有近乎线性的弹性曲线。标准气弹簧的弹性系数X介于和之间,其他参数可根据要求及工况灵活定义气弹簧(gas spring)是一种可以起支撑、缓冲、制动、高度调节及角度调节等功能的配件。目前,该产品在医疗设备、汽车、家具、纺织设备、加工行业等领域都得到了广泛地应用。根据不同的特点及应用领域,气弹簧又被称为支撑杆、调角器、气压棒、阻尼器等. 气弹簧的基本原理是在密闭的腔体内压入惰性气体和油、或则油气混合物。根据气弹簧的结构和功能,气弹簧主要有自由型气弹簧、自锁型气弹簧、随意停气弹簧、牵引式气弹簧、阻尼器几种。 产品展示 气弹簧介绍 一、自由型气弹簧(支撑杆)是应用最为广泛的气弹簧。它主要起支撑作用,只有最短、最长两个位置,在行程中无法自行停止。在汽车、纺织机械、印刷设备、办公设备、工程机械等行业应用最广。(具体参数见本网站或来电索取) 二、自锁型气弹簧(调角器、气压棒)在医疗设备、座椅等产品上应用的最多。该种气弹簧借助一些释放机构可以在行程中的任意位置停止,并且停止以后有很大的锁紧力(可以达到10000N以上)。(具体参数见本网站或来电索取) 三、随意停气弹簧(摩擦式气弹簧)主要应用在厨房家具、医疗器械等领域。它的特点介于自由型气弹簧和自锁型气弹簧之间:不需要任何的外部结构而能停在行程中的任意位置,但没有额外的锁紧力。(选型参数基本可以参考自由型气弹簧) 四、阻尼器在汽车和医疗设备上都用得比较多,其特点是阻力随着运行的速度而改变。可以明显的对相连的机构的速度起阻尼作用。(具体参数请来电索取) 五、牵引式气弹簧是一种特殊的气弹簧:别的气弹簧在自由状态的时候都处在最长的位置,即在受到外力后是从最长的位置向最短的位置运动,而牵引式气弹簧的自由状态在最短的位置,受到牵引时从最短处向最长处运行。牵引式气弹簧中也有相应的自由型、自锁型等。 橡胶空气弹簧工作时,内腔充入压缩空气,形成一个压缩空气气柱。随着振动载荷量的增加,弹簧的高度降低,内腔容积减小,弹簧的刚度增加,内腔空气柱的有效承载面积加大,此时弹簧的承载能力增加。当振动载荷量减小时,弹簧的高度升高,内腔容积增大,弹簧的刚度减小,内腔空气柱的有效承载面积减小,此时弹簧的承载能力减小。这样,空气弹簧在有效的行程内,空气弹簧的高度、内腔容积、承载能力随着振动载荷的递增与减小发生了平稳的柔性传递、振幅与震动载荷的高效控制。还可以用增、减充气量的方法,调整弹簧的刚度和承载力的大小,还可以附设辅助气室,实现自控调节。 气弹簧(gas spring)是一种可以起支撑、缓冲、制动、高度调节及角度调节等功能的配件。目前,该产品在医疗设备、汽车、家具、纺织设备、加工行业等领域都得到了广泛地应用。根据不同的特点及应用领域,气弹簧又被称为支撑杆、调角器、气压棒、阻尼器等. 气弹簧的基本原理是在密闭的腔体内压入惰性气体和油、或则油气混合物。根据气弹簧的结构和功能,气弹簧主要有自由型气弹簧、自锁型气弹簧、随意停气弹簧、牵引式气弹簧、阻尼器几种。 一、自由型气弹簧(支撑杆)是应用最为广泛的气弹簧。它主要起支撑作用,只有最短、最长两个位置,在行程中无法自行停止。在汽车、纺织机械、印

气弹簧介绍及选型计算

气弹簧使用指南 一、气弹簧综述 气弹簧(gas spring)是一种可以起支撑、缓冲、制动、高度调节及角度调节等功能的弹性元件。气弹簧的基本原理是在密闭的缸体内充入具有一定压力的氮气和油、或油气混合物,进而利用作用在活塞杆或活塞截面上的压力使气弹簧产生推力或拉力,气弹簧和机械弹簧的最大区别在于:前者的力-位移曲线斜率很小,在整个运动行程中力值基本保持不变,后者的力-位移曲线斜率很大。根据气弹簧的结构和功能,气弹簧主要有自由型气弹簧、自锁型气弹簧、随意停气弹簧、牵引式气弹簧、阻尼器几种。 ※自由型气弹簧(压缩气弹簧)只有伸展(无外力作用下,长度最长)和压缩(外力大于气弹簧的推力,长度最短)两种状态,在行程中无法自行停止,主要起支撑作用,该类气弹簧有恒阻尼和变阻尼两种结构。在汽车、工程机械、纺织机械、印刷机械、办公家具等行业得到广泛应用。 ※自锁型气弹簧(升降可锁定气弹簧、角调可锁定气弹簧)通过其内部的阀门可以将气弹簧锁定在行程的任意位置,根据内部结构的不同,该类气弹簧有弹性锁定、压缩刚性锁定、拉伸刚性锁定、压缩拉伸双向刚性锁定等类型。自锁型气弹簧同时具备支撑、高度和角度调节的功能,而且操作方便灵活,结构简单。因而在医疗设备、家具、汽车等行业得到广泛应用。 ※随意停气弹簧(平衡气弹簧)通过其内部特殊的平衡阀机构,加上合理的外界负载设计,可以使气弹簧停在行程中的任意位置,但没有额外的锁紧力,它的特点介于自由型气弹簧和自锁型气弹簧之间。主要应用在厨房家具、医疗器械、电子产品等行业。 ※牵引气弹簧(拉伸气弹簧)是一种特殊的气弹簧:别的气弹簧在自由状态的时候都处在最长的位置,即在受到外力后是从最长的位置向最短的位置运动,而牵引式气弹簧的自由状态在最短的位置,受到牵引时从最短处向最长处运行。牵引气弹簧中也有相应的自由型、自锁型等产品。 ※阻尼器通过活塞上的阻尼结构可使阻尼力随着运动速度而改变,可以明显的对相连的机构的速度起阻尼作用,该类产品有多种结构以适合不同的用途。在汽车、家电产品、医疗设备上都用得比较多。 二、气弹簧型号标记方法 ※气弹簧的标记由1代号、2活塞杆直径、3缸体外径、4行程、5伸展长度、6活塞杆端接头形式与缸体端接头形式、7最小伸展力组成。规定如下: ×××××/××-×××-××× (××-××) ××× 1 2 3 4 5 6 7 ※各种气弹簧代号:压缩气弹簧(YQ)、升降可锁定气弹簧(SKQ)、角调可锁定气弹簧(JKQ)、平衡气弹簧(PQ)、拉伸气弹簧(LQ)、阻尼器(ZQ) ※活塞杆直径、缸体外径、行程、伸展长度单位为毫米(mm),最小伸展力单位为牛顿(N) ※接头形式代号:单片(O)、双耳(U)、单耳(L)、球铰(B)、螺纹(M)、锥度(S) ※标记示例:压缩气弹簧的活塞杆直径为10mm,缸体外径为22mm,行程为260mm,伸展长度为630mm,活塞杆端接头为单片式,缸体端接头为球铰式,最小伸展力为380N。 标记为:YQ10/22-260-630(O-B)380 三、气弹簧规格系列

(整理)大二汽车发动机期末复习资料.

期末考试习题复习提纲 一、填空 1.汽车通过传动系和行驶系将发动机动力转变为驱动汽车形式的牵引力。 2.轮胎根据充气压力可分为高压胎、低压胎和超低压胎三种;根据 胎面花纹可分为普通、越野、混合三种。 3.车轮的类型按轮辐的构造可分为辐板式车轮和辐条式车轮两种。 4.B-d 轮胎规格含义:B 为断面宽度;d 为轮辋直径,单位均为英寸, “—”表示低压胎。 5.轮式汽车行驶系一般由车架、车桥、悬 架和车轮组成。 6.车轮由轮毂、轮辋及它们间的联接部 分轮辐组成。 7.按车桥上车轮的不同运动方式,车桥可分为:转向桥、转向驱动 桥、驱动桥和支持桥。 8.185/60SR13轮胎标号中,185表示:轮胎断面宽度185mm,60表示:扁平率60%, S:速度等级,R表示:子午线轮胎,13:表示轮辋直径。. 9.同一车轴要求轮胎的:结构、尺寸、层级、花纹 10.轿车车轮需要做动、静平衡,若车轮若车轮静不平衡,汽车行驶时会发生:跳动,车 轮动不平衡,汽车行驶时会发生:偏摆。 11.行驶系由车架、车桥、车轮、悬架等组成。 12.汽车转向系按转向能源不同主要分为机械转向系统和液压转向系统。 13.转向桥由、、和等主要部分组成。 14.转向转向系的传动比对转向系影响较大。 15.循环球式转向器中一般有两极传动副,第一级是传动副,第二级 是传动副。 16.可使转向传动机构简化的转向器是式转向器。 17.液压式动力转向装置按液流型式,可分为和。 18.动力转向系主要由、、、组成。 19.汽车转向时,内转向轮偏转角________外转向轮偏转角,由__________机构来保证。 20.与机械式转向装置相比,动力转向装置能够很好地解决______与_____之间的矛盾。 21.安装转向摇臂时,方向盘应处于_________位置,转向轮应处于__________位置。 22.齿轮齿条式转向器可以使转向传动机构简化,不需要_________和________等元件。 23.常流式液压动力转向装置具有_________、________、________、_________优点。 24.转向系由_______________、______________、____________三大部分组成。

汽车发动机种类技术大全(上)

发动机种类技术大全(上) 1.SOHC : (单顶置凸轮轴发动机) 根据凸轮轴位置数量划分的发动机类型,SOHC表示单顶置凸轮轴发动机,适用于2气门发动机。 2.DOHC : (双顶置凸轮轴发动机) 表示双顶置凸轮轴发动机,适用于多气门发动机。通常发动机每缸有2个气门,近几年来也不断出现了4气门、5气门发动机,这无疑为提高发动机高转速时的进气效率功率开辟了途径。此类发动机适用于高速发动机,并可适当降低高转速时的燃油消耗。

3.Turbo : (涡轮增压) 即涡轮增压,其简称为T,一般在车尾标有1.8T、2.8T等字样。涡轮增压有单涡轮增压和双涡轮增压,我们通常指的涡轮增压是指废气涡轮增压,一般通过排放的废气驱动叶轮带动泵轮,将更多空气送入发动机,从而提高发动机的功率,同时降低发动机的燃油消耗。

4.VTEC:(可变气门配气相位和气门升程电子控制系统) 由本田汽车开发的VTEC是世界上第一款能同时控制气门开闭时间及升程两种不同情况的气门控制系统,现在已演变成i-VTEC 。i-VTEC发动机与普通发动机最大的不同是,中低速和高速会用两组不同的气门驱动凸轮,并可通过电子系统自动转换。此外,发动机还可以根据行驶工况自动改变气门的开启时间和提升程度,即改变进气量和排气量,从而达到增大功率、降低油耗的目的。

5.i-VTEC : (智能可变气门正时和升程系统) i-vtec.系统是本田公司的智能可变气门正时系统的英文缩写,最新款的本田轿车的发动机已普遍安装了i-vtec系统。本田的i-vtec系统可连续调节气门正时,且能调节气门升程。它的工作原理是:当发动机由低速向高速转换时,电子计算机就自动地将机油压向进气凸轮轴驱动齿轮内的小涡轮,这样,在压力的作用下,小涡轮就相对于齿轮壳旋转一定的角度,从而使凸轮轴在60度的范围内向前或向后旋转,从而改变进气门开启的时刻,达到连续调节气门正时的目的。

相关文档
最新文档