大牛地气田动态分析方法

大牛地气田动态分析方法
大牛地气田动态分析方法

大牛地气田动态分析方法

【摘要】鄂尔多斯盆地大牛地气田开发进入了稳产阶段,动态监测工作已经积累了丰富的基础资料;但由于对常压低渗气藏生产动态分析方法的经验少,采用何种方法进行分析,是气田急需解决的重要问题。也只有通过合理的动态分析方法,有效的指导生产,才能寻求最佳的单井配产产量,使气井稳产高产,提高气井采收率。本文以大牛地气田地质研究结论为基础,讨论适合气田的动态分析方法。

【关键词】大牛地气田动态分析

1 气田动态分析的目的及主要内容

(1)大牛地气田动态分析方法研究的目的:利用稳产阶段的动态监测资料不断核算动态储量,评价开发效果,提出修改意见,优化开发方案;递减阶段利用积累的动态监测资料,分析剩余储量分布,提出挖潜措施。

(2)大牛地气田气藏类型为常温常压定容封闭,弹性气驱,无边低水岩性圈闭1。以此为前提,气田动态分析目前主要工作内容为核算单井动态控制储量、预测各井稳产期,提出合理的配产,力图掌握气藏压力变化规律、储量分布;研究气田的递减规律。

2 核算单井动态储量

利用单井动态监测资料,可运用三种方法进行动态储量的核算。

2.1 压降法

大牛地气田压力恢复试井资料较为丰富,通过地质与测井解释结

大牛地气田地面配套工艺技术及优化应用

大牛地气田地面配套工艺技术及优化应用 大牛地气田分布面积大,属致密低渗气田,具有“低孔、低渗、低丰度”的特点。气田地面建设经历了开发先导试验和成熟应用两个阶段,形成了适合气田产能建设需求的配套工艺,多井高压集气、站内加热节流、常温分离、间歇轮换计量、多井注醇、甲醇回收等工艺技术。随气田开发形势的变化,对站内脱水工艺、污水处理和防垢等工艺进行了优化,保证了气田生产的高效平稳运行。 标签:大牛地气田;集输工艺;优化 1 气田概况 大牛地气田位于鄂尔多斯盆地北部,地跨陕西和内蒙两省区,面积200km2。该地区常年干旱缺水,最高气温达40℃,最低气温达-30℃,年平均气温为7.2℃,地表为沙漠、低缓沙丘、草原,地面海拔一般为1230~1360m,平均海拔为1300m。 大牛地气田储层主要为太原组滨海相障壁砂坝、山西组三角洲平原分流河道砂和下石盒子组河流相河道砂。孔隙度值分布在0.3%~22.20%之间,平均值为7.80%,渗透率分布在0.01~15.3mD之间,平均值为0.54mD,储层为低孔、低渗及特低孔、特低渗透率。 截止2012年底,气田累计生产井1090口,集气站49座,输气站4座,建成集气干线38条,长度200.5km,外输管线3条,长度近300km,建成污水处理厂3座,处理能力520m3/d。气田历年累计产气150,通过大杭、榆济管线销往北京、郑州、济南等地。 2 气田地面配套工艺技术 根据大牛地气田面积大、丰度低的特点,在2003-2004年先导开发试验基础上,借鉴成熟的地面集输工艺[1]形成了辐射枝状组合管网、单井高压集气、站内多井加热节流、8井轮换计量、站内集中注甲醇、预冷换热、低温分离、含甲醇凝液回收集中处理、污水集中回注的地面配套工艺。 2.1 单井高压集气工艺。大牛地气田面积大,单井分散,为简化井口流程,减少井口操作员工,采用了高压集气工艺。该工艺是从气井井口出来的高压天然气通过采气管线直接输送到集气站,在站内集中加热、节流、分离、计量、脱水后进入集气干线。集气半径一般控制在5km以内。 2.2 多井集中加热节流工艺。高压天然气由采气管线进入集气站,必须降低压力以满足站内设备的运行,节流降压会产生温降,容易在站内管线中形成水合物堵塞。集气站内采用水套加热炉进行加热,提高节流前天然气温度,为了减少加热设备的数量和投资,大牛地气田采用了8井式水套加热炉,可同时对8口井进行加热。

气井动态分析模板

气井动态分析模板

————————————————————————————————作者: ————————————————————————————————日期: ?

气井动态分析 2009年动态分析模式 一、气井生产阶段的划分 1、生产阶段的时间划分 (1)从XXX到XXX是什么阶段。 (2)从XXX到XXX是什么阶段。 2、生产阶段划分描述 (1)XX阶段:XX参数变化;XX参数变化;XX参数变化。 (2)XX阶段:XX参数变化;XX参数变化;XX参数变化。 二、气井异常情况分析处理 1、异常类型判断 (1)从XX到XX是XX故障。 (2)从XX到XX是XX故障。 2、异常现象描述 (1)异常1:XXX,是由XX故障引起的。 (2)异常2:XXX,是由XX故障引起的。 3、建议处理措施 (1)异常1:XXX处理。 (2)异常2:XXX处理。 三、气井工艺选择 1、XXXX。 2、XXXX。 3、XXXX。 四、计算 解:依据公式:XXX。 带数据 结果。 答:XXXXXXXXXXX。 2012年动态分析模式 一、获取数据生产采气曲线(EXCEL表格内) 1、获取数据与原表保持一致。 2、采气曲线生产。 曲线个数和题目保持一致。 油套压在1个坐标系内。 二、气井异常情况分析处理 三、气井工艺选择 四、计算 生产阶段的划分 无水气井(纯气井):净化阶段,稳产阶段,递减阶段。 气水同产井:相对稳定阶段,递减阶段,低压生产阶段(间歇、增压、排水采气)

气井异常情况 一、井口装置 1、故障名称:井口装置堵 现象描述:套压略有升高;油压升高;产气量下降;产水量下降;氯离子含量不变。 处理措施:(1)没有堵死时:注醇解堵。 (2)堵死:站内放空, 井口注醇解堵。 2、故障名称:井口装置刺漏 现象描述:套压略有下降;油压下降;产气量下降(刺漏点在流量计前);产水量增加;氯离子含量不变。 处理措施:(1)验漏,查找验漏点。 (2)维修或处理漏点。 3、故障名称:仪表仪器坏 现象描述:(1)一个参数变化,仪表故障; (2)两个参数变化,传输设备故障; 处理措施:(1)维修仪表。 (2)维修传输设备。 二、井筒 1、故障名称:(1)油管挂密封失效。 (2)油管柱在井口附近断裂。 现象描述:套压等于油压;产气量略有上升;产水量不变;氯离子含量不变。 处理措施:(1)检查处理油管挂密封装置。 (2)更换油管。 2、故障名称:(1)油管堵。 (2)节流器堵。 现象描述:套压略有升高;油压下降;产气量下降;产水量不变;氯离子含量不变。 处理措施:(1)注醇解堵。 (2)维修更换节流器。 3、故障名称:节流器失效 现象描述:套压略有下降;油压下降;产气量上升;产水量上升;氯离子含量不变。 处理措施:维修更换节流器。 4、故障名称:油管积液 现象描述:套压上升;油压下降;油套压差增大;产气量下降;产水量可能上升或下降。 处理措施:(1)排水采气及优化加注量,缩短加注周期。 (2)堵水采气:1、机械堵水,下封隔器。2、化学堵水:胶体打进油管。 5、故障名称:气井水淹 现象描述:套压下降;油压下降;产气量为0;产水量为0。 处理措施:(1)气举排水采气。 (2)抽吸排液。 6、故障名称:井底积垢 现象描述:套压下降;油压下降;产气量下降;产水量下降;下降的趋势相同。 处理措施:洗井。

动态电路分析方法

动态电路分析方法 电路的动态分析,是欧姆定律的具体应用,在历年的高考中经常出现。此类问题能力要求较高,同学们分析时往往抓不住要领,容易出错。电路发生动态变化的原因是由于电路中滑动变阻器触头位置的变化,引起电路的电阻发生改变,从而引起电路中各物理量的变化,在此将动态电路的分析方法介绍如下。 一、程序法 根据欧姆定律及串、并联电路的性质进行分析。基本思路是:“部分—整体—部分”,即从阻值变化的部分如手,由串并联电路规律判知R 总的变化情况,再由欧姆定律判知I 总和U 端的变化情况,最后由部分电路的欧姆定律得知个部分物理量的变化情况,一般思路是: 1确定电路的外电阻R 外总如何变化。 2根据闭合电路的欧姆定律E I R r =+总外总确定电路的总电流如何变化。(利用电动势不变) 3由U I r =内内确定电源内电压如何变化。(利用r 不变) 4由U E U =-外内确定电源的外电压如何变化。 5由部分电路的欧姆定律确定干路上某定值电阻两端电压如何变化。 6由部分电路和整体的串并联规律确定支路两端电压如何变化及通过各支路电路如何变化。 二、图像法 电路发生动态变化时,其电路图可等效为如图(1)所示,根据闭合电路的欧姆定律得到U E Ir =-,其图像如图(2)中的a ,根据部分电路的欧姆定律可知U IR =,其导体的 U —I 图像如(2)中b ,在电源确定的电路中,由图(2)得,当电阻R 增大时(即图中的角度变大),通过R 的电流减小,R 两端的电压变大,当电阻R 减小时(即图中的角度变小),其电流增大,电压减小。 三、“串反并同”法 所谓“串反”,即某一电阻增大(减小)时,与它串联或间接串联的电阻中的电流、两端电压、电功率都减小(增大)。所谓“并同”,即某一电阻增大(减小)时,与它并联或间接并联的电阻中的电流、两端电压、电功率都增大(减小)。但须注意的前提有两点:1电路中电源内阻不能忽略;2滑动变阻器必须是限流接法。 四、极限法 即因滑动变阻器滑片滑动引起的电路变化问题,可将变阻器的滑动端分别滑至两个极端讨论。(一般应用于滑至滑动变阻器阻值为零) 例1、 在图中电路中,当滑动变阻器的滑动片由a 向b 移动时,下列说法正确的是:

大牛地气田集气站标准化设计

大牛地气田集气站标准化设计 摘要:针对大牛地气田形成的高压进站、站内加热节流、低温分离、轮换计量外输、站内向井口集中注醇防堵的集气站工艺,在集气站规模和工艺流程基本相同的情况下,对集气站标准化设计的优势显得愈发突出。依据集气站标准化设计,可以批量采购集气站的设备和材料、盘活物资供应需求、缩短建造工期、降低安全风险、保障工程质量,很好地适应了大牛地气田大规模的开发建设。 关键词:大牛地气田集气站标准化设计 一、标准化设计的背景 鄂尔多斯盆地大牛地气田是典型的低压、低产、低渗气田,气田勘探面积2003.714km2,自2003年先导性试验,2005年转入开发,截止2011年底大牛地气田累计探明储量4168.28×108m3,动用储量1905.48×108m3,储量动用程度为45.71%[1]。经过十年的发展,形成了具有大牛地气田特色的地面集输工艺,即:高压集气、站内节流、低温分离、轮换计量、旋流分离器再次脱水及站内注醇的工艺流程[2]。 二、建立集气站标准化设计的必要性 大牛地气田具有面积大、储量大、丰度低、物性差等特点,并且位于气候环境十分恶劣的鄂尔多斯盆地的沙漠地区,气田的开采技术难度高、工程量大、施工周期短、质量要求严格,油气集输处理工艺虽然复杂,但对于不同井区、不同层位物流的处理具有共性。为提高设计效率、适应气田滚动开发、快速建产的特点,建立科学、规范的气田集气站标准化设计体系是十分必要的。规模系列化、统一工艺流程、统一平面布局、统一模块划分、统一设备选型、统一三维配管、统一建设标准的气田地面集输工程标准化设计理念应运而生。 三、标准化设计体系的内容 1.规模系列化 根据大牛地气田气井分布比较集中、单井产量不大、气井较多的特点,并结合实际生产需要,集气站的集气规模和井式的不同,站场面积和投资的综合考虑,将大牛地气田集气站分为24 井式和32 井式两个系列。经过气田长期的生产经验证明24 井式及32 井式的集气站既经济合理又可满足气田滚动开发的需求,目前这两种井式占集气站总量的96%以上。 2.工艺流程一致化 经过不断探索、研究和优化,大牛地气田集气站工艺已形成高压集气、集中注醇、轮换计量、低温脱水、含甲醇污水集中处理的工艺模式,配套采用了多盘

油田开发生产动态分析的内容

油田开发生产动态分析的内容 A、注水状况分析 1)分析注水量、吸水能力变化及其对油田生产形势的影响,提出改善注水状况的有效措施。 2)分析分层配注的合理性,不断提高分层注水合格率。 3)搞清见水层位、来水方向。分析注水见效情况,不断改善注水效果。 B、油层压力状况分析 1)分析油层压力、流动压力、总压降变化趋势及其对生产的影响。 2)分析油层压力与注水量、注采比的关系,不断调整注水量,使油层压力维持在较高水平上。 3)搞清各类油层压力水平,减小层间压力差异,使各类油层充分发挥作用。 C、含水率变化分析 1)分析综合含水、产水量变化趋势及变化原因,提高控制含水上升的有效措施。 2)分析含水上升与注采比、采油速度、总压降等关系、确定其合理界限。 3)分析注入水单层突进、平面舌进、边水指进、底水锥进对含水上升的影响、提出解决办法。 D、油田生产能力变化分析 1)分析采油指数、采液指数变化及其变化原因。 2)分析油井利用率、生产时率变化及其对油田生产能力的影响。 3)分析自然递减变化及其对油田生产能力的影响。 4)分析增产措施效果变化及其对油田生产能力的影响。 5)分析新投产区块及调整区块效果变化及其对油田生产能力的影响。 油藏工程名词解释 地质储量 original oil in place 在地层原始状态下,油(气)藏中油(气)的总储藏量。地质储量按开采价值划分为表内储量和表外储量。表内储量是指在现有技术经济条件下具有工业开采价值并能获得经济效益的地质储量。表外储量是在现有技术经济条件下开采不能获得经济效益的地质储量,但当原油(气)价格提高、工艺技术改进后,某些表外储量可以转为表内储量。 探明储量 proved reserve 探明储量是在油(气)田评价钻探阶段完成或基本完成后计算的地质储量,在现代技术 和经济条件下可提供开采并能获得经济效益的可靠储量。探明储量是编制油田开发方案、进行油(气)田开发建设投资决策和油(气)田开发分析的依据。 动用储量 draw up on reserves 已钻采油井投入开采的地质储量。 水驱储量 water flooding reserves 能受到天然边底水或人工注入水驱动效果的地质储量。 损失储量 loss reserves 在目前确定的注采系统条件下,只存在注水井或采油井暂未射孔的那部分地质储量。 单井控制储量 controllable reserves per well 采油井单井控制面积内的地质储量。 可采储量 recoverable reserves 在现有技术和经济条件下能从储油(气)层中采出的那一部分油(气)储量。 剩余可采储量 remaining recoverable reserves

abaqus中的动态分析方法

ABAQUS 线性动态分析 如果你只对结构承受载荷后的长期响应感兴趣,静力分析(static analysis)是足够的。然而,如果加载时间很短(例如在地震中)或者如果载荷在性质上是动态的(例如来自旋转机械的荷载),你就必须采用动态分析(dynamic analysis)。本章将讨论应用ABAQUS/Standard进行线性动态分析;关于应用ABAQUS/Explicit进行非线性动态分析的讨论,请参阅第9章“非线性显式动态分析”。 7.1 引言 动态模拟是将惯性力包含在动力学平衡方程中: +P u M&& I - = 其中 M结构的质量。 u&&结构的加速度。 I在结构中的力。 P 所施加的外力。 在上面公式中的表述是牛顿第二运动定律(F = ma)。 在静态和动态分析之间最主要的区别是在平衡方程中包含了惯性力(M u&&)。在两类模拟之间的另一个区别在于力I的定义。在静态分析中,力仅由结构的变形引起;而在动态分析中,力包括源于运动(例如阻尼)和结构的变形的贡献。 7.1.1 固有频率和模态 最简单的动态问题是在弹簧上的质量自由振动,如图7-1所示。

图7–1 质量-弹簧系统 在弹簧中的力给出为ku ,所以它的动态运动方程为 mu ku P &&+-=0 这个质量-弹簧系统的固有频率(natral frequency )(单位是弧度/秒(rad/s ))给出为 k m ω= 如果质量块被移动后再释放,它将以这个频率振动。若以此频率施加一个动态外力,位移的幅度将剧烈增加,这种现象即所谓的共振。 实际结构具有大量的固有频率。因此在设计结构时,非常重要的是避免使可能的载荷频率过分接近于固有频率。通过考虑非加载结构(在动平衡方程中令0P =)的动态响应可以确定固有频率。则运动方程变为 Mu I &&+=0 对于无阻尼系统,I Ku =,因此有 Mu Ku &&+=0 这个方程的解具有形式为 t i e u ωφ= 将此式代入运动方程,得到了特征值(eigenvalue )问题 K M φλφ= 其中2λω=。 该系统具有n 个特征值,其中n 是在有限元模型中的自由度数目。记j λ是第j 个

动态电路分析方法大汇总

动态电路分析方法大汇总 电路的动态分析,是欧姆定律的具体应用,在历年的高考中经常出现。此类问题能力要求较高,同学们分析时往往抓不住要领,容易出错。电路发生动态变化的原因是由于电路中滑动变阻器触头位置的变化,引起电路的电阻发生改变,从而引起电路中各物理量的变化,在此将动态电路的分析方法介绍如下。 一、 程序法 根据欧姆定律及串、并联电路的性质进行分析。基本思路是:“部分—整体—部分”,即从阻值变化的部分如手,由串并联电路规律判知R 总的变化情况,再由欧姆定律判知I 总和U 端的变化情况,最后由部分电路的欧姆定律得知个部分物理量的变化情况,一般思路是: 1确定电路的外电阻R 外总如何变化。 2根据闭合电路的欧姆定律E I R r =+总外总确定电路的总电流如何变化。(利用电动势不变) 3由U I r =内内确定电源内电压如何变化。(利用r 不变) 4由U E U =-外内确定电源的外电压如何变化。 5由部分电路的欧姆定律确定干路上某定值电阻两端电压如何变化。 6由部分电路和整体的串并联规律确定支路两端电压如何变化及通过各支路电路如何变化。 二、 图像法 电路发生动态变化时,其电路图可等效为如图(1)所示,根据闭合电路的欧姆定律得到U E Ir =-,其图像如图(2)中的a ,根据部分电路的欧姆定律可知U IR =,其导体的 U —I 图像如(2)中b ,在电源确定的电路中,由图(2)得,当电阻R 增大时(即图中的角度变大),通过R 的电流减小,R 两端的电压变大,当电阻R 减小时(即图中的角度变小),其电流增大,电压减小。 三、“串反并同”法 所谓“串反”,即某一电阻增大(减小)时,与它串联或间接串联的电阻中的电流、两端电压、电功率都减小(增大)。所谓“并同”,即某一电阻增大(减小)时,与它并联或间接并联的电阻中的电流、两端电压、电功率都增大(减小)。但须注意的前提有两点:1电路中电源内阻不能忽略;2滑动变阻器必须是限流接法。 三、 极限法 即因滑动变阻器滑片滑动引起的电路变化问题,可将变阻器的滑动端分别滑至两个极端讨论。(一般应用于滑至滑动变阻器阻值为零) 例1、 在图中电路中,当滑动变阻器的滑动片由a 向b 移动时,下列说法正确的是:

气井动态分析模板

气井动态分析 2009年动态分析模式 一、气井生产阶段的划分 1、生产阶段的时间划分 (1)从XXX到XXX是什么阶段。 (2)从XXX到XXX是什么阶段。 2、生产阶段划分描述 (1)XX阶段:XX参数变化;XX参数变化;XX参数变化。 (2)XX阶段:XX参数变化;XX参数变化;XX参数变化。 二、气井异常情况分析处理 1、异常类型判断 (1)从XX到XX是XX故障。 (2)从XX到XX是XX故障。 2、异常现象描述 (1)异常1:XXX,是由XX故障引起的。 (2)异常2:XXX,是由XX故障引起的。 3、建议处理措施 (1)异常1:XXX处理。 (2)异常2:XXX处理。 三、气井工艺选择 1、XXXX。 2、XXXX。 3、XXXX。 四、计算 解:依据公式:XXX。 带数据 结果。 答:XXXXXXXXXXX。 2012年动态分析模式 一、获取数据生产采气曲线(EXCEL表格内) 1、获取数据与原表保持一致。 2、采气曲线生产。 曲线个数和题目保持一致。 油套压在1个坐标系内。 二、气井异常情况分析处理 三、气井工艺选择 四、计算 生产阶段的划分 无水气井(纯气井):净化阶段,稳产阶段,递减阶段。 气水同产井:相对稳定阶段,递减阶段,低压生产阶段(间歇、增压、排水采气)

气井异常情况 一、井口装置 1、故障名称:井口装置堵 现象描述:套压略有升高;油压升高;产气量下降;产水量下降;氯离子含量不变。 处理措施:(1)没有堵死时:注醇解堵。 (2)堵死:站内放空,井口注醇解堵。 2、故障名称:井口装置刺漏 现象描述:套压略有下降;油压下降;产气量下降(刺漏点在流量计前);产水量增加;氯离子含量不变。 处理措施:(1)验漏,查找验漏点。 (2)维修或处理漏点。 3、故障名称:仪表仪器坏 现象描述:(1)一个参数变化,仪表故障; (2)两个参数变化,传输设备故障; 处理措施:(1)维修仪表。 (2)维修传输设备。 二、井筒 1、故障名称:(1)油管挂密封失效。 (2)油管柱在井口附近断裂。 现象描述:套压等于油压;产气量略有上升;产水量不变;氯离子含量不变。 处理措施:(1)检查处理油管挂密封装置。 (2)更换油管。 2、故障名称:(1)油管堵。 (2)节流器堵。 现象描述:套压略有升高;油压下降;产气量下降;产水量不变;氯离子含量不变。 处理措施:(1)注醇解堵。 (2)维修更换节流器。 3、故障名称:节流器失效 现象描述:套压略有下降;油压下降;产气量上升;产水量上升;氯离子含量不变。 处理措施:维修更换节流器。 4、故障名称:油管积液 现象描述:套压上升;油压下降;油套压差增大;产气量下降;产水量可能上升或下降。 处理措施:(1)排水采气及优化加注量,缩短加注周期。 (2)堵水采气:1、机械堵水,下封隔器。2、化学堵水:胶体打进油管。 5、故障名称:气井水淹 现象描述:套压下降;油压下降;产气量为0;产水量为0。 处理措施:(1)气举排水采气。 (2)抽吸排液。 6、故障名称:井底积垢 现象描述:套压下降;油压下降;产气量下降;产水量下降;下降的趋势相同。 处理措施:洗井。

动态分析方法

动态分析的方法 一、单井动态分析 单井动态分析包括油井动态分析和注水井动态分析,以研究阶段性的分层调整管理措施为主。油田的变化总要通过单井反映出来,所以管好油、水井是管好油田的基点。油井分析以所管某一油井为重点联系到周围有关的注水井和相邻油井进行综合分析。注水井分析则以所管某一注水井为中心,联系到周围的油、水井进行综合分析。现分述如下。 (一)油井动态分析 对注水开发的油田来说,油井动态分析的目的就是要在保证达到一定采油速度的前提下实现三稳迟见水。三稳就是产量稳、地层压力稳、流动压力稳。迟见水就是无水采油期长、无水采收率高。油井动态分析方法可综合为以下几点: 第一,清点油层。对所管油井的各小层要进行清点,了解全井射开的油层数、有效厚度和产能系数;了解射开各单层的类型,如水驱层(与注水井连通)、弹性层(与注水井不连通,与其它油井连通)、“土豆”层(与邻井全不连通)和“危险”层(与注水连通特别好,有见水危险);了解每个单层的渗透性、厚度和储量,掌握油层特性,胸中有数,分析就主动了。 第二,核实资料。油井的生产特点和变化规律,总要通过观察现象和整理资料才能掌握。在平时就必须取准油井动态资料,如油管压力、套管压力、流动压力、地层压力、产油量、油气比和油样分析资料(含水、含蜡、含砂等)。及时观察记录油井变化情况如

结蜡软硬、原油乳化、出砂、油井间歇出液现象。新的变化情况出现后,要先从地面查清原因,弄清情况,落实资料,然后再进行动态分析。 第三,联系历史。油井的每一变化都是有其根源的,要结合油井开采历史进行分析。一方面要熟悉井史,结合钻井、固井、诱喷等有关情况进行分析。另一方面要应用采油曲线,研究每个开采时期的生产指标变化特点,由它的过去,分析它的现在,由它的现在预测它的将来。分析哪些是一贯的规律,哪些是突然的变化,便于综合考虑,得出系统概念。 第四,对比邻井。首先要和注水井对比,如果见到注水效果或者见水,就要顺着连通层追踪到注水井,综合分析。见不到注水效果也要找出原因。其次要和周围油井对比,研究哪些是多数井存在的普遍规律,哪些是本井出现的特殊现象。要具体分析每一种变化,联系到对油田有利或有害。 第五,掌握界限。油井开采指标的变化是有一定界限的,这个界限应根据油田实际情况具体制订。在生产中,油井变化超出了所规定的开采界限,就要采取措施,进行调整。有了合理的开采界限,就有了分析对比的标准。油田开采界限的主要指标有:总压差、地饱压差、流饱压差、采油速度、无水采收率、含水上升速度、油气比等。 第六,分析矛盾。油井分析就是为了发现和解决矛盾,使油井合理发挥能力。要层层深入,把所有矛盾揭露出来,抓住主要矛盾,研究解决办法。

动态设计分析方法DDAM介绍及应用

动态设计分析方法DDAM 介绍及应用 李增刚 (北京诺思多维科技有限公司,forengineer@https://www.360docs.net/doc/d214319212.html, ) 摘 要: DDAM 在水面战舰和水下潜艇的抗冲击计算中有着广泛的应用,本文着重介绍了DDAM 的概念,以及在NEi Nastran 中如何进行DDAM 计算,并提供了进行DDAM 分析的详细步骤,以及对计算结果的统计信息的说明。 关键词:DDAM NEi Nastran 冲击响应 1 DDAM 概念 DDAM(Dynamic Design Analysis Method,动态设计分析方法)是美国海军广泛使用的基于冲击谱的响应分析方法。二战中大量战舰在非接触式爆炸冲击作用下失去战斗力。现代舰船设计时,都应该进行抗冲击试验,对于不能进行抗冲击试验的设备应进行有限元动态设计DDAM ,以检验设备的抗冲击能力。DDAM 计算方法是先计算出结构的某些阶模态阵型和模态质量,将这些模态进行响应计算,得到每阶模态的响应,然后将每阶模态的响应按照某种规则进行合成,得到总的响应。DDAM 分析的输入激励是由美国海军在进行了大量的实验基础上总结出来的经验公式,输入加速度a A 和速度a V 见表1,它根据设备安装在舰船或潜艇的位置不同而有所不同。 我国国军标GJB1060.1-91规定了DDAM 输入公式中的系数和常数。根据输入,可以得到各阶模态的响应,然后将各阶模态进行合成,得到总的响应,模态合成的方法有三种,绝对值求和(Absolute Sum ,ABS )、平方和之平方根(Square Root Sum of Squares, SRSS )和美国海军研究实验室求和(NRL Sum, NRL ),三种合成方法如下:

[整理]04第四章 动态分析方法 习题答案

第四章 动态分析方法 习题答案 一、名词解释 用规范性的语言解释统计学中的名词。 1. 动态数列:是将某种现象的指标数值按时间先后顺序排列而成的统计数列。 2. 平均发展水平:是将不同时期的发展水平加以平均而得到的平均数。 3. 增长量:是说明社会经济现象在一定时期内所增长的绝对数量。 4. 平均发展速度:是各个时期环比发展速度的序时平均数。 5. 长期趋势:是研究某种现象在一个相当长的时期内持续向上或向下发展变动的趋势。 6. 季节变动:是由自然季节变化和社会习俗等因素引起的有规律的周期性波动。 二、填空题 根据下面提示的内容,将适宜的名词、词组或短语填入相应的空格之中。 1. 时间、指标数值 2. 绝对数动态数列、相对数动态数列,平均数动态数列,绝对数动态数列,派生。 3. 时间数列,时间数列。 4. 最初水平,最末水平,中间各项水平;报告期水平,期间水平。 5. 逐期、累计。 6. 报告期水平;定基发展速度,环比发展速度。 7. 35.24%。 8. 某一固定时期水平,总的发展程度。 9. 增长量,基期发展水平;环比增长速度。 10. 几何平均法,方程法。 11. 1200459 5 12. (205%×306.8%)-1 13. 长期趋势,季节变动,循环变动,不规则变动。 14. 季节比率。 15. 按月(季)平均法 16. 若干年、转折点。 17. 随机因素和偶然因素。

18. 逐期增长量。 19. 数列的中间位置。 20. 各期的二级增长量。 三、单项选择 从各题给出的四个备选答案中,选择一个最佳答案,填入相应的括号中。 1. B 2. B 3. D 4. B 5. B 6. C 7. C 8. D 9. B 10. A 11. A 12. B 13. D 14. B 15. C 四、多项选择 从各题给出的四个备选答案中,选择一个或多个正确的答案,填入相应的括号中。 1. ABCD 2. AC 3. AC 4. AC 5. ABD 6. BD 7. AD 8. ACD 9. AB 10. ABCD 五、判断改错 对下列命题进行判断,在正确命题的括号内打“√”;在错误命题的括号内打“×”,并在错误的地方下划一横线,将改正后的内容写入题下空白处。 1. 时期指标与时点指标都是通过连续登记的方式取得统计资料的。(×) 时点指标是通过一次性登记方式取得资料 2. 增长量指标反映社会经济现象报告期比基期增长(或减少)的绝对量。(√) 3. 相邻两个时期的累计增长量之差,等于相应时期的逐期增长量。(√) 4. 累计增长量等于相应时期逐期增长量之和。(√) 5. 环比发展速度的连乘积等于定基发展速度,相邻两个时期的定基发展速度之和等于环比发展速度。(×) 之比 6. 增长1%的绝对值可以用增长量除以增长速度求得,也可以用基期水平除以100求得。(×) (增长量除以增长速度)/100

动态分析

第四章动态分析 一、单项选择题(以下每小题各有四项备选答案,其中只有一项是正确的。) 1.时间变量回归模型是应用( )原理,将时间序列中的时间因素作为自变量,所要描述的经济变量作为因变量而建立的模型。 A.回归分析B.相关分析C.因果分析D.因素分析 [答案] A [解析] 时间变量回归模型是指应用回归分析的原理,将时间序列中的时间因素(t)作为自变量(解释变量),所要描述的经济变量作为因变量(被解释变量)而建立的模型。 2.下列模型中属于滑动平均模型的是( )。 A.y t=a1y t-1+e t B.y t=a1y t-1+a2y t-2+e t C.y t=a1y t-1+a2Y t-2+…+a k y t-k+e t D.y t=b0e t+b1e t-1+…+b k e t-k [答案] D [解析] A项是一阶自回归模型;B项是二阶自回归模型;C项是k阶自回归模型。 3.y t=a1y t-1+a2y t-2+…+a n y t-n+b0e+b1e t-1+…+b m e t-m,是( )。 A.一阶自回归模型B.二阶自回归模型 C.滑动平均模型D.自回归滑动平均模型 [答案] D [解析] 自回归滑动平均模型AR-MA(n,m)是指用n阶自回归m阶滑动平均的混合模型来描述的模型。它满足: y t=a1y t-1+a2y t-2+…+a n y t-n+b0e+b1e t-1+…+b m e t-m 4.长周期波动的周期为( )。 A.0~5年B.5~15年C.10年以上D.15年以上 [答案] C [解析] 按波动周期的长短,循环波动可以分为:①短周期波动,是指周期在五年之内的波动;②中周期波动,是指周期在五年至十年的波动;③长周期波动,是指周期超过十年的波动。 5.循环波动分析中,周期峰值所处的时刻为( )。 A.衰退转折点B.扩张转折点C.收缩长度D.扩张长度 [答案] A [解析] 景气转折点(扩张转折点)是指谷底所处的时刻;扩张长度是指从周期的起点时刻到峰值时刻所跨越的时间长度;收缩长度是指从周期的峰值时刻到谷值时刻(终点)所跨越的时间长度。 6.循环波动分析中,周期谷底所处的时刻为( )。 A.衰退转折点B.扩张转折点C.峰值D.谷值 [答案] B [解析] 衰退转折点是指周期峰值所处的时刻;峰值是指经济周期顶点的指标值;谷值是指经济周期谷底的指标值。 7.扩散指数的计算公式为( )。 [答案] A [解析] 扩散指数又称扩散率,它是指在对各个经济指标的循环波动进行测定的基础上所得到的在一定时点上处于扩张状态的经济指标(扩张指标)的百分比,即: 8.已知某时间序列,如表4-1所示,其中“+”表示经济扩张,“-”表示经济收缩。 表4-1

abaqus中的动态分析方法

abaqus 中的动态分析方法 7-1 ABAQUS 线性动态分析 如果您只对结构承受载荷后的长期响应感兴趣,静力分析(static analysis)就是足够的。然而,如果加载时间很短(例如在地震中)或者如果载荷在性质上就是动态的(例如来自旋转机械的荷载),您就必须采用动态分析(dynamic analysis)。本章将讨论应用ABAQUS/Standard 进行线性动态分析;关于应用ABAQUS/Explicit 进行非线性动态分析的讨论,请参阅第9章“非线性显式动态分析”。 7、1 引言 动态模拟就是将惯性力包含在动力学平衡方程中: 0=-+P I u M && 其中 M 结构的质量。 u && 结构的加速度。 I 在结构中的内力。 P 所施加的外力。 在上面公式中的表述就是牛顿第二运动定律(F = ma )。 在静态与动态分析之间最主要的区别就是在平衡方程中包含了惯性力(M u &&)。在两 类模拟之间的另一个区别在于内力I 的定义。在静态分析中,内力仅由结构的变形引起;而在动态分析中,内力包括源于运动(例如阻尼)与结构的变形的贡献。 7、1、1 固有频率与模态 最简单的动态问题就是在弹簧上的质量自由振动,如图7-1所示。

abaqus 中的动态分析方法 7-2 图7–1 质量-弹簧系统 在弹簧中的内力给出为ku ,所以它的动态运动方程为 mu ku P &&+-=0 这个质量-弹簧系统的固有频率(natral frequency )(单位就是弧度/秒(rad/s))给出为 k m ω= 如果质量块被移动后再释放,它将以这个频率振动。若以此频率施加一个动态外力,位移的幅度将剧烈增加,这种现象即所谓的共振。 实际结构具有大量的固有频率。因此在设计结构时,非常重要的就是避免使可能的载荷频率过分接近于固有频率。通过考虑非加载结构(在动平衡方程中令0P =)的动态响应可以确定固有频率。则运动方程变为 Mu I &&+=0 对于无阻尼系统,I Ku =,因此有 Mu Ku &&+=0 这个方程的解具有形式为 t i e u ωφ= 将此式代入运动方程,得到了特征值(eigenvalue )问题 K M φλφ= 其中2λω=。 该系统具有n 个特征值,其中n 就是在有限元模型中的自由度数目。记j λ就是第

相关文档
最新文档