Fe-C相图与非平衡相转变基础知识讲义

Fe-C相图与非平衡相转变基础知识讲义
Fe-C相图与非平衡相转变基础知识讲义

Fe-C相图与非平衡相转变总结

钢通常被定义为一种铁和碳的合金,其中碳含量在几个ppm到2.11wt%之间。其它的

合金元素在低合金钢

中可总计达5wt%,在高

合金钢例如工具钢,不

锈钢(>10.5%)和耐热

CrNi钢(>18%)合金元

素含量甚至更高。钢可

以展现出一系列的性

能,这些性能依据于钢的组成,相状态和微观组成结构,而这些又取决于钢的热处理。

Fe-C相图

理解钢的热处理的基础是Fe-C相图(图一)。

图一实际上有两个图:(1)稳定态Fe-C图(点划线),(2)亚稳态Fe-Fe3C图。由于稳态需要很长时间才能达到,特别是在低温和低碳情况下,亚稳态往往引起人们更多的兴趣。Fe-C相图告诉我

们,在不同碳含量的组成和温度下,达稳态平衡或亚稳态平衡时哪些相会生成。

我们区别了a-铁素体和奥氏体,a-铁素体在727°C (1341°F)时最多溶解0.028%C,奥氏体在1148°C (2098°F)可溶解

2.11wt%C。在碳多的一侧我们发现了渗碳体(Fe3C),另外,除了高合金钢之外,高温下存在的a-铁素体引起我们较少的兴趣。

在单相区之间存在着两相混合区,例如铁素体和渗碳体,奥氏体和渗碳体,铁素体和奥氏体。在最高温下,液相区可被发现,在液相区以下有两相区域液态奥氏体,液态渗碳体和液态铁素体。在钢的热处理中,我们总是避免液相的生成。我们给单相区一些重要的边界特殊的名字:(1)A1,低共熔温度,是奥氏体生成的最低温度;(2)A3,奥氏体区域的低温低碳边界,也即r/(r+a)边界;(3)Acm,奥氏体区域的高碳边界,也即r/(r+Fe3C)边界。

低共熔温度碳含量是指在奥氏体生成的最低温度时的碳含量(0.77wt%C)。铁素体-渗碳体混合相在冷却形成时有一个特殊的外貌,被称为珠光体,可作为微观结构实体或微观组成物来进行处理。珠光体是一种a-铁素体和渗碳体薄片的混合物,渗碳体薄片又退化为渗碳体颗粒散步在一个铁素体基质中,散步过程发生在铁素体基质扩散接近A1边界之后。

Fe-C相图源于实验。但是,热力学原理和现代热力学的数据的相关知识可以为我们提供关于相图的精确计算。当相图边界不得不被推测和低温下实验平衡很慢达到时,这种计算特别有用。如果合金元

素加入Fe-C相图,A1,A3,Acm边界的位置和低共熔组成的位置会变化。值得一提的是,所有重要的合金元素降低了低共熔碳含量。奥氏体的稳定元素锰,镍降低了A3,铁素体稳定元素铬,硅,钼和钨增加A3。平衡相图不能说明的相变动力学过程与亚稳态相,必须用非稳态相转变图来描述。

各种相转变图

在钢的热处理中,相变的动力学因素与平衡图表同样重要。对于钢的性能特别重要的亚稳相马氏体和形态上亚稳态的微观组成物贝氏体,可以在相对急速冷却至环境温度时产生。这时碳和合金杂质的扩散受抑制或者限制在极小范围内。

贝氏体是一种低共熔组成物,是铁素体和渗碳体的混合物。最硬的组成物马氏体,在极度饱和的奥氏体快速冷却时通过完全转化形成,当碳含量增加至大约0.7wt%时,马氏体的硬度增加。如果这些不稳定的亚稳态产物接下来加热至一个适度的高温,它们分解为更稳定的铁素体和碳化物。这种重新加热的过程有时被称为回火或退火。钢加热奥氏体化是热处理的前提。环境温度下铁素体-珠光体或镇定马氏体的结构到高温下奥氏体或奥氏体-碳化物的结构转变对于钢的热处理同样重要。

钢的热处理涉及的四种相转变条件

我们可以利用相图方便地描述出在相变时发生了什么。四种不同的图可以被区别,它们是:(1)加热过程的奥氏体的等温转变,奥

氏体化;(2)冷却过程奥氏体的等温转变,奥氏体的分解;(3)连续加热过程的奥氏体化;(4)连续冷却过程的奥氏体的分解。

加热过程的奥氏体化

这种图展现了当钢在

恒温时维持很长一段时间

时所呈现的状态。通过维持

一些小样品在铅或盐浴中

并在依次增加维持时间后

每次冷却一个样品,之后在

显微镜下观察在微观结构中生成的相的数量可以了解微观结构随时间的变化。

共析钢加热过程的奥氏体化

在奥氏体的转变中,先从原始的铁素体和珠光体或镇定马氏体转变为较为紧密的奥氏体,这种转变中体积减小。在延长的曲线中,奥氏体形成的开始和结束时间通常被分别定义为转变进行至1%和99%时。

ITh diagrams

冷却过程奥氏体的等温转变,奥氏体的分解,TTT DIAGRAMS 这个过程在高温下开始,通常是在维持长时间获得均一的奥氏体而没有不溶解的碳化物后在奥氏体范围内发生,这之后又通过快速冷却至理想温度。A3边界上没有转变可以发生,在A1边界到A3边界之间只有铁素体可以通过奥氏体形成。

连续加热过程的奥氏体化,CRT DIAGRAMS

在实际热处理情况下,恒温不要求,但要求在冷却或加热时有一个连续变化的温度。因此,如果相图使用的连续增加或减小的温度建立在膨胀计数据之上,我们可以获得更多的实用信息。如同ITH图,CRT图在预测发生在感应和之后的变硬过程中的短期奥氏体化的效果很有用。一个典型的问题是在一个规定的加热速率下,达到完全的奥氏体化最大的表面温度有多高。当温度太高时,可引起我们不希望的奥氏体晶粒成长,这些又会导致一个更易破碎的马氏体的微观结构。连续冷却过程的奥氏体的分解,CCT DIAGRAMS

对于加热的图表,清晰地阐述转变图来源于哪种冷却曲线是很重要的。在实验操作中使用一个恒定的冷却速率是很平常的,但是,这种现象在实验状况下很少发生。我们也可以根据牛顿冷却定律找出所谓的自然冷却曲线,这些曲线模拟了大范围内部的行为,例如,在特殊条带上距冷却端一段距离的冷却速率。接近条纹样本的表面冷却速率的特征非常复杂。每一个CCT图包含了一系列在圆柱样本不同深度的冷却速率曲线。最慢的冷却速率曲线代表了圆柱的中心。冷却介质越不均匀,C形状曲线需要越长时间去改变,但M温度不受影响。

但是值得注意的是,这种转变图不能用于预言那些不同于构建图表的热学历史的反应。例如,在Ms之上第一次冷却从急速到缓慢而后重新加热至高温是一个很快的转变,这种转变快于在TTT图表上所显示的因为在开始的冷却中成核过程大大加速。同样值得注意的是转变图对于在一定允许组成范围内精确的合金含量是十分敏感的。

冶金064班学习小组:赖晓寒同学整理完成

(完整版)材料科学基础知识点总结剖析

金属学与热处理总结 一、金属的晶体结构 重点内容:面心立方、体心立方金属晶体结构的配位数、致密度、原子半径,八面体、四面体间隙个数;晶向指数、晶面指数的标定;柏氏矢量具的特性、晶界具的特性。 基本内容:密排六方金属晶体结构的配位数、致密度、原子半径,密排面上原子的堆垛顺序、晶胞、晶格、金属键的概念。晶体的特征、晶体中的空间点阵。 晶胞:在晶格中选取一个能够完全反映晶格特征的最小的几何单元,用来分析原子排列的规律性,这个最小的几何单元称为晶胞。 金属键:失去外层价电子的正离子与弥漫其间的自由电子的静电作用而结合起来,这种结合方式称为金属键。 位错:晶体中原子的排列在一定范围内发生有规律错动的一种特殊结构组态。 位错的柏氏矢量具有的一些特性: ①用位错的柏氏矢量可以判断位错的类型;②柏氏矢量的守恒性,即柏氏矢量与回路起点及回路途径无关;③位错的柏氏矢量个部分均相同。 刃型位错的柏氏矢量与位错线垂直;螺型平行;混合型呈任意角度。 晶界具有的一些特性: ①晶界的能量较高,具有自发长大和使界面平直化,以减少晶界总面积的趋势;②原子在晶界上的扩散速度高于晶内,熔点较低;③相变时新相优先在晶界出形核;④晶界处易于发生杂质或溶质原子的富集或偏聚;⑤晶界易于腐蚀和氧化;⑥常温下晶界可以阻止位错的运动,提高材料的强度。 二、纯金属的结晶 重点内容:均匀形核时过冷度与临界晶核半径、临界形核功之间的关系;细化晶粒的方法,铸锭三晶区的形成机制。 基本内容:结晶过程、阻力、动力,过冷度、变质处理的概念。铸锭的缺陷;结晶的热力学条件和结构条件,非均匀形核的临界晶核半径、临界形核功。

相起伏:液态金属中,时聚时散,起伏不定,不断变化着的近程规则排列的原子集团。 过冷度:理论结晶温度与实际结晶温度的差称为过冷度。 变质处理:在浇铸前往液态金属中加入形核剂,促使形成大量的非均匀晶核,以细化晶粒的方法。 过冷度与液态金属结晶的关系:液态金属结晶的过程是形核与晶核的长大过程。从热力学的角度上看,没有过冷度结晶就没有趋动力。根据 T R k ?∝1可知当过冷度T ?为零时临界晶核半径R k 为无穷大,临界形核功(21T G ?∝?)也为无穷大。临界晶核半径R k 与临界形核功为无穷大时,无法形核,所以液态金属不能结晶。晶体的长大也需要过冷度,所以液态金属结晶需要过冷度。 细化晶粒的方法:增加过冷度、变质处理、振动与搅拌。 铸锭三个晶区的形成机理:表面细晶区:当高温液体倒入铸模后,结晶先从模壁开始,靠近模壁一层的液体产生极大的过冷,加上模壁可以作为非均质形核的基底,因此在此薄层中立即形成大量的晶核,并同时向各个方向生长,形成表面细晶区。柱状晶区:在表面细晶区形成的同时,铸模温度迅速升高,液态金属冷却速度减慢,结晶前沿过冷都很小,不能生成新的晶核。垂直模壁方向散热最快,因而晶体沿相反方向生长成柱状晶。中心等轴晶区:随着柱状晶的生长,中心部位的液体实际温度分布区域平缓,由于溶质原子的重新分配,在固液界面前沿出现成分过冷,成分过冷区的扩大,促使新的晶核形成长大形成等轴晶。由于液体的流动使表面层细晶一部分卷入液体之中或柱状晶的枝晶被冲刷脱落而进入前沿的液体中作为非自发生核的籽晶。 三、二元合金的相结构与结晶 重点内容:杠杆定律、相律及应用。 基本内容:相、匀晶、共晶、包晶相图的结晶过程及不同成分合金在室温下的显微组织。合金、成分过冷;非平衡结晶及枝晶偏析的基本概念。 相律:f = c – p + 1其中,f 为 自由度数,c 为 组元数,p 为 相数。 伪共晶:在不平衡结晶条件下,成分在共晶点附近的亚共晶或过共晶合金也可能得到全部共晶组织,这种共晶组织称为伪共晶。 合金:两种或两种以上的金属,或金属与非金属,经熔炼或烧结、或用其它方法组合而成的具有金属特性的物质。 合金相:在合金中,通过组成元素(组元)原子间的相互作用,形成具有相同晶体结构与性质,并以明确界面分开的成分均一组成部分称为合金相。 四、铁碳合金 重点内容:铁碳合金的结晶过程及室温下的平衡组织,组织组成物及相组成物的计算。 基本内容:铁素体与奥氏体、二次渗碳体与共析渗碳体的异同点、三个恒温转变。 钢的含碳量对平衡组织及性能的影响;二次渗碳体、三次渗碳体、共晶渗碳体相对量的

材料科学基础相图习题DOC

1.下图为一匀晶相图,试根据相图确定: (1) w B =0.40的合金开始凝固出来的固相成分为多少? (2)若开始凝固出来的固体成分为w B =0.60,合金的成分为多少? (3)成分为w B =0.70的合金最后凝固时的液体成分为多少? (4)若合金成分为w B =0.50,凝固到某温度时液相成分w B =0.40,固相成分为w B =0.80,此时液相和固相的相对量各为多少? 2.Mg —Ni 系的一个共晶反应为: 0.23520.546g g i M L M N 纯+(570℃) 设w Ni 1=C 1为亚共晶合金,w Ni 2=C 2为过共晶合金,这两种合金中的先共晶相的质量分数相等,但C 1合金中的α总量为C 2台金中α总量的2.5倍,试计算C 1和C 2的成分。 3.根据A-B 二元相图 (1) 写出图中的液相线、固相线、α和β相的溶解度曲线、所有的两相区及三相恒温转变线; (2) 平衡凝固时,计算A-25B(weight%)合金(y ’y 线)凝固后粗晶β相在铸锭中的相对含量; (3) 画出上述合金的冷却曲线及室温组织示意图。

4.根据如图所示的二元共晶相图 (1)分析合金I,II的结晶过程,并画出冷却曲线; (2)说明室温下合金I,II的相和组织是什么,并计算出相和组织组成物的相对含量? (3)如果希望得到共晶组织加上5%的 初的合金,求该合金的成分。 (4)合金I,II在快冷不平衡状态下结晶,组织有何不同? 5.指出下列相图中的错误: 6. 试述二组元固溶体相的吉布斯(Gibbs)自由能-成分曲线的特点? (a) (b) (c) (d)

[精品]动平衡机原理

动平衡机原理 第一台平衡机的出现乞今已有一百多年的历史。而平衡技术的发展主要还是近四十年的事。它与科学技术的发展密切关联。我国动平衡理论和装置的研究及新产品的开发是从五十年代开始的。 机械中绕轴线旋转的零部件,称为机器的转子。如果一个转子的质量分布均匀,制造和安装都合格,则运转是平衡的。理想情况下,其对轴承的压力,除重力之外别其它的力,即与转子不旋转时一样,只有静压力。这种旋转与不旋转时对轴承都只有静压力的转子,称为平衡的转子。如果转子在旋转时对轴承除有静压力外还附加有动压力,则称之为不平衡的转子。 从牛顿运动定律知道,任何物体在匀速旋转时,旋转体内各个质点,都有将产生离心惯性力,简称离心力,如图一所示,盘状转子,转子是以角速度ω作匀速转动,则转子体内任一质点都将产生离心力 F ,则离心力 F=mrω2, 这无数个离心力组成一个惯性力系作用在轴承上,形成转子对轴承的动压力,其大小则决定于转子质量的分布情况。如果转子的质量对转轴对称分布,则动压力为零,即各质量的离心力互相平衡。否则将产生动压力,尤其在高速旋转时动压力是很大的。因此,对旋转体,特别是高速旋转体进行动平衡校正是必须的。

近年来,许多机械制造业都在被迫接受着残酷的市场竞争,特别是 WTO 的加入,简直是内忧外患。价格战、技术战一场接着一场,使得众多企业身心疲累,怨声载道。在激烈的市场竞争环境下,提高产品质量成为致胜的有力武器,而动平衡校正则是产品质量的前提和保证。 平衡机是一种检测旋转体动平衡的检测设备。从结构上讲,主要是由机械振动系统、驱动系统和电气测量系统等三大部件组成。 机械振动系统主要功能是支承转子,并允许转子在旋转时产生有规则的振动。振动的物理量经传感器检测后转换成电信号送入测量系统进行处理。 平衡机的种类很多,就其机械振动系统的工作状态分类,目前所见的不外乎两大类:硬支承平衡机和软支承平衡机。硬支承平衡机是指平衡转速远低于参振系统共振频率的平衡机。而软支承平衡机则是平衡转速远大于参振系统共振频率的平衡机。简单来说,硬支承平衡机的机械振动系统刚度大,外力不能使其自由摆动。软支承平衡机的机械振动系统刚度小,一般来说,外力可以使其自由摆动。以下是软、硬支承平衡机的性能比较:

Fe-C相图与非平衡相转变基础知识讲

Fe-C相图与非平衡相转变归纳总结 钢通常被定义为一种铁和碳的合金,其中碳含量在几个ppm到2.11wt%之间。其它的 合金元素在低合金钢 中可总计达5wt%,在高 合金钢例如工具钢,不 锈钢(>10.5%)和耐热 CrNi钢(>18%)合金元 素含量甚至更高。钢可 以展现出一系列的性 能,这些性能依据于钢的组成,相状态和微观组成结构,而这些又取决于钢的热处理。 Fe-C相图 理解钢的热处理的基础是Fe-C相图(图一)。 图一实际上有两个图:(1)稳定态Fe-C图(点划线),(2)亚稳态Fe-Fe3C图。由于稳态需要很长时间才能达到,特别是在低温和低碳情况下,亚稳态往往引起人们更多的兴趣。Fe-C相图告诉我们,在不同碳含量的组成和温度下,达稳态平衡或亚稳态平衡时哪些相会

生成。 我们区别了a-铁素体和奥氏体,a-铁素体在727°C (1341°F)时最多溶解0.028%C,奥氏体在1148°C (2098°F)可溶解2.11wt%C。在碳多的一侧我们发现了渗碳体(Fe3C),另外,除了高合金钢之外,高温下存在的a-铁素体引起我们较少的兴趣。 在单相区之间存在着两相混合区,例如铁素体和渗碳体,奥氏体和渗碳体,铁素体和奥氏体。在最高温下,液相区可被发现,在液相区以下有两相区域液态奥氏体,液态渗碳体和液态铁素体。在钢的热处理中,我们总是避免液相的生成。我们给单相区一些重要的边界特殊的名字:(1)A1,低共熔温度,是奥氏体生成的最低温度;(2)A3,奥氏体区域的低温低碳边界,也即r/(r+a)边界;(3)Acm,奥氏体区域的高碳边界,也即r/(r+Fe3C)边界。 低共熔温度碳含量是指在奥氏体生成的最低温度时的碳含量(0.77wt%C)。铁素体-渗碳体混合相在冷却形成时有一个特殊的外貌,被称为珠光体,可作为微观结构实体或微观组成物来进行处理。珠光体是一种a-铁素体和渗碳体薄片的混合物,渗碳体薄片又退化为渗碳体颗粒散步在一个铁素体基质中,散步过程发生在铁素体基质扩散接近A1边界之后。 Fe-C相图源于实验。但是,热力学原理和现代热力学的数据的相关知识可以为我们提供关于相图的精确计算。当相图边界不得不被推测和低温下实验平衡很慢达到时,这种计算特别有用。如果合金元素加入Fe-C相图,A1,A3,Acm边界的位置和低共熔组成的位置会变

相图基本知识简介

第二章 二 元 合 金 相 图 纯金属在工业上有一定的应用,通常强度不高,难以满足许多机器零件和工程结构件对 力学性能提出的各种要求;尤其是在特殊环境中服役的零件,有许多特殊的性能要求,例如要求耐热、耐蚀、导磁、低膨胀等,纯金属更无法胜任,因此工业生产中广泛应用的金属材料是合金。合金的组织要比纯金属复杂,为了研究合金组织与性能之间的关系,就必须了解合金中各种组织的形成及变化规律。合金相图正是研究这些规律的有效工具。 一种金属元素同另一种或几种其它元素,通过熔化或其它方法结合在一起所形成的具有 金属特性的物质叫做合金。其中组成合金的独立的、最基本的单元叫做组元。组元可以是金属、非金属元素或稳定化合物。由两个组元组成的合金称为二元合金,例如工程上常用的铁碳合金、铜镍合金、铝铜合金等。二元以上的合金称多元合金。合金的强度、硬度、耐磨性等机械性能比纯金属高许多,这正是合金的应用比纯金属广泛得多的原因。 合金相图是用图解的方法表示合金系中合金状态、温度和成分之间的关系。利用相图可 以知道各种成分的合金在不同温度下有哪些相,各相的相对含量、成分以及温度变化时所可能发生的变化。掌握相图的分析和使用方法,有助于了解合金的组织状态和预测合金的性能,也可按要求来研究新的合金。在生产中,合金相图可作为制订铸造、锻造、焊接及热处理工艺的重要依据。 本章先介绍二元相图的一般知识,然后结合匀晶、共晶和包晶三种基本相图,讨论合金 的凝固过程及得到的组织,使我们对合金的成分、组织与性能之间的关系有较系统的认识。 2.1 合金中的相及相图的建立 在金属或合金中,凡化学成分相同、晶体结构相同并有界面与其它部分分开的均匀组成 部分叫做相。液态物质为液相,固态物质为固相。相与相之间的转变称为相变。在固态下,物质可以是单相的,也可以是由多相组成的。由数量、形态、大小和分布方式不同的各种相组成合金的组织。组织是指用肉眼或显微镜所观察到的材料的微观形貌。由不同组织构成的材料具有不同的性能。如果合金仅由一个相组成,称为单相合金;如果合金由二个或二个以上的不同相所构成则称为多相合金。如含30%Zn 的铜锌合金的组织由α相单相组成;含38%Zn 的铜锌合金的组织由α和β相双相组成。这两种合金的机械性能大不相同。 合金中有两类基本相:固溶体和金属化合物。 2.1.1 固溶体与复杂结构的间隙化合物 2.1.1.1 固溶体 合金组元通过溶解形成一种成分和性能均匀的、 且结构与组元之一相同的固相称为固溶体。与固溶 体晶格相同的组元为溶剂,一般在合金中含量较多; 另一组元为溶质,含量较少。固溶体用α、β、γ等 符号表示。A 、B 组元组成的固溶体也可表示为A (B ),其中A 为溶剂,B 为溶质。例如铜锌合金中 锌溶入铜中形成的固溶体一般用α表示,亦可表示 为Cu (Zn )。 图2.1 置换与间隙固溶体示意图 ⑴固溶体的分类 ①按溶质原子在溶剂晶格中的位置(如图2.1)分为: ? ??--的间隙之中;溶质原子进入溶剂晶格间隙固溶体格某些结点上的原子;溶质原子代换了溶剂晶置换固溶体

《材料科学基础》总复习(完整版)

《材料科学基础》上半学期容重点 第一章固体材料的结构基础知识 键合类型(离子健、共价健、金属健、分子健力、混合健)及其特点;键合的本质及其与材料性能的关系,重点说明离子晶体的结合能的概念; 晶体的特性(5个); 晶体的结构特征(空间格子构造)、晶体的分类; 晶体的晶向和晶面指数(米勒指数)的确定和表示、十四种布拉维格子; 第二章晶体结构与缺陷 晶体化学基本原理:离子半径、球体最紧密堆积原理、配位数及配位多面体; 典型金属晶体结构; 离子晶体结构,鲍林规则(第一、第二);书上表2-3下的一段话;共价健晶体结构的特点;三个键的异同点(举例); 晶体结构缺陷的定义及其分类,晶体结构缺陷与材料性能之间的关系(举例); 第三章材料的相结构及相图 相的定义 相结构 合金的概念:

固溶体 置换固溶体 (1)晶体结构 无限互溶的必要条件—晶体结构相同 比较铁(体心立方,面心立方)与其它合金元素互溶情况(表3-1的说明) (2)原子尺寸:原子半径差及晶格畸变; (3)电负性定义:电负性与溶解度关系、元素的电负性及其规律;(4)原子价:电子浓度与溶解度关系、电子浓度与原子价关系;间隙固溶体 (一)间隙固溶体定义 (二)形成间隙固溶体的原子尺寸因素 (三)间隙固溶体的点阵畸变性 中间相 中间相的定义 中间相的基本类型: 正常价化合物:正常价化合物、正常价化合物表示方法 电子化合物:电子化合物、电子化合物种类 原子尺寸因素有关的化合物:间隙相、间隙化合物 二元系相图: 杠杆规则的作用和应用; 匀晶型二元系、共晶(析)型二元系的共晶(析)反应、包晶(析)

型二元系的包晶(析)反应、有晶型转变的二元系相图的特征、异同点; 三元相图: 三元相图成分表示方法; 了解三元相图中的直线法则、杠杆定律、重心定律的定义; 第四章材料的相变 相变的基本概念:相变定义、相变的分类(按结构和热力学以及相变方式分类); 按结构分类:重构型相变和位移型相变的异同点; 马氏体型相变:马氏体相变定义和类型、马氏体相变的晶体学特点,金属、瓷中常见的马氏体相变(举例)(可以用许教授提的一个非常好的问题――金属、瓷马氏体相变性能的不同――作为题目) 有序-无序相变的定义 玻璃态转变:玻璃态转变、玻璃态转变温度、玻璃态转变点及其黏度按热力学分类:一级相变定义、特点,属于一级相变的相变;二级相变定义、特点,属于二级相变的相变; 按相变方式分类:形核长大型相变、连续型相变(spinodal相变)按原子迁动特征分类:扩散型相变、无扩散型相变

《转子动平衡——原理、方法和标准》.pdf

技术讲课教案 主讲人:范经伟 技术职称(或技能等级):高级工所在岗位:锅炉辅机点检员 讲课时间: 2011年 06月24日

培训题目:《转子动平衡——原理、方法和标准》 培训目的: 多种原因会引起转子某种程度的不平衡问题,分布在转子上的所有不平衡矢量的和可以认为是集中在“重点”上的一个矢量,动平衡就是确定不平衡转子重点的位置和大小的一门技术,然后在其相对应的位置处移去或添加一个相同大小的配重。 内容摘要: 动平衡前要确认的条件: 1.振动必须是因为动不平衡引起。并且要确认动不平衡力占 振动的主导。 2.转子可以启动和停止。 3.在转子上可以添加可去除重量。 培训教案: 第一章不平衡问题种类 为了以最少的启停次数,获得最佳的平衡效果,我们不仅要认识到动不平衡问题的类型(静不平衡、力偶不平衡、 动不平衡),而且还要知道转子的宽径比及转速决定了采 用单平面、双平面还是多平面进行动平衡操作。同时也要认识到转子是挠性的还是刚性的。

刚性转子与挠性转子 对于刚性转子,任何类型的不平衡问题都可以通过 任选的二个平面得以平衡。 对于挠性转子,当在一个转速下平衡好后,在另一 个转速下又会出现不平衡问题。当一个挠性转子首 先在低于它的70%第一监界转速下,在它的两端平 面内加配重平衡好后,这两个加好的配重将补偿掉 分布在整个转子上的不平衡质量,如果把这个转子 的转速提高到它的第一临界转速的70%以上,这个 转子由于位于转子中心处的不平衡质量所产生的离 心力的作用,而产生变形,如图10所示。由于转子的弯曲或变形,转子的重心会偏离转动中心线,而 产生新的不平衡问题,此时在新的转速下又有必要 在转子两端的平衡面内重新进行动平衡工作,而以 后当转子转速降下来后转子又会进入到不平衡状 态。为了能在一定的转速范围内,确保转子都能处 在平衡的工作状态下,唯一的解决办法是采用多平 面平衡法。 挠性转子平衡种类 1.如果转子只是在一个工作转速下运转,小量的变 形不会产生过快的磨损或影响产品的质量,那么

(完整版)力与平衡知识点详细归纳

第二章:力物体的平衡 第一模块:力的的概念及常见的三种力 『夯实基础知识』 一.力 1、定义:力是物体对物体的作用力是物体对物体的作用。 2、力的性质 (1)物质性:由于力是物体对物体的作用,所以力概念是不能脱离物体而独立存在的,任意一个力必然与两个物体密切相关,一个是其施力物体,另一个是其受力物体。把握住力的物质性特征,就可以通过对形象的物体的研究而达到了解抽象的力的概念之目的。 (2)矢量性:作为量化力的概念的物理量,力不仅有大小,而且有方向,在相关的运算中所遵从的是平行四边形定则,也就是说,力是矢量。把握住力的矢量性特征,就应该在定量研究力时特别注意到力的方向所产生的影响,就能够自觉地运用相应的处理矢量的“几何方法”。 (3)瞬时性:力作用于物体必将产生一定的效果,物理学之所以十分注重对力的概念的研究,从某种意义上说就是由于物理学十分关注力的作用效果。而所谓的力的瞬时性特征,指的是力与其作用效果是在同一瞬间产生的。把握住力的瞬时性特性,应可以在对力概念的研究中,把力与其作用效果建立起联系,在通常情况下,了解表现强烈的“力的作用效果”往往要比直接了解抽象的力更为容易。 (4)独立性:力的作用效果是表现在受力物体上的,“形状变化”或“速度变化”。而对于某一个确定的受力物体而言,它除了受到某个力的作用外,可能还会受到其它力的作用,力的独立性特征指的是某个力的作用效果与其它力是否存在毫无关系,只由该力的三要素来决定。把握住力的独立性特征,就可以采用分解的手段,把产生不同效果的不同分力分解开分别进行研究。 (5)相互性:力的作用总是相互的,物体A施力于物体B的同时,物体B也必将施力于物体A。而两个物体间相互作用的这一对力总是满足大小相等,方向相互,作用线共线,分别作用于两个物体上,同时产生,同种性质等关系。把握住力的相互性特征,就可以灵活地从施力物出发去了解受力物的受力情况。 3、力的分类: ①按性质分类:重力、弹力、摩擦力、分子力、电磁力、核力、安培力等(按现代物理学理论,物体间的相互作用分四类:长程相互作用有引力相互作用、电磁相互作用;短程相互作用有强相互作用和弱相互作用。宏观物体间只存在前两种相互作用。) ②按效果分类:拉力、压力、支持力、动力、阻力、向心力、浮力、回复力等 ③按研究对象分类:内力和外力。 ④按作用方式分类:重力、电场力、磁场力等为场力,即非接触力,弹力、摩擦力为接触力。 说明:性质不同的力可能有相同的效果,效果不同的力也可能是性质相同的。 4、力的作用效果:是使物体发生形变或改变物体的运动状态. A、瞬时效应:使物体产生加速度F=ma B、时间积累效应:产生冲量I=Ft,使物体的动量发生变化Ft=△p

相图的基本知识

第二章相图的基础知识 教学章节:第二章2.1 教学内容:合金及其组织 教学要求:1、掌握合金的概念及相的概念。 2、掌握合金的组织概念、性能特点。 3、掌握固溶解,金属化合物质、混合物。 4、了解二元合全相同的建立。 重点难点:1、掌握合金的概念是教学重点; 2、掌握三种合金组织的名称及性能。 教学过程(板书设计): 一、金属材料的分类: 二、合金的基本概念 1、合金:以一种金属为基础,加入其他金属或非金属,经过熔合而获得的具有金属特性的材料。即合金是由两种或两种以上的元素所组成的金属材料。 2、组元:组成合金最简单的、最基本的、能够独立存在的元物质,简称元 3、相:合金中成分、结构及性能相同的组成部分。 4、组织:合金中不同相之间相互组合配置的状态。换言之,数量、大小和分布方式不同的相构成了合金不同的组织。 提问:相与组元的区别: 答:1、相是合金中同一化学成分、同一聚集状态,并以界面相

互分开的各个均匀组成部分。 2、组元是组成合金的基本独立物质,组元可以是金属和非金属,也可以是化合物。 三、合金的组织 合金组织的分类: 1、固熔体 固熔体是一种组元的在子深入另一组元的晶格中所形成的均匀固相。溶入的元素称为溶质,而基体元素称为溶剂。固溶体仍然保持溶剂的晶格类型。 1)隙固溶体 溶质原子分布于溶剂晶格间隙之中而形成的固溶体称为间隙固溶体。 2)置换固溶体 溶质原子置换了溶剂晶格结点上某些原子而形成的固容体称为置换固溶体。

3)金属化合物 合金组元间发生相互作用而形成一种具有金属特性的物质称为金属化合物。其性能物特点是熔点高,硬度高,脆性大。金属化合物能提高合金的硬度和耐磨性,但塑性和韧性会降低。 4)混合物 两种或两种以上的相按一定质量分类组成的物质称为混合物。 课后习题: 1.合金是一种_________与_________________或_____________通过熔炼或其他方法结合而成的具有___________的物质。 2.合金中成分、结构、及性能相同的组成部分称为___________。 3.根据合金中各组元之间的相互作用不同,合金组织可分为___________、____________和____________三种类型。

签派旧题库第五章 载重与平衡

第五章载重与平衡 1.(参见附件5-1~5-3)在装载条件WT-1下的重心是______ A.26.0%MAC B.27.1%MAC C.27.9%MAC 2.(参见附件5-1~5-3)在装载条件WT-2下的重心是______ A.908.8in B.909.6in C.910.7in 3.(参见附件5-1~5-3)在装载条件WT-3下的重心是______ A.27.8%MAC B.28.9%MAC C.29.1%MAC 4.(参见附件5-1~5-3)在装载条件WT-4下的重心是______ A.908.4in B.909.0n C.909.5in 5.(参见附件5-1~5-3)在装载条件WT-5下的重心是______ A.25.6%MAC B.26.7%MAC C.27.2%MAC 6.(参见附件5-1~5-3)在装载条件WT-6下的总重量指数是______ A.181340.5 B.156545.0 C.166021.5 7.(参见附件5-1~5-3)在装载条件WT-7下的重心是______ A.21.6%MAC B.22.9%MAC C.24.0%MAC 8.(参见附件5-1~5-3)在装载条件WT-8下的重心是______ A.29.4%MAC B.30.0%MAC C.31.4%MAC 9.(参见附件5-1~5-3)在装载条件WT-9下的总重量指数是______ A.169755.3 B.158797.9 C.186565.5 10.(参见附件5-1~5-3)在装载条件WT-10下的重心是______ A.27.0%MAC B.27.8%MAC C.28.0%MAC

转子动平衡标准

转子动平衡标准文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

平衡精度等级考虑到技术的先进性和经济上的合理性,国际标准化组织(ISO)于1940年制定了世界公认的ISO1940平衡等级,它将转子平衡等级分为11个级别,每个级别间以倍为增量,从要求最高的到要求最低的G4000。单位为公克×毫米/公斤(gmm/kg),代表不平衡对于转子轴心的偏心距离。如下表所示: G4000具有单数个气缸的刚性安装的低速船用柴油机的曲轴驱动件 G1600刚性安装的大型二冲程发动机的曲轴驱动件 G630刚性安装的大型四冲程发动机的曲轴驱动件弹性安装的船用柴油机的曲轴驱动件 G250刚性安装的高速四缸柴油机的曲轴驱动件 G100六缸和多缸高速柴油机的曲轴传动件;汽车、货车和机车用的发动机整机 G40汽车车轮、轮毂、车轮整体、传动轴,弹性安装的六缸和多缸高速四冲程发动机的曲轴驱动件 G16特殊要求的驱动轴(螺旋桨、万向节传动轴);粉碎机的零件;农业机械的零件;汽车发动机的个别零件;特殊要求的六缸和多缸发动机的曲轴驱动件 商船、海轮的主涡轮机的齿轮;高速分离机的鼓轮;风扇;航空燃气涡轮机的转子部件;泵的叶轮;机床及一般机器零件;普通电机转子;特殊要求的发动机的个别零件 燃气和蒸汽涡轮;机床驱动件;特殊要求的中型和大型电机转子;小电机转子;涡轮泵 G1磁带录音机及电唱机、CD、DVD的驱动件;磨床驱动件;特殊要求的小型电枢 精密磨床的主轴;电机转子;陀螺仪 在您选择平衡机之前,应该先确定转子的平衡等级。 举例:允许不平衡量的计算 允许不平衡量的计算公式为: (与JPARC一样的计算 gys) 式中m per为允许不平衡量,单位是g; M代表转子的自身重量,单位是kg; G代表转子的平衡精度等级,单位是mm/s; r 代表转子的校正半径,单位是mm; n 代表转子的转速,单位是rpm。 举例如下: 如一个电机转子的平衡精度要求为级,转子的重量为0.2kg,转子的转速为1000rpm,校正半径20mm, 则该转子的允许不平衡量为: 因电机转子一般都是双面校正平衡,故分配到每面的允许不平衡量为0.3g。 目前T0转动部分重量大约为180Kg(包括电机转子、旋变转子、轴承等回转体)不包括为166Kg。 按照180Kg,转速3000rpm,标准,校正半径为220mm,

材料科学基础相图部分参考

参考答案 第4章 相 图 范莉: p.4 问题 讲义中说:“压力平衡最容易,温度平衡次之,化学势平衡最难达到”,为什么? 答:从三个层次考虑,力(压力) 能量(温度) 物质(化学势),平衡越来越难。 p.8 问题 从图4-1看出,自由能G 随温度T 的增加而下降。能不能据此做如下判断:低温物质不如高温物质稳定,因为前者的G 高,而后者低。 答:不可以。用G 判据判定体系是否稳定需在同一温度下比较,否则无意义。 问题 p G S T ???=- ????表明,G T -曲线的斜率一定是负的。除此之外,G T -曲线还有另一个特点,请问是什么? 答:温度越高熵值越大,曲线斜率越来越负,即曲线随温度的增加越降越快。 问题 在图4-1中,设有一个温度m T T <。证明:若T 与m T 相差不大,则 ()T T T L G G G m m m L S V -=-=? 答:提示:(1)局部线性 (2)m m /T L S = p G S T ???=- ????,m m m T L T )-T S T G (=??=? 问题 当压力不变时,某种纯金属处于两种不同的状态:一是理想晶体;二是含晶界的多晶体。请说明两种不同状态下该金属的G T -曲线有什么差异? 答:含晶界的多晶体的熵值比理想晶体大,故曲线更陡。 问题 当压力不变时,某种纯金属处于两种不同的状态:一是非晶体;二是含晶界的多晶体。请说明两种不同状态下该金属的G T -曲线有什么差异?在横坐标中注明熔点位置。 答:(1)非晶体的熵值比含晶界的多晶体大,故曲线更陡。 (2)按照纯金属的自由能-温度曲线标出熔点。

问题 从图4-2看出,固-气、液-气两相平衡的温度范围比较大,而固-液两相平衡仅在很窄的温度范围存在,请分析原因。 答:根据 m d d L p T T V =? ,主要看V ?的大小。 问题 对图4-2中的亚稳平衡线,克拉贝龙方程还适用吗?为什么? 答:适用,克拉贝龙适用于两相平衡。 P12~13 问题 为什么“应变能因素总是使固溶体中A 组元的化学势高于纯A ”?注意,不能用公式回答,而要用文字表述。 答:应变能永远为正,使得体系能量增大,A 组元的化学势高于纯A.(位错等缺陷带来影响也是使体系自由能增大,与之类似。) 问题 从()x T k Z x G -+Ω+=1ln B 2A A μ看出,当1x →时,A μ→-∞。请从物理概念角度分析这一问题。注意:负无穷大总是不合理的。 答:考虑在纯B 中加入一个A 的情况,此时熵的变化很大而内能变化很小,此时G-X 的曲线做切线时斜率很大,A d d G G x x μ=-,故A μ→-∞ 问题 讲义中说:规则溶液模型既可以用于液体,也可以用于固溶体。问:具体应用时,两者的主要差异是什么? 答:两者的是主要差异在于线性项,参见教材P14

材料科学基础习题5-答案-二元相图作业

《材料科学基础》第五章习题——二元相图1、发生匀晶转变的两个组元在晶体结构、原子尺寸方面有什么特点? 答:两者的晶体结构相同,原子尺寸相近,尺寸差小于15%。 2、固溶体合金的相图如下图所示,试根据相图确定: ①成分为ω(B) = 40%的合金首先要凝固出 来的固体成分;(画图标出) ②若首先凝固出来的固相成分含ω(B) = 60%,合金的成分为多少?(画图标出) ③成分为ω(B) = 70%的合金最后凝固的液 体成分;(画图标出) ④合金成分为ω(B) = 50%,凝固到某温度 时液相含ω(B)为40%,固相含有ω(B) = 80%, 此时液体和固相各占多少?(计算) ①过ω(B) = 40%的成分线与液相线的交点做与底边的平行线交固相线即可 ②过ω(B) = 60%的成分线与固相线的交点做与底边的平行线交液相线即可 ③过ω(B) = 70%的成分线与固相线的交点做与底边的平行线交液相线即可 ④液相:(80-50)/(80-40)=0.75 固相:(50-40)/(80-40)=0.25 3、指出下列相图中的错误,并加以改正。 由相律知,三相平衡时,图中应该为一点,而不是线 段,且二元相图中最多只有三相平衡,所以把d图中 r相除去。 由相律知在二元相图中 纯组元凝固温度恒定,液固 相线交于一点 4、根据教材图7.20,假设F与G点坐标分别选取5%与99%,计算:①Sn含量为40%的合金在凝固至室 A 20 40 60 80 B 温 度 W(B) % α L+a L

温后的组织组成比例;②根据初生相(α)、共晶组织中的相(α+β),以及冷却过程中析出的二次相(αⅡ或βⅡ),计算室温下的相组成比例。 解:①Sn 含量为40%的合金在凝固至室温后的组织组成比例: %95.4819 9.6119 40)(=--= +βαW =--?--=5991999199.61409.61αW 43.45% %6.7599519199.61409.61=--?--=∏βW ②根据一次相、共晶组织中的相,以及冷却过程中析出的二次相,计算室温下的相组成比例: 5、 Mg-Ni 系的一个共晶反应为 设C 1为亚共晶合金,C 2 为过共晶合金,这两种合金中的初生相的质量分数相等,但C 1合金中的α总量为C 2合金中的α总量的2.5倍,试计算C 1和C 2的成分。 解:相图: Ni Mg 由二者的初生相的质量分数相等得:(23.5- C 1 )/23.5= (C 2 -23.5)/54.6-23.5 又α总量为C 2 中α总量的205倍:(54.6- C 1 )/54.6=2.5*(54.6- C 2 )/54.6 由以上两式得C 1 =12.7% C 2 =37.8% 6、 组元A 和B 在液态完全互溶,但在固态互不溶解,且形成一个与A ,B 不同晶体结构的中间化合物,α(纯镁)+ 2Mg Ni[w(Ni) = 54.6%] L (ω(Ni) = 23.5%) 507℃ A 23.5 54.6 B

Fe-C相图与非平衡相转变基础知识讲义(doc 9页)(正式版)

Fe-C相图与非平衡相转变总结 钢通常被定义为一种铁和碳的合金,其中碳含量在几个ppm到2.11wt%之间。其它的合金元素在低合金钢中可总计达5wt%,在高合金钢例如工具钢,不锈钢(>10.5%)和耐热CrNi钢(>18%)合金元素含量甚至更高。钢可以展现出一系列的性能,这些性能依据于钢的组成,相状态和微观组 成结构,而这些又取决 于钢的热处理。 Fe-C相图 理解钢的热处理 的基础是Fe-C相图(图 一)。 图一实际上有两 个图:(1)稳定态Fe-C图(点划线),(2)亚稳态Fe-Fe3C图。由于稳态需要很长时间才能达到,特别是在低温和低碳情况下,亚稳态往往引起人们更多的兴趣。Fe-C相图告诉我们,在不同碳含量的组成和温度下,达稳态平衡或亚稳态平衡时哪些相会生成。 我们区别了a-铁素体和奥氏体,a-铁素体在727°C (1341°F)时最多溶解0.028%C,奥氏体在1148°C (2098°F)可溶解2.11wt%C。在碳多的一侧我们发现了渗碳体(Fe3C),另外,除了高合金钢之外,高温下存在的a-铁素体引起我们较少的兴趣。 在单相区之间存在着两相混合区,例如铁素体和渗碳体,奥氏体

和渗碳体,铁素体和奥氏体。在最高温下,液相区可被发现,在液相区以下有两相区域液态奥氏体,液态渗碳体和液态铁素体。在钢的热处理中,我们总是避免液相的生成。我们给单相区一些重要的边界特殊的名字:(1)A1,低共熔温度,是奥氏体生成的最低温度;(2)A3,奥氏体区域的低温低碳边界,也即r/(r+a)边界;(3)Acm,奥氏体区域的高碳边界,也即r/(r+Fe3C)边界。 低共熔温度碳含量是指在奥氏体生成的最低温度时的碳含量(0.77wt%C)。铁素体-渗碳体混合相在冷却形成时有一个特殊的外貌,被称为珠光体,可作为微观结构实体或微观组成物来进行处理。珠光体是一种a-铁素体和渗碳体薄片的混合物,渗碳体薄片又退化为渗碳体颗粒散步在一个铁素体基质中,散步过程发生在铁素体基质扩散接近A1边界之后。 Fe-C相图源于实验。但是,热力学原理和现代热力学的数据的相关知识可以为我们提供关于相图的精确计算。当相图边界不得不被推测和低温下实验平衡很慢达到时,这种计算特别有用。如果合金元素加入Fe-C相图,A1,A3,Acm边界的位置和低共熔组成的位置会变化。值得一提的是,所有重要的合金元素降低了低共熔碳含量。奥氏体的稳定元素锰,镍降低了A3,铁素体稳定元素铬,硅,钼和钨增加A3。平衡相图不能说明的相变动力学过程与亚稳态相,必须用非稳态相转变图来描述。 各种相转变图 在钢的热处理中,相变的动力学因素与平衡图表同样重要。对于

最新材料科学基础相图习题

最新材料科学基础相图习题 (1) w B =0.40的合金开始凝固出来的固相成分为多少? (2)若开始凝固出来的固体成分为w B =0.60,合金的成分为多少? (3)成分为w B =0.70的合金最后凝固时的液体成分为多少? (4)若合金成分为w B =0.50,凝固到某温度时液相成分w B =0.40,固相成分为w B =0.80,此时液相和固相的相对量各为多少? 2.Mg —Ni 系的一个共晶反应为: 0.23520.546g g i M L M N α纯+(570℃) 设w Ni 1=C 1为亚共晶合金,w Ni 2=C 2为过共晶合金,这两种合金中的先共晶相的质量分数相等,但C 1合金中的α总量为C 2台金中α总量的2.5倍,试计算C 1和C 2的成分。 3.根据A-B 二元相图 (1) 写出图中的液相线、固相线、α和β相的溶解度曲线、所有的两相区及三相恒温转变线; (2) 平衡凝固时,计算A-25B(weight%)合金(y ’y 线)凝固后粗晶β相在铸锭中的相对含量; (3) 画出上述合金的冷却曲线及室温组织示意图。 4.根据如图所示的二元共晶相图 (1)分析合金I ,II 的结晶过程,并画出冷却曲线; (2)说明室温下合金I ,II 的相和组织是什么,并计算出相和组织组成物的相对含量? (3)如果希望得到共晶组织加上5%的β初的合金,求该合金的成分。 (4)合金I ,II 在快冷不平衡状态下结晶,组织有何不同? 5.指出下列相图中的错误: 6. 试述二组元固溶体相的吉布斯(Gibbs )自由能-成分曲线的特点? 1.下图为一匀晶相图,试根据相图确定: (1) w B =0.40的合金开始凝固出来的固相成分为多少? (2)若开始凝固出来的固体成分为w B =0.60,合金的成分约为多少? (3)成分为w B =0.70的合金最后凝固时的液体成分约为多少? (4)若合金成分为w B =0.50,凝固到某温度时液相成分w B =0.40,固相成分为w B =0.80,此时液相和固相的相对量各为多少? 第1题答案 (a) (b)

速率与平衡知识点总结及对应练习

化学平衡 一、 化学反应速率 1. 表示方法 2. 单位 3. 注意:表示反应速率时必须指出以哪一种物质做标准;速度之比等于系数之比; 只能表示平均速率,无法表示瞬时速率。 <题型一>速率比较:转化为同一种物质为标准在进行大小比较。 练习 对于反应 A + 3B = 2C + 2D ,下列数据表示不同条件的反应速率,其中反应进行得最快的是( ),反应进行快慢程度相等的是( ) A.v (A) =0.7mol/(L·S) B. v (B) =1.8mol/(L · S) C. v (C) =1mol/(L · S) D. v (D) =72mol/(L · min)题型二>计算反应速率 练习1、反应4NH 3(g)+5O 2(g) 4NO(g)+6H 2O(g)在5L 的密闭容器中进行,30秒后NO 的物质的量增加0.3mol ,则此反应的平均反应速率为 练习2、反应4NH 3(g)+5O 2(g) 4NO(g)+6H 2O(g)在10L 密闭容器中进行,半分钟后,水蒸气的物质的量增加了0.45mol ,则此反应的平均速率)(X v (反应物的消耗速率或产物的生成速率)可表示为( ) A.)mol/(L 0.010)(NH 3s v ?= B. )mol/(L 0.001)(O 2s v ?=C .)mol/(L 0.001(NO)s v ?= D.)mol/(L 0.045O)(H 2s v ?= 练习3、已知:4NH 3(g)+5O 2(g) 4NO(g)+6H 2O(g),若反应速率分别用v (NH 3)、v (O 2)、v (NO)、v (H 2O)[mol/(L ·min)]表示则下列关系正确的是 A .)()(5423O v NH v = B .)()(6522O H v O v = C .)()(3223O H v NH v = D .)()(5 42NO v O v = 4. 速率的影响因素 (1) 浓度:浓度越大,速率越大。注意:改变不了固体的浓度。----增加活化分子数目。 (2) 压强:有气体参加的反应,增大压强 速率加快。 (3) 温度:温度升高,速率增大。每增加10℃速度增大2-4倍。-----增加活化分子百分数。 (4) 催化剂:加入催化剂,速率变大。----降低活化能。 (5) 其他因素:增大接触面积、形成原电池、反应介质(酸碱性)、光、等 练习1、 下列有关化学反应速率的说法正确的是 A 用铁片和稀硫酸反应制取氢气,改用98%的硫酸可以加快产生氢气的速率。 B 100ml 2mol/L 的盐酸跟锌反应,加入适量的氯化钠溶液,反应速率不变。 C 二氧化硫的催化氧化是一个放热反应,所以升高温度反应速率减慢。 D 汽车尾气中的NO 和CO 可以缓慢反应放出N 2和CO 2,减少压强,反应速率减慢。 练习2、某温度时,在2L 容器中,X 、Y 、Z 三种物质的物质的量随时间变 化的曲线如图所示。由图中数据分析: 该反应的化学方程式为_________________。 反应开始至2min ,用Z 表示的平均反应速率为____________。 (计算过程): 二、化学平衡 1.定义:一定条件下的可逆反应,正反应速率等于你反应速率,反应混合物中各组分浓度保持不变的状态。 2.特征:动、等、定:各物质浓度百分含量一定;变:外界条件变化时,平衡也会发生改变。 <题型三>平衡标志 (1) 等:以速度作为判定标准:正逆反应速率相等。 (2) 定:各物质的浓度和百分含量一定。 (3) 变量恒定:以压强、密度、体积、平均分子量作为判定标准时,反应前后系数不等的反应可以判定平衡 (4) 浓度商Q 与平衡常数K

动平衡基本理论

转动件的平衡、操作和装运数据及设备基础 一、转动件的动平衡与静平衡[118、119] (一) 基本概念 具有一定转速的转动件(或称转子),由于材料组织不均、零件外形的误差(尤其具有非加工部分)、装配误差以及结构形状局部不对称(如键槽)等原因,使通过转子重心的主惯性轴与旋转轴线不相重合,因而旋转时,转子产生不平衡离心力,其值由下式计算: C=)()30 (22公斤n e g G ew g G π= (1-1) 式中:G-----转子的重量(公斤); e-----转子重心对旋转轴线的偏移,即偏心距(毫米); n-----转子的转速(转/分); w-----转子的角速度(弧度/秒); g-----重力加速度9800(毫米/秒2)。 由上式可知,当重型或高转速的转子,即使具有很小的偏心距,也会引起非常大的不平衡的离心力,成为轴或轴承的磨损、机器或基础振动的主要原因之一。所以,机器在装配时,转子必须进行平衡。 转子不平衡有两种情况: 1、静不平衡-----转子主惯性轴与旋转轴线不相重合,但相互平行,即转子重心不在旋转轴线上,如 图1a 所示。当转子旋转时,将产生不平衡的离心力。 2、动不平衡-----转子的主惯性轴与旋转轴线交错,且相交于转子的重心上,即转子的重心在旋转轴 线上,如图1b 所示。这时转子虽处于静平衡状态,但转子旋转时,将产生一不平衡力矩。 在大多数的情况下,转子既存在静不平衡,又存在动不平衡,这种情况称静动不平衡。此时,转子主惯性轴线与旋转轴线既不重合,又不平行,而相交于转子旋转轴线中非重心的任何一点,如图1c 所示。当转子旋转时,产生一个不平衡的离心力和一个力矩。 转子静不平衡只须在一个平面(即校正正面)安装一个平衡重量,就可以使转子达到平衡,故又称单面平衡。平衡重量的数值和位置,在转子静力状态下确定,即将转子的颈搁置在水平刀刃支撑上,加以观察,就可以看出其不平衡状态,较重部分会向下转动,这种方法叫静平衡。 静平衡主要应用于转子端面之间的距离比轴承之间的距离小许多的盘形转子,如齿轮、飞轮、皮带轮等。转子动不平衡及静动不平衡必须在垂直于旋转轴的二个平面(即校正平面)内各加一个平衡重量,使转子达到平衡。平衡重量的数值和位置,必须使转子在动力状态下,即转子在旋转的情况下确定,这种方法称动平衡。因需两个平面作平衡校正,故又称双面平衡。 主惯性轴 旋转轴线重心 ?重心主惯性轴 旋转轴线重心 ? ? 主惯性轴 旋转轴线 ? ? ????? 图1 动平衡主要应用于轴向长度较长的转子。校正平面应选择在间距尽可能最大的两个平面,为此,校正平面往往选择在转子的两个端面上。 必须指出,以上所述系指刚性转子的平衡问题。挠性转子必须选定两个以上的校正平面,以及采用专门方法才能达到平衡。挠性转子的平衡问题请参阅有关专门资料。

相关文档
最新文档