材料科学基础答案

材料科学基础答案
材料科学基础答案

1.为什么室温下金属晶粒越细强度,硬度越高,塑性韧性也越好

答:金属晶粒越细,晶界面积越大,位错障碍越多,需要协调的具有不同位向的晶粒越多,金属塑性变形的抗力越高,从而导致金属强度和硬度越高。

金属的晶粒越细,单位体积内晶粒数目越多,同时参与变形的晶粒数目也越多,变形越均匀,推迟了裂纹的形成和扩展,使得在断裂前发生较大的塑性变形。在强度和塑性同时增加的情况下,金属在断裂前消耗的功增大,因而其韧性也比较好。因此,金属的晶粒越细,其塑性和韧性也越好。

2.冷塑性变形金属产生加工硬化的原因

随变形量增加,空密度增加。④由于晶粒由有利位向而发生几何硬化,因此使变形抗力增加。随变形量增加,亚结构细化,亚晶界对位错运动有阻碍作用。答:①晶体内部存在位错源,变形时发生了位错增值,随变形量增加,位错密度增加。由于位错之间的交互作用,使变形抗力增加。

3.某厂用冷拉钢丝绳吊运出炉热处理工件去淬火,钢丝绳的承载能力远超过工件的质量,但在工件的运送过程中钢丝绳发生断裂,试分析其原因

答:冷拉钢丝绳是利用热加工硬化效应提高其强度的,在这种状态下的钢丝中晶体缺陷密度增大,强度增加,处于加工硬化状态。在淬火的温度下保温,钢丝将发生回复、再结晶和晶粒长大过程,组织和结构恢复软化状态。在这一系列变化中,冷拉钢丝的加工硬化效果将消失,强度下降,在再次起吊时,钢丝将被拉长,发生塑性变形,横截面积减小,强度将比保温前低,所以发生断裂。

4细化晶粒方法

1.在浇注过程中: 1)增大过冷度; 2)加入变质剂; 3)进行搅拌和振动等。

2. 在热轧或锻造过程中: 1)控制变形度; 2)控制热轧或锻造温度。

3. 在热处理过程中:控制加热和冷却工艺参数利用相变重结晶来细化晶粒。

4. 对冷变形后退火态使用的合金: 1)控制变形度; 2)控制再结晶退火温度和时间

5、试说明滑移,攀移及交滑移的条件,过程和结果,并阐述如何确定位错滑移运动的方向。

解答:滑移:切应力作用、切应力大于临界分切应力;台阶

攀移:纯刃位错、正应力、热激活原子扩散;多余半原子面的扩大与缩小

交滑移:纯螺位错、相交位错线的多个滑移面;位错增殖

位错滑移运动的方向,外力方向与b一致时从已滑移区→未滑移区。相反,从未滑移区→已滑移区。

6.将经过大量冷塑性变形(>70%以上)的纯金属长棒一端浸入冷水中,另一端加热至接近熔点的高温(如),过程持续一小时,然后完全冷却,作出沿棒长度的硬度分布曲线(示意图),并作简要说明。如果此金属为纯铁时,又会有何情况出现

例题解答:(I) T

(II)再结晶硬度下降较大

(III)晶粒长大进一步下降

沿棒长度的硬度分布曲线示意如图。在整个棒的长度上,由于温度不同,经历了回复、再

结晶和晶粒长大三个过程。

(I) T

(II)发生再结晶,硬度下降较大,且随温度的升高,同样1小时完成再结晶的体积百分数增大,硬度随之降低;

(III)晶粒长大,晶界对位错的阻碍较小,故硬度进一步下降。

若纯金属为纯铁,因纯铁有同素异构转变,在上述情况下,由于到达一定温度会发生重结晶而使晶粒细化,故在第(III)区域后会有硬度回升的第(IV)区。

7. 金属中常见的细化晶粒的措施有哪些为什么常温下金属材料为什么晶粒越细小,不仅强度越高,而且塑性和韧性也越好

例题解答:细化晶粒方法:

(1)铸态使用的合金:合理控制冶铸工艺,如增大过冷度、加入变质剂、进行搅拌和振动等。

(2)对热轧或冷变形后退火态使用的合金:控制变形度、再结晶退火温度和时间。

(3)对热处理强化态使用的合金:控制加热和冷却工艺参数利用相变重结晶来细化晶粒。常温下金属材料的晶粒越细,不仅强度、硬度越高,而且塑性、韧性也越好。原因是:材料在外力作用下发生塑性变形时,通常晶粒中心区域变形量较大,晶界及其附近区域变形量较小。因此在相同外力作用下,(1)大晶粒的位错塞积所造成的应力集中促使相邻的晶粒发生塑性变形的机会比小晶粒大得多,小晶粒的应力集中小,则需要在较大的外加应力下才能使相邻的晶粒发生塑性变形;(2)细小晶粒的晶粒内部和晶界附近的变形量较小,且变形均匀,相对来说,因应力集中引起开裂的机会少,着使得在断裂之前承受较大的变形量,表现为有较高的塑性。

8材料的强化方法有哪些分析他们的本质上的异同点

材料常用的强化方式:固溶强化、沉淀(析出)强化、弥散强化、细晶强化、形变强化、相变强化。

(1)固溶强化是由于溶质原子造成了点阵畸变,其应力场将与位错应力场发生弹性交互作用、化学交互作用和静电交互作用,并阻碍位错运动。是通过合金化对材料进行的最基本的强化方法。

(2)沉淀(析出)强化是通过过饱和固溶体的时效处理而沉淀析出细小弥散、均匀分布的第二相微粒,第二相与位错相互作用;

(3)弥散强化――是通过粉末冶金方法加入细小弥散、均匀分布的硬质第二相形成复相,第二相阻碍位错运动,起强化作用。

(4)细晶强化――霍尔佩奇公式;细晶强化是唯一的使材料的强度和塑性同时提高的强化方法。

(5)加工(形变)强化――塑性形过程中,位错发生增值,位错密度升高,导致形变胞的形成和不断细化,对位错的滑移产生巨大的阻碍作用,可使金属的变形抗力显著升高。

(6)相变强化――相变时新相和母相具有不同组织结构,在相变过程中形成大量的晶体缺陷。

9在室温下对Pb板进行弯折,越弯越硬,但如果放置一段时间再进行弯折,Pb板又像最初一样柔软,这是为什么(Tm(Pb)=327℃)

例题解答:在室温下对Pb板进行弯折,越弯越硬,发生了加工硬化。

如果放置一段时间再进行弯折,Pb板又像最初一样柔软,已发生了回复和再结晶。因T再=·Tm(Pb) ≈·(327+273)-273 = -33℃。

10. 钢丝绳吊工件,随工件放入1000℃炉中加热,加热完毕,吊出时绳断原因例题解答:

冷加工→加工硬化→钢丝绳的硬度和强度↑→承载能力高→加热→发生再结晶→硬度和强度↓→超过承载能力→钢丝绳断裂

11 单滑移是指只有一个滑移系进行滑移。滑移线呈一系列彼此平行的直线。这是因为单滑移仅有一组.

多滑移是指有两组或两组以上的不同滑移系同时或交替地进行滑移。它们的滑移线或者平行,或者相交成一定角度。这是因为一定的晶体结构中具有一定的滑移系,而这些滑移系的滑移面之间及滑移方向之间都

交滑移是指两个或两个以上的滑移面沿共同的滑移方向同时或交替地滑移。它们的滑移线通常为折线或波纹状。只是螺位错在不同的滑移面上反复“扩展”的结果。

在铁碳合金中主要的相是哪几个两个最主要的恒温反应是什么其生成的组织是什么它们的性能有什么特点

答:铁碳合金相图中共有五个基本相,即液相L、铁素体相F、高温铁素体相δ、奥氏体相A及渗碳体相Fe3C。

在ECF水平线(1148℃)发生共晶转变 +Fe3C。转变产物为渗碳体基体上分布着一定形态、数量的奥氏体的机械混合物(共晶体),称为莱氏体,以符号“Ld”表示,性能硬而脆。

在PSK线(727℃)发生共析转变 +Fe3C。转变产物为铁素体基体上分布着一定数量、形态的渗碳体的机械混合物(共析体),称为珠光体,以符号“P”表示。珠光体的强度较高,塑性、韧性和硬度介于渗碳体和铁素体之间。

根据铁碳相图对铁碳合金进行分类,试分析不同铁碳合金成分、室温平衡组织及性能之间关系。答:由Fe—C相图可将铁碳合金分为以下几类:

①工业纯铁:wC≤%,组织为F+Fe3CIII

亚共析钢:%

共析钢:wC=%,组织为珠光体P(F+Fe3C)

过共析钢:%

亚共晶(白口)铸铁:%

过共晶(白口)铸铁:%

由F和Fe3C两相构成的铁碳合金的室温平衡组织,随着含碳量的增加其变化规律为: F(+少量Fe3CIII)→F+P→P→P+ Fe3CII(网状)→P+ Fe3CII+Ld’ →Ld’ →Ld’+Fe3CI

随着含碳量的增加,组织组成发生相应的变化,硬度增加,塑韧性降低;强度的变化是先增加后降低,大约在含碳量为%时为最大值。合金中组织的不同引起的性能差异很大,这与Fe3C的存在形式密切相关,当他与F(基体)构成片层状的P组织时,合金的强度和硬度均随含碳量增加而增加,而当Fe3C以网状分布在晶界上时,不仅使塑韧性降低,也使强度降低;当Fe3C以粗大形态存在时(Ld’或Fe3CI),塑韧性和强度会大大降低。

从铁一碳相图的分析中回答:

(1)随碳质量百分数的增加,硬度、塑性是增加还是减小

答:随着含碳量的增加,硬度增加,塑韧性降低;因为随含碳量增加Fe3C数量越来越多。

(2)过共析钢中网状渗碳体对强度、塑性的影响怎样

答:对基体产生严重的脆化,使强度和塑性下降。

(3)钢有塑性而白口铁几乎无塑性

答:钢是以塑韧的F为基体,而白口铁是以硬脆的Fe3C为基体,所以钢有塑性,而白口铁几乎无塑性。

(4)哪个区域熔点最低哪个区域塑性最好

答:共晶白口铸铁熔点最低。A区塑性最好。

根据Fe-Fe3C相图,说明产生下列现象的原因:

(1)含碳量为%的钢比含碳量为%的钢硬度高;

答:因为钢的硬度随含碳量的增加而增加。

(2)在室温下含碳量%的钢其强度比含碳量%的钢强度高;

答:含碳量超过%后,Fe3C以网状分布在晶界上,从而使钢的强度大大下降。

(3)低温莱氏体的塑性比珠光体的塑性差;

答:因为低温莱氏体是由共晶Fe3C、Fe3CII和珠光体组成,因此比起但纯的珠光体来说,其塑性要差。

(4)在1100℃,含碳量%的钢能进行锻造,含碳量%的生铁不能锻造;

答:因为在1100℃,含碳量%的钢处于A单相区,而含碳量%的生铁处于A+ Fe3CII+Ld’;

(5)钢铆钉一般用低碳钢制成;

答:钢铆钉需要有良好的塑韧性,另外需要兼有一定的抗剪切强度,因而使用低碳钢制成;

(6)钳工锯%C、%C、%C等钢材比锯%C、%C钢材费力,锯条容易磨损;

答:%C、%C、%C中的含碳量高,组织中的Fe3C的含量远比%C、%C钢中的含量高,因此比较硬,比较耐磨;

(7)钢适宜于通过压力加工成形,而铸铁适宜于铸造成型;

答:铸铁的熔点低,合金易熔化、铸造过程易于实施;钢的含碳量比铸铁低,通过加热可进入单相固溶体区,从而具有较好的塑性、较低的变形抗力,不易开裂,因此适宜于压力加工成形。

第3章工程材料成形过程中的行为与性能变化

思考题与习题P81

3、金属晶粒大小对机械性能有什么影响如何控制晶粒的大小P67~P68

答:机械工程中应用的大多数金属材料是多晶体。同样的金属材料在相同的变形条件下,晶粒越细,晶界数量就越多,晶界对塑性变形的抗力越大,同时晶粒的变形也越均匀,致使强度、硬度越高,塑性、韧性越好。因此,在常温下使用的金属材料,一般晶粒越细越好。

晶粒度的大小与结晶时的形核率N和长大速度G有关。形核率越大,在单位体积中形成的晶核数就越多,每个晶粒长大的空间就越小,结晶结束后获得的晶粒也就越细小。同时,如果晶体的长大速度越小,则在晶体长大的过程中可能形成的晶粒数目就越多,因而晶粒也越小。细化晶粒的方法有:1)增大过冷度——提高形核率和长大速度的比值,使晶粒数目增大,获得细小晶粒;

2)加入形核剂——可促进晶核的形成,大大提高形核率,达到细化晶粒的目的;

3)机械方法——用搅拌、振动等机械方法迫使凝固中的液态金属流动,可以使附着于铸型壁上的细晶粒脱落,或使长大中的树枝状晶断落,进入液相深处,成为新晶核形成的基底,因而可以有效地细化晶粒。

6.室温下,对一根铁丝进行反复弯曲—拉直试验,经过一定次数后,铁丝变得越来越硬,试分析原因。如果将这根弯曲—拉直试验后的铁丝进行一定温度的加热后,待冷至室温,然后再试着弯曲,发现又比较容易弯曲了,试分析原因。

答:铁丝进行反复弯曲—拉直的过程是塑性变形的过程,在经过一定次数后铁丝产生了加工硬化,因此强度硬度越来越高;若进行一定温度的加热后,变形的铁丝发生了回复再结晶,加工硬化消除,硬度降低,所以又比较容易弯曲了。

7、什么是金属的回复和再结晶过程回复和再结晶过程中金属的组织性能发生了哪些变化P75

答:回复:塑性变形后的金属加热时,开始阶段由于加热温度不高,原子获得的活动能力较小,只能进行短距离的扩散,金属的显微组织仍保持纤维组织,力学性能也不发生明显的变化。在这一阶段内,原子的短距离扩散使晶体在塑性变形过程中产生的晶体缺陷减少,晶格畸变大部分消除,材料中的残余应力基本消除,导电性和抗腐蚀能力也基本恢复至变形前的水平。

再结晶:把经历回复阶段的金属加热到更高温度时,原子活动能力增大,金属晶粒的显微组织开始发生变化,由破碎的晶粒变成完整的晶粒,由拉长的纤维状晶粒转变成等轴晶粒。这种变化经历了两个阶段,即先在畸变晶粒边界上形成无畸变晶核,然后无畸变晶核长大,直到全部转化为无畸变的等轴晶粒。该过程无相变发生,也为原子扩散导致的形核、长大过程,因此称为再结晶。金属在再结晶过程中,由于冷塑性变形产生的组织结构变化基本恢复,力学性能也随之发生变化,金属的强度和硬度下降,塑性和韧性上升,加工硬化现象逐渐消失,金属的性能重新恢复至冷塑性变形之前的状态。

8、什么是加工硬化试述金属在塑性变形中发生加工硬化的原因试分析加工硬化的利与弊。P74

答:加工硬化:金属在塑性变形过程中,随着变形程度增加,强度、硬度上升,塑性、韧性下降,这种现象称加工硬化(也叫形变强化)。

加工硬化的原因:金属变形过程主要是通过位错沿着一定的晶面滑移实现的。在滑移过程中,位错密度大大增加,位错间又会相互干扰相互缠结,造成位错运动阻力增加,同时亚晶界的增多,从而出现加工硬化现象。

利与弊:加工硬化加大了金属进一步变形的抗力,甚至使金属开裂,对压力加工产生不利的影响。因此需要采取措施加以软化,恢复其塑性,以利于继续形变加工。但是,对于某些不能用热处理方法强化的合金,加工硬化又是一种提高其强度的有效的强化手段。

为什么低温莱氏体比珠光体塑性差

低温莱氏体:含有大量的渗碳体,渗碳体成为基体组织,我们知道渗碳体是一个硬脆相,故低温莱氏体塑性很差---难以进行变形加工,(但因具有共晶转变,有良好的铸造性能.)而珠光体是铁素体和渗碳体组成的层片状的机械混合物,且渗碳体的比例小.大概1/8,故有相当的塑性.可以进行变形加工.

2---7为何单晶体具有各向异性,而多晶体在一般情况下不显示出各向异性

答:因为单晶体内各个方向上原子排列密度不同,造成原子间结合力

不同,因而表现出各向异性;而多晶体是由很多个单晶体所组成,它在各个方向上的力相互抵消平衡,因而表现各向同性。

4-4 在常温下为什么细晶粒金属强度高,且塑性、韧性也好试用多晶体塑性变形的特点予以解释。

答:晶粒细小而均匀,不仅常温下强度较高,而且塑性和韧性也较好,即强韧性好。原因是:

(1)强度高:Hall-Petch公式。晶界越多,越难滑移。

(2)塑性好:晶粒越多,变形均匀而分散,减少应力集中。

(3)韧性好:晶粒越细,晶界越曲折,裂纹越不易传播。

4-6 生产中加工长的精密细杠(或轴)时,常在半精加工后,将将

丝杠吊挂起来并用木锤沿全长轻击几遍在吊挂7~15天,然后再精加工。试解释这样做的目的及其原因答:这叫时效处理一般是在工件热处理之后进行原因用木锤轻击是为了尽快消除工件内部应力减少成品形变应力吊起来,是细长工件的一种存放形式吊个7天,让工件释放应力的时间,轴越粗放的时间越长。

4-10 用一冷拔钢丝绳吊装一大型工件入炉,并随工件一起加热到1000℃,保温后再次吊装工件时钢丝绳发生断裂,试分析原因答:由于冷拔钢丝在生产过程中受到挤压作用产生了加工硬化使钢丝本身具有一定的强度和硬度,那么再吊重物时才有足够的强度,当将钢丝绳和工件放置在1000℃炉内进行加热和保温后,等于对钢丝绳进行了回复和再结晶处理,所以使钢丝绳的性能大大下降,所以再吊重物时发生断裂。

4-11 在室温下对铅板进行弯折,越弯越硬,而稍隔一段时间再行弯折,铅板又像最初一样柔软这是什么原因

答:铅板在室温下的加工属于热加工,加工硬化的同时伴随回复和再结晶过程。越弯越硬是由于位错大量增加而引起的加工硬化造成,而

伴随着回复和再结晶过程,等轴的没有变形晶粒取代了变形晶粒,硬度和塑性又恢复到了未变形之前。

5-3 一次渗碳体、二次渗碳体、三次渗碳体、共晶渗碳体、共析渗碳体异同

答:一次渗碳体:由液相中直接析出来的渗碳体称为一次渗碳体。二次渗碳体:从A中析出的渗碳体称为二次渗碳体。

三次渗碳体:从F中析出的渗碳体称为三次渗碳体

共晶渗碳体:经共晶反应生成的渗碳体即莱氏体中的渗碳体称为共晶渗碳体

共析渗碳体:经共析反应生成的渗碳体即珠光体中的渗碳体称为共析渗碳体

组织形状不同,对基体的影响不同。

共同点同属于一个相,晶体结构相同,化学成分相同。

5-5 某仓库中积压了许多退火状态的碳钢,由于钢材混杂不知其化学成分,现找出一根,经金相分析后发现组织为珠光体和铁素体,其中珠光体占75%。问此钢的碳含量大约为多少

答:=P%·%=75%×%=%

5-7 根据铁碳相图解释下列现象:

1)含碳量%的钢比含碳量%的钢硬度高;

2)在室温平衡状态下,含碳量为%的钢比含碳量为%的钢强度高;

3)室温下莱氏体比珠光体塑性差;

答:1) 含碳量%的钢比含碳量%的钢硬度高;

中渗碳体的量提高,因此硬度提高。

2) 在室温平衡状态下,含碳量为%的钢比含碳量为%的钢强度高;

钢的强度是典型的对组织敏感的性能指标,细密相间的两相组织珠光体具有较高的强度,因此提高珠光体的比例可改善钢的强度,而连续分布在原奥氏体晶界上的二次渗碳体将降低钢的强度。%的钢中珠光体的比例高于%的钢,同时%的钢含有更多的二次渗碳体,故%的钢比%的钢强度高。

3)室温下莱氏体比珠光体塑性差;

室温下莱氏体Fe3C+P,即珠光体分布渗碳体相的基底上,而渗碳

体基底的脆性极大,莱氏体表现为脆性的,几乎不能塑性变形。

1.强度:强度是指在外力作用下,材料抵抗变形和断裂的能力。

2.屈服强度:材料在外力作用下开始发生塑性变形的最低应力值。

3.弹性极限:产生的变形是可以恢复的变形的点对应的弹性变形阶段最大应力称为弹性极限。

4.弹性模量:材料在弹性变形范围内的应力与应变的比值称为弹性模量。

5.抗拉强度:抗拉强度是试样拉断前所能承受的最大应力值。

6.塑性:断裂前材料产生的塑性变形的能力称为塑性。 7.硬度:硬度是材料抵抗硬物压入其表面的能力。 8.冲击韧度:冲击韧度是材料抵抗冲击载荷的能力。

9.断裂韧度:断裂韧度是材料抵抗裂纹扩展的能力。

10.疲劳强度:疲劳强度是用来表征材料抵抗疲劳的能力。

20.蠕变:固体材料在保持应力不变的条件下,应变随时间延长而增加的现象。

1.晶体:晶体是原子或分子在三维空间做有规律的周期性重复排列的固体。

2.晶格:为便于理解和描述,常用一些假想的连线将各原子的中心连接起来,把原子看做一个点,这样形成的几何图形称为晶格。

5.晶胞:晶格中的一个基本单元。

6.晶向:晶格中各原子列的位向。

7.单晶体:由原子排列位向或方式完全一致的晶格组成的称为单晶体。

8.晶体缺陷:偏离晶体完整性的微观区域称为晶体缺陷。

9.空位:是指未被原子占据的晶格节点。

10.间隙原子:是指位于晶格间隙中的原子。

11.晶面:在晶格中由一系列原子组成的平面。

12.位错线:是指在晶体中,某处有一列或若干列原子发生了某种有规律的错排现象。

13.晶界:晶界是位向不同,相邻晶粒之间的过渡层。

14.合金:是指由两种或两种以上的金属元素或金属元素与非金属元素组

成的,具有金属特性的物质。

15.组元:组成合金最基本的独立物质。

16.合金系:一系列相同组员组成的不同成分的合金称为合金系。

17.合金化:采用合金元素来改变金属性能的方法称为合金化。

18.相:合金中具有相同化学成分,相同晶体结构和相同物理或化学性能并与该系统其余部分以界面相互隔开的均匀组成部分。

19.固溶体:是指溶质组员溶入溶剂晶格中而形成的单一的均匀固体。

20.置换固溶体:置换固溶体是指溶质原子取代了溶剂晶格中某些节点上的原子。

21.间隙固溶体:间隙固溶体是溶质原子嵌入溶剂晶格间隙中,不占据晶格节点位置。

22.有限固溶体:在一定条件下,溶质组员在固体中有一定的限度,超过这个限度就不再溶解了。

23.无限固溶体:若溶质可以任意比例融入溶剂,即溶质的的溶解度可达%100,则固溶体称为无限固溶体。

24.固溶强化:固溶体中溶质原子的溶入引起晶格畸变,使晶体处于高能状态,从而提高合金的强度和硬度。

25.金属化合物:两组元A和B组成合金时,除了可形成以A或以B为基的固溶体外,还可能相互作用化和形成新相,这种新相通常是化合物,一般可用AmBn表示。

26.晶体相:晶体相是一些以化合物或以化合物为基的固溶体,是决定陶瓷材料物理,化学和力学性能的主要组成物。

31.结晶温度:金属结晶时都存在着一个平衡结晶温度Tm,液体中的原子结晶到晶体上的数目,等于晶体上的原子溶入液体中的数目。

32.过冷度:实际结晶温度与平衡结晶温度Tm之差称为过冷度。

33.细晶强化:金属的强度,塑性和韧性都随晶粒的细化而提高,称为细晶强化。

36.共晶反应:共晶反应是指从某种成分固定的合金溶液中,在恒温下同时结晶出两种成分和结构皆不相同的固相反应。

37.共析反应:共析反应是指由一种固相在恒温(共析温度)下同时转变成两种新的固相。

38.铁素体:是碳在α-Fe中形成的间隙固溶体。 39.奥氏体:是碳在γ-Fe中形成的间隙固溶体。

40.渗碳体:是铁和碳的金属化合物(Fe3C),其碳的质量分数为% 。

41.珠光体:是铁素体与渗碳体的机械混合物。

44.共析钢:碳的质量分数为%,组织是珠光体。

45.亚共析钢:碳的质量分数小于%,组织是珠光体和铁素体。

46.过共析钢:碳的质量分数大于%,组织是珠光体和二次渗碳体。

47.共晶铸铁:碳的质量分数为%,组织是莱氏体。

48.亚共晶铸铁:碳的质量分数小于%,组织是莱氏体、珠光体和二次渗碳体。

49.过共晶铸铁:碳的质量分数大于%,组织是莱氏体和一次渗碳体。

二、填空题。

1.实际金属中存在着的晶体缺陷有点缺陷、线缺陷和面缺陷。

2.世界金属中晶体的点缺陷分为空位和间隙原子两种。

3.常见合金中存在的相可以归纳为固溶体和金属化合物两大类。

4.固溶体按照溶质原子在溶剂原子中的位置可以分为置换固溶体和间隙固溶体。

5.固溶体按照溶解度的大小可以分为有限固溶体和无限固溶体。

6.固溶体按溶质原子在溶剂晶格中分布的特点分为无序固溶体和有序固溶体。

8.实际结晶温度总是低于平衡结晶温度,两者之差称为过冷度。 9.共析钢随温度下降至727C 时发生共析反应,有奥氏体中析出珠光体和三次渗碳体。

10.共晶铸铁随温度下降至1148C时发生共晶反应,有液体中同时析出莱氏体和珠光体。

11.典型的金属晶体结构有体心立方晶格、面心立方晶格和密排六方晶格三种。

12.纯铁具有同素异构性,当加热到912C时,将由体心立方晶格的α-Fe转变为面心立方晶格的γ - Fe ,加热到1394C时,又由面心立方晶格的γ - Fe转变为体心立方晶格的δ - Fe。

14.金属的平衡结晶温度与实际结晶温度之差,称为过冷度。

16.金属结晶后的晶粒越细小,强度、塑性和韧性越高。 17.合金是由两种或两种以上的金属元素或金属元素与非金属元素组成的具有金属特性的物质,组成合金最基本的独立物质称为组员。18.由于构成合金各组员之间的相互作用不同,合金的结构有固

溶体和金属化合物两大类。 19.铁碳合金是由铁和碳组成的二元合金,其基本组织有铁素体、渗碳体、奥氏体、珠光体、莱氏体。

1.简述金属三种典型晶体结构的特点。

答:体心立方晶格:在立方体的8个顶角上和立方体中心各有1个原子;面心立方晶格:在立方体的8个顶角上和6个面的中心各有1个原子;密排六方晶格:在六棱柱的上、下六角形面的顶角上和面的中心各有1个原子,在六棱柱体的中间有3个原子。

2.金属的实际晶体中存在哪些晶体缺陷它们对性能有什么影响

答:金属的实际晶体中存在三种晶体缺陷:点缺陷——空位和间隙原子;线缺陷——位错线;面缺陷——晶界;影响:一般情况下,晶体缺陷的存在可以提高金属的强度,而且金属缺陷常常降低金属的耐腐蚀性能,可以通过腐蚀观察金属的各种缺陷。

3.合金元素在金属中的存在形式有哪几种它们各自具有什么特性

答:合金元素在金属中的存在形式有两种:固溶体和金属化合物

特性:固溶体,保持溶剂的晶格结构,但会引起溶剂晶格不同程度

的畸变,试晶体处于高能状态,从而提高合金个强

度和硬度。

金属化合物,一般都具有高熔点、高硬度,但很脆,可提高

合金的强度、硬度及耐磨性能。

4.什么事固溶强化造成固溶强化的原因是什么

答:固溶强化:固溶体中溶质原子的溶入引起晶格畸变,使晶体处于高能状态,从而合金的强度和硬度,即为固溶强化。

8.金属结晶的基本规律是什么

答:结晶时首先是从液体中形成一些称之为晶核的细小晶体开始的,然后已形成的晶核按各自不同的位向不断长大。同时,在液体中有产生新的晶核并逐渐长大,直至液体全部消失,形成由许多位向不同、外形不规则的晶粒所组成的多晶体。

11.何谓共晶反应、匀晶反应和共析反应试比较三种反应的异同点。答:共晶反应:指从某种成分固定的合金溶液中、在恒温下同时结晶出两种成分和结构皆不相同的固相的反应;

匀晶反应:从液相中结晶出固溶体的反应;共析反应:由一种固相在恒温下同时转变成两种新的固相。

14.为什么铸造合金常选用接近共晶成分的合金为什么要进行压力加工的合金常选用单相固溶体成分

的合金

答:铸造合金常选用接近共晶成分的合金是因为接近共晶成分的合金熔点低,结晶范围小,流动性好,具有良好的铸造性能。进行压力加工的合金常选用单相固溶体成分的合金是因为单相固溶体成分的合金有良好的塑性,变形抗力小,具有良好的可锻性。

15.何谓α、γ、Fe3C、P、A、Ld(Ld’)它们的结构、组织形态、力学性能有何特点

答:α—铁素体:为体心立方结构,因溶碳能力差,故强度、硬度不高,塑性、韧性良好;

γ 、A—奥氏体:为面心立方结构,有一定的溶碳能力,一般硬度较低而塑性较高;

Fe3C—渗碳体:为铁和碳的金属化合物,硬度高,脆性大,塑性和韧性

几乎为零;

P—珠光体:铁素体和渗碳体的机械混合物,因渗碳体的强化作用,故具有良好的力学性能;

Ld(Ld’)—莱氏体(低温莱氏体) :莱氏体为奥氏体和渗碳体的化合物,

低温莱氏体为珠光体和渗碳体的产物,二者因渗碳体较多,属脆性组织。

18.渗碳体有哪5种基本形态,它们的来源和形态有何区别答:(1)一次渗碳体:从液体中直接析出,呈长条状;

(2)二次渗碳体:从奥氏体中析出,沿晶界呈网状;

(3)三次渗碳体:从铁素体中析出,沿晶界呈小片或粒状;

(4)共晶渗碳体:同奥氏体相关形成,在莱氏体中为连续的基体;

(5)共析渗碳体:同铁素体交互形成,呈交替片状。

19.根据Fe-Fe3C相图,说明产生下列现象的原因

(1)碳的质量分数为%的钢比碳的质量分数为%的钢硬度高;

(2)低温莱氏体的塑性比珠光体的塑性差;

(3)捆扎物体一般用铁丝(镀锌的碳钢丝),而起重机起吊重物却用钢

丝绳(用60、65、70、75等钢制成);

(4)一般要把刚才加热的高温(约1000-1250℃)下进行热轧或锻造;

(5)钢适宜于通过压力加工成形,而铸铁适宜通过铸造成形。

答:(1)ωc=%的钢成分是F+P,而ωc=%的钢成分是P+ Fe3CⅡ。Fe3C

硬度高,脆性大,而F因溶碳能力差,强度、硬度低。所以碳的质量分数为%的钢比碳的质量分数为%的钢硬度高;

(2)低温莱氏体为珠光体和渗碳体的混合物,因为渗碳体硬度高,脆

性大,所以比珠光体的塑性差;

(3)铁丝中含有较多的珠光体和渗碳体,强度高,但质脆。而钢丝中

含有铁素体和渗碳体,不但强度满足要求,还具有较好的韧性;

(4)把刚才加热的高温(约1000-1250℃)时,其内部组织转化为奥氏

体,塑性较高,易于塑性成形,适合进行热轧或锻造;

(5)钢含有较多的铁素体,含碳量较低,塑性和韧性好,所以宜于通

过压力加工成形,而铸铁含有较多的珠光体和渗碳体,熔点低,结晶范围小,具有良好的铸造性能。

9.结合Fe-Fe3C相图,说明铁素体、奥氏体的最大、最小溶解度(含碳量);计算含

碳量为%,%的合金室温平衡组织中二次渗碳体的相对量(%) ,并说明碳钢的含碳量一般不超过%的原因。

铁素体的最大、最小溶解度分别为%和%或近似为0 。奥氏体的最大、最小溶解度分别为%和%。 1%C的钢中Fe3CⅡ量设为QFe3CFe3C=。%C 的钢中Fe3CⅡ量设为QFe3CⅡ,Q,QⅡFe3C=因为,当含碳量大于%以后,二次渗碳体呈严重连续网状分布在晶界上,破坏了基体的连续性,大大降低了钢的强韧性。

实际测得的晶体滑移所需临界切应力比理论计算的数值小得多;为什么呢

:理论计算是假定滑移面两侧原子发生整体移动,其临界分切应力值大,但实际晶体滑移是位错的运动、并不需正排原子一齐移动,而仅位错附近少数原子作短距离移动,故而所需要的临界分切应力要小得多。

4 在匀晶转变中,结晶的固相,其成分与合金的成分是否一样与液相的成分是否一样若不一样,请指出何种成分的含量提高了(以Ni – Cu合金为例)。

固相的成分与合金的成分不同,含有更多的Ni,与液相的成分也不同,也是含有更多的Ni。

5 对于Ni –Cu合金,若以平衡结晶,获得的室温组织的形貌是怎样的若以不平衡结晶,则获得的室温组织的形貌又是怎样的并简述原因。(请参考图5-14和图5-17)

若平衡结晶,获得的室温组织形貌为等轴晶,以不平衡结晶,组织形貌为树枝晶。因为:不平衡结晶时,先结晶的固相富含高熔点组元,形成树枝晶的枝干,最后结晶的固相富含低熔点组元,处于枝干之间,腐蚀时不同成分的腐蚀程度不同,所以显示出树枝晶形貌。

一名词解释

1、致密度:表示晶胞中原子所占体积与晶胞体积的比值,是衡量原子排列紧密程度的参数,

致密度越大,晶体中原子排列越紧密,晶体结构越致密。

2、相:合金中具有同一聚集状态、同一晶体结构、成分基本相同、并有明确界面与其他部

分相分开的均匀组成部分。

3、固溶体:指以合金某一组元为溶剂,在其晶格中溶入其他组元原子(溶质)后所形成的

一种合金相,其特征是仍保持溶剂晶格类型,结点上或间隙中含有其他组元原子。

4、离异共晶:成分点靠近共晶转变线两端的亚共晶和过共晶合金,结晶后组织中初晶量多,

共晶体数量少,而且共晶体中与初晶相同的一相与初晶结合在一起,将共晶体中另一相推至晶界,造成的共晶体两相分离的非平衡组织。

5、平衡分配系数:固溶体合金在结晶过程中具有选分结晶的特点。因此在一定温度下平衡

时,固相成分与液相成分之比称为平衡分配系数。该参数反映了溶质在固液两相中的分配系数及溶质对合金熔点的影响程度。

6、反应扩散:在固态扩散的过程中,如果渗入元素在金属中溶解度有限,随着扩散原子增

多,当渗入原子的浓度超过饱和溶解度时则形成不同于原相的固液体或中间相,从而使金属表层分为出现新相和不出现新相的两层,这种通过扩散而形成新相的过程称为反应扩散。

7、固溶强化:当形成固溶体后,溶剂晶格中因溶有溶质原子而产生晶格畸变,溶质原子的

应力场会与位错产生交互作用而阻碍位错运动,增大了位错运动的阻力,使得临界分切应力远比纯金属打,滑移系开动比纯金属困难,使材料的塑性变形抗力提高,硬度、强度上升,而塑性、韧性下降的现象称为固溶强化。

8、退火:将金属及其合金加热至相变温度以上,保温一段时间,然后以较为缓慢的速度冷

却,以获得近于平衡组织的热处理工艺称为退火。

9、柏氏矢量:用来描述位错引起晶格畸变的物理量。该矢量的模是位错的强度,表示晶格

总畸变的大小,其方向表示晶格点畸变的方向。一般情况下,该矢量越大,晶体畸变的程度越大。

10、成分过冷:固溶体合金凝固时,由于液相中溶质的分布发生变化,合金熔点也发生

变化,即使实际温度分布不变,固液界面前沿的过冷度也会发生变化。所以固溶体合金的过冷度是由变化着的合金的熔点与实际温度分布两个方面的因素共同决定的。这种因液相成分变化而形成的过冷称为成分过冷。

11、配位数:是反映原子排列紧密程度的物理量之一,指晶格中任一原子周围与其最近

邻且等距离的原子数目。一般配位数越大,晶体排列结构越致密。

12、临界分切应力:晶体中的某个滑移系是否发生滑移,决定于力在滑移面内沿滑移方

向上的分切应力,它是使滑移系开动的最小分切应力。材料的临界分切应力取决于材料的本身性质,但和温度以及材料的纯度等也有关系。

13、中间相:指合金组元间相互作用,当超过固溶体的固溶极限时可形成晶格结构和特

性完全不同于任一组元的具有金属特性的新相。由于在相图中往往处于中间部位,因此又称为中间相。

14、枝晶偏析:是材料的一种微观偏析,即固溶体在非平衡冷却条件下,匀晶转变后新

得的固溶体晶粒内部的成分是不均匀的,先结晶的内核含较多的高熔点的组元原子,后结晶的外缘含较多的低熔点的组元原子,而通常固溶体晶体以树枝晶方式长大,这样,枝干含高熔点组元较多,枝间含低熔点组元原子多,造成同一晶粒内部成分的不均匀现象。

15、动态再结晶:在金属塑性变形过程中发生的再结晶,即形变硬化与再结晶软化同时

进行的过程。这样可以不断形成位错密度很低的新晶粒,得到的组织细小,综合力学性能好。

二填空

1、典型金属的晶体结构有(fcc)(bcc)和(hcp),其配位数相应为(12)(8)和(12)。

2、置换固溶体的溶解度与原子尺寸因素、(电负性)、电子浓度因素和(晶体结构)有关。

4,r Gπr)3、当过冷液体中出现一个晶胚时,总的自由能变化△G可写为(

当d△G/dr=0时,所得的r值称为(临界晶核半径)其大小决定于(过冷度)和(比表面能),r*变小意味着形核数目(增多)。

4、根据相律三元系最大平衡相数为(4)此时自由度为(零)在相图上表现为(平面)

5、位错在滑移面上的运动称为(滑移),作垂直滑移面的运动称为(攀移)螺旋位错不能进行(攀移)

6、面心立方金属的滑移面是({111}),滑移方向是(<110>)可组成(12)个滑移系。

7、扩散第一定律适用于稳态扩散,其数学表达式可写成(J=-Ddc/dx)。扩散通量的单位是

2(1/cm·s),符号为(负号)表示扩散由高浓度向低浓度方向进行。

8、溶质原子半径与溶剂原子半径相近的可形成(置换)固溶体,两者半径相差较大时是(间隙)固溶体,铁素体是一种(间隙)固溶体。

9、奥氏体形核时不仅需要(结构)起伏、(能量)起伏,此外还需要(成分)起伏。

10、晶体固液界面分为光滑界面和粗糙界面,按照长大速度由慢到快其长大方式依次为(二维晶核长大)(晶体缺陷长大)和(垂直长大)

12、位错的两种基本类型为(刃型位错)和(螺型位错),其中刃型位错的位错的位错线方向与柏氏矢量的关系为(垂直)。

14、上坡扩散室指扩散原子从(低浓度)向(高浓度)的扩散,产生上坡扩散的原因是合金系中存在着(化学为梯度)。 4332

16、多晶体塑性变形的特点是(不等时)性、(协调)性和(不均匀)性。

17、多晶体中的晶界有大角与小角晶界之分,通常大角与小角晶界的鉴定角度是(10),其角度的含义是(相邻晶粒的位向差)。对于小晶界按其特征又划分为(扭转)(倾侧)和(重合)等多种类型。

18、根据相律,三元系最大平衡相数为(4),此时自由度(0),在相图上表现为(水平面)。

0)dt19、扩散第一定律只适合于(稳态)条件,第一定律所表达的基本含义是:在(dc

的条件下,制药浓度梯度存在就会有扩散发生,而且扩散通量与浓度梯度成(正比)变化。扩散流动方向是由(高)浓度向(低)浓度。

20、固溶体合金结晶过程中遵循形核和核长大规律,但它不同于纯金属的是形核时还额外需要(成分)起伏,它也是在(变温)过程中进行的,同时在结晶过程中海始终伴随着(异质原子/溶质原子)的扩散。

21、晶体长大方式与(界面结构)有关,而晶体长大形态与(界面结构)有关,同时也与界面前沿的(温度梯度)分布有关。

22、单晶体在发生塑性变形时,常见的方式有(滑移)、(孪生)和(扭折)。

23、动态回复与动态再结晶是指在高温下进行形变,即变形过程中(形变硬化与软化)同时进行。

24、冷变形后,再结晶后晶粒度大小的控制与(冷变形度)、原始晶粒尺寸、(再结晶温度)和杂质等有关。

25、晶体在外力作用下内部运动着的位错会产生交截现象,即产生割阶与就这,其长度与相交截位错的(柏氏矢量的模)相同,而如果割阶的滑移与主位错线的滑移不一致,主位错线会拖拽割阶产生攀移运动,从而产生(割阶硬化)。

26、(11)金属塑性变形过程中发生孪生后,孪晶面两边的晶体位向呈现(对称关系),并且晶体是(均匀)切变的。

27、(13)冷塑变金属低温回复时,主要是(点缺陷的消失),高温回复时,主要是发生(多边形化)。

28、(15)动态回复与动态再结晶是指在变形过程中(软化与形变硬化)同时进行三判断

1、结晶、重结晶和再结晶三者在概念上有何区别

解答:结晶—金属由液态转变为固态的过程称为凝固,由于固态金属是晶体故又把凝固称为结晶。

重结晶—指在固态状态下,物质由一种结构转变成另一种结构,这是一种固态相变过程。

再结晶—将冷压力加工以后的金属加热到一定温度后,在变形的组织中重新产生新的无畸变的等轴晶粒、性能恢复到冷压力加工前的软化状态的过程。在此过程中,仍然属于固态过程。

三者的区别于联系:结晶、重结晶发生相变过程,再结晶没有;结晶、重结晶和再结晶都是形核与长大的过程。发生结晶与重结晶的驱动力为反应相与生成相的自由能差,再结晶为储存能。再结晶后强度、硬度下降而塑韧性提高,而重结晶则属于同素异构转变。

2、何谓成分过冷成分过冷对晶体生长形态有何影响

解答:固溶体合金凝固时,由于液相中溶质的分布发生变化,合金熔点也发生变化,即使实际温度分布不变,固液界面前沿的过冷度也会发生变化。所以固溶体合金的过冷度是由变化着的合金熔点与实际温度分布两方面的因素共同决定的。这种因液相成分变化而形成的过冷称为成分过冷。

固溶体结晶时,由于出现成分过冷对晶体生长的形态有很大影响,即使在正温度梯度下也会生成出胞状组织甚至出现树枝晶。即无成分过冷时,界面呈平直状向前推移;较小成分过冷时,界面呈胞状;较大成分过冷时,界面呈树枝状。

3、试说明多晶体金属塑性变形时,晶粒越小强度越高、塑性越好的原因。

解答:多晶体金属塑性变形时,晶粒越小强度越高,塑性越好的原因是:由于晶粒细小,各晶粒中可供塞积位错的滑移面较短,塞积位错的数量n也少,由位错塞积引起的应力集中小而数目很多,在相同外力作用下,处于滑移有利方位的晶粒数量也会增多,使众多的晶粒参加滑移,滑移量分散在各个晶粒中,应力集中小,这样在金属变形时引起开裂的机会小,直至断裂之前,能获得较大的塑性变形量。

4、简述固溶体合金与纯金属在结晶过程中的区别。

解答:纯金属在结晶时其界面是粗糙的,在正温度梯度下进行长大。由于晶体长大时通过固相模壁散热,固液界面是等温的,若取得动态过冷度界面就向前移动。如果界面局部有小的凸起伸向过热的液相中,小凸起将被熔化,界面一直保持平直,晶体以平面状长大。

固溶体结晶时会出现成分过冷,在固液界面前出现成分过冷区,此时界面如有任一小的凸起将它伸入成分过冷区而获得过冷就能继续生长下去。界面不能保持平直稳定,会出现树枝晶。

5、分析回复与再结晶阶段空位与位错的变化及其对性能的影响。

解答:在低温回复阶段,主要表现为空位的消失。冷变形后所产生的大量空位,通过空位迁移至表面或晶界,空位与间隙原子重新重合,空位与位错发生交互作用,空位聚集成空位片等方式,使得空位数量急剧减少。

在中温回复阶段,温度升高,使位错容易滑移,同一滑移面上的异号位错相遇会相互吸引而抵消,不但使亚晶内部的位错数目减少,而且胞壁结位错的减少更为显著,重新调整排列规则,胞壁变得明晰,形成回复亚晶。即该阶段主要表现为位错的滑移,导致位错重新结合,异号位错的汇聚而抵消以及亚晶的长大。

在高温回复阶段,位错运动的动力学条件更为充分,滑移同时也发生攀移,使得多层滑移面上的位错密度趋于相同,各位错之间的作用力使得同一滑移面上的位错分不均与,间距大体相等,形成规则排列的垂直于滑移面的位错墙,即多边形化的过程。多边形化构成的位错墙即是小角度晶界,它将原晶粒分隔成若干个亚晶粒。

6、何为加工硬化如何解决加工硬化给后续加工带来的困难

解答:金属材料在塑性变形过程中,随着变形量的增加,强度和硬度不断上升,而塑性而韧性不断下降,这一现象称为“加工硬化”。该现象的原因是由于外力增加使得位错不断增值,位错之间相截、反应使得位错的运动变得困难。可以用再结晶退火处理消除加工硬化给后续加工带来的困难。

10、为什么金属滑移在最密排面与最密排晶向上进行

解答:金属晶体的滑移是在外力的作用下,于原子排列最紧密的晶面和晶向上进行的,这是因为在密排面上原子间距最小,结合力最强,而相邻的两个密排晶面之间距离却最大、结合力最弱。可知在原子排列最紧密的晶面之间进行滑移阻力最小,需要的外力也最小。于是原子排列最紧的晶面和晶向就成了晶体进行滑移的滑移面和滑移方向。

11、为什么渗碳选择930℃附近的γ-Fe中

解答:①可形成较大的浓度梯度;②γ-Fe中含碳量增加则扩散系数增加;③高温下随温度升高,扩散系数增加,所以选择高温。但温度过高会使奥氏体晶粒显著长大。

12分析材料发生塑性变形的机制及表现形式

解答:材料发生塑性变形通常有三种方式,具体如下:

⑴滑移。晶体在切应力的作用下,沿着滑移方向在滑移面上发生相对运动。其位错机制为:由于晶体点阵结构的周期性,当位错沿着滑移面运动时,位错中心的能量也要发生周期性的变化,从而使得位错运动遇到点阵阻力。但在实际晶体中,一定温度下,当位错线从能谷位置移向相邻能谷位置时,并不是沿其全长同时越过能峰,在热激活能的帮助下,可以部分先越过,同时位错线形成位错扭折,那么随后位错的运动,借助于扭折位错线会很容易地向旁边侧运动,结果使得整个位错线滑移所需的应力下降许多。

滑移过程中,除点阵阻力外,位错与位错的交互作用产生的阻力,

位错运动交截后形成的扭折和割阶,位错与其他晶体缺陷交互作用产生的阻力,均会产生阻力,导致晶体滑移时还会产生晶体强化现象。

⑵孪生。是晶体在不能滑移时进行的一种塑性变形方式。它也是晶体在切应力的作用下,沿着孪生方向和孪生面发生相对运动。与滑移不同之处在于孪生是一种均匀切变,而且孪晶的两部分晶体形成晶面对称。

其位错机制在于晶体中一个不全位错滑动后,使得相互平行并且相邻晶面发生层错而产生孪晶。

⑶扭折。当晶体既不能滑移也不能进行孪生时,可以以扭折的方式进行塑变。其特点是扭折晶体的取向发生了不对称性的变化。位错机制是指在塑变过程中,其他区域位错运动过程中,同号刃型位错堆积在一起,位错的汇集处产生了弯曲应力,使得晶体点阵发生弯曲和扭折从而产生扭折区。

13何为孪晶与退火孪晶解释其各自的形成机制。

解答:孪晶是指连个晶体(或一个晶体的两部分)沿一个共晶面构成界面对称的位向关系,这两部分晶体就叫做孪晶。孪晶依据其形成方式分为三种:变形孪晶(机械孪晶)、生长孪晶和退火孪晶。

退火孪晶是孪晶中的一种,它是指在某些面心立方金属,如Cu、Ni及镍合金、奥氏体钢等,在冷变形并再结晶退火后,在晶粒内部会形成具有平直界面的片状孪晶。这些孪晶的界面是{111}面。由于它们是在退火后才出现的,因而叫做退火孪晶。

孪晶的生成是由于孪生变形时,整个孪晶区发生均匀切变,其各层晶面的相对位移借助于一个不全位错运动造成的。以面心立方晶体为例,当形成孪晶时需要产生堆垛层错。例如面心立方晶体是以{111}面按ABCABC…的顺序堆垛而形成的,可用ΔΔΔΔΔ……表示,如果从某一层开始,其堆垛顺序发生颠倒,称为ABCACBACBA……,即ΔΔΔ▽▽▽▽……,则上下两部分晶体就构成了镜面对称的孪晶关系。可以看出……CAC处相当于堆垛层错,接着就按倒过来的顺序堆垛,仍属正常的FCC堆垛顺序,但与出现层错之前的那部分晶体顺序刚好相反,故形成对称关系。而这个过程中试借助于一个不全位错(肖克莱不全位错)运动造成的。

15、为什么在正温度梯度下凝固时,纯金属以平面状方式生长,而固溶体合金却通常以树枝晶方式长大两者在凝固过程中的异同点有哪些

解答:纯金属在结晶时其界面是粗糙的,在正温度梯度下进行长大。由于晶体长大时通过固*

16、从材料塑性变形的机制来论述细晶强化理论。

解答:材料的强化理论中,细晶强化是唯一的既可提高材料强度,又可提高材料韧性的方法。具体解释如下:

由于晶粒细小,可供塞积位错的滑移面较短,塞积位错的数目较少,由位错塞积引起的应力集中分散于各个晶粒中,使其屈服强度升高。另一方面,由于晶粒细小,在相同的外力作用下,处于滑移有利方向的晶粒较多,应力分散在各晶粒中,即使在受到大的塑性变形时,仍然保持其较好的性能而不致开裂,从而提高材料的韧性。

综上所述,细晶强化可以提高材料的综合力学性能。

17、室温下对铅版进行弯折,越弯越硬,而隔一段时间后再行弯折,铅版又像最初一样软,为什么试说明该现象。

解答:室温下,对铅版进行弯折,越弯越硬的原因是发生了加工硬化,从而使得铅版的强度、硬度提高。放置一段时间后,由于铅版的熔点较低,在室温下又发生再结晶软化,从而其硬度又下降。

18、简述纯金属晶体长大的机制及其与固/液界面微观结构的关系。

解答:纯金属晶体的固液界面一般为粗糙界面,因此对于纯金属晶体,在长大过程中,往往是按照粗糙界面的垂直长大方式长大,由于界面上有近50%的位置时空缺的,液相原子的添加不受位置的限制,因此有利于原子连续的填充,从而使得固液界面沿法线方向迅速长大。

22、依据反应温度由高到低,依次写出Fe-Fe3C合金系中三相平衡反应的反应式,并分别说明Fe3CⅠ、Fe3CⅡ、Fe3CⅢ、Fe3C共析和Fe3C共晶的来源及形貌特征。

解答:

Fe3C)(

Fe3C)1148℃1495℃(727℃

Fe3CⅠ:来源于液相,是白色长条状。

Fe3CⅡ:来源于奥氏体脱溶反应,一般沿晶界呈网状分布。

Fe3CⅢ:来源于铁素体脱溶反应,一般沿晶界呈网状分布。

Fe3C共析:共析产物珠光体中的渗碳体,一般情况下为层片状分布。

Fe3C共晶:共析产物莱氏体中的渗碳体,一般情况下作为基体存在。

23、试述影响扩散系数的主要因素

①温度的影响。温度越高,扩散越快。

②晶体结构的影响。结构不同,扩散系数不同。

③固溶体类型对扩散的影响。不同的固溶体,原子的扩散和机制不同。

④固溶体浓度对扩散的影响。浓度越大,扩散越容易。

⑤晶体缺陷的影响。晶界、位错、空位都会对扩散产生影响。

⑥化学成分对扩散的影响。加入化学元素对扩散会产生阻碍。

24、试分析冷变形量对再结晶晶粒尺寸的影响。

解答:当冷变形度小于临界变形度时,再结晶后晶粒基本保持冷变形前的状态,因储存能很

少,实际上再结晶并没有进行,因此冷变形储存能足以驱动再结晶的进行,但因整体变形度小且不均匀,只有少数变形度大的地方能够形成晶核并长大,此时因G>>N,仅有少数晶核形成又迅速长大,故再结晶后晶粒达到最大;超过临界变形度后,冷变形量与再结晶晶粒的尺寸成反比,当变形度达到一定的数量时,晶粒尺寸基本不变。

25、根据凝固理论,试述细化晶粒的基本途径与基本原理。

解答:⑴提高过冷度。晶粒大小取决于形核率和核长大速度的相对关系。当过冷度很大时,会出现形核率的增长速度大于核长大的速度,因此提高过冷度使N>G,并使两者差距增大,晶粒才会被细化。

⑵变质处理。即在浇注前向金属液中添加变质剂,以促进非均匀形核增加晶核数量来细化晶粒。

⑶振动、搅拌。振动和搅拌能向液体中输入额外能量以提供形核功,促进形核,另一方面能使已结晶的晶体在液流冲击下而碎化,增加核心的数量。

27、某工厂对以大型零件进行淬火处理,经过1100℃加热后,用冷拉钢丝绳吊挂,由起重吊车送往淬火水槽,行至途中钢丝突然发生断裂。该钢丝是新的,且没有瑕疵,试分析钢丝绳断裂的原因。

解答:这是因为冷拔钢丝在吊起加热后的零件时,与零件相接的部分温度较高,发生了局部再结晶,导致部分钢丝绳的硬度、强度下降而断裂。

3、分析加工硬化、细晶强化、固溶强化与第二相强化在本质上有什么异同。

解答:相同点:都是位错运动受阻,增加了位错滑动的阻力,使得材料得到强化。

不同点:①加工硬化:位错塞积、邻位错阻力和形成割阶消耗外力所作的功伟其可能机制;②细晶强化:增加了晶界,增加了位错塞积的范围;③固溶强化:溶质原子沿位错聚焦并钉扎位错;④第二相强化:分散的强化相颗粒迫使位错切过或绕过强化相颗粒而额外做功都是分散相强化的位错机制。

4、说明金属在冷变形、回复、再结晶及晶粒长大各阶段晶体缺陷的行为与表现以及材料相

应的性能,并说明各阶段促使这些晶体缺陷运动的驱动力是什么。

解答:①冷变形:晶体缺陷包括点缺陷、线缺陷、面缺陷均大量增加,出现加工硬化现象、物化性能相应变活泼;驱动力为外界所加的分切应力。

②回复:线缺陷基本不变,点缺陷明显减少,力学性能不变,相应改变物化性能;驱动力为储存能。

③再结晶:线缺陷明显变少,材料出现软化现象;驱动力为储存能。

第10/14页

④晶粒长大:面缺陷明显变小;驱动力为总界面自由能。

5、默化Fe-Fe3C相图,填写相区,并回答:

① 奥氏体、铁素体、渗碳体各为何种结构

② 分别由亚共析钢和过共析钢制成的两个式样,经组织分析确认其珠光体量约为

80%,试确定两种钢含碳量,并回答两种钢中共析渗碳体量是否相等,为什么③ 分析共晶白口铁的结晶过程,并用杠杆定理计算变态莱氏体中组织组成物的相对含

量。

④ 说明CD线、ECF线、ES线、GS线、PSK线、和HJB线的名称和物理意义。⑤ 分析45钢比T8钢硬度低的原因。

⑥ 简述钢与白口铁在化学成分、显微组织和机械性能方面的主要差别。

⑦ 注出P、S、E、C各点的成分,说明各点的物理意义。

⑧ 说明相图中三条水平线上各发生什么转变,写出反应式,并指出什么是珠光体,什

么是莱氏体

解答:相图如图

① 奥氏体:碳在γ-Fe中的间隙固溶体,为面心立方结构。

渗碳体:铁盒碳形成的间隙化合物,属于正交系。

铁素体:碳在α-Fe中的间隙固溶体,为体心立方结构。

② 两种钢中共析渗碳体量相等。因为共

析渗碳体只存在于珠光体中,而珠光

体量相等,因此两种钢中共析渗碳体

量是相等的。

设亚共析钢含碳量为x%,过共析钢含碳

量为y%,则

80% x=% %x

80% y=% y%

③ 结晶过程略。

,其中Fe3C室温组织为P+Fe3C共晶

Fe3C共晶%

%100%

%Fe3C

100%约等于% CD—液相线

ECF—共晶转变线

ES—C在A中饱和溶解度曲线

GS—A中开始析出F转变线。

PSK—共析转变线

第11/14页HJB—包晶转变线

⑤ 因为铁碳合金的硬度仅和其含碳量有关,T8钢的含碳量比45钢高,所以T8钢比

45钢的硬度高。

⑥ 钢的含碳量小于%,铁的含碳量大于%;钢的基本组织是珠光体,白口铸

铁的基本组织是莱氏体;钢强韧性好,白口铸铁较脆,硬度高。

⑦ P:碳在α-Fe中的最大溶解度。

S:共析点

E:碳在γ-Fe中的最大溶解度

C:共晶点

1495℃⑧包晶转变线 HJB

)(1148℃ 共晶转变线 ECF

)(共析转变线PSK 727℃

铁素体和渗碳体的两相混合物称为珠光体。奥氏体与渗碳体的机械混合物称为莱氏体。

第12/14页

《材料科学基础2》作业

1、 简述菲克第一定律和菲克第二定律的含义,并写出表达式,表明字母的物理含义。 2、在900℃对一批钢齿轮成功渗碳需要10个小时,此温度下铁为FCC 晶体。如果渗碳炉在900℃运行1个小时需要耗费1000元,在1000℃运行1小时需要耗费1500元,若将渗碳温度提高到1000℃完成同样渗碳效果,是否可以提高其经济效益?(已知碳在奥氏体铁中的扩散激活能为137.52 KJ/mole ) 3、在870℃比在930℃渗碳淬火变形小又可以得到较细的晶粒,若已知碳在奥氏体铁中的 扩散常数为2.0×10-5m 2/s,扩散激活能为140×103J/mol,请计算: (a )870℃时碳在奥氏体铁中的扩散系数;(4分) (b )将渗层加深一倍需要多少时间?(4分) (c )若规定0.3%C 为渗碳层厚度的量度,则在930℃渗碳10小时的渗层厚度为870℃渗碳10小时的多少倍?(气体常数R =8.314J/mol )(4分) 4、含碳量0.85%的碳钢在某一温度下经1小时脱碳后表面的碳浓度降为0,已知该温度下碳的扩散系数D=1.1×10-7 m2/s (1)求碳的浓度分布。 (2)如要表面碳浓度为0.8%,则表面应该车去多少深度? 5、在纯铜圆柱体一个顶端电镀一层薄的放射性同位素铜。在高温退火20h 后,对铜棒逐层 求铜的自扩散系数。 6、纯Cr 和纯Fe 组成扩散偶,一个小时后界面移动了15.2μm 。当界面处Cr 的摩尔分数 x(Cr)=0.478时,有 =126/cm,(l 为扩散距离),互扩散系数为1.43*10E-9 cm2/s 求: Cr 和Fe 的本征扩散系数 7请简述扩散的微观机制有哪些?哪种方式比较容易进行? 8、对于某间隙固溶体系,在500℃时间隙原子的迁移速率为5*108次/秒,在800℃时迁移速率为8*1010次/秒,计算此过程的激活能Q 。 9影响晶体固体中原子扩散的主要因素有哪些?并加以简单说明 10、在MgO 中引入高价的W6+,将产生什么离子空位?比较MgO 和掺W6+的MgO 的抗氧化性哪个好些? 11、设某离子晶体的点阵常数为5*10-8 cm ,振动频率为1012赫兹,位能U=0.5eV ,求在室温下的离子迁移率。 /x l ??

材料科学基础课后作业及答案(分章节)

第一章 8.计算下列晶体的离于键与共价键的相对比例 (1)NaF (2)CaO (3)ZnS 解:1、查表得:X Na =0.93,X F =3.98 根据鲍林公式可得NaF 中离子键比例为:21 (0.93 3.98)4 [1]100%90.2%e ---?= 共价键比例为:1-90.2%=9.8% 2、同理,CaO 中离子键比例为:21 (1.00 3.44)4 [1]100%77.4%e ---?= 共价键比例为:1-77.4%=22.6% 3、ZnS 中离子键比例为:2 1/4(2.581.65)[1]100%19.44%ZnS e --=-?=中离子键含量 共价键比例为:1-19.44%=80.56% 10说明结构转变的热力学条件与动力学条件的意义.说明稳态结构与亚稳态结构之间的关系。 答:结构转变的热力学条件决定转变是否可行,是结构转变的推动力,是转变的必要条件;动力学条件决定转变速度的大小,反映转变过程中阻力的大小。 稳态结构与亚稳态结构之间的关系:两种状态都是物质存在的状态,材料得到的结构是稳态或亚稳态,取决于转交过程的推动力和阻力(即热力学条件和动力学条件),阻力小时得到稳态结构,阻力很大时则得到亚稳态结构。稳态结构能量最低,热力学上最稳定,亚稳态结构能量高,热力学上不稳定,但向稳定结构转变速度慢,能保持相对稳定甚至长期存在。但在一定条件下,亚稳态结构向稳态结构转变。 第二章 1.回答下列问题: (1)在立方晶系的晶胞内画出具有下列密勒指数的晶面和晶向: (001)与[210],(111)与[112],(110)与 [111],(132)与[123],(322)与[236] (2)在立方晶系的一个晶胞中画出(111)和 (112)晶面,并写出两晶面交线的晶向指数。 (3)在立方晶系的一个晶胞中画出同时位于(101). (011)和(112)晶面上的[111]晶向。 解:1、 2.有一正交点阵的 a=b, c=a/2。某晶面在三个晶轴上的截距分别为 6个、2个和4个原子间距,求该晶面的密勒指数。 3.立方晶系的 {111}, 1110}, {123)晶面族各包括多少晶面?写出它们的密勒指数。 4.写出六方晶系的{1012}晶面族中所有晶面的密勒指数,在六方晶胞中画出[1120]、 [1101]晶向和(1012)晶面,并确定(1012)晶面与六方晶胞交线的晶向指数。 5.根据刚性球模型回答下列问题:

材料科学基础简答题(doc 12页)

简答题 第一章材料结构的基本知识 1、说明结构转变的热力学条件与动力学条件的意义。 答:结构转变的热力学条件决定转变是否可行,是结构转变的推动力,是转变的必要条件;动力学条件决定转变速度的大小,反映转变过程中阻力的大小。 2、说明稳态结构与亚稳态结构之间的关系。 答:稳态结构与亚稳态结构之间的关系:两种状态都是物质存在的状态,材料得到的结构是稳态或亚稳态,取决于转交过程的推动力和阻力(即热力学条件和动力学条件),阻力小时得到稳态结构,阻力很大时则得到亚稳态结构。稳态结构能量最低,热力学上最稳定,亚稳态结构能量高,热力学上不稳定,但向稳定结构转变速度慢,能保持相对稳定甚至长期存在。但在一定条件下,亚稳态结构向稳态结构转变。 3、说明离子键、共价键、分子键和金属键的特点。 答:离子键、共价键、分子键和金属键都是指固体中原子(离子或分子)间结合方式或作用力。离子键是由电离能很小、易失去电子的金属原子与电子亲合能大的非金属原于相互作用时,产生电子得失而形成的离子固体的结合方式。 共价键是由相邻原子共有其价电子来获得稳态电子结构的结合方式。 分子键是由分子(或原子)中电荷的极化现象所产生的弱引力结合的结合方式。 当大量金属原子的价电子脱离所属原子而形成自由电子时,由金属的正离子与自由电子间的静电引力使金属原子结合起来的方式为金属键。 第二章材料的晶体结构 1、在一个立方晶胞中确定6个表面面心位置的坐标。6个面心构成一个正八面体,指出这个八面体各个表面的晶面指数、各个棱边和对角线的晶向指数。

解八面体中的晶面和晶向指数如图所示。图中A、B、C、D、E、F为立方晶胞中6个表面的面心,由它们构成的正八面体其表面和棱边两两互相平行。 ABF面平行CDE面,其晶面指数为; ABE面平行CDF面,其晶面指数为; ADF面平行BCE面,其晶面指数为; ADE面平行BCF面,其晶面指数为(111)。 棱边,,,,, ,其晶向指数分别为[110],,[011],,[101]。 对角线分别为,其晶向指数分别为[100],[010],[001] 图八面体中的晶面和晶向指数 2、标出图中ABCD面的晶面指数,并标出AB、BC、AC、BD线的晶向指数。 解:晶面指数: ABCD面在三个坐标轴上的截距分别为3/2a,3a,a, 截距倒数比为 ABCD面的晶面指数为(213) 晶向指数: AB的晶向指数:A、B两点的坐标为 A(0,0,1),B(0,1,2/3) (以a为单位) 则,化简即得AB的晶向指数 同理:BC、AC、BD线的晶向指数分别为,,。

材料科学基础练习题

练习题 第三章 晶体结构,习题与解答 3-1 名词解释 (a )萤石型和反萤石型 (b )类质同晶和同质多晶 (c )二八面体型与三八面体型 (d )同晶取代与阳离子交换 (e )尖晶石与反尖晶石 答:(a )萤石型:CaF2型结构中,Ca2+按面心立方紧密排列,F-占据晶胞中全部四面体空隙。 反萤石型:阳离子和阴离子的位置与CaF2型结构完全相反,即碱金属离子占据F-的位置,O2-占据Ca2+的位置。 (b )类质同象:物质结晶时,其晶体结构中部分原有的离子或原子位置被性质相似的其它离子或原子所占有,共同组成均匀的、呈单一相的晶体,不引起键性和晶体结构变化的现象。 同质多晶:同一化学组成在不同热力学条件下形成结构不同的晶体的现象。 (c )二八面体型:在层状硅酸盐矿物中,若有三分之二的八面体空隙被阳离子所填充称为二八面体型结构 三八面体型:在层状硅酸盐矿物中,若全部的八面体空隙被阳离子所填充称为三八面体型结构。 (d )同晶取代:杂质离子取代晶体结构中某一结点上的离子而不改变晶体结构类型的现象。 阳离子交换:在粘土矿物中,当结构中的同晶取代主要发生在铝氧层时,一些电价低、半径大的阳离子(如K+、Na+等)将进入晶体结构来平衡多余的负电荷,它们与晶体的结合不很牢固,在一定条件下可以被其它阳离子交换。 (e )正尖晶石:在AB2O4尖晶石型晶体结构中,若A2+分布在四面体空隙、而B3+分布于八面体空隙,称为正尖晶石; 反尖晶石:若A2+分布在八面体空隙、而B3+一半分布于四面体空隙另一半分布于八面体空隙,通式为B(AB)O4,称为反尖晶石。 3-2 (a )在氧离子面心立方密堆积的晶胞中,画出适合氧离子位置的间隙类型及位置,八面体间隙位置数与氧离子数之比为若干?四面体间隙位置数与氧离子数之比又为若干? (b )在氧离子面心立方密堆积结构中,对于获得稳定结构各需何种价离子,其中: (1)所有八面体间隙位置均填满; (2)所有四面体间隙位置均填满; (3)填满一半八面体间隙位置; (4)填满一半四面体间隙位置。 并对每一种堆积方式举一晶体实例说明之。 解:(a )参见2-5题解答。1:1和2:1 (b )对于氧离子紧密堆积的晶体,获得稳定的结构所需电价离子及实例如下: (1)填满所有的八面体空隙,2价阳离子,MgO ; (2)填满所有的四面体空隙,1价阳离子,Li2O ; (3)填满一半的八面体空隙,4价阳离子,TiO2; (4)填满一半的四面体空隙,2价阳离子,ZnO 。 3-3 MgO 晶体结构,Mg2+半径为0.072nm ,O2-半径为0.140nm ,计算MgO 晶体中离子堆积系数(球状离子所占据晶胞的体积分数);计算MgO 的密度。并说明为什么其体积分数小于74.05%?

材料科学基础2复习题与参考答案

材料科学基础2复习题及部分参考答案 一、名词解释 1、再结晶:指经冷变形的金属在足够高的温度下加热时,通过新晶粒的形核及长大,以无畸变的等轴晶粒取代变形晶 粒的过程。 2、交滑移:在晶体中,出现两个或多个滑移面沿着某个共同的滑移方向同时或交替滑移。 3、冷拉:在常温条件下,以超过原来屈服点强度的拉应力,强行拉伸聚合物,使其产生塑性变形以达到提高其屈服点 强度和节约材料为目的。(《笔记》聚合物拉伸时出现的细颈伸展过程。) 4、位错:指晶体材料的一种内部微观缺陷,即原子的局部不规则排列(晶体学缺陷)。(《书》晶体中某处一列或者若 干列原子发生了有规律的错排现象) 5、柯氏气团:金属内部存在的大量位错线,在刃型位错线附近经常会吸附大量的异类溶质原子(大小不同吸附的位 置有差别),形成所谓的“柯氏气团”。(《书》溶质原子与位错弹性交互作用的结果,使溶质原子趋于聚集在位错周围,以减小畸变,降低体系的能量,使体系更加稳定。) 6、位错密度:单位体积晶体中所含的位错线的总长度或晶体中穿过单位截面面积的位错线数目。 7、二次再结晶:晶粒的不均匀长大就好像在再结晶后均匀、细小的等轴晶粒中又重新发生了再结晶。 8、滑移的临界分切应力:滑移系开动所需要的最小分切应力。(《书》晶体开始滑移时,滑移方向上的分切应力。) 9、加工硬化:金属材料在再结晶温度以下塑性变形时强度和硬度升高,而塑性和韧性降低的现象,又称冷作硬 化。(《书》随塑性变形的增大,塑性变形抗力不断增加的现象。) 10、热加工:金属铸造、热扎、锻造、焊接和金属热处理等工艺的总称。(《书》使金属在再结晶温度以上发生加 工变形的工艺。) 11、柏氏矢量:是描述位错实质的重要物理量。反映出柏氏回路包含的位错所引起点阵畸变的总积累。(《书》揭 示位错本质并描述位错行为的矢量。)反映由位错引起的点阵畸变大小的物理量。 12、多滑移:晶体的滑移在两组或者更多的滑移面(系)上同时进行或者交替进行。 13、堆垛层错:晶体结构层正常的周期性重复堆垛顺序在某二层间出现了错误,从而导致的沿该层间平面(称为 层错面)两侧附近原子的错排的一种面缺陷。 14、位错的应变能:位错的存在引起点阵畸变,导致能量增高,此增量称为位错的应变能。 15、回复:发生形变的金属或合金在室温或不太高的温度下退火时,金属或合金的显微组织几乎没有变化,然而性能 却有程度不同的改变,使之趋近于范性形变之前的数值的现象。(《书》指冷变形金属加热时,尚未发生光学显微组织变化前(即再结晶前)的微观结构及性能的变化过程。) 16、全位错:指伯氏矢量为晶体点阵的单位平移矢量的位错。 17、弗兰克尔空位:当晶体中的原子由于热涨落而从格点跳到间隙位置时,即产生一个空位和与其邻近的一个间 隙原子,这样的一对缺陷——空位和间隙原子,就称为弗兰克尔缺陷。(《书》存在能量起伏的原子摆脱周围原子的约束而跳离平衡位置进入点阵的间隙中所形成的空位(原子尺度的空洞)。) 18、层错能:单位面积层错所增加的能量。(《书》产生单位面积层错所需要的能量。) 19、表面热蚀沟:金属长时间加热时,与表面相交处因张力平衡而形成的热蚀沟。(《书》金属在高温下长时间加热时, 晶界与金属表面相交处为了达到表面张力间的平衡,通过表面扩散产生的热蚀沟。) 20、动态再结晶:金属在热变形过程中发生的再结晶。 二、填空题 1、两个平行的同号螺位错之间的作用力为排斥力,而两个平行的异号螺位错之间的作用力为吸引力。 2、小角度晶界能随位向差的增大而增大;大角度晶界能与位向差无关。 3、柏氏矢量是一个反映由位错引起的点阵畸变大小的物理量;该矢量的模称为位错强度。 4、金属的层错能越低,产生的扩展位错的宽度越宽,交滑移越难进行。 5、螺型位错的应力场有两个特点,一是没有正应力分量,二是径向对称分布。 6、冷拉铜导线在用作架空导线时,应采用去应力退火,而用作电灯花导线时,则应采用再结晶退火。 7、为了保证零件具有较高的力学性能,热加工时应控制工艺使流线与零件工作时受到的最大拉应力的方向 一致,而与外加的切应力方向垂直。 8、位错的应变能与其柏氏矢量的模的平方成正比,故柏氏矢量越小的位错,其能量越低,在晶体中越稳定。 9、金属的层错能越高,产生的扩展位错的宽度越窄,交滑移越容易进行。

材料科学基础期末试题

材料科学基础考题 I卷 一、名词解释(任选5题,每题4分,共20分) 单位位错;交滑移;滑移系;伪共晶;离异共晶;奥氏体;成分过冷答: 单位位错:柏氏矢量等于单位点阵矢量的位错称为单位位错。 交滑移:两个或多个滑移面沿着某个共同的滑移方向同时或交替滑移,称为交滑移。滑移系:一个滑移面和此面上的一个滑移方向合起来叫做一个滑移系。 伪共晶:在非平衡凝固条件下,某些亚共晶或过共晶成分的合金也能得全部的共晶组织,这种由非共晶成分的合金所得到的共晶组织称为伪共晶。 离异共晶:由于非平衡共晶体数量较少,通常共晶体中的a相依附于初生a相生长,将共晶体中另一相B推到最后凝固的晶界处,从而使共晶体两组成相相间的组织特征消失,这种两相分离的共晶体称为离异共晶。 奥氏体:碳原子溶于丫-Fe形成的固溶体。 成分过冷:在合金的凝固过程中,将界面前沿液体中的实际温度低于由溶质分布所决定的凝固温度时产生的过冷称为成分过冷。 二、选择题(每题2分,共20分) 1. 在体心立方结构中,柏氏矢量为a[110]的位错(A )分解为a/2[111]+a/2[l11]. (A)不能(B)能(C)可能 2. 原子扩散的驱动力是:(B ) (A)组元的浓度梯度(B)组元的化学势梯度(C)温度梯度 3?凝固的热力学条件为:(D ) (A)形核率(B)系统自由能增加 (C)能量守衡(D)过冷度 4?在TiO2中,当一部分Ti4+还原成Ti3+,为了平衡电荷就出现(A) (A)氧离子空位(B)钛离子空位(C)阳离子空位 5?在三元系浓度三角形中,凡成分位于( A )上的合金,它们含有另两个顶角所代表的两 组元含量相等。 (A)通过三角形顶角的中垂线 (B)通过三角形顶角的任一直线 (C)通过三角形顶角与对边成45°的直线 6?有效分配系数k e表示液相的混合程度,其值范围是(B ) (A)1vk e

材料科学基础课后习题

1.作图表示立方晶体的晶面及晶向。 2.在六方晶体中,绘出以下常见晶向 等。 3.写出立方晶体中晶面族{100},{110},{111},{112}等所包括的 等价晶面。 4.镁的原子堆积密度和所有hcp金属一样,为。试求镁单位晶胞的 体积。已知Mg的密度,相对原子质量为,原子半径r=。 5.当CN=6时离子半径为,试问: 1)当CN=4时,其半径为多少? 2)当CN=8时,其半径为多少? 6.试问:在铜(fcc,a=)的<100>方向及铁(bcc,a=的<100>方向,原 子的线密度为多少? 7.镍为面心立方结构,其原子半径为。试确定在镍的 (100),(110)及(111)平面上1中各有多少个原子。 8.石英的密度为。试问: 1)1中有多少个硅原子(与氧原子)? 2)当硅与氧的半径分别为与时,其堆积密度为多少(假设原子是 球形的)?

9.在800℃时个原子中有一个原子具有足够能量可在固体内移 动,而在900℃时个原子中则只有一个原子,试求其激活能(J/原 子)。 10.若将一块铁加热至850℃,然后快速冷却到20℃。试计算处理前后空 位数应增加多少倍(设铁中形成一摩尔空位所需要的能量为104600J)。 11.设图1-18所示的立方晶体的滑移面ABCD平行于晶体的上、下底面。 若该滑移面上有一正方形位错环,如果位错环的各段分别与滑移面各边平行,其柏氏矢量b∥AB。 1)有人认为“此位错环运动移出晶体后,滑移面上产生的滑移台 阶应为4个b,试问这种看法是否正确?为什么? 2)指出位错环上各段位错线的类型,并画出位错运动出晶体后, 滑移方向及滑移量。 12.设图1-19所示立方晶体中的滑移面ABCD平行于晶体的上、下底面。 晶体中有一条位错线段在滑移面上并平行AB,段与滑移面垂直。位错的柏氏矢量b与平行而与垂直。试问: 1)欲使段位错在ABCD滑移面上运动而不动,应对晶体施加 怎样的应力? 2)在上述应力作用下位错线如何运动?晶体外形如何变化? 13.设面心立方晶体中的为滑移面,位错滑移后的滑移矢量为 。 1)在晶胞中画出柏氏矢量b的方向并计算出其大小。 2)在晶胞中画出引起该滑移的刃型位错和螺型位错的位错线方 向,并写出此二位错线的晶向指数。

材料科学基础习题与答案

- 第二章 思考题与例题 1. 离子键、共价键、分子键和金属键的特点,并解释金属键结合的固体材料的密度比离子键或共价键固体高的原因 2. 从结构、性能等方面描述晶体与非晶体的区别。 3. 何谓理想晶体何谓单晶、多晶、晶粒及亚晶为什么单晶体成各向异性而多晶体一般情况下不显示各向异性何谓空间点阵、晶体结构及晶胞晶胞有哪些重要的特征参数 4. 比较三种典型晶体结构的特征。(Al 、α-Fe 、Mg 三种材料属何种晶体结构描述它们的晶体结构特征并比较它们塑性的好坏并解释。)何谓配位数何谓致密度金属中常见的三种晶体结构从原子排列紧密程度等方面比较有何异同 5. 固溶体和中间相的类型、特点和性能。何谓间隙固溶体它与间隙相、间隙化合物之间有何区别(以金属为基的)固溶体与中间相的主要差异(如结构、键性、性能)是什么 6. 已知Cu 的原子直径为A ,求Cu 的晶格常数,并计算1mm 3Cu 的原子数。 ( 7. 已知Al 相对原子质量Ar (Al )=,原子半径γ=,求Al 晶体的密度。 8 bcc 铁的单位晶胞体积,在912℃时是;fcc 铁在相同温度时其单位晶胞体积是。当铁由 bcc 转变为fcc 时,其密度改变的百分比为多少 9. 何谓金属化合物常见金属化合物有几类影响它们形成和结构的主要因素是什么其性能如何 10. 在面心立方晶胞中画出[012]和[123]晶向。在面心立方晶胞中画出(012)和(123)晶面。 11. 设晶面(152)和(034)属六方晶系的正交坐标表述,试给出其四轴坐标的表示。反之,求(3121)及(2112)的正交坐标的表示。(练习),上题中均改为相应晶向指数,求相互转换后结果。 12.在一个立方晶胞中确定6个表面面心位置的坐标,6个面心构成一个正八面体,指出这个八面体各个表面的晶面指数,各个棱边和对角线的晶向指数。 13. 写出立方晶系的{110}、{100}、{111}、{112}晶面族包括的等价晶面,请分别画出。

材料科学基础试题

第一章原子排列 本章需掌握的内容: 材料的结合方式:共价键,离子键,金属键,范德瓦尔键,氢键;各种结合键的比较及工程材料结合键的特性; 晶体学基础:晶体的概念,晶体特性(晶体的棱角,均匀性,各向异性,对称性),晶体的应用 空间点阵:等同点,空间点阵,点阵平移矢量,初基胞,复杂晶胞,点阵参数。 晶系与布拉菲点阵:种晶系,14种布拉菲点阵的特点; 晶面、晶向指数:晶面指数的确定及晶面族,晶向指数的确定及晶向族,晶带及晶带定律六方晶系的四轴座标系的晶面、晶向指数确定。 典型纯金属的晶体结构:三种典型的金属晶体结构:fcc、bcc、hcp; 晶胞中原子数、原子半径,配位数与致密度,晶面间距、晶向夹角 晶体中原子堆垛方式,晶体结构中间隙。 了解其它金属的晶体结构:亚金属的晶体结构,镧系金属的晶体结构,同素异构性 了解其它类型的晶体结构:离子键晶体结构:MgO陶瓷及NaCl,共价键晶体结构:SiC陶瓷,As、Sb 非晶态结构:非晶体与晶体的区别,非晶态结构 分子相结构 1. 填空 1. fcc结构的密排方向是_______,密排面是______,密排面的堆垛顺序是_______致密度为___________配位数是________________晶胞中原子数为___________,把原子视为刚性球时,原子的半径是____________;bcc结构的密排方向是_______,密排面是_____________致密度为___________配位数是________________ 晶胞中原子数为___________,原子的半径是____________;hcp结构的密排方向是_______,密排面是______,密排面的堆垛顺序是_______,致密度为___________配位数是________________,晶胞中原子数为 ___________,原子的半径是____________。 2. bcc点阵晶面指数h+k+l=奇数时,其晶面间距公式是________________。 3. Al的点阵常数为0.4049nm,其结构原子体积是________________。 4. 在体心立方晶胞中,体心原子的坐标是_________________。 5. 在fcc晶胞中,八面体间隙中心的坐标是____________。 6. 空间点阵只可能有___________种,铝晶体属于_____________点阵。Al的晶体结构是__________________, -Fe的晶体结构是____________。Cu的晶体结构是_______________, 7点阵常数是指__________________________________________。 8图1是fcc结构的(-1,1,0 )面,其中AB和AC的晶向指数是__________,CD的晶向指数分别 是___________,AC所在晶面指数是--------------------。

材料科学基础试题库答案

Test of Fundamentals of Materials Science 材料科学基础试题库 郑举功编

东华理工大学材料科学与工程系 一、填空题 0001.烧结过程的主要传质机制有_____、_____、_____ 、_____,当烧结分别进行四种传质时,颈部增长x/r 与时 间t 的关系分别是_____、_____、_____ 、_____。 0002.晶体的对称要素中点对称要素种类有_____、_____、_____ 、_____ ,含有平移操作的对称要素种类有_____ 、 _____ 。 0003.晶族、晶系、对称型、结晶学单形、几何单形、布拉菲格子、空间群的数目分别是_____、_____ 、_____ 、 _____ 、_____ 、_____ 。 0004.晶体有两种理想形态,分别是_____和_____。 0005.晶体是指内部质点排列的固体。 0006.以NaCl 晶胞中(001)面心的一个球(Cl- 离子)为例,属于这个球的八面体空隙数为,所以属于这个球的四面体空隙数为。 0007.与非晶体比较晶体具有自限性、、、、和稳定性。 0008. 一个立方晶系晶胞中,一晶面在晶轴X 、Y 、Z 上的截距分别为2a、1/2a 、2/3a,其晶面的晶面指数是。 0009.固体表面粗糙度直接影响液固湿润性,当真实接触角θ时,粗糙度越大,表面接触角,就越容易湿润;当θ,则粗糙度,越不利于湿润。 0010.硼酸盐玻璃中,随着Na2O(R2O)含量的增加,桥氧数,热膨胀系数逐渐下降。当Na2O 含量达到15%—16%时,桥氧又开始,热膨胀系数重新上升,这种反常现象就是硼反常现象。 2+进入到KCl 间隙中而形成0011.晶体结构中的点缺陷类型共分、和三种,CaCl2中Ca 点缺陷的反应式为。 0012.固体质点扩散的推动力是________。 0013.本征扩散是指__________,其扩散系数D=_________,其扩散活化能由________和_________ 组成。 0014.析晶过程分两个阶段,先______后______。 0015.晶体产生Frankel 缺陷时,晶体体积_________,晶体密度_________;而有Schtty 缺陷时,晶体体积_________, 晶体密度_________。一般说离子晶体中正、负离子半径相差不大时,_________是主要的;两种离子半径相差大 时,_________是主要的。 0016.少量CaCl2 在KCl 中形成固溶体后,实测密度值随Ca2+离子数/K+离子数比值增加而减少,由此可判断其 缺陷反应式为_________。 0017.Tg 是_________,它与玻璃形成过程的冷却速率有关,同组分熔体快冷时Tg 比慢冷时_________ ,淬冷玻璃比 慢冷玻璃的密度_________,热膨胀系数_________。 0018.同温度下,组成分别为:(1) 0.2Na2O-0.8SiO2 ;(2) 0.1Na2O-0.1CaO-0.8SiO2 ;(3) 0.2CaO-0.8SiO2 的 三种熔体,其粘度大小的顺序为_________。 0019.三T 图中三个T 代表_________, _________,和_________。 0020.粘滞活化能越_________ ,粘度越_________ 。硅酸盐熔体或玻璃的电导主要决定于_________ 。 0021.0.2Na2O-0.8SiO2 组成的熔体,若保持Na2O 含量不变,用CaO 置换部分SiO2 后,电导_________。 0022.在Na2O-SiO2 熔体中加入Al2O3(Na2O/Al2O3<1), 熔体粘度_________。 0023.组成Na2O . 1/2Al2O3 . 2SiO2 的玻璃中氧多面体平均非桥氧数为_________。 0024.在等大球体的最紧密堆积中,六方最紧密堆积与六方格子相对应,立方最紧密堆积与_______ 相对应。0025.在硅酸盐晶体中,硅氧四面体之间如果相连,只能是_________方式相连。 2

材料科学基础课后习题答案第二章

第2章习题 2-1 a )试证明均匀形核时,形成临界晶粒的△ G K 与其临界晶核体积 V K 之间的关系式为 2 G V ; b )当非均匀形核形成球冠形晶核时,其△ 所以 所以 2-2如果临界晶核是边长为 a 的正方体,试求出其厶G K 与a 的关系。为什么形成立方体晶核 的厶G K 比球形晶核要大? 解:形核时的吉布斯自由能变化为 a )证明因为临界晶核半径 r K 临界晶核形成功 G K 16 故临界晶核的体积 V K 4 r ; G V )2 2 G K G V b )当非均匀形核形成球冠形晶核时, 非 r K 2 SL G V 临界晶核形成功 3 3( G ;7(2 3cos 3 cos 故临界晶核的体积 V K 3(r 非)3(2 3 3cos 3 cos V K G V 1 ( 3 卸2 3 3cos cos )G V 3 3(書 (2 3cos cos 3 ) G K % G K 与V K 之间的关系如何? G K

G V G v A a3G v 6a2 3 得临界晶核边长a K G V

临界形核功 将两式相比较 可见形成球形晶核得临界形核功仅为形成立方形晶核的 1/2。 2-3为什么金属结晶时一定要有过冷度?影响过冷度的因素是什么?固态金属熔化时是否 会出现过热?为什么? 答:金属结晶时要有过冷度是相变热力学条件所需求的, 只有△ T>0时,才能造成固相的自 由能低于液相的自由能的条件,液固相间的自由能差便是结晶的驱动力。 金属结晶需在一定的过冷度下进行,是因为结晶时表面能增加造成阻力。固态金属熔 化时是否会出现过热现象,需要看熔化时表面能的变化。如果熔化前后表面能是降低的, 则 不需要过热;反之,则可能出现过热。 如果熔化时,液相与气相接触,当有少量液体金属在固体表面形成时,就会很快覆盖 在整个固体表面(因为液态金属总是润湿其同种固体金属 )。熔化时表面自由能的变化为: G 表面 G 终态 G 始态 A( GL SL SG ) 式中G 始态表示金属熔化前的表面自由能; G 终态表示当在少量液体金属在固体金属表面形成 时的表面自由能;A 表示液态金属润湿固态金属表面的面积;b GL 、CSL 、CSG 分别表示气液相 比表面能、固液相比表面能、固气相比表面能。因为液态金属总是润湿其同种固体金属,根 据润湿时表面张力之间的关系式可写出:b SG 》6GL + (SL 。这说明在熔化时,表面自由能的变 化厶G 表w o ,即不存在表面能障碍,也就不必过热。实际金属多属于这种情况。如果固体 16 3 3( G v )2 1 32 3 6 2 (G v )2 b K t K 4 G V )3 G V 6( 4 G v )2 64 3 96 3 32 r K 2 ~G ?, 球形核胚的临界形核功 (G v )2 (G v )2 (G v )2 G b K 2 G v )3 16 3( G v )2

上大材料科学基础简答题

A1(fcc)密排面:(100)密排方向:【110】h+k+l全基或全偶衍射 A2(bcc)密排面:(110)密排方向:【111】h+k+l为偶数衍射 A3(hcp)密牌面:(001)密排方向:【100】 2dsinθ=λ 性质、结构成分(研究对象)、合成/制备=效用 1.如何理解点缺陷是一种热力学平衡缺陷? 随着点缺陷数量增加,熵增加导致自由能下降,但是同时内能增加导致自由能增加,所以有一个平衡浓度,此时有最低的自由能值。 2.何谓位错的应变能。何谓位错的线张力,其估算值为多少。 位错在晶体中引起畸变,使晶体产生畸变能,称之为位错的应变能或位错的能量。

线张力的定义为:位错线增加一个单位长度时,引起晶体能量的增加。 通常用Gb2/2作为位错线张力的估算值。 请问影响合金相结构的因素主要有哪几个。 原子尺寸、晶体结构、电负性、电子浓度。 3.请简要说明:(1)刃型位错周围的原子处于怎样的应力状态(为切应力还是正应力,为拉应力还是压应力);(2)若有间隙原子存在,则间隙原子更容易存在于位错周围的哪些位置(可以以图示的方式说明)。 (1)刃型位错不仅有正应力同时还有切应力。所有的应力与沿位错线的方向无关,应力场与半原子面左右对称,包含半原子面的晶体受压应力,不包含半原子面的晶体受拉应力。 (2)对正刃型位错,滑移面上方的晶胞体积小于正常晶胞,吸引比基体原子小的置换式溶质原子或空位;滑移面下方的晶胞体积大于正常晶胞,吸引间隙原子和比基体原子大的置换式溶质原子。 4.铁素体钢在拉伸过程中很易出现屈服现象,请问:(1)产生屈服的原因?(2)如何可以消除屈服平台? 由于碳氮间隙原子钉扎位错,在塑性变形开始阶段需使位错脱离钉扎,从而产生屈服延伸现象;当有足够多的可动位错存在时,或者使间隙原子极少,或者经过预变形后在一段时间内再拉伸。 5.如何提高(或降低)材料的弹性?举例说明,并解释。 选择弹性模量小的材料、或者减小材料的截面积、或者提高材料的屈服强度都可以提高弹性。 6.何谓加工硬化、固溶强化、第二相强化、细晶强化,说明它们与位错的关系 加工硬化:晶体经过变形后,强度、硬度上升,塑性、韧性下降的现象称为加工硬化。随着变形的进行,晶体内位错数目增加,位错产生交互作用,使位错可动性下降,强度上升。 固溶强化:由于溶质原子的存在,导致晶体强度、硬度增加,塑性、韧性下降的现象叫固溶强化。由于溶质原子的存在阻碍或定扎了位错的运动,导致强度的升高。 第二相强化:由于第二相的存在,导致晶体强度、硬度上升,塑性、韧性下降的现象叫第二相强化。由于第二相的存在,导致位错移动困难,从而使强度上升。 细晶强化:由于晶粒细化导致晶体强度、硬度上升,塑性、韧性不下降的现象叫细晶强化。 由于晶粒细化,使晶界数目增加,导致位错开动或运动容易受阻,使强度上升;又由于晶粒细化,使变形更均匀,使应力集中更小,所以,细晶强化在提高强度的同时,并不降低塑性和韧性。 7.说明金属在塑性变形后,其组织和性能将发生怎样的变化 金属塑性变形后,组织变化包括晶粒和亚结构的变化,其中,晶粒被拉长,形成

材料科学基础课后习题答案

《材料科学基础》课后习题答案 第一章材料结构的基本知识 4. 简述一次键和二次键区别 答:根据结合力的强弱可把结合键分成一次键和二次键两大类。其中一次键的结合力较强,包括离子键、共价键和金属键。一次键的三种结合方式都是依靠外壳层电子转移或共享以形成稳定的电子壳层,从而使原子间相互结合起来。二次键的结合力较弱,包括范德瓦耳斯键和氢键。二次键是一种在原子和分子之间,由诱导或永久电偶相互作用而产生的一种副键。 6. 为什么金属键结合的固体材料的密度比离子键或共价键固体为高? 答:材料的密度与结合键类型有关。一般金属键结合的固体材料的高密度有两个原因:(1)金属元素有较高的相对原子质量;(2)金属键的结合方式没有方向性,因此金属原子总是趋于密集排列。相反,对于离子键或共价键结合的材料,原子排列不可能很致密。共价键结合时,相邻原子的个数要受到共价键数目的限制;离子键结合时,则要满足正、负离子间电荷平衡的要求,它们的相邻原子数都不如金属多,因此离子键或共价键结合的材料密度较低。 9. 什么是单相组织?什么是两相组织?以它们为例说明显微组织的含义以及显微组织对性能的影响。 答:单相组织,顾名思义是具有单一相的组织。即所有晶粒的化学组成相同,晶体结构也相同。两相组织是指具有两相的组织。单相组织特征的主要有晶粒尺寸及形状。晶粒尺寸对材料性能有重要的影响,细化晶粒可以明显地提高材料的强度,改善材料的塑性和韧性。单相组织中,根据各方向生长条件的不同,会生成等轴晶和柱状晶。等轴晶的材料各方向上性能接近,而柱状晶则在各个方向上表现出性能的差异。对于两相组织,如果两个相的晶粒尺度相当,两者均匀地交替分布,此时合金的力学性能取决于两个相或者两种相或两种组织组成物的相对量及各自的性能。如果两个相的晶粒尺度相差甚远,其中尺寸较细的相以球状、点状、片状或针状等形态弥散地分布于另一相晶粒的基体内。如果弥散相的硬度明显高于基体相,则将显著提高材料的强度,同时降低材料的塑韧性。 10. 说明结构转变的热力学条件与动力学条件的意义,说明稳态结构和亚稳态结构之间的关系。 答:同一种材料在不同条件下可以得到不同的结构,其中能量最低的结构称为稳态结构或平衡太结构,而能量相对较高的结构则称为亚稳态结构。所谓的热力学条件是指结构形成时必须沿着能量降低的方向进行,或者说结构转变必须存在一个推动力,过程才能自发进行。热力学条件只预言了过程的可能性,至于过程是否真正实现,还需要考虑动力学条件,即反应速度。动力学条件的实质是考虑阻力。材料最终得到什么结构取决于何者起支配作用。如果热力学推动力起支配作用,则阻力并不大,材料最终得到稳态结构。从原则上讲,亚稳态结构有可能向稳态结构转变,以达到能量的最低状态,但这一转变必须在原子有足够活动能力的前提下才能够实现,而常温下的这种转变很难进行,因此亚稳态结构仍可以保持相对稳定。 第二章材料中的晶体结构 1. 回答下列问题: (1)在立方晶系的晶胞内画出具有下列密勒指数的晶面和晶向: 32)与[236] (001)与[210],(111)与[112],(110)与[111],(132)与[123],(2 (2)在立方晶系的一个晶胞中画出(111)和(112)晶面,并写出两晶面交线的晶向指数。 解:(1)

材料科学基础试题库

一、单项选择题(请在每小题的4个备选答案中,选出一个最佳答案, 共10小题;每小题2分,共20分) 1、材料按照使用性能,可分为结构材料和 。 A. 高分子材料; B. 功能材料; C. 金属材料; D. 复合材料。 2、在下列结合键中,不属于一次键的是: A. 离子键; B. 金属键; C. 氢键; D. 共价键。 3、材料的许多性能均与结合键有关,如大多数金属均具有较高的密度是由于: A. 金属元素具有较高的相对原子质量; B. 金属键具有方向性; C. 金属键没有方向性; D.A 和C 。 3、下述晶面指数中,不属于同一晶面族的是: A. (110); B. (101); C. (011- );D. (100)。 4、 面心立方晶体中,一个晶胞中的原子数目为: A. 2; B. 4; C. 6; D. 14。 5、 体心立方结构晶体的配位数是: A. 8; B.12; C. 4; D. 16。 6、面心立方结构晶体的原子密排面是: A. {111}; B. {110}; C. (100); D. [111]。 7、立方晶体中(110)和(211)面同属于 晶带 A. [110]; B. [100]; C. [211]; D. [--111]。 6、体心立方结构中原子的最密排晶向族是: A. <100>; B. [111]; C. <111>; D. (111)。 6、如果某一晶体中若干晶面属于某一晶带,则: A. 这些晶面必定是同族晶面; B. 这些晶面必定相互平行; C. 这些晶面上原子排列相同; D. 这些晶面之间的交线相互平行。 7、金属的典型晶体结构有面心立方、体心立方和密排六方三种,它们的晶胞中原子数分别为:A. 4, 2, 6; B. 6, 2, 4; C. 4, 4, 6; D. 2, 4, 6 7、在晶体中形成空位的同时又产生间隙原子,这样的缺陷称为: A. 肖脱基缺陷; B. 弗兰克缺陷; C. 线缺陷; D. 面缺陷 7、两平行螺旋位错,当柏氏矢量同向时,其相互作用力:

材料科学基础-复习答案-学生用-2

材料科学基础复习重点知识点及典型例题 一、简答题: 1、测定扩散系数的方法。 示踪原子扩散方法、化学扩散方法、弛豫方法、核方法。 2、产生柯肯达尔效应的原因 由于两种原子以不同速度相对扩散而造成标记面的漂移。 3、影响扩散系数的因素: 温度、晶体结构及固溶体类型、各向异性、第三组元、晶体缺陷、 4、稳定化合物: 是指具有一定的熔点,而且在熔点以下都能保持自身固有的结构而不发生分解的化合物。 5、二元相图的几何规律: 1.两个单相区只能交与一点,而不能交成线段、 2.两个单相区之间,必定是一个由这两个单相构成的两 相区、3三相共存区,必定是一条水平线,该水平线必须与由这3个相组合而成的3个两相区相邻、4如果两个恒温转变中有两个是相同的相,那么在这两条水平线之间一定是由这两个相组成的两相区、5. 两相区和单相区的分界线与三相等温水平线相交,则分界线的延长线进入另一个两相区,而不会进入单相区。 6、相区接触法则: 在二元系相图中,相邻相区中相的数目只能相差一个,这一规律称作相区接触法则。 7、晶胞的选取原则 1.几何形状与晶体具有同样的对称性、 2.平面六面体内相等的棱与角的数目最多、 3.当平行六面体棱间 有直角时,直角数目最多、4.在满足上述条件下,晶包体积应最小。 8、形成置换固溶体的条件和影响溶解度因素: 1.条件:溶质取代了溶剂中原子或离子所形成的固溶体、2影响:原子或离子的尺寸的影响、晶体结构 类型的影响、电负性的影响、电子浓度的影响。 9、碳对铁碳合金的组织与性能的影响: 1.碳对铁碳合金平衡组织的影响:当含碳量增加时,使铁碳合金组成相的相对含量发生变化,从而导致 不同性质的结晶。2.碳对合金机械性能的影响:当含碳量达到0.77%时,铁碳合金不仅具有较高的强度和硬度,也具有一定的塑性和韧性,当>0.77%时,铁碳合金的塑性韧性降低。3.碳对合金工艺性能的影响: 10、写出下列缺陷反应式: (1) CaCl2固溶在NaCl晶体中(产生正离子空位,生成置换型SS) CaCl2+2NaCl→→Ca·Na+2Clcl+V’Na (2) MgO固溶在Na2O晶体中(产生正离子空位,生成置换型SS) MgO+Na2O→→Mg·Na+Oo+V’Na (3) Al2O3固溶在MgO晶体中(产生正离子空位,生成置换型SS) Al2O3+3MgO→→2Al·Mg+3Oo+V”Mg (4) YF3固溶在CaF2晶体中(产生正离子空位,生成置换型SS) 2YF3+3CaF2→→2Y·Ca+6F F+V”Ca (5) MgO固溶在ZrO2晶体中(产生负离子空位,生成置换型SS) MgO+ZrO2→→Mg”zr+Oo+V··o 11、材料科学基础 《材料科学基础》系统地介绍了材料科学的基础理论,探讨材料的共性和普遍规律。主要内容包括材料的结构,材料的凝固与相图,扩散,材料中铺缺陷,塑性变形、回复与再结晶等。《材料科学基础》可作为高等院校材料类和机械类专业的学生及研究生的教科书和参考书,也可以为相关专业的学生及

材料科学基础(武汉理工大学,张联盟版)课后习题及答案 第二章

第二章答案 2-1略。 2-2(1)一晶面在x、y、z轴上的截距分别为2a、3b、6c,求该晶面的晶面指数;(2)一晶面在x、y、z轴上的截距分别为a/3、b/2、c,求出该晶面的晶面指数。 答:(1)h:k:l==3:2:1,∴该晶面的晶面指数为(321); (2)h:k:l=3:2:1,∴该晶面的晶面指数为(321)。 2-3在立方晶系晶胞中画出下列晶面指数和晶向指数:(001)与[],(111)与[],()与[111],()与[236],(257)与[],(123)与[],(102),(),(),[110],[],[] 答:

2-4定性描述晶体结构的参量有哪些?定量描述晶体结构的参量又有哪些? 答:定性:对称轴、对称中心、晶系、点阵。定量:晶胞参数。 2-5依据结合力的本质不同,晶体中的键合作用分为哪几类?其特点是什么? 答:晶体中的键合作用可分为离子键、共价键、金属键、范德华键和氢键。 离子键的特点是没有方向性和饱和性,结合力很大。共价键的特点是具有方向性和饱和性,结合力也很大。金属键是没有方向性和饱和性的的共价键,结合力是离子间的静电库仑力。范德华键是通过分子力而产生的键合,分子力很弱。氢键是两个电负性较大的原子相结合形成的键,具有饱和性。 2-6等径球最紧密堆积的空隙有哪两种?一个球的周围有多少个四面体空隙、多少个八面体空隙? 答:等径球最紧密堆积有六方和面心立方紧密堆积两种,一个球的周围有8个四面体空隙、6个八面体空隙。 2-7n个等径球作最紧密堆积时可形成多少个四面体空隙、多少个八面体空隙?不等径球是如何进行堆积的? 答:n个等径球作最紧密堆积时可形成n个八面体空隙、2n个四面体空隙。 不等径球体进行紧密堆积时,可以看成由大球按等径球体紧密堆积后,小球按其大小分别填充到其空隙中,稍大的小球填充八面体空隙,稍小的小球填充四面体空隙,形成不等径球体紧密堆积。 2-8写出面心立方格子的单位平行六面体上所有结点的坐标。 答:面心立方格子的单位平行六面体上所有结点为:(000)、(001)(100)(101)(110)(010)(011)(111)(0)(0)(0)(1)(1)(1)。

相关文档
最新文档