合康HID600A高性能矢量变频器

合康HID600A高性能矢量变频器
合康HID600A高性能矢量变频器

HID600A高性能矢量控制

产品概述

功率范围:0.4kW~1MW//380V/690V

合康变频HID600A高性能矢量型系列变频器可提供当前各行业要求的高性能、高可靠性、高灵活性以及高扩展性等。可广泛适用于交流异步电机、永磁同步电机以及主轴电机的调速控制。该系列变频器具有多种先进功能并采用了专门的设计,可为用户提供量身定制解决方案,同时降低成本。

应用领域

矿用:皮带机、空压机、球磨机、离心脱水机等;

金属加工机械:车床、铣床、刨床、磨床、镗床、数控车床、木工机械等;

纺织机械:清梳联、并条机、粗纱机、整经机、大园机、经编机、染整、无梭织机、非织造布生产线等;

石油:抽油机、注水泵、注聚泵、潜油泵、压缩机、输油泵等;

建筑:水泥、玻璃主传动设备;

橡胶机械:橡胶、塑料加工机械;

挤出机械:电线、电缆挤出设备、化纤挤出设备;

起重机械:各类客货电梯、塔机提升、变幅、回转等;

冶金:卷曲机、开卷机、转鼓机械、锟道传动等。

技术优势

1.先进的磁场定向矢量控制算法成功实现电机的完全解耦控制,实现真正的电流矢量控制,使系统易于

控制,明显提高系统的动态和静态性能。

2.集带PG 矢量控制(VC)、无PG 矢量控制(SVC)和V/F 控制三种调速方式于一身,充分满足客户

的不同应用需求:其中矢量控制(VC 和SVC)适用于高速、高精度、高响应、高转矩的场合,可用于转矩控制(TC);V/F控制适用于一般的对负载要求不高的场合。

3.高性能速度控制:低速带载能力强、调速范围宽、稳速精度高、速度响应快。

4.高性能电流控制:电流响应快,控制精度高,具有优越的转矩控制性能。

5.矢量化V/F控制:采用无功电流与有功电流独立调节的方法,在保持传统V/F 控制方法简单,参数

依赖性小等优点的同时,保证了负载在各种工况下电流稳定,无震荡现象发生,低频带载能力较强。

6.优越的瞬态电流和电压控制,防过压、过流效果显著,能最大限度保证无跳闸运行。

7.丰富的应用功能:改进转速跟踪,可以平滑启动自由滑行中的电机;直流制动, 实现快速准确停机;

过流降频,实现负载自动适应(挖土机特性);瞬停不停,避免电网电压瞬时波动的影响。

8.电机参数自动辨识算法,能够自动辨识电机的电气参数,为实现高性能矢量控制奠定基础。

9.能够驱动异步电动/ 永磁同步电动机/ 主轴电机,进一步扩展应用领域。

插入“优异的低速带载能力”、“优异的防过流/防过压功能”、“适应各种负载”图片

功能特点

节省成本,降低能耗

1.多达10种频率源组合选择,22种可编程DO输出,40种可编程DI输入,16段速PLC运行丰富的外

围扩展功能板等,简化客户工程设计,同时节省客户工程(购买PLC,PLC编程调试等)成本。2.采用全数字控制系统,矢量控制和V/F控制合一设计,动态控制性能及节能调速效果更优,超越客户

要求。

3.高性能无PG矢量控制(SVC),无需安装测速设备,也能获得低频大力矩输出,稳速精度高。

4.主从同步功能,无需外部控制器,使用变频器内置的串行通信方式实现主/从变频器的同步起停,无

需更换或定做专用设备,从而节省设备购买成本。

5.自动节能功能,运行中自动调节输出电压,使电机运行在最大效率模式下,对恒功率负载节能效果明

显。

6.采用MODBUS 通讯模块设计,信号传输可靠,维修费用低。

7.选用配件可支持共母线模式运行及丰富的外围配件接口,缩小开发周期及工程周期,交付更快捷。

稳定性高

1.高性能矢量控制,调速范围宽,低频带载能力强,稳速精度高。

2.高性能转矩控制,实现转矩的快速响应和高精度控制。

3.矢量化V/F控制,负载在各种工况下均能保持电流稳定,无震荡现象。

4.优异的防过压/防过流功能,在极短的加减速时间以及负载波动时,不会发生过流过压,最大限度保

证无跳闸运行。

5.转速追踪再起动功能,实现对旋转中的电机的无冲击平滑起动,同时防止过流故障。

6.直流制动,实现平稳无冲击,快速准确停车。

安全性高

1.完善的保护功能,包括:过压、欠压、过流保护、输入缺相、输出缺相保护等,使设备运行更加可靠。

2.监视功能丰富,以及实时自诊断及报警功能,过程监控更加齐全,可以监视变频器端子状态。

3.防跳闸功能,避免运行中过流、过压故障发生。

4.多路实时温度检测,温度最大值显示,产品运行状况一目了然,便于定期维护,延长产品寿命。

插入“转速跟踪功能”图片

插入“减速直流制动、开机直流制动、能耗制动、磁通制动”图片

操作简单

1.本机键盘可延长至100m,实现远距离控制,减少用户在控制室与现场设备之间的往返次数。

2.丰富的输入输出接口。人机接口采用“轻触按键+8 段数码管”操作盒,可选配的中文液晶显示操

作盒,用户参数分组明确,更改简单,人机界面友善。

3.有RS485 物理通讯端子接口,支持RTU 传输格式,同时可扩展CANopen以及PROFIBUS-DP通

讯。不仅方便组网,实现上位机监控,同时方便PC 机/PLC 的使用。

4.提供可选的LED/LCD 操作面板,支持参数拷贝功能:实现方便快捷的操作,LCD 操作面板具备参

数快速拷贝功能,可将拷贝的参数复制到其他HID600A 变频器上,无需重新设定,方便客户调试。

5.选择矢量控制(VC 或SVC)时,为获得高性能的速度和转矩控制效果,需要执行电机参数自学习功

能:内置旋转自学习和静止自学习。旋转自学习:必须保证自学习期间,电机与负载完全脱开,获得的电机参数最可靠。静止自学习:适用于电机与负载无法脱开的场合。

超强定制功能,轻松实现高集成一体化系统

丰富的扩展卡功能模块设计

②多种通讯方式:标配MODBUS通讯,选配CANopen通讯,选配PROFIBUS,满足多机通讯,实

现多机协调控制。

③多功能编码器接口:UVW增量式光电编码器,ABZ增量式光电编码器,UVW省线式光电编码器等,绝对式编码器,正余弦编码器。

技术参数

2、0.4~1.5kW机型不可扩展

产品选型

备注:关于220V和1140V的选型,请来电咨询本公司。规格型号

产品外型图

0.4~7.5kW外形尺寸及安装尺寸示意图

11~630kW外型尺寸及安装尺寸示意图

矢量控制变频器工作原理

矢量控制是20世纪70年代由前西德Blaschke等人首先提出来的对交流电动机的一种新的控制思想和控制技术,也是交流电动机的一种理想的调速方法。矢量控制的基本思想是将异步电动机的定子电流分为产生磁场的电流分量(励磁电流)和与其相垂直的产生转矩的电流分量(转矩电流)并分别加以控制。由于在这种控制方式中必须同时控制异步电动机定子电流的幅值和相位,即控制定子电流矢量,因此这种控制方式称为矢量控制方式。 矢量控制方式使对异步电动机进行高性能的控制成为可能。采用矢量控制方式的交流调速系统不仅在调速范围上可以与直流电动机相匹敌,而且可以直接控割异步毫乏t产生的转矩。所以已经在许多需要进行精密控制的领域得到了应用。 由于在进行矢量控制时需要准确地掌握对象电动机的有关参数,这种控制有式芝云主要用于厂家指定的变频器专用电动机的控制。但是,随着变频调速理论和技术的发曩以及现代控制理论在变频器中的成功应用,目前在新型矢量控制变频器中已经增加了自调整(autotuning)功能。带有这种功能的变频器在驱动异步电动机进行正常运转之前可以自动地对电动机的参数进行辨识并根据辨识结果调整控制算法中的有关参数,从而使得对普通的异步电动机进行有效的矢量控制也成为可能。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解台达变频器、三菱变频器、西门子变频器、安川变频器、艾默生变频器的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.360docs.net/doc/d216081282.html,/

变频器矢量控制的优点及应用

变频器矢量控制的优点及应用 矢量控制原理--应用采用矢量控制方式的通用变频器不仅可在调速范围上与直流电动机相匹配,而且可以控制异步电动机产生的转矩。由于矢量控制方式所依据的是准确的被控异步电动机的参数,有的通用变频器在使用时需要准确地输入异步电动机的参数,有的通用变频器需要使用速度传感器和编码器。鉴于电机参数有可能发生变化,会影响变频器对电机的控制性能,并根据辨识结果调整控制算法中的有关参数,从而对普通的异步电动机进行有效的矢量控制。 异步电动机矢量控制变频调速系统的开发,使异步电动机的调速可获得和直流电动机相媲美的高精度和快速响应性能。异步电动机的机械结构又比直流电动机简单、坚固,且转子无碳刷滑环等电气接触点,故应用前景十分广阔。现将其优点和应用范围综述如下:1、矢量控制系统的优点:动态的速响应直流电动机受整流的限制,过高的di/dt是不容许的。异步电动机只受逆变器容量的限制,强迫电流的倍数可取得很高,故速度响应快,一般可达到毫秒级,在快速性方面已超过直流电动机。 低频转矩增大一般通用变频器(VVVF控制)在低频时转矩常低于额定转矩,在5Hz以下不能带满负载工作。而矢鱿控制变频器由于能保持磁通恒定,转矩与it呈线性关系,故在极低频时也能使电动机的转矩高于额定转矩。 控制的灵活性直流电动机常根据不同的负载对象,选用他励、串励、复励等形式。它们各有不同的控制特点和机械特性。而在异步电动机矢量控制系统中,可使同一台电动机输出不同的特性。在系统内用不同的函数发生器作为磁通调节器,即可获得他励或串励直流电动机的机械特性。 使用矢量控制,可以使电机在低速,如(无速度传感器时)1Hz(对4极电机,其转速大约为30r/min)时的输出转矩可以达到电机在50Hz供电输出的转矩(最大约为额定转矩的150%)。 对于常规的V/F控制,电机的电压降随着电机速度的降低而相对增加,这就导致由于励磁

对高压变频器保护性验收准则

高压变频器正常使用条件 前言:任何电气系统,都有它的使用条件,达不到正常的使用条件,则电气系统不能正常的运行,作为高压变频器也不例外;下面对变频器正常电气使用条件的国际标准进行引用分析,以及根据国标制定的企业标准、检验标准进行探讨及说明。同时对部分电气参数的检验指标进行阐述,以使读者更全面的了解合康高压变频器的使用条件,一些保护功能和相关的量值,以及对输入电源自身保护装置的设置情况。 一,电气使用条件的国家标准 PDS系统应当设计成能够在下列表中所规定的电气使用条件下运行。(GB/T

二,高压变频器的验收准则(性能准则) 应使用验收准则来检验PDS抗外部骚扰的性能(GB/T 12668.3--2003/IEC 61800-3:1996 见5.1.1) 按给定的骚扰的影响分A,B,C三种验收(性能)准则,其中每个准则都定义了一个特定的性能等级。 于子部件的性能能达到验收性能A的标准。 三,变频器检验调试的相关项目 1。频率变化及变化率因前级有隔离变压器,相应的频率变化及换相缺口对电力电子模块(变频器后级的功率单元)冲击影响有限,应视能达到验收A的标准。合康高压变频器因采用的多个二次绕组变压器的电压源型多电平逆变器传动系统,因此电压谐波对变频的影响甚微,能达到验收A的标准。

变频器连机后,带空载电机 输入高电压测试:将输入电压调到+10%(为6600V和11000V)检验变频器能正常的工作;测试记录变频器的输出电压,与额定输入电压时的变频器输出电压比较有≤+1%的正向偏差,能达性能验收的A级 输入低电压测试:将输入电压调到-20%(为4800V和8000V)检验变频器能正常的工作;测试记录变频器的输出电压,与额定输入电压时的变频器输出电压比较有≤-10%的负向偏差,能达性能验收的A级 参考文献: 调速电气传动系统(第3部分:产品的电磁兼容性标准及其特定的试验方法(GB/T 12668.3--2003/IEC 61800-3:1996 ) 调速电气传动系统(第4部分:一般要求)交流电压1000V以上但不超过35KV的交流调速电气传动系统额定值的规定GB/T 12668.4---2006/IEC61800-4:2002 合康高压变频器检验标准 合康亿盛科技有限公司整机检验文件

变频器矢量控制的基本原理分析

变频器矢量控制的基本原理分析 矢量控制的基本原理是通过测量和控制异步电动机定子电流矢量,根据磁场定向原理分别对异步电动机的励磁电流和转矩电流进行控制,从而达到控制异步电动机转矩的目的。具体是将异步电动机的定子电流矢量分解为产生磁场的电流分量(励磁电流)和产生转矩的电流分量(转矩电流)分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。矢量控制方式又有基于转差频率控制的矢量控制方式、无速度传感器矢量控制方式和有速度传感器的矢量控制方式等。基于转差频率控制的矢量控制方式同样是在进行U/f=恒定控制的基础上,通过检测异步电动机的实际速度n,并得到对应的控制频率f,然后根据希望得到的转矩,分别控制定子电流矢量及两个分量间的相位,对通用变频器的输出频率f进行控制的。基于转差频率控制的矢量控制方式的最大特点是,可以消除动态过程中转矩电流的波动,从而提高了通用变频器的动态性能。早期的矢量控制通用变频器基本上都是采用的基于转差频率控制的矢量控制方式。 无速度传感器的矢量控制方式是基于磁场定向控制理论发展而来的。实现精确的磁场定向矢量控制需要在异步电动机内安装磁通检测装置,要在异步电动机内安装磁通检测装置是很困难的,但人们发现,即使不在异步电动机中直接安装磁通检测装置,也可以在通用变频器内部得到与磁通相应的量,并由此得到了所谓的无速度传感器的矢量控制方式。它的基本控制思想是根据输入的电动机的铭牌参数,按照一定的关系式分别对作为基本控制量的励磁电流(或者磁通)和转矩电流进行检测,并通过控制电动机定子绕组上的电压的频率使励磁电流(或者磁通)和转矩电流的指令值和检测值达到一致,并输出转矩,从而实现矢量控制。

6kV高压变频器预防性维护和日常管理工作总结_2009年

高压变频器预防性维护和日常管理2009年工作总结 及2010年工作计划 陈春辉 (江苏镇江发电有限公司,江苏镇江212114) 一、变频器维护和日常管理2009年工作总结 2009年,在公司领导的大力支持和部门领导的正确领导下,生产支持部电气专业对全公司高压变频器的日常维护和管理完成了从依靠外部厂家力量为主向利用公司内部力量为主的转变。经过领导的精心合理安排、专业人员的全面精心维护以及外包单位、相关部门专业的全力配合工作下,全年全厂高压变频器发生各类发生异常和跳闸的次数较上年有较大下降,维护费用也有很大下降。 通过2009年全年的高压变频器日常维护管理工作,我们积累了一定的高压变频器维护经验,但也发现了离高压变频器的完全可控我们还有很多地方有待于提高和改进。 1.1、2009年的工作情况汇报: 1.1.1、2009年高压变频器运行可靠性和可控性得到较大提高 2009年,我们通过下述工作使设备运行的可靠性和可控水平有很大提高。 1)有计划的预防性维护; 我们参考各方资料和维护经验,根据电力电子元器件的主要特点,认真分析了影响变频器正常运行的有两类主要因素:1)直接影响变频器内电子元器件使用寿命的;2)影响变频器控制可靠、准确的。对投运以来还没有进行预防性维护的变频器进行了有针对性的全面解体维护。 利用#3、4、5机组小修和调停的机会,对二期的8台和三期3台变频器进行了投运以来的第一次解体清扫检查,大大降低了变频器功率元件因积灰超温致使功率元件损坏或变频器跳闸的概率,遏制了2008年以来日益严重的功率元器件超温问题,与此同时发现了一些异常情况,如#4炉吸风机乙中性点二极管模块的电阻未接入电气回路的问题等等。 2)定期巡视检查,掌握设备运行情况; 通过对设备的定期巡检,及时了解设备运行情况。一方面掌握了设备的健康状况,对设备的预防性维护进行指导,另一方面跟踪了现场运行环境,以便对运行

变频器的VF控制与矢量控制

变频器的V/F控制与矢量控制 U/f=C的正弦脉宽调制(SPWM)控制方式其特点是控制电路结构简单、成本较低,机械特性硬度也较好,能够满足一般传动的平滑调速要求,已在产业的各个领域得到广泛应用。但是,这种控制方式在低频时,由于输出电压较低,转矩受定子电阻压降的影响比较显著,使输出最大转矩减小。另外,其机械特性终究没有直流电动机硬,动态转矩能力和静态调速性能都还不尽如人意,且系统性能不高、控制曲线会随负载的变化而变化,转矩响应慢、电机转矩利用率不高,低速时因定子电阻和逆变器死区效应的存在而性能下降,稳定性变差等。因此人们又研究出矢量控制变频调速。 一、矢量控制(VC)方式 矢量控制变频调速的做法是将异步电动机在三相坐标系下的定子电流Ia、Ib、Ic、通过三相-二相变换,等效成两相静止坐标系下的交流电流Ia1Ib1,再通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流Im1、It1(Im1相当于直流电动机的励磁电流;It1相当于与转矩成正比的电枢电流),然后模仿直流电动机的控制方法,求得直流电动机的控制量,经过相应的坐标反变换,实现对异步电动机的控制。其实质是将交流电动机等效为直流电动机,分别对速度,磁场两个分量进行独立控制。通过控制转子磁链,然后分解定子电流而获得转矩和磁场两个分量,经坐标变换,实现正交或解耦控制。矢量控制方法的提出具有划时代的意义。然而在实际应用中,由于转子磁链难以准确观测,系统特性受电动机参数的影响较大,且在等效直流电动机控制过程中所用矢量旋转变换较复杂,使得实际的控制效果难以达到理想分析的结果。 V/F控制与矢量都是恒转矩控制。U/F相对转矩可能变化大一些。而矢量是根据需要的转矩来调节的,相对不好控制一些。对普通用途。两者一样 1、矢量控制方式—— 矢量控制,最简单的说,就是将交流电机调速通过一系列等效变换,等效成直流电机的调速特性,就这么简单,至于深入了解,那就得深入了解变频器的数学模型,电机学等学科。 矢量控制原理是模仿直流电动机的控制原理,根据异步电动机的动态数学模型,利用一系列坐标变换把定子电流矢量分解为励磁分量和转矩分量,对电机的转矩电流分量和励磁分量分别进行控制。 在转子磁场定向后实现磁场和转矩的解耦,从而达到控制异步电动机转矩的目的,使异步电机得到接近他励直流电机的控制性能。 具体做法是将异步电动机的定子电流矢量分解为产生磁场的电流分量 (励磁电流)和产生转矩的电流分量(转矩电流)分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。 2、V/F控制方式—— V/F控制,就是变频器输出频率与输出电压的比值为恒定值或成比例。例如,50HZ时输出电压为380V的话,则25HZ时输出电压为190V。 变频器采用V/F控制方式时,对电机参数依赖不大,V/f控制是为了得到理想的转矩-速度特性,基于在改变电源频率进行调速的同时,又要保证电动机的磁通不变的思想而提出的,通用型变频器基本上都采用这种控制方式。V/f控制变频器结构非常简单,但是这种变频器采用开环控制方式,不能达到较高的控制

矢量变频器与编码器PG接线

矢量变频器与编码器PG接线 矢量变频器与编码器PG之间的连接方式,必须与编码器pg的型号相对应。一般而言,编码器PG型号分差动输出、集电极开路输出和推挽输出三种,其信号的传递方式必须考虑到变频器PG卡的接口,因此选择合适的PG卡型号或者设置合理的跳线至关重要。前者的典型代表是安川vs g7变频器,后者的典型代表为艾默生td3000变频器。 以安川vs g7变频器为例,其用于带速度传感器矢量控制方式安装的pg卡类型主要有两种: (1)PG-b2卡,含a/b相脉冲输入,对应补码输出,如图1所示。 图1PG-b2卡与编码器接线图 (2) PG-x2卡,含a/b/z相脉冲输入,对应线驱动,如图2所示。 图2PG-x2卡与编码器接线图 艾默生td3000变频器的PG卡是统一配置的,最高输入频率为120khz,它与不同的编码器PG接线时,只需注意接线方式和跳线cn4。当跳线cn4位于di侧时,可以选择编码器信号由a+、a-、b+、b-差动输出(如图3所示)或者a+、b+推挽输出(如图5所示);当跳线cn4位于oci侧时,可以选择编码器信号由a-、b-开路集电极输出(如图4所示)。 图3差动输出编码器接线图 图4集电极开路输出编码器(加上虚线为电压型输出编码器)接线图 在变频器的参数组中对于编码器PG都有比较严格的定义,这些定义包括: (1)编码器PG每转脉冲数。此参数可以查看编码器本身的技术指标,单位为p/r。 (2)编码器PG方向选择。如果变频器pg卡与编码器PG接线次序代表的方向,和变频器与电动机连接次序代表的方向匹配,设定值应为正向,否则为反向。必须注意当方向选择错误时,变频器将无法加速到你所需要的频率,并报过流故障或编码器反向故障。更改此参数可方便地调整接线方向的对应关系,而无须重新接线。 图5推挽输出编码器接线图

象限矢量变频器

前言 感谢您选购深圳市英威腾电气股份有限公司(英威腾)生产的CHA100系列四象限矢量变频器。 CHA100系列四象限矢量变频器由配电柜、PWM整流回馈柜和逆变柜三部分组成,其中配电柜和PWM整流回馈柜组成变频器的PWM整流回馈部分,逆变柜则包含了变频器的逆变部分。用户可以根据实际需要灵活选配PWM整流回馈部分(包含配电柜和整流柜)和逆变部分,也可以分别订购。 整流柜由PWM整流单元组成,该整流单元采用三相交流电源输入,实现了上电预充电功能并可以提供稳定的直流母线电压。PWM整流单元采用IGBT做整流桥,用高速度、高运算能力的DSP产生PWM控制脉冲。一方面可以调整输入的功率因数,消除对电网的谐波污染,让变频器真正成为“绿色产品”;另一方面可以将电机制动产生的能量回馈到电网,达到节能的效果。 本手册适用于柜式CHA100系列变频器,为确保能正确安装及操作本变频器,充分发挥其性能,请严格按照本说明书的内容接线操作及使用,如有疑问,请与当地经销商或本公司联系。

目录 安全注意事项 (5) 第一部分:CHA100四象限运行变频器系统 (9) 1 产品概况 (9) 1.1 产品综合技术特性 (9) 1.2 变频器使用环境要求 (9) 1.3 产品型号名称说明 (11) 1.4 CHA100系统产品型号及主要额定参数 (11) 1.5 CHA100系统柜体外形结构图 (12) 1.6 CHA100系统内部电气接线图 (19) 1.7 CHA100标准接线图 (20) 1.8 CHA100系列变频器端子结构图 (20) 1.9 CHA100系列变频器端子接口规格 (25) 2 操作面板 (25) 2.1 操作面板结构图 (25) 2.2 按键功能说明 (26) 2.3 指示灯说明 (27) 2.4 操作流程 (27) 2.5 运行状态 (28) 第二部分:CHA100整流回馈柜部分 (30) 1 功率单元概述 (30) 1.1 功率单元外观图 (30) 1.2 功率单元型号说明 (30) 1.3 功率单元产品型号及主要额定参数 (31) 1.4 功率单元外形结构图 (32) 2 PWM整流回馈系统概述 (33) 2.1 PWM整流回馈单元外形结构图 (33) 2.2 PWM整流回馈系统工作原理 (33) 2.3 PWM整流回馈系统技术规格 (34) 2.4 PWM整流回馈系统产品型号及额定参数 (35) 2.5 PWM整流回馈系统硬件组成 (36) 3 调试步骤 (38) 3.1上电前的基本检查 (38) 3.2输入端子上电 (38) 3.3系统运行 (38) 4 详细功能说明: (38) P0组基本功能组 (38) P1组输入输出端子功能组 (41) P2组人机界面组 (44) P3组单元状态组 (45) P4组故障状态功能组 (45) P5组Profibus通讯组 (46) P6组串行通讯组 (47)

变频器矢量控制与VF控制区别

变频器矢量控制与VF控制区别 一、V/F控制方式 变频器采用V/F控制方式时,对电机参数依赖不大,一般强调“空载电流”的大小。由于我们采用矢量化的V/F控制方式,故做电机参数静止自整定还是有必要的。不同功率段的变频器,自学习后的空载电流占额定电流大小百分比也是不同的。 一般有如下百分比数据:5.5kW~15 kW,空载电流P9.05的值为30%~50%的电机额定电流;3.7 kW及以下的,空载电流P9.05的值为50%左右的电机额定电流;特殊情况时,0.4 kW、0.75 kW、1.5 kW,空载电流P9.05的值为70%~80%的电机额定电流;有的0.75 kW功率段,参数自整定后空载电流为电机额定电流的90%。空载电流很大,励磁也越大。 何为矢量化的V/F控制方式,就是在V/F控制时也将输入电流量进行解耦控制,使控制更加精确。 变频器输出电流包括两个值:空载电流和力矩电流,输出电流I的值为空栽电流Im和力矩电流It平方和后开2次方。故空载电流是影响变频器输出电流的主要因素之一。 V/F控制时输出电压与运行频率之比为一定值:即U/F=K(K为常数),P0.12=最大输出电压U,P0.15=基频F。三菱变频器资讯 上图中有个公式,描述转矩、转速、功率之间的关系。变频器在基频以下运行时,随着速度增快,可以输出恒定的转矩,速度增大不会影响转矩的输出;变频器在基频以上运行时,只能保证输出额定的功率,随着转速增大,变频器不能很好的输出足够大的力;有时候变频器速度更快,高速运行时,处于弱磁区,我们必须设置相应的参数,以便让变频器适应弱磁环境。 速度与出力,高速或者低速时,两者不可兼得,这里有个数据概念:调速范围,指满足额定转矩出力的最低频率与最高频率的比值。以前一般的VF控制方式调试范围为1:20~1:40,我司产品V/F控制调速范围可以达到1:100,能够满足更多范围的行业应用。在开环矢量时可以达到1:200,闭环矢量时达到1:1000,接近伺服的性能。 变频器V/F控制系统运行时,有两种方式进行转矩的提升: 1、自动转矩提升: 必须在P0.16=0且P4.00=0时,自动转矩提升才有效。其作用为:变频器V/F控制低频运行时,提高输出电压,抵消定子压降以产生足够的转矩,保证电机正常运行。自动转矩提升与变频器设置“空载电流”和静止学习的“定子电阻”有关系,变频器必须作电机参数静止自整定,才能更好的控制电机运行。变频器作自动转矩提升控制电机时,见上图所示输出电压和频率的线性关系,运行中因为负载变化对电压输出作适当的增减,由于响应时间的快慢,所以会出现出力不稳定因素。 2、手动转矩提升 设置P0.16为某一数值时,或者设置P4.00为非零时,手动转矩提升才有效。手动转矩提升只与变频器设置“空载电流”有关系,受电机其他参数设置影响较小。如下图所示,为手动转矩提升曲线图。变频器输出作手动转矩提升,其转矩出力在原来基础上成线性增加,所以出力稳定,不受负载变化的影响,出力稳定。但是转矩提升不益太大,转矩提升的幅度应根据负载情况适当设定,提升过多,在启动过程中将产生较大的电流冲击。 自动转矩提升只能满足一拖一的输出情况,当涉及一台变频器拖动多台电机时,V/F控制时必须采用手动转矩提升,即设置P0.16为非0值。 V/F控制时的有关性能参数调试: PA.02为V/F控制转差补偿增益,设置此参数时,可以参考电机额定转速P9.02来设定参数。该功能有助于变频器在负载波动及重载情况下保持电机转速恒定,即补偿由于负载波动而导致的电机转速增减,但是由于补偿本身的响应时间问题,导致系统出现不稳定因素增多,在系统波动较大的情况下,此功能码设置为0有一定效果。

康狄CD2000变频器

CD2000A型变频器 使用说明书 无锡开源机床集团康狄电器有限公司 地址:中国无锡市湖滨路11号邮编:214061 目录

一概述 二注意事项 三使用前的检查与准备 四功能说明及应用 五操作方法 六变频器的保护及故障维修 七变频器参数一览表 八外形及安装尺寸 一概述 康狄电器有限公司是无锡开源机床集团所属的可编程序控制器,变频调速器,电器控制柜等工业控制器的专业生产实体,其开发的CD2000A系列变频器以专用的微处理器为核心控制部件并配有新型

的绝缘栅型大功率晶体管IGBT,采用国际上比较先进的正弦波脉宽调制(SPWM)技术控制模式,与以往的变频器相比具有体积小,开关频率高,驱动简单,噪音低等优点,可广泛应用于各种交流感应电动机的调速。 CD2000A系列中高频变频器广泛应用在高精度磨加工中,用来驱动磨床的高速电主轴,于传统的中频发电机组相比,可节电40%,变频运行的无噪音,不仅改变了工作环境,而且还能使用户在磨加工中提高精度,延长电机使用寿命。 CD2000A系列中频变频器型号命名标注: CD2000A X XXX X 安装形式 G挂壁式 L落地式 N内装式 C抽柜式 变频器功率 005代表5KV A 变频器电源 2:220V 3:380V 4:440V 康狄变频器型号 二注意事项 变频器属电力电子产品,为了您的安全及正确使用变频器,请你在搬运,安装,运转时,务必注意以下事项: 1 在关闭电源后,机内高压电容需较长时间才能放电完毕,切勿在主控板上显示未灭前触摸电路板及元器件。

2 不可在送电过程中打开机盖实施配线,检查电路板等工作。 3 变频器外壳和负载必需良好接地。 4 请不要把电源进线端子(R S T)与变频器输出端子(U V W)接错,否则将会损坏变频器。 5 请不要在变频器输出与负载间连接电磁接触器,以防在切换负载时损坏变频器。 6 为防止误动作,建议在变频器周围的电磁接触器,继电器等线圈上接浪涌吸收器。 7 在启动,停止频繁的场合,应避免对电源的通断操作。 8 请在电源与变频器间接断路器,防止因意外事故时损坏电源。 9 非专业使用维修人员请不要打开变频器机壳。 10 警示:在启动变频器以前,请务必检查设定的频率,电压等参数与实际电机的数据要求是否相符,切不可盲目启动变频器。 三使用前的检查与准备 3-1 检查小心打开包装,避免震动与冲击,请检查:(1)运输中是否有破损; (2)对照铭牌内容,实物与所定型号是否相符,若发现问题请及时与公司联系。 3-2 准备 (1)安装:请注意以下几点: 1)尽量避开高温,潮湿,灰尘较多的场合,且通风较好。 2)不要安装在震动较大的地方。 3)环境温度要求在-10~40℃ (2)接线:本变频器内部有两组接线端子,一组为主电路端子(电源输入输出),另一组为控制回路端子。本公司根据一般应用已配好两接头。 例图如下: 2 3 4 5 26

矢量变频器的原理及功能

矢量变频器的原理 矢量控制技术通过坐标变换,将三相系统等效变换为M-T两相系统,将交流电机定子电流矢量分解成两个直流分量(即磁通分量和转矩分量),从而达到分别控制交流电动机的磁通和转矩的目的,因而可获得与直流调速系统同样好的控制效果。 矢量变频器技术是基于DQ轴理论而产生的,它的基本思路是把电机的电流分解为D轴电流和Q轴电流,其中D 轴电流是励磁电流,Q轴电流是力矩电流,这样就可以把交流电机的励磁电流和力矩电流分开控制,使得交流电机具有和直流电机相似的控制特性,是为交流电机设计的一种理想的控制理论,大大提高了交流电机的控制特性。不过目前这种控制理论已经不仅仅应用在交流异步电动机上了,直流变频电动机(BLDC,也就是永磁同步电动机)也大量使用该控制理论。 矢量变频器的功能 矢量与向量是数学上矢量(向量)分析的一种方法或概念,两者是同一概念,只是叫法不同,简单的定义是指既具有大小又具有方向的量。 矢量是我们(大陆)的说法,向量的说法一般是港台地区的文献是用的。意义和“布什”和“布希”的意思大致一样。矢量控制主要是一种电机模型解耦的概念。 在电气领域主要用于分析交流电量,如电机分析,等,在变频器中的应用即基于电机分析的理论进行变频控制的,称为矢量控制型变频器,实现的方法不是唯一的,但数学模型基本一致。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解台达变频器、三菱变频器、西门子变频器、安川变频器、艾默生变频器的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.360docs.net/doc/d216081282.html,/

浅谈变频器U/f控制与矢量控制应用

浅谈变频器U/f控制与矢量控制应用 【摘要】交流变频调速系统主要用于控制异步电动机的转速和转矩,具有动态响应好、工作效率高、输出特性好、使用方便等优点。本文主要介绍变频调速系统中常用的两种控制方式:U/f控制和矢量控制,并结合生产实际描述分析这两种控制模式在现场生产中的应用,提高大家对变频调速系统控制模式的认识。 【关键词】变频调速系统;U/f控制;矢量控制 1 变频调速系统U/f控制 1.1 U/f控制的概念 U/f控制即恒压频比控制方式,它是采用SPWM正弦脉宽调制技术控制半导体器件开通和关断,将直流电压转变为一定形状的电压脉冲序列,实现频率和电压的控制,在调节输出频率?的同时,调节输出电压U的大小,通过U和?配合实现不同类型的调频调压来进行调速。解决了只改变频率进行调速:频率上升时,主磁通下降,拖动转矩下降,电动机的拖动能力降低,对于恒转矩负载因拖不动而堵转;频率下降时,主磁通上升,引起主磁通饱和,励磁电流急剧升高,使通过定子绕组的电流大于定子绕组额定电流,电机发热严重。在变频调速中基频以下常采用U/f恒磁通(恒转矩)调速,基频以上调速由于变频器输出电压无法大于额定输入电压因此只能恒功率调速。 1.2 U/f控制特性及应用 U/f控制是变频调速系统应用最普遍的调速模式,它通过调节电机供电电源电压和频率来进行调速因此该调速系统的机械特性可平滑地上下移动,转差率不变,调速时有很高的运行效率,但在基频下U/f(等于常数)调速并不是真正的恒磁通(恒转矩)调速,当电机在低频、低速运行时,由于变频器输出电压成正比地下降,电机满负荷运行时定子绕组电阻上产生的压降在电机输入电压中占的比例增大,反电动势比例减小,用于形成主磁通的电压不足,造成主磁通下降,使拖动转矩不足,带负载能力下降。 应用U/f控制模式时,首先根据变频器所带负载的特性选用合适的U/f曲线,U/f曲线是描述变频器输出电压与频率关系的曲线,一般通用性变频器U/f曲线有:直线形U/f曲线(适用于恒转矩负载如传送带),1.5次形U/f曲线(适用于风机,泵类变转矩性负载)及自定义形U/f曲线;其次根据设备在生产过程中是否需要低速满负荷运行来考虑是否采用适量补偿输出电压即是否设置变频器转矩提升量。正确预置转矩提升量十分重要,预置太小,可能电机磁通不足,电机输出转矩过小而无法带动设备运转,预置太大,又可能在电机轻载时引起电机磁路饱和,变频器因输出过电流而跳闸。在现场预置时,应以电机负荷率作为初步设定依据;最后根据生产设备惯性的大小及对电机启动加减速时间的要求来预置

变频器常用的几种控制方式

变频器常用的几种控制方 式 Prepared on 22 November 2020

变频器常用的几种控制方式 变频调速技术是现代电力传动技术的重要发展方向,而作为变频调速系统的核心—变频器的性能也越来越成为调速性能优劣的决定因素,除了变频器本身制造工艺的“先天”条件外,对变频器采用什么样的控制方式也是非常重要的。本文从工业实际出发,综述了近年来各种变频器控制方式的特点,并展望了今后的发展方向。 1、变频器简介 变频器的基本结构 变频器是把工频电源(50Hz或60Hz)变换成各种频率的交流电源,以实现电机的变速运行的设备,其中控制电路完成对主电路的控制,整流电路将交流电变换成直流电,直流中间电路对整流电路的输出进行平滑滤波,逆变电路将直流电再逆变成交流电。对于如矢量控制变频器这种需要大量运算的变频器来说,有时还需要一个进行转矩计算的CPU 以及一些相应的电路。 变频器的分类 变频器的分类方法有多种,按照主电路工作方式分类,可以分为电压型变频器和电流型变频器;按照开关方式分类,可以分为PAM控制变频器、PWM控制变频器和高载频PWM 控制变频器;按照工作原理分类,可以分为V/f控制变频器、转差频率控制变频器和矢量控制变频器等;按照用途分类,可以分为通用变频器、高性能专用变频器、高频变频器、单相变频器和三相变频器等。 2、变频器中常用的控制方式 非智能控制方式 在交流变频器中使用的非智能控制方式有V/f协调控制、转差频率控制、矢量控制、直接转矩控制等。

(1) V/f控制 V/f控制是为了得到理想的转矩-速度特性,基于在改变电源频率进行调速的同时,又要保证电动机的磁通不变的思想而提出的,通用型变频器基本上都采用这种控制方式。 V/f控制变频器结构非常简单,但是这种变频器采用开环控制方式,不能达到较高的控制性能,而且,在低频时,必须进行转矩补偿,以改变低频转矩特性。 (2) 转差频率控制 转差频率控制是一种直接控制转矩的控制方式,它是在V/f控制的基础上,按照知道异步电动机的实际转速对应的电源频率,并根据希望得到的转矩来调节变频器的输出频率,就可以使电动机具有对应的输出转矩。这种控制方式,在控制系统中需要安装速度传感器,有时还加有电流反馈,对频率和电流进行控制,因此,这是一种闭环控制方式,可以使变频器具有良好的稳定性,并对急速的加减速和负载变动有良好的响应特性。 (3) 矢量控制 矢量控制是通过矢量坐标电路控制电动机定子电流的大小和相位,以达到对电动机在d、q、0坐标轴系中的励磁电流和转矩电流分别进行控制,进而达到控制电动机转矩的目的。通过控制各矢量的作用顺序和时间以及零矢量的作用时间,又可以形成各种PWM波,达到各种不同的控制目的。例如形成开关次数最少的PWM波以减少开关损耗。目前在变频器中实际应用的矢量控制方式主要有基于转差频率控制的矢量控制方式和无速度传感器的矢量控制方式两种。 基于转差频率的矢量控制方式与转差频率控制方式两者的定常特性一致,但是基于转差频率的矢量控制还要经过坐标变换对电动机定子电流的相位进行控制,使之满足一定的条件,以消除转矩电流过渡过程中的波动。因此,基于转差频率的矢量控制方式比转差

变频器矢量控制原理、应用及要求

变频器矢量控制原理、应用及要求 早在上世纪七十年代就有工程师提出了矢量控制理论,解决了交流电机转矩控制的问题。但对于变频器矢量控制原理是什么,很多人就不知道了,下面环球自动化网小编就为大家带来变频器矢量控制原理及应用详细分析。变频器矢量控制原理:矢量控制的基本原理是通过测量和控制异步电动机定子电流矢量,根据磁场定向原理分别对异步电动机的励磁电流和转矩电流进行控制,从而达到控制异步电动机转矩的目的。具体是将异步电动机的定子电流矢量分解为产生磁场的电流分量(励磁电流) 和产生转矩的电流分量(转矩电流) 分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。矢量控制方式又有基于转差频率控制的矢量控制方式、无速度传感器矢量控制方式和有速度传感器的矢量控制方式等。矢量控制变频调速的具体步骤:1)将交流电机等效为直流电机:将交流电机的三相定子电流ia、ib、ic通过三相-二相变换转换为静止坐标系下的交流电流ia1、ib1;2)对速度、磁场两个分量进行独立控制:将静止坐标系下的交流电流ia1、ib1通过磁场定向旋转变换转换为旋转坐标系下的直流电流im1、it1,其中,im1即等效为直流电动机的励磁电流,it1即等效为与转矩成正比的电枢电流;3)对直流电机进行变频调速控

制:根据直流电动机的控制方法求得直流电动机的控制量;4)坐标反变换还原为对交流电机的控制:根据上述一二步骤的坐标变换进行相应的坐标反变换,将直流电流转换为交流电流,再转换为三相定子电流以完成对交流电动机的矢量控制。变频器矢量控制实现:矢量控制基本理念旋转地只留绕组 磁场无论是在绕组的结构上,还是在控制的方式上,都和直流电动机最相似。设想,有两个相互垂直的支流绕组同处于一个旋转体中,通入的是直流电流,它们都由变频器给定信号分解而来的。经过直交变换将两个直流信号变为两相交 流信号;在经二相、三相变换得到三相交流控制信号;结论只 要控制直流信号中的任意一个,就可以控制三相交流控制信号,也就控制了交流变频器的交流输出。通过上述变换,将交流电机控制近似为直流电机控制变频器矢量控制模式要求:1)一台变频器只能带一台电动机。2)电动机的极数要按说明书的要求,一般以4极电动机为最佳。3)电动机容量与变频器的容量相当,最多差一个等级。如:根据变频器的容量应选配11 kW的电动机,使用矢量控制时,电动机的容量可是11 kW或7.5 kW,再小就不行了。4)变频器与电动机 间的连接线不能过长,一般应在30 m以内。如果超过30 m,需要在连接好电缆后,进行离线自动调整,以重新测定电动机的相关参数。现在大部分的新型通用变频器都有了矢量控制功能,如何选择使用这种功能,多用下面两种方法:1)在

变频器对矢量控制的给定及要求

1.矢量控制的给定 现在大部分的新型通用变频器都有了矢量控制功能,如何选择使用这种功能,多用下面两种方法: 1)在矢量控制功能中,选择“用”或“不用”。 2)在选择矢量控制后,还需要输入电动机的容量、极数、额定电流、额定电压、额定功率等。 由于矢量控制是以电动机的基本运行数据为依据,因此电动机的运行数据就显得很重要,如果使用的电动机符合变频器的要求,且变频器容量和电动机容量相吻合,变频器就会自动搜寻电动机的参数,否则就需重新测定。很多类型的变频器为了方便测量电动机的参数都设计安排了电动机参数自动测定功能。通过该功能可准确测定电动机的参数,且提供给变频器的记忆单元,以便在矢量控制中使用。 2.矢量控制的要求 若选择矢量控制模式,对变频器和电动机有如下要求: 1)一台变频器只能带一台电动机。 2)电动机的极数要按说明书的要求,一般以4极电动机为最佳。 3)电动机容量与变频器的容量相当,最多差一个等级。例如,根据变频器的容量应选配11kW的电动机,使用矢量控制时,电动机的容量可是11kW或7.5kW,再小就不行了。 4)变频器与电动机间的连接线不能过长,一般应在30m以内。如果超过30m,需要在连接好电缆后,进行离线自动调整,以重新测定电动机的相关参数。 3.使用矢量控制的注意事项 在使用矢量控制时,一些需要注意的问题如下: 1)使用矢量控制时,可以选择是否需要速度反馈。对于无反馈的矢量控制,尽管存在对电动机的转速估算精度稍差,其动态响应较慢的弱点,但其静态特性已很完美,如果对拖动系统的动态特性无特殊要求,一般可以不选用速度反馈。 2)频率显示以给定频率为好。矢量控制在改善电动机机械特性时,最终是

北京合康高压变频器常见故障及处理教学文案

北京合康高压变频器常见故障及处理 1,如何区分重故障和轻故障? 轻故障时,系统发出报警信号,故障指示灯闪烁。重故障发生时,系统发出故障指示,故障指示灯常亮。同时发出指令去分断高压、合闸禁止,并对故障信息、高压分断指令作记忆处理。重故障状态不消除,故障指示、高压分断指令依然有效。 2,轻故障都有哪些? 轻故障包括:变压器超温报警、柜温超温报警、柜门打开、单元旁路,系统对轻故障不作记忆处理,仅有故障指示,故障消失后报警自动消除。变频器运行中出现轻故障报警,系统不会停机。停机时出现轻故障报警,变频器可以继续启动运行。 3,重故障具体都有哪些? 系统发生下列故障时,按照重故障处理,并在监视器左上角显示重故障类型:外部故障、变压器过热、柜温过热、单元故障、变频器过流、高压失电、接口板故障、控制器不通讯、接口板不通讯、电机过载、参数错误、主控板故障。单元故障包括:熔断器故障、单元过热、驱动故障、光纤故障、单元过压。外部故障必须先解除高压分断(柜门按钮或外部接点)状态再系统复位,才能使系统恢复到正常状态;除外部故障以外的重故障发生后,直接系统复位即可使系统恢复到正常状态,但在再次上电前一定要找出故障原因。单元故障发生后,只有再次上高压电源方能检测到单元状态。若故障较难分析且无法确定能否二次上高压时,请向我们咨询。注意:切忌在未查明故障原因前贸然二次上电,否则可能严重损坏变频器!4,变压器超温报警 当变压器温控仪测量温度大于其设置的报警温度(默认设置为100℃)时,温控仪超温报警触点闭合; 检查变压器柜顶风机或柜底风机是否工作正常(如果柜底风机工作不正常,可能出现三相温度相差较大); 测温电阻是否正常(有无断线、线路插头接触不良,如果接触不良,温度值将偏高);过滤网是否堵塞(拿一张A4纸置于过滤网上,看是否能吸附,否则需要清洁过滤网); 变频器是否长期工作于过载状态; 环境温度是否过高(环境温度应低于45℃,否则需要加强通风); 安装于变压器柜内正面底部的风机开关和接触器是否断开; 变压器柜风机控制和保护电路是否正常。 5,柜温超温报警 单元柜测温点的温度大于55℃时,系统会发出柜温超温轻故障报警。 检查单元柜柜顶风机是否工作正常,安装于二次室内的风机开关是否跳闸; 过滤网是否堵塞(拿一张A4纸置于过滤网上,看是否能吸附,否则需要清洁过滤网); 变频器是否长期工作于过载状态; 环境温度是否过高(环境温度应低于45℃,否则需要加强通风(墙上安装通风机或柜顶安装风道)或安装制冷设备); 变压器柜风机控制和保护电路是否正常。 6,变压器过热 变压器温控仪测量温度大于其设置的跳闸温度(默认设置为130℃)时,温控仪跳闸触点闭

变频器矢量控制原理

变频器矢量控制原理知识 矢量控制的基本原理是通过测量和控制异步电动机定子电流矢量,根据磁场定向原理分别对异步电动机的励磁电流和转矩电流进行控制,从而达到控制异步电动机转矩的目的。具体是将异步电动机的定子电流矢量分解为产生磁场的电流分量 (励磁电流) 和产生转矩的电流分量 (转矩电流) 分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。矢量控制方式又有基于转差频率控制的矢量控制方式、无速度传感器矢量控制方式和有速度传感器的矢量控制方式等。 基于转差频率控制的矢量控制方式同样是在进行U / f =恒定控制的基础上,通过检测异步电动机的实际速度n,并得到对应的控制频率f,然后根据希望得到的转矩,分别控制定子电流矢量及两个分量间的相位,对通用变频器的输出频率f进行控制的。基于转差频率控制的矢量控制方式的最大特点是,可以消除动态过程中转矩电流的波动,从而提高了通用变频器的动态性能。早期的矢量控制通用变频器基本上都是采用的基于转差频率控制的矢量控制方式。 无速度传感器的矢量控制方式是基于磁场定向控制理论发展而来的。实现精确的磁场定向矢量控制需要在异步电动机内安装磁通检测装置,要在异步电动机内安装磁通检测装置是很困难的,但人们发现,即使不在异步电动机中直接安装磁通检测装置,也可以在通用变频器内部得到与磁通相应的量,并由此得到了所谓的无速度传感器的矢量控制方式。它的基本控制思想是根据输入的电动机的铭牌参数,按照一定的关系式分别对作为基本控制量的励磁电流(或者磁通)和转矩电流进行检测,并通过控制电动机定子绕组上的电压的频率使励磁电流(或者磁通)和转矩电流的指令值和检测值达到一致,并输出转矩,从而实现矢量控制。 采用矢量控制方式的通用变频器不仅可在调速范围上与直流电动机相匹配,而且可以控制异步电动机产生的转矩。由于矢量控制方式所依据的是准确的被控异步电动机的参数,有的通用变频器在使用时需要准确地输入异步电动机的参数,有的通用变频器需要使用速度传感器和编码器,并需使用厂商指定的变频器专用电动机进行控制,否则难以达到理想的控制效果。目前新型矢量控制通用变频器中已经具备异步电动机参数自动辨识、自适应功能,带有这种功能的通用变频器在驱动异步电动机进行正常运转之前可以自动地对异步电动机的参数进行辨识,并根据辨识结果调整控制算法中的有关参数,从而对普通的异步电动机进行有效的矢量控制。除了上述的无传感器矢量控制和转矩矢量控制等,可提高异步电动机转矩控制性能的技术外,目前的新技术还包括异步电动机控制常数的调节及与机械系统匹配的适应性控制等,以提高异步电动机应用性能的技术。为了防止异步电动机转速偏差以及在低速区域获得较理想的平滑转速,应用大规模集成电路并采用专用数字式自动电压调整(AVR)控制技术的控制方式,已实用化并取得良好的效果。

西门子标准变频器控制方法描述

西门子标准变频器控制方法描述

第一节速度矢量控制(MM440) 在矢量控制中,速度控制器影响系统的动态特性。特别是恒转矩负载,速度闭环控制有利于改善系统的运动精度和跟随性能。在矢量控制过程中,速度控制器的配置是重要的环节。 根据速度控制器的反馈信号来源,可以将速度矢量控制分为带传感器的矢量控制(VC)与无传感器的矢量控制(SLVC)两种。 编码器的反馈信号(VC):P1300=20 观测器模型的反馈信号(SLVC):P1300=21 在快速调试和电机参数优化的过程中,变频器会根据负载参数自动辨识系统模型,建立模型观测器,在没有传感器的情况下,系统也会根据输出电流来计算当前速度,作为速度反馈来构成速度闭环。 速度控制器的设定方式(P1460,P1462,P1470,P1472) 手动调节 可根据经验对速度控制器的比例与积分参数进行整定 PID自整定 设定参数:P1400 当P1400.0=1,使能速度控制器的增益自适应功能,即根据系统偏差的 大小来自动调节比例增益系数Kp。在弱磁区,增益系数随磁通的降低 而减小。 当P1400.1=1,速度控制器的积分被冻结,只有比例增益,即对开环运 行的电动机加上滑差补偿。 优化方式自整定 通过设置P1960=1,变频器会自动对速度控制器的各参数进行整定。

第二节 转矩控制(MM440) 矢量控制分为速度矢量控制与转矩矢量控制,转矩控制与速度矢量控制的主要区别是闭环调节是基于转矩物理量进行运算的。在某些特殊的场合,系统对

变频器输出转矩的要求比较严格。因此在MM440变频器中又实现了转矩设置功能。同速度矢量控制一样,转矩控制也分为无传感器矢量控制和带传感器的矢量控制。 在无传感器的转矩控制过程中,系统根据观测器模型来计算当前频率,与加速度转矩控制输出频率进行预算后,反馈到调制器。 带传感器的转矩控制,将编码器测得的信号与观测器模型进行运算后直接反馈到调制器。 一速度控制与转矩控制的切换 通过设置P1501=1,或者P1501=722.X来实现速度控制到转矩控制的切换。 二转矩的设定 通过P1500来选择转矩设定源或者直接在P1503中设定相应转矩值。 三附加转矩设定值 注:在速度控制与转矩控制中都可以选择转矩作为附加设定值。

相关文档
最新文档