粘度法测定高聚物摩尔质量

粘度法测定高聚物摩尔质量
粘度法测定高聚物摩尔质量

实验二十四 粘度法测定高聚物摩尔质量

课程名称 物理化学实验 实验名称 粘度法测定高聚物摩尔质量 姓名_____________ 学号_________ 专业班级 ______ 实验日期 2011.9.21 一、 实验目的

1、 掌握用乌氏年度计测定高聚物溶液粘度的原理和方法。

2、 测定线性高聚物乙二醇的粘均摩尔质量。 二、 实验原理 1、 增比粘度η

sp =

ηηη-

2、 相对粘度ηr =0

ηη

3、 经验公式:

sp c

η=[η] +k[η]2c

r c η'

㏑=[η] -β[η]2c

η=4pr t

8lV

π=

4h g r t

8lV

πρ

4、12

ηη=1122

p t P t =1122

t t ρρ

5、 ηr =0

ηη=0

t t

三、 仪器与药品

乌氏粘度计1支;有塞锥形瓶(50mL )2支;洗耳球

1

支;胖肚移液管(5mL)1支;停表(0.1s)1支。

聚乙二醇(AR)

四﹑实验注意事项

1、粘度计必须洁净,如毛细管上挂有水珠,需要洗液

浸泡。

2、高聚物在溶剂中溶解缓慢,配制溶液时必须保证其

完全溶解,否则会影响溶液起始浓度,而导致结果

偏低。

3、本实验中溶液的稀释是直接在粘度计中进行的,所

用溶剂必须先在与溶液所处同一恒温槽中恒温,然

后用移液管准确量取并充分混合均匀方可测定。

4、测定时粘度计要垂直放置,否则影响结果的准确性。五.数据记录

六.数据处理

1.纯溶剂的t 0=40.12s ,则根据公式η

r

=0ηη=0

t t ,

η

sp =ηr -1

得∶

2.

可得截距A=1.26

[η]=A×c0=1.26×40=50.4

3.已知25℃时,K=156×10-6m3/kg α=0.50 则根据[η]=K·Mα

η

得∶

η=

[]

K

η=

6

50.4

15610-

?

=3.23×105

七.思考题

1.乌氏粘度计中的支管C的作用是什么?能否去除C管改为双管粘度计使用?为什么?

答∶C管的作用是形成气承悬液柱,不能去除C管改为双粘度计,因为没有了C管就成了连通器,不断稀释之后会导致粘度计内液体量不一样,这样在测定液体流出时间时就不能处在相同的条件之下,因而没有可比性,只有形成了气承悬液柱,便流出液体上下方均处在大气环境下测定的数据才具有可比性。

2.高聚物溶液的ηr 、ηsp 、

ηsp /c 和[η]的物理意义是什么?

答∶ηr ——相对粘度,反应的是溶液的粘度行为, η

sp ——增比粘度,反应的是高聚物分子与溶剂分子

间和高聚物分子间的内摩擦效应。

η

sp /c ——比浓粘度,即单位浓度下所显示的增比粘

度。

[η]——特性粘度,反映的是无限稀释溶液中高聚物

分子与溶剂分子间的内摩擦,其值取决于溶剂的性质与高聚物分子的大小和形态。

3.粘度法测定高聚物的摩尔质量有何局限性?该法适用的高聚物质量范围是多少?

答﹕粘度法是利用大分子化合物溶液的粘度和分子量间的某种经验方程来计算分子量,适用于各种分子量的范围,局限性在于不同的分子量范围有不同的经验方程。 4.分析η

sp /c ~c

及r

c η'

㏑~c 作图缺乏线性的原因。

答︰因为[η] 2有可能不是一个常数,还有实验存在不可避免的误差。

摩尔质量的计算公式

摩尔质量的计算公式 (1)物质的量浓度就是单位体积内物质的摩尔数,公式:c=n/v,单位:mol/L (2)气体摩尔体积就是1摩尔气体在标准状况下的体积(标准状况的定义:温度为0摄氏度,一个标准大气压)。所有气体在标准状况下的气体摩尔体积均为22.4L/mol。 (3)摩尔质量即1摩尔物质的质量,在数值上等于其相对分子质量,例如:O2的摩尔质量为32g/mol。 1.物质的量是国际单位制中七个基本物理量之一 用物质的量可以衡量组成该物质的基本单元(即微观粒子群)的数目的多少,符号n,单位摩尔(mol),即一个微观粒子群为1mol。如果该物质含有2个微观粒子群,那么该物质的物质的量为2mol。对于物质的量,它只是把计量微观粒子的单位做了一下改变,即将“个”换成“群或堆”。看一定质量的物质中有几群或几堆微观粒子,当然群或堆的大小应该固定。现实生活中也有同样的例子,啤酒可以论“瓶”,也可以论“打”,一打就是12瓶,这里的打就类似于上面的微观粒子群或微观粒子堆。 2.摩尔是物质的量的单位 摩尔是国际单位制中七个基本单位之一,它的符号是mol。“物质的量”是以摩尔为单位来计量物质所含结构微粒数的物理量。 使用摩尔这个单位要注意: ①.量度对象是构成物质的基本微粒(如分子、原子、离子、质子、中子、电子等)或它们的特定组合。如1molCaCl2可以说含1molCa2+,2molCl-或3mol阴阳离子,或含54mol质子,54mol 电子。摩尔不能量度宏观物质,如“中国有多少摩人”的说法是错误的。 ②.使用摩尔时必须指明物质微粒的种类。如“1mol氢”的说法就不对,因氢是元素名称,而氢元素可以是氢原子(H)也可以是氢离子(H+)或氢分子(H2),不知所指。种类可用汉字名称或其对应的符号、化学式等表示:如1molH表示1mol氢原子,1molH2表示1mol氢分子(或氢气),1molH+表示1mol氢离子。 ③.多少摩尔物质指的是多少摩尔组成该物质的基本微粒。如1mol磷酸表示1mol磷酸分子。

粘度法测分子量实验报告(精)

高聚物相对分子量的测定 一、实验目的 1、了解黏度法测定高聚物分子量的基本原理和分子。 2、测定聚乙二醇的黏均分子量。 3、掌握用乌贝路德黏度的方法。 4、用Origin或Excel处理实验数据 二、实验原理 分子量是表征化合物特征的基本参数之一。但高聚物分子量大小不一,参差不一,一般在10~10之间,所以通常所测高聚物的分子量是平均分子量。测定高聚分子量的方法很多,对线型高聚物,各方法适合用范围如下; 10 端基分析〈3*4 10 沸点升高,凝固点降低,等温蒸馏〈3*4 10~10 渗透压46 10~10 光散射47 10~10 起离心沉降及扩散47 10~10 黏度法47 其中黏度发设备简单,操作方便,有相当好的实验精度,但黏度发不是测分子量的绝对方法,因为此法中所有的特征黏度与分子量的经验方程是要用其他方法来确定的,高聚物不同,溶剂不同,分子量范围不同,就要用不同的经验方程式。 高聚物在稀溶液中的黏度,主要反映了液体在流动是存在着内摩檫。在测高聚物溶液黏度求分子量时,常用到下面一些名词。 如果高聚物分子的分子量越大,则它与溶剂间的接触表面之间的经验关系为; 式中,M为粘均分子量;K为比例常数;a是与分子形状有关的经验参数。K与a植a与温度、高聚物]溶剂性质及分子量大小有关。K植受温度的影响较明显,而a值主要取决与高分子线团在某温度下,某溶剂中舒展的程度,其数值介于0.5~1之间。K 与a的值可以通过其它的实验方法确定,例如渗透压法、光散射大等,从黏度法只能测定得[ɡ] 根据实验,在足够稀的溶液中有: 这样以及对C作图得两条直线,外推到这两条直线在纵坐标轴上想叫与一点,可求出数值。为了绘图方便,引进相对浓度,即。其中,C表示溶液的真实浓度,表示溶液的其始浓度,由图可知,其中A为截距 黏度测定中异常现象的近似处理。在特定性黏度测量过程中,有时并非操作不慎,而出现对图与对图外推到时,在纵坐标轴上并不相交于一点的异常现象。在式中和

STY-2渗透压摩尔浓度检测仪操作规程

STY-2渗透压摩尔浓度检测仪操作规程 1. 仪器准备:接通仪器电源;打开仪器后部电源开关,仪器显示开机界面,仪器启动进行预冷,彩屏显示自检界面,约两分钟后停止,仪器预冷完毕,彩屏显示屏进入主界面。 2. 测试: 按键盘数字键1后,仪器显示页面,“按下手柄,开始测试”,测试操作(或者直接按下手柄)。 ●用取样器取出供试品60-80ul,注入测试管中(确保其中无可见气泡)。 ●将测试管推入支撑座至停止位置,使测温探头完全侵入测试管内供试品样中。 按下已放置好的样品的手柄,仪器自动显示当前温度,(注意:务必上推冰针观察窗,用注射器或者镊子松动使保持冰针松动状态,否者会出现冰针无法下探,数据出现超出范围值。)温度降到零下6.5度时(或仪器内部程序达到温度范围时)探针自动插入离心管,同时显示测量数据后显示:冰点值和摩尔浓度值。按打印键打印当前测试单次报告,按存储存储当前数据;按返回返回主界面。 注:①仪器显示温度时未见探针下探,显示自然结晶,需要按返回键返回主测试页面重新测试 ②若测试过程中,中断抬起移动手柄后,仪器自动返回主界面,需再次重新测试 ③若测试过程中,仪器未出现探针刺入供试样品,仪器显示自然结晶,需抬起手柄, 重新测试 ④每次应使用新的测试管,更换移液器枪头 3. 校准: 按数字键3仪器进入校准界面 (校准时必须预先选择纯水0摩尔浓度校准;后选择测试点校准液校准) 按动上下键选择校准点(31个校准点供选择),选择好校准点后,按校准键,仪器进入测试界面,取已知浓度的和已选择校准点匹配的标准液,将选出的标准液充分摇匀,取 50-70ul注入测试管(注意其中无可见气泡),并将测试管推入支撑座值停止位置,使测温探头完全侵入测试管内标准液中,后进行测试样品方式测试样品方式测试校准,仪器自动默认校准液的信号值并自动测算和显示校正后摩尔浓度值。(如后发现选择校准点值和标准品值未匹配但已校准,只需要返回校准页面重新选择校准点按校准键后和匹配的标准液再次测试方法校准即可)每次校准均应使用新的测试管和移液器以及校准用的标准溶液。 4. 参数设置 按数字键4仪器进入预先测试前名称和批号设置 名称设置:查看说明书序列表对照编号数字,按编号数字键后仪器显示已选择的药品名称批号设置:按数字键设置数字批号,最高10位数字批号 如发现药品名称和批号错误设置,按左键取消已设置数据,按数字键重新设置,按下键切换,最后按确认键确认设置,按返回键返回主界面。 仪器测试使用前需预先设置好药品名称和批号,如不预先设置仪器默认上次的打印设置。 5. 测试结束后处理 ●将移动手柄上移,取下测试管。 ●测试结束在关闭仪器前,应使用纯水进行两次以上测试操作,以便对测温探头和探 针进行清洗(如检测粘稠度大的检品,应使用清洗瓶对探针及探针进行清洗),再 使用滤纸将测温探头檫试清理干净,以免污染。 ●在不使用仪器时,应给测温探头套上干净的空的测试管,以保护测温探头。

药典三部(版)-通则-0632渗透压摩尔浓度测定法复习过程

0632 渗透压摩尔浓度测定法 生物膜,例如人体的细胞膜或毛细血管壁,一般具有半透膜的性质,溶剂通过半透膜由低浓度向高浓度溶液扩散的现象称为渗透,阻止渗透所需要施加的压力,称为渗透压。在涉及溶质的扩散或通过生物膜的液体转运各种生物过程中,渗透压都起着极其重要的作用。因此,在制备注射剂、眼用液体制剂等药物制剂时,必须关注其渗透压。处方中添加了渗透压调节剂的制剂,均应控制其渗透压摩尔浓度。 静脉输液、营养液、电解质或渗透利尿药(如甘露醇注射液)等制剂,应在药品说明书上标明其渗透压摩尔浓度,以便临床医生根据实际需要对所用制剂进行适当的处置(如稀释)。正常人体血液的渗透压摩尔浓度范围为285~310mOsmol/kg,0.9%氯化钠溶液或5%葡萄糖溶液的渗透压摩尔浓度与人体血液相当。溶液的渗透压,依赖于溶液中溶质粒子的数量,是溶液的依数性之一,通常以渗透压摩尔浓度(Osmolality)来表示,它反映的是溶液中各种溶质对溶液渗透压贡献的总合。 渗透压摩尔浓度的单位,通常以每千克溶剂中溶质的毫渗透压摩尔来表示,可按下列公式计算毫渗透压摩尔浓度(mOsmol/kg): 毫渗透压摩尔浓度(mOsmol/kg) =×n×1000 式中,n为一个溶质分子溶解或解离时形成的粒子数。在理想溶液中,例如葡萄糖n=1,氯化钠或硫酸镁n=2,氯化钙n=3,枸橼酸

钠n=4。 在生理范围及很稀的溶液中,其渗透压摩尔浓度与理想状态下的计算值偏差较小;随着溶液浓度增加,与计算值比较,实际渗透压摩尔浓度下降。例如0.9%氯化钠注射液,按上式计算,毫渗透压摩尔浓度是2×1000×9/58.4=308 mOsmol/kg,而实际上在此浓度时氯化钠溶液的n稍小于2,其实际测得值是286 mOsmol/kg;这是由于在此浓度条件下,一个氯化钠分子解离所形成的两个离子会发生某种程度的缔合,使有效离子数减少的缘故。复杂混合物(如水解蛋白注射液)的理论渗透压摩尔浓度不容易计算,因此通常采用实际测定值表示。 1、渗透压摩尔浓度的测定 通常采用测量溶液的冰点下降来间接测定其渗透压摩尔浓度。在理想的稀释溶液中,冰点下降符合△T f=K f·m的关系,式中,△T f为冰点下降,K f.为冰点下降常数(当水为溶剂时为1.86),m为重量摩尔浓度。而渗透压符合P0=K0·m的关系,式中,P0为渗透压,K0为渗透压常数,m为溶液的重量摩尔浓度。由于两式中的浓度等同,故可以用冰点下降法测定溶液的渗透压摩尔浓度。 仪器采用冰点下降的原理设计的渗透压摩尔浓度测定仪通常 由制冷系统、用来测定电流或电位差的热敏探头和振荡器(或金属探针)组成。测定时将探头浸入供试溶液中心,并降至仪器的冷却槽中。启动制冷系统,当供试溶液的温度降至凝固点以下时,仪器采用振荡器(或金属探针)诱导溶液结冰,自动记录冰点下降的温度。仪器显示的测定值可以是冰点下降的温度,也可以是渗透压摩尔浓度。

SMC 30C型渗透压摩尔浓度测定仪操作规程

1.目的:制定SMC 30C型渗透压摩尔浓度测定仪的操作规程,确保操作人员的规范操作。 2.范围:本标准适用于SMC 30C型渗透压摩尔浓度测定仪的操作。 3.责任:技术质量部QC负责本规程实施。 4.内容: 仪器组成及装置: 4.1.1组成:触摸显示屏、测试管支撑座、测温探头、测试管、冷却池、探针及护罩、移动手柄等。 4.1.2装置:按仪器说明书进行安装与使用。 操作方法: 4.2.1准备: 4.2.1.1按要求接通电源,打开仪器后面电源开关,仪器显示开机界面,仪器启动进行预冷,触摸显示屏显示自检界面,约二分钟后停止,仪器预冷完毕触摸显示屏进入主界面。 4.2.1.2 首次使用仪器要按动电机后面的启动电机键,使探针回到正确位置。 4.2.2校准: 4.2.2.1使用纯水进行零点校准(新制备的水溶剂) a 使用取样器将60μL纯水注入干净、干燥的测试管内,确保其中无可见气泡。 b将测试推入支撑座直至停止位置,使测定探头完全浸入测试管内纯水中。

c 4.2.2.2校准界面 确认界面。 4.2.2.3零点校准界面 操作移动手柄轻缓下移,测温探头(测试管)稳稳插入冷却池。纯水。纯水的温度被实时地触摸显示屏上以摄氏温度显示出来。 4.2.2.4测试界面被测纯水冷却完成之后,不锈钢探针带冰晶自动插入,纯水开始结晶,仪器测出纯水的冰点,并将其记为“0”值,显示读数为“0”。将移动手柄上移,取下测试管。尔后需要用用纯水进行一次测试,测试结果应符合 0±2mOmol/kg H 2 O的标准,负责重新进行零校准。 4.2.2.5使用标准液进行分段量程两端点的校准 该仪器对分段量程的设计:在0~3000测量范围内,每100为一个校准量程(循环)。 校准前,应根据供试品的渗透压摩尔浓度值选择与量程相符的标准液,并按 使触摸显示屏显示的数据与预选的标准数值相符,否则会产生校准错误。按动确认按钮。将选出的标准液充分摇匀,取60μL注入测试管(注意其中无可见其中无可见气泡),并将测试管内标准液中。确认触摸显示屏显示的数值与选择的标准液数值相符合。 操作移动手柄轻缓下移,使测温探头(测试管)稳稳插入冷却池,溶液开始结晶,仪器测出冰点值,触摸显示屏自动显示测试过程结果。 将移动手柄上移,取下测试管。尔后需用标准液进行一次测试,结果应符合 ≤400mOmol/kg H 2O时±2mOmol/kg H 2 O、﹥400mOmol/kg H 2 O时±%的标准,否则 重新进行标准液校准。每次校准均应使用新的测试管及校准用的标准溶液。

实验二--乌氏粘度计测定聚合物的特性粘度

实验二--乌氏粘度计测定聚合物的特性粘度

实验二乌氏粘度计测定聚合物的特性粘度 一、实验目的 粘度法是测定聚合物分子量的相对方法,此法设备简单,操作方便,且具有较好的精确度,因而在聚合物的生产和研究中得到十分广泛的应用。 通过本实验要求掌握粘度法测定高聚物分子量的基本原理、操作技术和数据处理方法。 二、实验原理 分子量是表征化合物特征的基本参数之一。但高聚物分子量大小不一,参差不齐,一般在103~107之间,所以通常所测高聚物的分子量是平均分子量。测定高聚分子量的方法很多,本实验采用粘度法测定高聚物分子量。 高聚物在稀溶液中的粘度,主要反映了液体在流动时存在着内摩擦。在测高聚物溶液粘度求分子量时,常用到下面一些名词。 如果高聚物分子的分子量愈大,则它与溶剂间的接触表面也愈大,摩擦就大,表现出的特性粘度也大。特性粘度和分子量之间的经验关系式为: 式中,M 为粘均分子量;K为比例常数;alpha是与分子形状有关的经验参数。K和alpha值与温度、聚合物、溶剂性质有关,也和分子量大小有关。K 值受温度的影响较明显,而alpha值主要取决于高分子线团在某温度下,某溶剂中舒展的程度,其数值解与0.5~1 之间。K 与alpha 的数值可通过其他绝对方法确定,例如渗透压法、光散射法等,从粘度法只能测定[η]。 在无限稀释条件下 因此我们获得[η]的方法有二种;一种是以ηsp/C对C 作图,外推到C→0 的截距值;另一种是以lnηr/C对C作图,也外推到C→0 的截距,两根线会合于一点。方程为:

测定粘度的方法主要有毛细管法、转筒法和落球法。在测定高聚物分子的特性粘度时,以毛细管流出发的粘度计最为方便若液体在毛细管粘度计中,因重力作用流出时,可通过泊肃叶公式计算粘度。 (m=1)。 对于某一只指定的粘度计而言,(4)可以写成下式 省略忽略相关值,可写成: 式中,t 为溶液的流出时间;t0为纯溶剂的流出时间。 可以通过溶剂和溶液在毛细管中的流出时间,从(6)式求得ηr,再由图求得[η]。 三、实验主要仪器设备和材料 主要仪器:恒温玻璃水浴(包括电加热器、电动搅拌器、温度计、感 温元件和温度控制仪)、三管乌式粘度计、秒表、洗 耳球、 250ml 三角烧瓶、20ml移液管、40 ml砂芯 漏斗 主要原料:溶剂(分析纯)和聚合物自选 四、实验方法、步骤及结果测试 1. 试样准备: 按溶剂选择原则选择待测高聚物的溶剂。从手册查所选高聚物/溶剂对在特定温度下Mark-Houwink方程中的K和α值。 预先在容量瓶内配制精确体积的溶液。浓度选择要使溶液和纯溶剂流经乌氏粘度计上两刻度线之间C球的时间比约为1.2~2.0。 2. 温度调节:

粘度法测定高聚物分子量

实验五粘度法测定水溶性高聚物分子量 一.实验目的 1. 测定多糖聚合物-右旋糖苷的平均分子量; 2.掌握用乌式黏度计测定黏度的原理和方法。 二.实验原理 高聚物相对分子质量是表征聚合物特征的基本参数之一,相对分子质量不同,高聚物的性能差异很大。所以不同材料,不同的用途对分子质量的要求是不同的。测定高聚物的相对分子质量对生产和使用高分子材料具有重要的实际意义。本实验采用的右旋糖苷分子是目前公认的优良血浆代用品之一。它是一种无臭、无味、白色固体物质,易溶于近沸点的热水中,相对分子质量是2∽8×104范围内,选用它来做实验是合乎要求的。 线型高分子可被溶剂分子分散,在具有足够的动能下相互移动,成为黏度态,η是可溶性的高聚物在稀溶液中的黏度,是它在流动过程中所存在内摩擦的反映,这种摩擦主要有:溶剂分子与溶剂分子之间的内摩擦,也就是纯溶剂的黏度,记作η0;还有高分子与高分子之间的内摩擦以及高分子与溶剂分子之间的内摩擦,三者总和表现为高聚物溶液的黏度,记作η。 在同一温度下,高聚物的黏度一般都比纯溶剂的黏度大,即η>η0,这些黏度增加的分数,叫做增比黏度,记作ηsp,即 式中,ηr 称为相对黏度,这指明溶液黏度对溶剂黏度的相对值,仍是整个溶液的黏度行为;ηsp则意味着已经扣除了溶剂分子之间的内摩擦效应。 溶液的浓度可大可小,显然,浓度越大,黏度也就越大,为了便于比较,将单位浓度下所显示的黏度,即引入ηsp/c,称作比浓黏度,其中c是浓度,采用单位为g/mL。 为了进一步消除高聚物分子之间的内摩擦效应,必须将溶液浓度无限稀释,使得每个高聚物分子彼此相隔极远,其相互干扰可以忽略不记。这时溶液所呈现出的粘度行为基本上反映了高分子与溶剂分子之间的内摩擦。这一粘度的极限值记为: [η]被称为特性粘度,其值与浓度无关。实验证明,当聚合物、溶剂和温度确定以后,[η]的数值只与高聚物平均相对分子质量M有关,它们之间的半经验关系可用Mark Houwink 方程式表示:

等摩尔连续变化法测定磺基水扬酸合铁的组成及稳定

光度法对磺基水杨酸铁配合物的组成及稳定常数的实验研究四:等摩尔连续变化法测 定磺基水扬酸合铁的组成及稳定 fggdj分光光度计来源:东海仪表 等摩尔连续变化法是配制一系列溶液,保持溶液中度、离子强度、温度和金属离子与配体的总物质的量不 变改变金属离子cM和配体的摩尔分数使之连续化,在最大吸收波长处测定各溶液的吸光度,以吸光 度A配体的摩尔分数xR作图(图4),根据两边线性部分的延线相交之点所对应的配体摩尔分数值,即可求出 配合的组成比 可以认为相交之点Amax为配合物以n完全配位而不离解的吸光度,而实验测得值为A,两者之差就是由配合物离解所造成的.由此可求K稳,相应计算同摩尔比法.按表2配制溶液,用1cm比色皿,以1号试剂作参比液在500nm处测各溶液的吸光度,以A对xR作图,确定n.并求K稳.实验数值表明,摩尔比法和等摩尔连续变化法两种测定方法的配位数相同,最大吸光度偏差为0.002,实验测量值偏差为0.003,解离度偏差为0.028,平衡常数数值相对偏差为2.5%.考虑误差来源,认为两种分析方法无显著性差异.

一、 实验原理 1、 等物质的量系列法求配合物组成及稳定常数 对于配合物体系而言,如果组成配合物的中心离子和配体的吸收光谱与配合物不重合。就可以选择对配合物有较大吸收的波长,测得平衡体系吸光度与相应的配合物浓度[MLn]间应符合:,得知了吸光度A 就可以求出的浓度。 本实验选用磺基水杨酸(简写为H 3R )与Fe 3+形成的配位平衡体系, H 3R 和Fe 3+等试剂与配合物的吸收光谱不重合,因此可用分光光度法测定。 但由于配位反应: 所以配合物的组成受溶液的pH 影响,在pH=2~3时, 4~9时,9~11时,二者可形成三 种颜色不同、组成不同的配离子。 本实验是测定pH=2~3时形成的红褐色磺基水杨酸铁配离子的组成及其稳定常数,实验中是通过加入一定量的HClO 4来控制溶液的pH 值。 由于配合物系统的复杂性,因此建立了不同的平衡系统及相应的处理方法,本实验选用等物质的量连续变化法(浓比递变法)。 所谓等物质的量变化法就是保持金属离子和配体二者的总物质的量(摩尔数)不变,将金属离子和配体按不同物质的量(摩尔)比混合,配制系列等体积溶液(即配置一系列保持金属离子浓度C 和配体浓度之和不变的溶液) ,分别测其吸光度。虽然这一系列溶液中总

渗透压摩尔浓度检测仪

渗透压摩尔浓度检测仪渗透压摩尔浓度测试仪 型号:H110511 冰点渗透压摩尔浓度检测仪是用于测定溶液和各种体液渗透压或渗摩尔浓度(Osmolality)的仪器,渗透压摩尔浓度测定法是国家药典2010版中新增的检测方法, 在药品质控中具有重要意义,欢迎药物研究单位、药检机构和制药厂选用。本仪器 完全满足2010版《中国药典》、《美国药典》检测标准的规定。 主要特点: ◆采用LED彩色大屏幕液晶显示屏;具有测试数据自动处理、打印。本仪器可以存储两万次历史使用数据;随时可调用和打印功能; ◆采用冰点下降原理及高精度传感器,测量精度高,重现性好。 ◆采用半导体双制冷系统,预冷时间短,检测速度快,便于连续检测。 ◆振荡原理,检测样品量少,范围宽,可满足不同领域需求。 ◆可同时显示检品的渗透压摩尔浓度值,冰点值。 ◆本仪器具有有31个校正点,可进行两点及多点的线性校正,保证仪器精准度。 ◆冷却系统采用无热传导液设计,免除频繁的维护。 ◆内置《中国药典》数百种注射剂药品名称,方便预设检品资料。 技术参数: 1.测量范围:0~3000 mOsmol / kg H2O 2.样品量:50-100μl(根据离心管大小适量) 3.测试时间:<2min30sec 4.预冷时间:≤3min 5.重复性:RSDs≤1% (300mOsmol/kg H2O) 6.准确度:±1% (300mOsmol/kg H2O) 7. 分辨率:1mOsmol/kg 8. 线性:<1%的直线 9. 环境温度:-10~25℃ 10. 环境湿度:5~60% 11. 电源:AC220V 1.5A 12. 外形尺寸:230*210*360mm

黏度法测高聚物分子量(最终版)

华 南 师 范 大 学 实 验 报 告 学生姓名 平璐璐 学 号 20132401179 专 业 化学(师范) 年级、班级 13级一班 课程名称 物理化学实验 实验项目 黏度法测定水溶性高聚物分子量 实验类型 □验证□设计□综合 实验时间 2016 年 4 月 7 日 实验指导老师 林晓明 实验评分 一、实验目的 1.测定多糖聚合物-右旋糖苷的平均分子量; 2.掌握用乌式黏度计测定黏度的原理和方法。 二、实验原理 高聚物摩尔质量不仅反映了高聚物分子的大小,而且直接关系到它的物理性能。与一般的无机物或低分子的有机物不同,高聚物多是摩尔质量大小不同的大分子混合物,所以通常所测高聚物的分子量是一种统计的平均分子量。 用粘度法测定的分子量称“黏均分子量”记作M η 高聚物稀溶液的黏度(η)是流体在流动时摩擦力大小的反映,这种流动过程中的内摩擦力主要有:纯溶剂间的内摩擦,也就是纯溶剂的粘度,记作η0,高聚物分子与溶剂分子间的内摩擦,以及高聚物分子间的内摩擦。这三种内摩擦的综合成为高聚物溶液的黏度η 实验证明,在相同温度下,η> η0,相对于溶剂,其溶液粘度增加的分数,称为增比粘 度,记作 sp η, 0sp r 00 11 ηηη ηηηη-= =-=- r η称为相对粘度,即溶液粘度对溶剂粘度的相对值。 高聚物溶液的ηsp 往往随浓度增加而增大,为了便于比较,定义单位浓度的增比黏度ηsp /c 为比浓黏度,定义ln ηsp /c 为比浓对数黏度。当溶液溶液无限稀释,高聚物分子彼此相隔甚远,其相互作用可以忽略不计。此时比浓粘度趋近于一个极限值,即: [η]称为特性粘度,在足够稀的溶液中,比浓黏度ηsp /c 和比浓对数黏度ln ηsp/c 与溶液的浓度有以下的关系(关系公式):

平均摩尔质量有关的计算

平均摩尔质量有关的计算 1.适用范围:混合物 【例】空气中有氧气和氮气,氧气的质量分数为21%,求空气的平均摩尔质量。 3.平均摩尔质量的求法: (1)定义法: 【例】现有NaOH和CaCO3两者组成的混合物,其中NaOH的质量分数为40%,求该混合物的平均摩尔质量。 (2)相对密度法: 【例】在相同条件下,某混合物气体对氢气的相对密度为16,求该混合气体的平均摩尔质量。 (3)标况密度法: 【例】某混合气在标准状况下的密度是1.2g/cm3,求此气体的平均摩尔质量。 练习: 1.氮气、二氧化碳以物质的量比2:3混合,求混合气体的平均摩尔质量。 2.氮气、二氧化碳以体积比2:3(相同条件)混合,求混合气体的平均摩尔质量。 3.二氧化碳、氢气、氯气按体积比1:2:3混合,求混合气体的平均摩尔质量。 4.将氧气与氮气按质量比8:7混合,求混合气体的平均摩尔质量。 5.已知CH4、H2的混合气体中CH4的质量分数为80%,求混合气体的平均相对分子质量。 6.某混合气体密度是同温同压下氢气密度的17倍,求此混合气体的平均摩尔质量。 7.在一定温度和压强下,某混合气质量是相同体积N2质量的1.5倍,求此混合气的平均摩尔质量。 8.已知氯化铵受热可分解为氨气和氯化氢,求其完全分解后所得气体的平均相对分子质量。 9.将甲烷与氧气按体积比1:2混合后点燃,充分反应后所得气体(120℃,101kPa)的平均相对分子质量。 10.氮气与氧气的平均摩尔质量为32,求两种气体的物质的量之比。 11.氮气与氧气混合气体的密度是相同条件下氢气密度的15.5倍,求两种气体的体积比(相同条件)。 12.氧气与甲烷混合气体在标准状况下的密度为1.25g/L,求两种气体的质量比。 13.氧气、甲烷和氮气混合气密度与相同条件下一氧化碳密度相等,求三种气体的物质的量比。 14、150摄氏度时NH4HCO3完全分解产生的气态混合物,其密度是相同条件下H2密度的多少倍? 15.已知反应:2A(s)=B(g)+2C(g)+2D(g),所得混合气的密度和同温同压下氧气的密度相同,则A 的摩尔质量是多少?

摩尔测定法

附录Ⅸ G 渗透压摩尔浓度测定法 生物膜,例如人体的细胞膜或毛细血管壁,一般具有半透膜的性质,溶剂通过半透膜由低浓度溶液向高浓度溶液扩散的现象称为渗透,阻止渗透所需施加的压力,称为即为渗透压。生物膜,例如人体的细胞膜或毛细血管壁,一般具有半透膜的性质。在涉及溶质的扩散或通过生物膜的液体转运各种生物过程中,渗透压都起着及其重要的作用。因此,在制备注射剂、滴眼剂等药物制剂时,必须考虑关注其渗透压。凡处方中添加了渗透压调节剂对制剂,均应控制其渗透压摩尔浓度。例如,注射剂、滴眼剂等制剂处方中的氯化钠,其作用若主要为调节制剂的渗透压,则应作渗透压摩尔浓度检查,而无须进行氯化钠的定量测定。 对静脉输液、营养液、电解质或渗透利尿药(如甘露醇注射液)等制剂,应在标签上注明标明其溶液的渗透压摩尔浓度,以便提供临床医生参考根据实际需要对所用制剂进行适当的处置(如稀释)。正常人体血液的渗透压摩尔浓度范围为285~310mOsmol/kg,0.9%氯化钠溶液或5%葡糖糖溶液的渗透压摩尔浓度与人体血液相当。 溶液的渗透压,依赖于溶液中粒子的数量,是溶液的依数性之一,通常以渗透压摩尔浓度(Osmolality)来表示,它反映的是溶液中各种溶质对溶液渗透压贡献的总和。渗透压摩尔浓度的单位,通常以每千克溶剂中溶质的毫渗透压摩尔来表示,可按下列公式计算毫渗透压摩尔浓度(mOsmol/kg): 毫渗透压摩尔浓度(mOsmol/kg)=〔每千克溶剂中溶解溶质的克数/分子量〕×n×1000 式中,n为一个溶质分子溶解并解离时形成的粒子数。在理想溶液中,例如葡萄糖n=1,氯化钠或硫酸镁n=2,氯化钙n=3,枸橼酸钠n=4。 在生理范围及很稀的溶液中,其渗透压摩尔浓度与理想状态下的计算值偏差较小;随着溶液浓度的增加,与计算值比较,实际渗透压摩尔浓度下降。例如0.9%氯化钠注射液,按上式计算,毫渗透压摩尔浓度是2×1000×9/58.4=308mOsmol/kg,而实际上在此浓度时氯化钠溶液的n稍小于2,其实际测得值是286mOsmol/kg;复杂混合物,如水解蛋白注射液的理论渗透压摩尔浓度不容易计算,因此通常采用实际测定值表示。

(推荐)粘度法测定水溶性高聚物分子量实验报告

黏度法测定水溶性高聚物分子量 一.实验目的 1. 测定水溶性高聚物聚乙烯醇的相对分子质量; 2.掌握用乌式黏度计测定黏度的原理和方法。 二.实验原理 高聚物相对分子质量是表征聚合物特征的基本参数之一,本实验采用的右旋糖苷分子是目前公认的优良血浆代用品之一, 由于高聚物分子量大小不一,故通常测定高聚物分子量都是利用统计的平均分子量。常用的测定方法有很多,如粘度法、端基分析、沸点升高、冰点降低、等温蒸馏、超离心沉降及扩散法等,其中,用粘度法测定的分子量称“黏均分子量”,记作。 增比黏度: 特性粘度:

时间与粘度的关系 N=n/n0=t/t0 (3-84) 三、仪器与试剂 恒温槽 1 套乌式黏度计 1支 1/10 秒表 1只聚乙烯醇 四、实验步骤 1.洗涤黏度计 取出一只黏度计,先用丙酮灌入黏度计 中,浸洗去留在黏度计中的高分子物质, 黏度计的毛细管部分,要反复用丙酮流 洗。方法是:用约 10 mL 丙酮至大球中, 并抽吸丙酮经毛细管 3 次以上,洗毕,

倾去丙酮倒入回收瓶中,再重复一次,然 后用吹风机吹干黏度计备用。 2.测定溶剂流出时间 在铁架台上调节好黏度计的垂直度和高度,然后将黏度计安放在恒温水浴中。用移液管吸取10mL 纯水,从A 管注入。于37℃恒温槽中恒温5min。进行测定时,在 C管上套上橡皮管,并用夹子夹住,使其不通气,在 B 管上用橡皮管接针筒,将蒸馏水从 F 球经 D 球、毛细管、E球抽到G球上(不能高出恒温水平面),先拔去针筒并解去夹子,使 C管接通大气,此时 D 球内液体即流回 F 球,使毛细管以上液体悬空。毛细管以上液体下流,当液面流经 a刻度时,立即按停表开始记录时间,当液面降到b刻度时,再按停表,测得刻度a、b之间的液体流经毛细管所需时间,重复操作两次,记录留出时间且误差不大于1-2s,取两次平均值为 t0, 3.溶液流出时间的测定 取出黏度计,倾去其中的水,加入少量的丙酮溶液润洗,经过各个瓶口流出,以达到洗净的目的。同上法安装调节好黏度计,用移液管吸取 10mL 溶液小心注入黏度计内(注意不能将溶液黏在黏度计的管壁上),在溶液恒温过程中,应用溶液润洗毛细管后再测定溶液的流出时间t。然后一次分别加入 2.0mL、3.0 mL、5.0 mL、10.0 mL 蒸馏水,按上述方法分别测量不同浓度时的t 值。每次稀释后都要将溶液在F 球中充分搅匀(可用针筒打气的方法,但不要将溶液溅到管壁上),然后用稀释液抽洗黏度计的毛细管、E 球和 G 球,使黏度计内各处溶液的浓度相等,而且须恒温。 五、数据处理及结论 1.数据整理(恒温槽温度:37℃) 为了作图方便,假定起始相对浓度是1,根据原理中的公式计算所得数据记录如下表 表一数据记录表

实验二 粘度法测定高聚物的分子量

实验二 粘度法测定高聚物的分子量 [适用对象] 化学教育 [实验学时] 5学时 一、实验目的 1、掌握粘度法测定高聚物相对分子质量的原理。 2、用乌氏粘度计测定聚乙烯醇的特性粘度,计算聚乙烯醇的粘均相对分子质量。 二、实验原理 单体分子经加聚或缩聚过程便可合成高聚物。并非高聚物每个分子的大小都相同,即聚合度不一定相同,所以高聚物摩尔质量是一个统计平均值。对于聚合和解聚过程的机理和动力学的研究,以及为了改良和控制高聚物产品的性能,高聚物摩尔质量是必须掌握的重要数据之一。 高聚物溶液的特点是粘度特别大,原因在于其分子链长度远大于溶剂分子,加上溶剂化作用,使其在流动时受到较大的内摩擦阻力。 粘性液体在流动过程中,必须克服内摩擦阻力而做功。其所受阻力的大小可用粘度系数η(简称粘度)来表示(kg ·m -1·s -1)。 高聚物稀溶液的粘度是液体流动时内摩擦力大小的反映。纯溶剂粘度反映了溶剂分子间的内摩擦力,记作η0,高聚物溶液的粘度则是高聚物分子间的内摩擦、高聚物分子与溶剂分子间的内摩擦以及η0三者之和。在相同温度下,通常η>η0,相对于溶剂,溶液粘度增加的分数称为增比粘度,记作ηsp ,即 ηsp =(η-η0)/η0 而溶液粘度与纯溶剂粘度的比值称作相对粘度,记作ηr ,即 ηr =η/η0 ηr 反映的也是溶液的粘度行为,而ηsp 则意味着已扣除了溶剂分子间的内摩擦效应,仅反映了高聚物分子与溶剂分子间和高聚物分子间的内摩擦效应。 高聚物溶液的增比粘度ηsp 往往随质量浓度C 的增加而增加。为了便于比较,将单位浓度下所显示的增比粘度ηsp /C 称为比浓粘度,而1n ηr /C 则称为比浓粘度。当溶液无限稀释时,高聚物分子彼此相隔甚远,它们的相互作用可忽略,此时有关系式 [η]称为特性粘度,它反映的是无限稀释溶液中高聚物分子与溶剂分子间的内摩擦,其值取决于溶剂的性质及高聚物分子的大小和形态。由于ηr 和η sp 均是无因次量,所以[η]的单位是质量浓度C 单位的倒数。 [] ηηη==→→c c r c sp c ln lim lim 00

摩尔气体常数的测定

摩尔气体常数的测定 一、实验目的 1.了解一种测定摩尔气体常数的方法。 2.熟悉分压定律与气体状态方程的应用。 3.练习分析天平的使用与测量气体体积的操作。 二、实验原理 气体状态方程式的表达式为:pV = nRT = r M m RT (1) 式中: p ——气体的压力或分压(Pa ) V ——气体体积(L) n ——气体的物质的量(mol ) m ——气体的质量(g ) M r ——气体的摩尔质量(g·mol -1) T ——气体的温度(K ); R ——摩尔气体常数(文献值:8.31Pa·m 3·K -1·mol -1或J·K -1·mol -1) 可以看出,只要测定一定温度下给定气体的体积V 、压力p 与气体的物质的量n 或质量m ,即可求得R 的数值。 本实验利用金属(如Mg 、A1或Zn)与稀酸置换出氢气的反应,求取R 值。例如: Mg(s)* + 2H +(aq)* = Mg 2+(aq) + H 2(g)* (2) Δr H m 298=-466.85(kJ· mol -1) [说明] * s :表示固态(分子); aq :表示水合的离子(或分子); g :表示气态(分子) 将已精确称量的一定量镁与过量稀酸反应,用排水集气法收集氢气。氢气的物质的量可根据式(2)由金属镁的质量求得:M g M g H H H 2 22M m M m n = = 由量气管可测出在实验温度与大气压力下,反应所产生的氢气体积。 由于量气管内所收集的氢气是被水蒸气所饱和的,根据分压定律,氢气的分压2H p ,应是混合气体的总压p (以100Kpa 计)与水蒸气分压O H 2p 之差: O H H 22p p p -= (3) 将所测得的各项数据代入式(1)可得: T n V p p T n V p R ??-= ??=2222H O H H H )( 三、实验用品 仪器:分析天平,称量纸(蜡光纸或硫酸纸),量筒(10mL),漏斗,温度计(公用),砂纸,测定摩尔气体常数的装置(量气管1,水准瓶2,试管,滴定管 夹,铁架,铁夹,铁夹座,铁圈,橡皮塞,橡皮管,玻璃导气管),气压计(公用),烧杯(100mL 、400mL ) 1 量气管的容量不应小于50mL ,读数可估计到0.01mL 或0.02mL 。可用碱式滴定管代替。 2 本实验中用短颈(或者长颈)漏斗代替水准瓶。 图1 摩尔气体常数测定装置

pH值测定法(通则0631)及渗透压摩尔浓度测定法(通则0632)培训试题及答案

依据:1、《中国药典》2015年版四部 2、《中国药典分析检测技术指南》(2017年7月第一版) pH值测定法(通则0631)及渗透压摩尔浓度测定法(通则0632)培训试题及答案2018.6 姓名:成绩: 一、单选题(每题4分,共20分) 1、我公司在测量pH值时选用的电极为:。(根据实际情况填写)(A) A、玻璃电极-饱和甘汞电极 B、玻璃电极-银-氯化银电极 C、氢电极 D、醌-氢醌电极 2、pH值测定法是测定水溶液中活度的一种方法。(B) A、氢氧根离子 B、氢离子 C、金属离子 D、水溶液中可溶性盐的阳离子 3、下列电极中为复合电极的是:。(C) A、氢电极 B、醌-氢醌电极 C、玻璃电极-银-氯化银电极 D、甘汞电极 4、《中国药典》 2015年版规定渗透压摩尔浓度测定法采用:。(A) A、冰点下降法 B、露点测定法 C、含水量测定法 D、冷点测定法 5、中国药典2015年版四部规定采用校正渗透压摩尔浓度测定仪。(B) A、一点法 B、两点法

C 、三点法 D 、四点法 二、多选题(每题4分,共20分) 1、采用冰点下降法的原理设计的渗透压摩尔浓度测定仪通常由: 组成。(ABC ) A 、制冷系统 B 、用于测定电流或电位差的热敏感探头 C 、振荡器(或金属探针) D 、微量进样器 2(ABC ) A 、饱和甘汞电极 B 、1mol/L 甘汞电极 C 、0.1mol/L 甘汞电极 D 、5mol/L 甘汞电极 3、理想的稀溶液具有的依数性质包括: 。 (ABCD ) A 、渗透压 B 、沸点上升 C 、冰点下降 D 、蒸气压下降 4、不为pH 值测试的理想温度的是: 。 (ABD ) A 、20℃ B 、23℃ C 、25℃ D 、27℃ (ABCD ) A 、大容量注射剂 B 、小容量注射剂

摩尔质量及其计算

摩尔质量及其计算 知识与技能1.巩固物质的量、摩尔、阿佛加德罗常数三概念的理解。 2.弄清物质的质量、摩尔质量与1mol物质的质量三者间区别和联系。3.掌握进行物质的量、物质的质量、物质中特定微粒间的换算关系。 过程与方法1、培养学生逻辑推理、抽象概括的能力。 2、培养学生计算能力,并通过计算帮助学生更好地理解概念和运用、巩 固概念。 情感、态度与价值观通过对概念的透彻理解,培养学生严谨、认真的学习态度,体会定量研究的方法对研究和学习化学的重要作用。 2.掌握进行物质的量、物质的质量、物质中特定微粒间的换算关系。 【学习过程】 【活动1】观察下列两图,得到什么启示? _____________________________________ __________________________________. 【活动2】完成下列关系图: 【活动3】 12CH2O Al 一个分子或原子的质量 1.993×10-23 g 2.990×10-23g 4.485×10-23g 6.02×1023个分子或原子质量 1mol物质的质量 相对分子质量或原子质量 摩尔质量 规律:________________________________________________________。

四、摩尔质量(M) 1、概念:______________________________________ __。 2、符号:___________单位:___________。 3、数值:以__________为单位,数值上等于该物质的__________________。 【 【活动5】计算下列物质的物质的量或质量: (1)H2SO4的摩尔质量为_______________;9.8gH2SO4的物质的量为____________; (2)Na+ 的摩尔质量为_______________;2.3gNa+ 的物质的量为________________; (3)CaCO3的摩尔质量为_______________;0.25molCaCO3质量为______________; (4)H2O的摩尔质量为_______________;2N A H2O中氧原子质量为_____________; 4、计算公式: _______________________________________________________。 【练习1】下列说法是否正确,若不正确,请加以改正。 1、水的摩尔质量是18g。 2、1 个硫酸分子的质量是98 g。 3、1 mol 氮的质量为28 g。 4、摩尔是7 个基本物理量之一。 5、1 摩尔物质中含有6.02×1023个微粒。 6、摩尔质量与物质的种类有关,与物质的多少无关。 【练习2 【练习3】假设某硫酸铝溶液中含铝离子1.204×1023个,则硫酸铝物质的量为___________,硫酸根离子的质量为___________。

络合物组成和不稳定常数的测定--等摩尔系列法

韩山师范学院化学系化学专业物化实验课实验报告 班级20011312 学号23 姓名高旺珠同组陈红乳、吴和生评分 实验日期: 2004年3月10日室温21.7℃气压101.22*103Pa 教师 实验题目:络合物组成和不稳定常数的测定-----等摩尔系列法 实验目的: 1.学会用等摩尔系列法测定络合物组成、不稳定常数的基本原理和实验方法。 2.计算络合反应的标准自由能变化。 3.熟练掌握测定溶液pH值和光密度的操作技术。 实验原理: 络合物MA n在水溶液中的络合与解离反应式为: M+nA MA n 达到平衡时,K不稳=[M][A]n [MA n] 式中,K不稳为络合物不稳定常数,[M]、[A]和[MAn]分别为络合平衡时 金属离子、配位体和络合物的浓度、n为络合物的配位数。 在络合反应中,常伴有颜色的明显变化,因此研究这些络合物的吸收光谱可以测定它们的组成和不稳定常数。测定方法较多,本实验采用应用最广的等摩尔 系列法测定Cu(Ⅱ)-磺基水杨酸络合物的组成和不稳定常数。 1、络合物组成的测定 在维持金属离子M和配位体A总浓度不变的条件下,取相同浓度的M溶液和 A溶液配成一系列CM/(CM+CA)不同的溶液,这一系列溶液称为等摩尔 系列溶液,当所生成的络合物MAn的浓度最大时,络合物的配位数n可按下 述简单关系直接由溶液的组成求得 n=C A/CM 显然,通过测定某一随络合物含发生相应变化的物理量,例如光密度D的变 化,作出组成-性质图,从曲线的极大点便可直接得到络合物的组成。 络合物的浓度和光密度的关系符合朗伯-比尔定律: D=lgI0/I=acl 利用分光光度计或光谱仪测定溶液光密度D与浓度c的关系,即可求得络合 物的组成,不同络合物的组成-光密度图具有不同的形式。 2、不稳定常数的测定 在络合物明显解离的情形下,用等摩尔系列法得到的曲线,并作切线交于N 点。设在N点的光密度为D0,曲线2的极大的光密度为D,则络合物的解离 度为: α=解离部分/总浓度 =(总浓度-络合物浓度)/总浓度 =(D0-D)/D0 对于MA型络合物的K不稳=cα2/(1-α),故将该络合物浓度c及上面求 出的α代入此式即可算出不稳定常数。 当络合物解离度很小时,此法不易得到准备结果,此时,可在 ΔD-CM/(CM+CM)曲线上找出光密度相等的两点,在对应两点的溶液

094渗透压摩尔浓度检查中的一个特殊现象及原因分析

发布日期20060414 栏目化药药物评价>>化药质量控制 标题渗透压摩尔浓度检查中的一个特殊现象及原因分析 作者张震陈海峰 部门 正文内容 审评四部审评八室张震陈海峰 关键词:渗透压,渗透压摩尔浓度检查。 摘要:本文就静脉输液渗透压摩尔浓度检查中出现的一个特殊现象进行了说明,并 对该现象产生的原因进行了分析。 渗透现象和渗透压是人体血浆和各种液体制剂的特性。静脉输液和滴眼液的渗透压 必须与人体血浆渗透压保持基本一致,制剂渗透压过高和过低都会对人体产生损害。 在该类制剂的处方工艺研究中,必须考虑其渗透压。 人体血浆渗透压可分为两类:晶体渗透压和胶体渗透压。晶体渗透压由无机盐(如:氯化钠、氯化钾等)和有机小分子(如:葡萄糖、尿素等)产生,占总渗透压的99%以上,是构成血浆渗透压的主要成分;胶体渗透压又称膨胀压,由血浆蛋白等高分子 物质产生,仅占总渗透压的不到1%。 液体制剂由于一般皆为小分子药物的溶液,因而这类药物仅能产生晶体渗透压,制 剂研究中所测定的渗透压一般测定的也是晶体渗透压。一些高分子化合物(如右旋糖苷、羟乙基淀粉、明胶衍生物等)的溶液也能产生一定的胶体渗透压,但由于胶体渗 透压往往很小,常可忽略不计,因而高分子药物在制成大输液时一般需要加入小分子 物质来调节渗透压,使制剂的总渗透压与人体渗透压基本一致。如右旋糖苷常制成5%的葡萄糖注射液或0.9%的氯化钠注射液,羟乙基淀粉一般制成0.9%的氯化钠注射液。 在审评中我们发现,某些静脉输液中高分子物质的存在对溶液渗透压摩尔浓度的测 定有干扰。如某明胶代血浆产品,处方由水解明胶和一定量的钠、钾、钙等离子组成。研究表明该产品的毫渗透压摩尔浓度很低,一般只有230~260mOsmol/kg,甚至只有200mOsmol/kg左右,该产品的国家标准中未对渗透压摩尔浓度进行控制。但是,当 仔细分析该产品的处方并经计算,却发现:本品处方中的钠、钾、钙离子所产生的晶 体渗透压已经能够达到280mOsmol/kg以上,已基本可以达到与血浆的等渗;而处方 中的水解明胶也能产生一定量的胶体渗透压,应该可以使渗透压有一定提高,但实测 的结果反而使样品的渗透压降低了。同时有关研究表明,产品的毫渗透压摩尔浓度与 产品的浓度没有相关性,即样品浓度的提高不能相应地提高样品的渗透压摩尔浓度, 与理论存在相悖之处。多家申报单位的测定值皆比理论值偏小很多,提示测定可能存 在系统误差。

相关文档
最新文档