双曲线标准方程--离心率练习题.docx

双曲线标准方程--离心率练习题.docx
双曲线标准方程--离心率练习题.docx

双曲线的标准方程及其简单的几何性质

一、选择题

1.平面内到两定点、的距离之差的绝对值等于| | 的点的轨迹是 ()

E F EF

A.双曲线B.一条直线 C .一条线段D.两条射线

x2y2

k 的取值范围是()

2.已知方程1+k-1-k= 1 表示双曲线,则

A.- 10 C .k≥0D.k>1 或k<- 1

3.动圆与圆x2+y2= 1 和x2+y2- 8x+ 12= 0 都相外切,则动圆圆心的轨迹为()

A.双曲线的一支 B .圆 C .抛物线 D .双曲线

x2y2

()

4.以椭圆+= 1 的焦点为顶点,以这个椭圆的长轴的端点为焦点的双曲线方程是

34

22

x2y2x2

- y =1B.y-3= 1-4= 1-4= 1

5.“ab<0”是“曲线ax2+by2= 1 为双曲线”的 ()

A.充分不必要条件B.必要不充分条件

C.充要条件D.既不充分也不必要条件

6.已知双曲线的两个焦点为F1(-5,0)、F2( 5 ,0) ,P是此双曲线上的一点,且PF1⊥ PF2,

| 1| ·|2|=2,则该双曲线的方程是()

PFPF

y2y2

22

y2

-3= 1-2= 1-y=1D.x-4= 1

7.已知点F1( - 4,0) 和F2(4,0),曲线上的动点P 到 F1、 F2距离之差为6,则曲线方程为 () y2y2y2x2y2y2

-7= 1-7= 1( y>0)-7= 1 或7-9= 1-7= 1( x>0)

8.已知双曲线的左、右焦点分别为F1、 F2,在左支上过F1的弦 AB 的长为5,若 2a= 8,那么△ABF2的周长是 ()

A. 16B. 18C.21D. 26

x2+y2

共焦点,它们的离心率之和为

14

)

9.已知双曲线与椭圆= 1,双曲线的方程是 (

9255

y2y2x2y2x2y2

-4= 1-12= 1 C .-12+4= 1 D .-4+12= 1

x2

2

10.焦点为 (0 ,± 6) 且与双曲线2- y =1有相同渐近线的双曲线方程是() y2x2x2y2

-24= 1-24= 1-12= 1-12= 1

x2y2x2y2

11.若 0

A.相同的实轴 B .相同的虚轴 C .相同的焦点D.相同的渐近线

12.中心在坐标原点,离心率为

5

y 轴上,则它的渐近线方程为 ()

3的双曲线的焦点在

5 4 4

3

A . y =± 4x

B . y =± 5x

C . y =± 3x

D . y =± 4x

x 2 y 2

13.双曲线 b 2- a 2=1 的两条渐近线互相垂直,那么该双曲线的离心率为() A . 2

x 2 y 2

14.双曲线 9 - 16= 1 的一个焦点到一条渐近线的距离等于

(

)

B . 3

C

. 4 D . 2

二、填空题

15.双曲线的焦点在

x 轴上,且经过点 M (3,2) 、 N ( - 2,- 1) ,则双曲线标准方程是 ________.

x 2 y 2

16.过双曲线 3 - 4 = 1 的焦点且与 x 轴垂直的弦的长度为 ________.

17.如果椭圆

x

2

2 2 2

+y

2= 1 与双曲线

x - y = 1 的焦点相同,那么

= ________.

4

a

a 2

a

x 2 y 2

18.双曲线 4 + b =1 的离心率 e ∈(1,2) ,则 b 的取值范围是 ________.

x 2 y 2

x 2

2

焦点相同,则 a = ________.

19.椭圆 +

2

= 1 与双曲线 2-y = 1

4

a

a

x 2

y 2

20 .双曲线以椭圆

9 + 25=1 的焦点为焦点,它的离心率是椭圆离心率的

2 倍,求该双曲线的方程

2

2

21. 如图, F 1,F 2 是双曲线 C :

x

2

y 2 1( a 0 , b 0 )的左、右焦点,过 F 1 的直线 l 与 C 的左、

a

b

右分支分别交于 A ,B 两点.若 AB : BF 2: AF 2 =3:4: 5,则双曲线的离心率为 ______.

求双曲线方程及离心率练习题

1.已知双曲线

y 2 x 2 1过点 2, 1 ,则双曲线的离心率为(

a

2

4

A.2

B.

2

C.

3

D.

4

2. 双曲线 mx 2 y 2

1(m R) 的离心率为

2 ,则 m 的值为(

A . 1

B

. -1

C.

1

D

. 2

x 2

y 2

2

2

2.已知双曲线

1 ( a 0 , b 0 )的一条渐近线为

8 与

l ,圆 C : x a y l 交

a 2

b 2

于 A , B 两点,若 VABC 是等腰直角三角形,且

uuur uuur

OB 5OA (其中 O 为坐标原点),则双曲线

的离心

率为(

A.

13 B.

2 13

C.

13 D.

2 13

3

3

5

5

3. 若双曲线的焦点到渐近线的距离是焦距的 ,则该双曲线的离心率为( )

A.

B.

C. 2

D.

4.设 F

a 2

b 2

1(a 0

, b 0

)的右焦点,若 OF

的垂直平分线与渐近线在第一象限内的

为双曲线 x

2

y 2

交点到另一条渐近线的距离为

1 |OF | ,则双曲线的离心率为( )

2

A . 2 2

B .

2

3

C . 2 3

D . 3

3

5.双曲线的焦点到渐近线的距离等于半实轴长,则该双曲线的离心率等于

. 2

B

3

C. 2 D

3 A

6.双曲线的顶点到渐进线的距离等于虚轴长的

1 ,则此双曲线的离心率是(

4

A. 2

B.

2

C. 3

D. 3

7. 过双曲线

x 2

y 2 1 a 0 ,b 0 的右焦点 F

x 2

y 2 a 2

FM (切点为 M ),交 y 轴于点

a 2

b 2

作圆

的切线 P ,若 M 为线段 FP 的中点,则双曲线的离心率为(

A.

2

B. 3

D. 5

8.已知双曲线的方程为

,过左焦点 作斜率为 的直线交双曲线的右支于点

P ,且 y 轴平分线段 ,则双曲线的离心率为(

).

A.

B.

C.

D.

9. 已知双曲线 ,其一渐近线被圆

所截得的弦长等于 4,则

的离心率为 ( )

A.

B.

C.

或 D.

x 2

y 2

2

2

8

1 ( a 0 , b 0 )的渐近线与圆

10.已知双曲线

x 2 2 y a

2

b

2

3 相切,则该双曲线的

离心率为( )

A.

6

B.

3

C.3

D. 3 22

11.设F为双曲线C:x

2

y21(a0, b0) 的右焦点,过坐标原点的直线依次与双曲线

C

的左、右a2b2

支交于点 P, Q ,若PQ 2 QF ,PQF60o,则该双曲线的离心率为()

A. 3

B.13

C.23

D.4 2 3

12.双曲线的左右焦点分别为,直线经过点及虚轴的一个端点,且

点到直线的距离等于实半轴的长,则双曲线的离心率为( )

A. B. C. D.

13.设,分别为椭圆:与双曲线:

的公共焦点,它们在第一象限内交于点,,若椭圆的离心率,则双曲线的离心率的值为()A.2 B. C.3 D. 2

14.已知是椭圆与双曲线的公共焦点,是它们的一个公共点,且,线段的垂直平分线过,若椭圆的离心率为,双曲线的离心率为,则的最小值为()

A. 6

B. 3

C.

D.

15.已知 O为坐标原点, F 是双曲线 C:的左焦点, A, B 分别为双曲线 C 的左、右顶点, P 为双曲线 C 上的一点,且 PF⊥x轴,过点 A 的直线与线段PF 交于 M,与 y 轴交于点 E,直线 BM与 y 轴交于点 N,若,则双曲线 C 的离心率为

A.2

B.3

C. 2

D. 3

16.已知双曲线的左,右焦点分别为,点 P 为双曲线右支上一点,若,则双曲线的离心率取值范围为()

A. B. C. D.

17.已知双曲线的一条渐近线方程为,,分别是双曲线的左 ,右焦点 , 点P 在双曲线上 , 且,则等于()

A. 4

B. 6

C. 8

D.

18.方程

x2y2

)m 2

1表示双曲线的一个充分不必要条件是(

m 3

A. 3 m 0

B. 3 m 2

C. 3 m 4

D. 1 m 3

19.已知直线l过点A1,0且与 e B : x2y22x0 相切于点 D ,以坐标轴为对称轴的双曲线 E 过点D ,其一条渐近线平行于l ,则E的方程为()

A. 3x2y2 1

B.x2 3 y2 1

C. 5 y2x2 1

D. 3 y2x21

4422322

20.已知双曲线的右顶点为A,过右焦点的直线与双曲线的一条渐近线平行,交另一条渐

近线于点 B,则()

A. B. C. D.

双曲线的标准方程及其简单的几何性质(答案)

1、 [ 答案 ]D

2、 [ 答案 ]A[解析 ]由题意得 (1 +k)(1 -k)>0 ,∴(k- 1)( k+ 1)<0 ,∴- 1

3、 [ 答案 ]A[解析 ]设动圆半径为 r ,圆心为 O,

x 2+

y

2= 1 的圆心为1,圆

x

2+

y

2- 8

x

+ 12= 0 的圆心为2,

O O

由题意得 | OO1| =r+ 1, | OO2|= r +2,∴|OO2|-| OO1|= r +2- r -1=1<| O1O2|=4,由双曲线的定义知,动圆圆心O的轨迹是双曲线的一支.

4、 [ 答案 ] B [解析 ]由题意知双曲线的焦点在

y 轴上,且= 1,= 2,

a c

22x2

∴ b= 3,双曲线方程为y-=1.

3

5、 [ 答案 ] C [解析 ]<0? 曲线

ax 2+2= 1 是双曲线,曲线

ax

2+

by

2=1 是双曲线 ?<0.

ab by ab 6、 [ 答案 ] C [解析 ]∵ c=5,| PF1|2+| PF2|2=| F1F2|2=4c2,

∴ (| PF 1| - | PF 2|) 2+ 2| PF 1| ·|PF 2| = 4c 2,∴4a 2= 4c 2- 4= 16,∴ a 2=4, b 2= 1.

7、 [ 答案 ] D [

解析 ]

由双曲线的定义知,点

P 的轨迹是以

1

、 2 为焦点,

F

F

实轴长为 6 的双曲线的右支,其方程为: x

2

y

2

x >0)

- = 1(

9 7

8、 [ 答案 ] D [ 解析 ]

| AF 2| - | AF 1| = 2a = 8, | BF 2| -| BF 1| = 2a =8,

∴| 2| + |

2|

- (|

1|

+ |1|) = 16,∴|

2|

+ |

2| = 16+ 5= 21,

AF BF

AF

BF

AF

BF

∴△ ABF 的周长为 | AF | + | BF | +| AB | = 21+ 5= 26.

2

2

2

x 2 y 2

4

9、 [ 答案 ] C

[ 解析 ]

∵椭圆 9 + 25= 1 的焦点为 (0 ,± 4) ,离心率 e = 5,

14 4 10

y 2 x 2

∴双曲线的焦点为 (0 ,± 4) ,离心率为 5 - 5= 5 = 2, ∴双曲线方程为: 4 - 12= 1.

10、 [ 答案 ]

B [ 解析 ]

与双曲线

x 2

2 x 2

2

- y = 1 有共同渐近线的双曲线方程可设为

- y = λ( λ≠0) ,

2

2

y 轴上,

y 2 x 2

又因为双曲线的焦点在

∴方程可写为 - λ- - 2λ= 1.

又∵双曲线方程的焦点为

(0 ,± 6) ,∴- λ- 2λ =36. ∴ λ=- 12.

∴双曲线方程为

y 2

x 2

= 1.

12

24

11、 [ 答案 ]

C [

解析 ] ∵0< k < ,∴ 2-

k 2

>0. ∴

c 2

=( a 2-

k 2

) + (

2

+ k 2) =

2

2

.

a

a

b

a b 12、 [ 答案 ]

D [

解析 ]

c 5

c 2 a 2+b 2 25

b 2

16

b 4 a 3

∵ = ,∴ a 2= a 2 = ,∴ 2=,∴ = ,∴ = .

a 3 9 a 9

a 3

b 4

a

3

又∵双曲线的焦点在

y 轴上,∴双曲线的渐近线方程为 y =± b x ,∴所求双曲线的渐近线方程为

y =± 4x .

13、 [ 答案 ]

C [ 解析 ]

双曲线的两条渐近线互相垂直,则渐近线方程为:

y =± x ,

b b 2

c 2 -a 2

2

2

c

∴ a = 1,∴ a 2= a 2 = 1,∴ c =2a , e =a = 2.

4

14、[ 答案 ] C [ 解析 ]

∵焦点坐标为 ( ±5,0) ,渐近线方程为 y =± 3x ,∴一个焦点 (5,0) 到渐近线

4

y = 3x 的距离为 4.

15、 [ 答案 ]

x 2 y 2

= 1 [ 解析 ]

7 -

7 设双曲线方程为:

3

5

9 4

又点 M (3,2) a 2-b 2=1

、 N ( - 2,- 1) 在双曲线上,∴

1

4

a 2-

b 2=1

x 2

y 2

a 2-

b 2= 1( a >0, b >0)

a 2

7

3

,∴

.

2

7

b = 5

16、 [ 答案 ]

8 3 [ 解析 ] ∵a 2= 3, b 2= 4,∴ c 2= 7,∴ c = 7,

3

x = 7

该弦所在直线方程为

x = 7,由 x 2

y

2

2

16 4 3 8

3

得 y =

,∴|y | =

3 ,弦长为.

3 -

4

= 1

3

3

17、 [ 答案 ] 1 [

解析 ] 由题意得 a >0,且 4- a 2= a + 2,∴ a = 1.

18、 [ 答案 ]

-12

解析 ]

∵ b <0,∴离心率 e =

4- b

,∴- 12

2

∈(1,2)

19、 [ 答案 ]

6 [ 解析 ] 由题意得 4-a 2= a 2+ 1,∴2a 2= 3,a = 6 .

2

2

c 4

8

焦点为 (0 ,± 4) ,离心率 e = a =5,∴双曲线的离心率

e = 2e =5,

1

c 1

4 8

a

5 2

2

2

25 39

y 2 -

x 2

∴ =

= ,∴

1

= ,∴

1

1

- 1 =16-

= ,∴双曲线的方程为

= 1. a 1

a 1 5

2

b

c

a

4

4

25 39

4 4

20、 [ 答案 ]

y 2

x 2

[ 解析 ]

x 2

y 2

2

25

- = 1

椭圆 + = 1 中, a = 5, b = 3, c

= 16,

39 9

25

4

4

21、

求双曲线方程及离心率练习题

1. C 【解析】由题意可得:

1 4 1, a 21

,据此有: a 2

1 , b

2 4, c 2 a 2 b 2 9 ,则:

a 2 4

2

2

2

2

c 2 9, e 3 . 本题选择 C 选项 .

e

2

a

2. B 【解析】因为 , 所以 , 选 B.

2. A

3.D 【解析】不妨设双曲线的焦点为 ,则其中一条渐近线为 ,焦点到其距离 ,

又知,所以

,故选 D . 4. B 【解析】由题意得 的垂直平分线

与渐近线 在第一象限内的交点为 ,因此到另

一条渐近线

的距离为 选 B.

5. A 【解析】因为双曲线的焦点到渐近线的距离为 b ,所以 选 A.

6. A

7. A

8. A

,解得,选 A.

9. D【解析】的渐近线为渐近线被截得的弦长为或或. 选 D.

10.A【解析】由题意知圆心 2 2,0 到渐近线 bx ay0

8

, 化简得3a22c2

6的距离等于, 解得e,

32

11. B

12. D

13. B

14. A

15. C

【解析】

因为轴,所以设,

16. A【解析】根据双曲线定义,,且点在左支,则,设,,则,, 则,, 在中 ,, 则离心率 . ∴. 故选 A.

17. C【解析】由题知双曲线的渐近线方程为,据所给渐近线方程,又,知,根据双曲线的定义可得,又,则.故本题

答案选.

【解析】由题意知,m 2 m 3 0 3 m 2 ,则C,D均不正确,而B为充要条件,不合题意,故选 A.

19. D【解析】可设直线方程:y k (x 1),e B : x2y22x 0 的圆心为 (1,0) 半径为1,由相切得条

件可得:d=k k0 1 k

3

,所以直线方程:y

3

(x1), ,联立圆解得:1k 233

x 1

, y3 D (

1

,

3

) ,故渐近线方程为 y

3

x ,设双曲线方程为y21 x2m 代入D可222223

得双曲线方程:3 y2x2

1 22

20. A

【解析】渐近线为与的一条渐近线平行,不妨用,即的纵坐标. 选 B.

双曲线及其标准方程

§9.6 双曲线 1.双曲线的概念 平面内动点P与两个定点F1、F2(|F1F2|=2c>0)的距离之差的绝对值为常数2a (2a<2c),则点P的轨迹叫____________.这两个定点叫双曲线的________,两焦点间的距离叫________. 集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a、c为常数且a>0,c>0: (1)当________时,P点的轨迹是双曲线; (2)当a=c时,P点的轨迹是____________; (3)当________时,P点不存在. 标准方程 x2 a2 - y2 b2 =1 (a>0,b>0) y2 a2 - x2 b2 =1 (a>0,b>0) 图形 性质 范围x≥a或x≤-a,y∈R x∈R,y≤-a或y≥a 对称性对称轴:坐标轴对称中心:原点 顶点A1(-a,0),A2(a,0)A1(0,-a),A2(0,a)渐近线y=± b a x y=± a b x 离心率e= c a ,e∈(1,+∞),其中c=a2+b2 实虚轴 线段A1A2叫做双曲线的实轴,它的长|A1A2|=2a;线段B1B2叫做双曲线 的虚轴,它的长|B1B2|=2b;a叫做双曲线的半实轴长,b叫做双曲线的 半虚轴长 a、b、c 的关系 c2=a2+b2 (c>a>0,c>b>0) [难点正本疑点清源] 1.双曲线中a,b,c的关系 双曲线中有一个重要的Rt△OAB(如右图),

它的三边长分别是a 、b 、c .易见c 2=a 2+b 2 , 若记∠AOB =θ,则e =c a =1 cos θ . 2.双曲线的定义用代数式表示为||MF 1|-|MF 2||=2a ,其中2a <|F 1F 2|,这里要注意两点: (1)距离之差的绝对值. (2)2a <|F 1F 2|. 这两点与椭圆的定义有本质的不同: ①当|MF 1|-|MF 2|=2a 时,曲线仅表示焦点F 2所对应的一支; ②当|MF 1|-|MF 2|=-2a 时,曲线仅表示焦点F 1所对应的一支; ③当2a =|F 1F 2|时,轨迹是一直线上以F 1、F 2为端点向外的两条射线; ④当2a >|F 1F 2|时,动点轨迹不存在. 3.渐近线与离心率 x 2a 2-y 2b 2=1 (a >0,b >0)的一条渐近线的斜率为b a = b 2 a 2=c 2-a 2a 2 =e 2 -1.可以看出,双曲线的渐近线和离心率的实质都表示双曲线张口的大小. 1.已知点F 1(-4,0)和F 2(4,0),一曲线上的动点P 到F 1,F 2距离之差为6,该曲线方程 是 _____________________________________________________________________. 2.双曲线mx 2 +y 2 =1的虚轴长是实轴长的2倍,则m =___________________________. 3.已知以双曲线C 的两个焦点及虚轴的两个端点为顶点的四边形中,有一个内角为60°,则双曲线C 的离心率为________. 4.(2011·山东)已知双曲线x 2a 2-y 2b 2=1 (a >0,b >0)和椭圆x 216+y 2 9 =1有相同的焦点,且 双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为________. 5.若双曲线x 2a 2-y 2 b 2=1 (a >0,b >0)的焦点到其渐近线的距离等于实轴长,则该双曲线的 离心率为 ( ) A . 5 B .5 C . 2 D .2 题型一 双曲线的定义 例1 已知定点A (0,7)、B (0,-7)、C (12,2),以C 为一个焦点作过A 、B 的椭圆,求另一焦点F 的轨迹方程. 探究提高 双曲线的定义理解到位是解题的关键.应注意定义中的条件“差的绝对值”,弄清所求轨迹是双曲线的两支,还是双曲线的一支.若是一支,是哪一支,以

双曲线及其标准方程详解

2.2 双曲线 2.2.1 双曲线及其标准方程 【课标要求】 1.了解双曲线的定义、几何图形和标准方程的推导过程. 2.会利用双曲线的定义和标准方程解决简单的应用问题. 【核心扫描】 1.用定义法、待定系数法求双曲线的标准方程.(重点) 2.与双曲线定义有关的应用问题.(难点 ) 自学导引 1.双曲线的定义 把平面内与两个定点F 1、F 2的距离的差的绝对值等于常数(小于|F 1F 2|)的点的轨迹叫做双曲线,这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距. 试一试:在双曲线的定义中,必须要求“常数小于|F 1F 2|”,那么“常数等于|F 1F 2|”,“常数大于|F 1F 2|”或“常数为0”时,动点的轨迹是什么? 提示 (1)若“常数等于|F 1F 2|”时,此时动点的轨迹是以F 1,F 2为端点的两条射线F 1A ,F 2B (包括端点),如图所示. (2)若“常数大于|F 1F 2|”(3)若“常数为0”,此时动点轨迹为线段F 1F 2的垂直平分线. 想一想:如何判断方程x a 2-y b 2=1(a >0,b >0)和y a 2-x b 2=1(a >0,b >0)所表示双曲线的焦点 的位置? 提示 如果x 2项的系数是正的,那么焦点在x 轴上,如果y 2项的系数是正的,那么焦点在y 轴上.对于双曲线,a 不一定大于b ,因此,不能像椭圆那样比较分母的大小来判定焦点在哪一个坐标轴上. 名师点睛 1.对双曲线定义的理解 (1)把定常数记为2a ,当2a <|F 1F 2|时,其轨迹是双曲线;当2a =|F 1F 2|时,其轨迹是以F 1、F 2为端点的两条射线(包括端点);当2a >|F 1F 2|时,其轨迹不存在. (2)距离的差要加绝对值,否则只为双曲线的一支.若F 1、F 2表示双曲线的左、右焦点,且点P 满足|PF 1|-|PF 2|=2a ,则点P 在右支上;若点P 满足|PF 2|-|PF 1|=2a ,则点P 在左支上. (3)双曲线定义的表达式是|||PF 1|-|PF 2|=2a (0<2a <|F 1F 2|). (4)理解双曲线的定义要紧扣“到两定点距离之差的绝对值为定值且小于两定点的距离.” 2.双曲线的标准方程 (1)只有当双曲线的两焦点F 1、F 2在坐标轴上,并且线段F 1F 2的垂直平分线也是坐标轴时得到的方程才是双曲线的标准方程. (2)标准方程中的两个参数a 和b ,确定了双曲线的形状和大小,是双曲线的定形条件,

求双曲线标准方程的技巧

求双曲线标准方程的技巧 在求双曲线标准方程时,如果能根据已知条件设出方程的合理形式,可以简化运算,优化解题过程。下面结合例题介绍求双曲线标准方程的方法。 一 双曲线的一般方程 例1 求经过点(3,P ,() Q -的双曲线标准方程。 分析 双曲线的标准方程有两种形式:22x a -2 2y b =1(a >0,b >0)或22y a -22x b =1(a > 0,b >0),可以讨论解决。也可以应用下面的方法解决。 解 设双曲线方程为2 Ax +2 By =1(AB <0)。因为所求双曲线经过点 ( 3,P ,() Q -,所以9281,7249 1. A B A B +=??+=?解得A =-175,B =125。故所求双曲线 方程为225y -2 75 x =1。 说明 求双曲线标准方程一般用待定系数法,当双曲线的焦点位置不确定时,为了避免讨论焦点的位置,一般设双曲线方程为2Ax +2 By =1(AB <0),这样可以简化运算。 二 等轴双曲线 例2 等轴双曲线的中心在原点,焦点在x 轴上,与直线x -2y =0交于两点A 、B , 且AB = 分析 根据等轴双曲线的特点,可以设含有一个参数的方程2 x -2 y =2 a (a >0),求出 a 即可。 解 设等轴双曲线方程为2 x -2 y =2 a (a >0)。由222,20. x y a x y ?-=?-=?解得交点A 、B 的 坐标分别为 、? ? 。因为AB 3=所以a =3。故所求双曲线方程为2 x -2 y =9。 说明 等轴双曲线是一类特殊的双曲线,它有一些特殊的性质,比如:离心率e ,渐近线方程为y =x ±且互相垂直等等。 三 共焦点双曲线 例3 已知过点() 2,且与双曲线216x -2 4 y =1有共同焦点的双曲线的标准方程。

双曲线及其标准方程(1)

双曲线及其标准方程(1) 福建师大附中苏诗圣 教学目标:理解双曲线的定义,明确焦点、焦距的意义;能根据定义,按求曲线方程的步骤导出双曲线的标准方程,并能熟练写出两类标准 方程;培养学生分析问题能力和抽象概括能力。学会用辩证的观 点从椭圆的定义到双曲线定义的“变化”中认识其“不变”性, 并从中发现数学曲线的简洁美和对称美,培养学生学习数学的兴 趣。 教学重点:双曲线的定义和双曲线的标准方程. (解决办法:通过一个简单实验得出双曲线,再通过设问给出 双曲线的定义;对于双曲线的标准方程通过比较加深认识.) 教学难点:双曲线的标准方程的推导 (解决办法:引导学生完成,提醒学生与椭圆标准方程的推导 类比.) 教学方法:启发式 教学过程:复习椭圆的定义及标准方程→新知探索→数学实验→双曲线→展示现实生活中的双曲线→双曲线的定义 →对定义的思考→双曲线标准方程的推导→例与练 →课堂小结→作业→研究性学习 一、复习引入: 前面我们已经学习了椭圆的有关知识,请同学们回忆一下椭圆的定义。 问题1:椭圆的定义是什么? (板书)平面内与两定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做焦距。 二、新知探索 1、思考:把椭圆定义中的“距离的和”改为“距离的差”,那么这样 点是否存在?若存在,轨迹会什么? 2、实物拉链演示:双曲线的形成(请同学参与协助画图) (取一条拉链,拉开它的一部分,在拉开的两边的长度相等,现将 其中的一边剪掉一段(长为2a),两端点分别固定在黑板的两个定点 F1、F2上,把粉笔放在拉链关上,随着拉链的逐渐拉开或闭合,粉

双曲线及其标准方程练习题

课时作业(十) [学业水平层次] 一、选择题 1.方程x 22+m -y 2 2-m =1表示双曲线,则m 的取值范围( ) A .-2<m <2 B .m >0 C .m ≥0 D .|m |≥2 【解析】 ∵已知方程表示双曲线,∴(2+m )(2-m )>0. ∴-2<m <2. 【答案】 A 2.设动点P 到A (-5,0)的距离与它到B (5,0)距离的差等于6,则P 点的轨迹方程是( ) A.x 29-y 2 16=1 B.y 29-x 2 16=1 C.x 29-y 2 16=1(x ≤-3) D.x 29-y 2 16=1(x ≥3) 【解析】 由题意知,轨迹应为以A (-5,0),B (5,0)为焦点的双曲线的右支.由c =5,a =3,知b 2=16, ∴P 点的轨迹方程为x 29-y 2 16=1(x ≥3). 【答案】 D 3.(2014·福州高级中学期末考试)已知双曲线的中心在原点,两个焦点F 1,F 2分别为(5,0)和(-5,0),点P 在双曲线上,且PF 1⊥PF 2,△PF 1F 2的面积为1,则双曲线的方程为( )

A.x 22-y 2 3=1 B.x 23-y 2 2=1 C.x 24-y 2 =1 D .x 2 -y 2 4=1 【解析】 由? ?? |PF 1|· |PF 2|=2,|PF 1|2+|PF 2|2 =(25)2 , ?(|PF 1|-|PF 2|)2=16, 即2a =4,解得a =2,又c =5,所以b =1,故选C. 【答案】 C 4.已知椭圆方程x 24+y 2 3=1,双曲线的焦点是椭圆的顶点,顶点是椭圆的焦点,则双曲线的离心率为( ) A.2 B. 3 C .2 D .3 【解析】 椭圆的焦点为(1,0),顶点为(2,0),即双曲线中a =1,c =2,所以双曲线的离心率为e =c a =2 1=2. 【答案】 C 二、填空题 5.设点P 是双曲线x 29-y 2 16=1上任意一点,F 1,F 2分别是其左、右焦点,若|PF 1|=10,则|PF 2|=________. 【解析】 由双曲线的标准方程得a =3,b =4. 于是c = a 2+ b 2=5. (1)若点P 在双曲线的左支上,

双曲线及其标准方程练习题一

《双曲线及其标准方程》练习题一 1.设动点P 到A (-5,0)的距离与它到B (5,0)距离的差等于6,则P 点的轨迹方 程是( ) -y 216=1 -x 216=1 C.x 29-y 216=1(x ≤-3) -y 2 16=1(x ≥3) 2.“ab<0”是“方程c by ax =+22表示双曲线”的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件 D .既不充分又不必要条件 3.双曲线的两焦点坐标是F 1(3,0),F 2(-3,0),2b =4,则双曲线的标准方程是( ) -y 24=1 -x 24=1 C.x 23-y 22=1 -y 2 16=1 4.方程x =3y 2-1所表示的曲线是( ) A .双曲线 B .椭圆 C .双曲线的一部分 D .椭圆的一部分 5.双曲线x 216-y 2 9=1上一点P 到点(5,0)的距离为15,那么该点到点(-5,0)的距 离为( ) A .7 B .23 C .5或25 D .7或23 6.圆P 过点 ,且与圆 外切,则动圆圆心P 的轨迹方程( ). A . ; B . C . D . 7.椭圆x 24+y 2a 2=1与双曲线x 2a -y 2 2=1有相同的焦点,则a 的值是( ) B .1或-2 C .1或12 D .1 8. 已知ab<0,方程y= —2x+b 和bx 2+ay 2=ab 表示的曲线只可能是图中的( ) 9.双曲线m y x =-222的一个焦点是)3,0(,则m 的值是_______。 10.过双曲线)0,0(122 22>>=-b a b y a x 的焦点且垂直于x 轴的弦的长度为_____。

双曲线及其标准方程(一)

双曲线及其标准方程(一) 教学目的: 1.使学生掌握双曲线的定义,熟记双曲线的标准方程,并能初步应用; 2.通过对双曲线标准方程的推导,提升学生求动点轨迹方程的水平; 3.使学生初步会按特定条件求双曲线的标准方程; 4.使学生理解双曲线与椭圆的联系与区别以及特殊情况下的几何图形(射线、线段等); 5.培养学生发散思维的水平 教学重点:双曲线的定义、标准方程及其简单应用 教学难点: 教 具:多媒体 教学过程: 一、复习引入: 1 椭圆定义: 平面内与两个定点21,F F 的距离之和等于常数(大于||21F F )的点的轨迹叫作椭圆,这两个定点叫做椭 圆的焦点,两焦点间的距离叫做椭圆的焦距 2.椭圆标准方程: (1)2222=+b y a x (2)2222=+b x a y 其中22b c a +=二、讲解新课: 1.双曲线的定义:平面内到两定点21,F F 的距离的差的绝对值为常数(小于2 1F F )的动点的轨迹叫双曲线 即 a MF MF 221=- 这两个定点叫做双曲线的焦点,两焦点间的距离叫做焦距 概念中几个容易忽略的地方:“平面内”、“距离的差的绝对值”、“常数小于2 1F F ” 2.双曲线的标准方程: 根据双曲线的定义推导双曲线的标准方程:推导标准方程的过程就是求曲线方程的过程,可根据求动点轨迹方程的步骤,求出双曲线的标准方程 过程如下:(1)建系设点;(2)列式;(3)变换;(4)化简;(5)证 明 12 222=-b y a x ,此即为双曲线的标准方程 它所表示的双曲线的焦点在x 轴上,焦点是)0,(),0,(21c F c F -,其中222 b a c += 若坐标系的选择不同,可得到双曲线的不同的方程,如焦点在 y 轴上,则焦点是),0(),,0(21c F c F -,将y x ,互换,得到122 22=-b x a y ,此也是双曲线的标准方程 3.双曲线的标准方程的特点: (1)双曲线的标准方程有焦点在x 轴上和焦点y 轴上两种: 焦点在x 轴上时双曲线的标准方程为:122 22=-b y a x (0>a ,0>b ); 焦点在y 轴上时双曲线的标准方程为:122 22=-b x a y (0>a ,0>b ) (2)c b a ,,相关系式222 b a c +=成立,且0 ,0,0>>>c b a 其中a 与b 的大小关系有三种情况。 4.焦点的位置:从椭圆的标准方程不难看出椭圆的焦点位置可由方程中含字母2 x 、2 y 项的分母的大小来确定,分母大的项对应的字母所在的轴就是焦点所在的轴而双曲线是根据项的正负来判断焦点所在的位置,即 2x 项的系数是正的,那么焦点在x 轴上;2y 项的系数是正的,那么焦点在y 轴上 5.双曲线与椭圆之间的区别与联系 三、讲解范例: 例1 已知双曲线两个焦点的坐标为)0,5()0,5(21F F -,双曲线上一点P 到)0,5()0,5(21F F ,-的距离之差的绝对值等于6,求双曲线标准方程 变题1:将条件改为双曲线上一点P 到 1F ,2F 的距离的差等于6,如何? 变题2:将条件改为双曲线上一点P 到1F ,2F 的距离的差的绝对值等于10,如何? 例2 四、课堂练习: 五、小结 : 1、双曲线的两类标准方程是)0,0(12222>>=-b a b y a x 焦点在x 轴上,)0,0(122 22>>=-b a b x a y 焦点 在 y 轴上 c b a ,,相关系式222b a c +=成立,且,0,0>>>c b a 其中a 与b 的大小关系:能够为 a b a b a ><=,,

双曲线的标准方程

双曲线的标准方程 (第一课时) (一)教学目标 掌握双曲线的定义,会推导双曲线的标准方程,能根据条件求简单的双曲线标准方程. (二)教学教程 【复习提问】 由一位学生口答,教师板书. 问题1:椭圆的第一定义是什么? 问题2:椭圆的标准方程是怎样的? 【新知探索】 1.双曲线的概念 如果把上述定义中的“距离的和”改为“距离的差”,那么点的轨迹会发生什么变化?它的方程双是怎样的呢? (1)演示 如图,定点、是两个按钉,是一个细套管,点移动时, 是常数,这样就画出双曲线的一支,由是同一个常数,可以画出双曲线的另一支. 这样作出的曲线就叫做双曲线. (2)设问

①定点、与动点不在同一平面内,能否得到双曲线? 请学生回答,不能.指出必须“在平面内”. ②到与两点的距离的差有什么关系? 请学生回答,到与的距离的差的绝对值相等,否则只表示双曲线的一支,即是一个常数. ③这个常是否会大于或等? 请学生回答,应小于且大于零.当常数时,轨迹是以、 为端点的两条射线;当常数时,无轨迹. (3)定义 在此基础上,引导学生概括出双曲线的定义: 平面内与两个定点、的距离的差的绝对值等于常数(小于)的点的轨迹叫做双曲线,这两个定点叫做双曲线的焦点,两焦点的距离叫做双曲线的焦距. 2.双曲线的标准方程 现在我们可以用类似求椭圆标准方程的方法来求双曲线的标准方程,请学生思考、回忆椭圆标准方程的推导方法,随即引导学生给出双曲线标准方程的推导. (1)建系设点 取过焦点、的直线为轴,线段的垂直平分线为轴建立在直角坐标系(如图).

设为双曲线上任意一点,双曲线的焦距为,则、,又设点与、的距离的差的绝对值等于常数. (2)点的焦合 由定义可知,双曲线上点的集合是 (3)代数方程 (4)化简方程 由一位学生演板,教师巡视, 将上述方程化为 移项两边平方后整理得: 两边再平方后整理得: 由双曲线定义知即,∴, 设代入上式整理得: 这个方程叫做双曲线的标准方程.它所表示的双曲线的焦点在轴上,焦点是、,这里. 如果双曲线的焦点在轴上,即焦点,,可以得到方程 这个方程也是双曲线的标准方程. 教师应当指出: (1)双曲线的标准方程与其定义可联系起来记忆,定义中有“差”,则方程“-”号连接,

双曲线及其标准方程(1)

双曲线及其标准方程 (1) 理解双曲线的定义,明确焦点、焦距的意义;能根据定义,按求 曲线方程的步骤 导出双曲线的标准方程, 并能熟练写出两类标准 方程; 培养学生分析问题能力和抽象概括能力。 学会用辩证的观 点从椭圆的定义到双曲线定义的“变化”中认识其“不变”性, 并从中发现数学曲线的简洁美和对称美, 培养学生学习数学的兴 趣。 双曲线的定义和双曲线的标准方程. ( 解决办法:通过一个简单实验得出双曲线,再通过设问给出 双曲线的定 义;对于双曲线的标准方程通过比较加深认识. 双曲线的标准方程的推导 (解决办法:引导学生完成,提醒学生与椭圆标准方程 的推导 类比. ) 教学过程:复习椭圆的定义及标准方程 7 新知探索 7 双曲线 7 展示现实生活中的双曲线 7 对定义的思考 7 双曲线标准方程的推导 7 课堂小结 7 作业 7 研究性学习 一、 复习引入: 前面我们已经学习了椭圆的有关知识, 请同学们回忆一下椭圆的定义。 问题 1:椭圆的定义是什么? (板书)平面内与两定点 F i 、F 2的距离的和等于常数(大于|F I F 2|)的点的 轨迹叫做椭 圆. 这两个定点叫做椭圆的焦点, 两焦点间的距离叫做焦距。 二、新知探索 思考:把椭圆定义中的“距离的和”改为“距离的差”,那么这样 点是否存在? 若存在,轨迹会什么? 2、实物拉链演示:双曲线的形成(请同学参与协助画图) (取一条拉链,拉开它的 一部分,在拉开的两边的长度相等,现将 其中的一边剪掉一段(长为2a ),两端点分别固定在黑板的两个定点 F1、F2上,把粉笔放在拉链关上,随着拉链的逐渐拉开或闭合,粉 教学方法: 启发式 福建师大附中 苏诗圣 教学目标: 教学重点: 教学难点: 数学实验 7 双曲线的定义 7 例与练 1、

2.3.1 双曲线及其标准方程

§ 2.3双曲线 2.3.1 双曲线及其标准方程 课时目标 1.了解双曲线的定义、几何图形和标准方程的推导过程.2.掌握双曲线的标准方程.3.会利用双曲线的定义和标准方程解决简单的应用问题. 1.双曲线的有关概念 (1)双曲线的定义 平面内与两个定点F 1,F 2的距离的差的绝对值等于常数(小于________)的点的轨迹叫做双曲线. 平面内与两个定点F 1,F 2的距离的差的绝对值等于|F 1F 2|时的点的轨迹为________________________________________________________________________. 平面内与两个定点F 1,F 2的距离的差的绝对值大于|F 1F 2|时的点的轨迹__________. (2)双曲线的焦点和焦距 双曲线定义中的两个定点F 1、F 2叫做__________________,两焦点间的距离叫做__________________. 2.双曲线的标准方程 (1)焦点在x 轴上的双曲线的标准方程是______________________,焦点F 1__________,F 2__________. (2)焦点在y 轴上的双曲线的标准方程是________________,焦点F 1__________,F 2__________. (3)双曲线中a 、b 、c 的关系是________________. 一、选择题 1.已知平面上定点F 1、F 2及动点M ,命题甲:||MF 1|-|MF 2||=2a(a 为常数),命题乙:M 点轨迹是以F 1、F 2为焦点的双曲线,则甲是乙的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 2.若ax 2+by 2=b(ab<0),则这个曲线是( ) A .双曲线,焦点在x 轴上 B .双曲线,焦点在y 轴上 C .椭圆,焦点在x 轴上 D .椭圆,焦点在y 轴上 3.焦点分别为(-2,0),(2,0)且经过点(2,3)的双曲线的标准方程为( ) A .x 2-y 23=1 B .x 23-y 2=1 C .y 2-x 23=1 D .x 22-y 22=1 4.双曲线x 2m -y 23+m =1的一个焦点为(2,0),则m 的值为( ) A .12 B .1或3 C .1+22 D .2-12 5.一动圆与两圆:x 2+y 2=1和x 2+y 2-8x +12=0都外切,则动圆圆心的轨迹为( ) A .抛物线 B .圆

双曲线的标准方程

双曲线定义、标准方程 一. 教学内容: 双曲线定义、标准方程 (一)双曲线的定义 1. (1)图示:取一拉链,在拉开两边上各选一点,分别固定在F1、F2上,|F1F2|=2c,即|PF1|-|PF2|=2a,得到的图形,我们称为双曲线一支(加绝对值两支) 3. 定义:平面内与两定点F1、F2的距离之差的绝对值等于常数c小于|F1F2|的点的轨迹叫双曲线。 (1)焦点:F1、F2,焦距:|F1F2| (2)定义重点: ①绝对值 ②小于|F1F2| 若去掉①则为一支;去掉②,2a=2c射线,2a>2c无曲线,2a=0是F1F2的中垂线。 (二)双曲线的标准方程 (1)推导:①建系;②写出集合;③坐标化;④化简 图象特征: [注意] 1. 位于标准位置,才能有标准方程; 3. 判断双曲线焦点的位置由函数的正负决定(不比大小),若x2的函数为正,则焦点在x轴上,反之则在y轴上。 4. 记住a、b、c的关系: 一般地:第二定义:平面内与一个定点的距离和它到一条定直线的距离的比是常数 线叫做双曲线的准线,这个常数e叫做离心率。 理解: ①第二定义的隐含条件:定点在直线外,否则轨迹是除去交点的两条相交直线。 ③双曲线的离心率的定义是:双曲线上一点到焦点的距离与到相应准线的距离的比。(几何意义) 2. 焦半径及焦半径公式 定义:双曲线上一点到焦点的距离叫做双曲线上这点的焦半径。 (4)等轴双曲线: 渐近线:(定义:若曲线上的点到某一直线的距离为d,当点趋向于无穷远时,d能趋近于0,则这条直线称为该曲线的渐近线) 【典型例题】 例1. 一炮弹在某处爆炸,在F1(-5000,0)处听到爆炸声的时间比在F2(5000,0) 么样的曲线上,并求爆炸点所在的曲线方程。 解:6000(米),因此爆炸点在以F1、F2为焦点的双曲线上。

求双曲线标准方程的技巧

求双曲线标准方程的技巧 在求双曲线标准方程时,如果能根据已知条件设出方程的合理形式,可以简化运算,优化解题过程。下面结合例题介绍求双曲线标准方程的方法。 一 双曲线的一般方程 例1 求经过点(3,P ,() Q -的双曲线标准方程。 分析 双曲线的标准方程有两种形式:22x a -22y b =1(a >0,b >0)或22y a -2 2 x b =1(a >0,b >0),可以讨论解决。也可以应用下面的方法解决。 解 设双曲线方程为2 Ax +2 By =1(AB <0)。因为所求双曲线经过点 ( 3,P ,() Q -,所以9281,7249 1. A B A B +=??+=?解得A =-175,B =125。故所求双曲 线方程为225y -2 75 x =1。 说明 求双曲线标准方程一般用待定系数法,当双曲线的焦点位置不确定时,为了避免讨论焦点的位置,一般设双曲线方程为2Ax +2 By =1(AB <0),这样可以简化运算。 二 等轴双曲线 例2 等轴双曲线的中心在原点,焦点在x 轴上,与直线x -2y =0交于两点A 、B , 且AB = 分析 根据等轴双曲线的特点,可以设含有一个参数的方程2 x -2 y =2 a (a >0),求出a 即可。 解 设等轴双曲线方程为2 x -2 y =2 a (a >0)。由222, 20.x y a x y ?-=?-=? 解得交点A 、B 的坐标分别为 、? ?。因为AB 3a = a =3。故所求双曲线方程为2x -2y =9。 说明 等轴双曲线是一类特殊的双曲线,它有一些特殊的性质,比如:离心率e ,渐近线方程为y =x ±且互相垂直等等。 三 共焦点双曲线

双曲线及其标准方程练习题答案及详解

双曲线及其标准方程练习题 高二一部数学组 刘苏文 2017年5月2日 一、选择题 1.平面内到两定点E 、F 的距离之差的绝对值等于|EF |的点的轨迹是( ) A .双曲线 B .一条直线 C .一条线段 D .两条射线 2.已知方程x 21+k -y 2 1-k =1表示双曲线,则k 的取值范围是( ) A .-10 C .k ≥0 D .k >1或k <-1 3.动圆与圆x 2 +y 2 =1和x 2 +y 2 -8x +12=0都相外切,则动圆圆心的轨迹为( ) A .双曲线的一支 B .圆 C .抛物线 D .双曲线 4.以椭圆x 23+y 2 4 =1的焦点为顶点,以这个椭圆的长轴的端点为焦点的双曲线方程是 -y 2 =1 B .y 2 -x 23=1 -y 2 4 =1 -x 2 4 =1 5.“ab <0”是“曲线ax 2 +by 2 =1为双曲线”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 6.已知双曲线的两个焦点为F 1(-5,0)、F 2(5,0),P 是此双曲线上的一点,且PF 1⊥PF 2,|PF 1|·|PF 2| =2,则该双曲线的方程是( ) -y 2 3 =1 -y 2 2=1 -y 2=1 D .x 2 -y 2 4 =1 7.椭圆x 24+y 2m 2=1与双曲线x 2m 2-y 2 2 =1有相同的焦点,则m 的值是( ) A .±1 B .1 C .-1 D .不存在 8.已知点F 1(-4,0)和F 2(4,0),曲线上的动点P 到F 1、F 2距离之差为6,则曲线方程为( ) -y 27=1 -y 2 7=1(y >0) -y 2 7=1或x 27-y 29=1 -y 2 7 =1(x >0) 9.已知双曲线的左、右焦点分别为F 1、F 2,在左支上过F 1的弦AB 的长为5,若2a =8,那么△ABF 2 的周长是( ) A .16 B .18 C .21 D .26 10.若椭圆x 2m +y 2n =1(m >n >0)和双曲线x 2a -y 2 b =1(a >0,b >0)有相同的焦点,P 是两曲线的一个交点, 则|PF 1|·|PF 2|的值为( )

双曲线及其标准方程解答

2. 2 双曲线 2. 2.1 双曲线及其标准方程 【课标要求】 1. 了解双曲线的定义、几何图形和标准方程的推导过程. 2 ?会利用双曲线的定义和标准方程解决简单的应用问题. 【核心扫描】 1?用定义法、待定系数法求双曲线的标准方程. (重点) 2 ?与双曲线定义有关的应用问题. (难点) 01二课前探翌学 挑醪盘落实 自学导引 1.双曲线的定义 把平面内与两个定点 F 1、F 2的距离的差的绝对值等于常数 (小于IF 1F 2I)的点的轨迹叫做 双曲线,这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距. 试一试:在双曲线的定义中,必须要求 “常数小于IF 1F 2I”,那么“常数等于IF 1F 2I” , “常数大于IF 1F 2I”或“常数为0”时,动点的轨迹是什么? 提示 (1) 若“常数等于IF 1F 2I”时,此时动点的轨迹是以 F 1, F 2为端点的两条射线 F 1A ,F 2B(包括端点),如图所示. ~A~~P__B~ 想一想:如何判断方程 予—泊=1(a>0,b>0)和* —詁=1(a>0,b>0)所表示双曲线的焦点 的位置? 提示 如果x 2 项的系数是正的,那么焦点在 x 轴上,如果y 2 项的系数是正的,那么焦点 在y 轴上.对于双曲线,a 不一定大于b ,因此,不能像椭圆那样比较分母的大小来判定焦点 在哪一个坐标轴上. 名师点睛 1.对双曲线定义的理解 (1) 把定常数记为 2a ,当2a<|F 1F 2|时,其轨迹是双曲线;当 2a = IF 1F 2I 时,其轨迹是以 F 1、F 2为端点的两条射线(包括端点);当2a>|F 1F 2|时,其轨迹不存在. (2) 距离的差要加绝对值,否则只为双曲线的一支.若 F 1、F 2表示双曲线的左、右焦 点,且点P 满足|PF 1|— |PF 2|= 2a ,则点P 在右支上;若点P 满足|PF 2|—|PF 1|= 2a ,则点P 在 左支上. (3) 双曲线定义的表达式是 ||PF 1|— |PF 2|| = 2a(0<2a<|F 1F 2|). (4) 理解双曲线的定义要紧扣“到两定点距离之差的绝对值为定值且小于两定点的距 离.” (2)若“常数大于IF 1F 2I”,此时动点轨迹不存在. ⑶若“常数为0”,此时动点轨迹为线段 F 1F 2的垂直平分线. 2.双曲线的标准方程

双曲线标准方程的推导

双曲线标准方程的推导 把平面内与两个定点1F ,2F 的距离的差的绝对值等于常数(小于 12F F )的点的轨迹叫做双曲线.其中这两个定点叫做双曲线的焦点, 两定点间的距离叫做双曲线的焦距.即当动点设为M 时,双曲线即为点集 P ={}122M MF MF a -= 分析:当│M F 1│>│M F 2│时,│M F 1│-│M F 2│=2a (M 在双曲线右支上) 当│M F 1│<│M F 2│时,│M F 1│-│M F 2│= -2a (M 在双曲线左支上) 设动点M 的坐标为(x,y ) 双曲线标准方程的推导: 当│M F 1│-│M F 2│=2a 时,有: (x +c )2+y 2- (x ?c )2+y 2=2a (移项) ? (x +c )2+y 2=2a+ (x ?c )2+y 2(两边平方)

?(x+c)2+y2=4a2+4a(x?c)2+y2+(x?c)2+y2(展开) ?x2+2cx+c2+y2=4a2+4a(x?c)2+y2+x2-2cx+c2+y2(移项) ?x2?x2+2cx+2cx +c2?c2+y2-y2=4a2+4a(x?c)2+y2(合并同类项) ?4cx=4a2+4a(x?c)2+y2(两边除以4) ?cx=a2+a(x?c)2+y2(移项) ?cx-a2=a(x?c)2+y2(两边平方) ?c2x2-2a2cx+a4=a2[(x?c)2+y2](展开) ?c2x2-2a2cx+a4=a2[x2-2 cx+c2+y2](展开) ?c2x2-2a2cx+a4=a2x2-2a2 cx+a2c2+a2y2(移项) ?-2a2cx+2a2cx+c2x2-a2x2-a2y2=a2c2-a4(合并同类项) ?c2x2-a2x2-a2y2=a2c2-a4(按x,y顺序提取公因式) ?(c2-a2)x2-a2y2=a2(c2-a2)(c2=a2+b2,等量代替) ?b2x2-a2y2=a2b2(两边除以a2b2) ?x 2 a2-y 2 b2 =1(a>0,b>0)

双曲线及其标准方程习题

双曲线及其标准方程习 题 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

[学业水平训练] 1.动点P到点M(1,0)及点N(3,0)的距离之差为2,则点P的轨迹是( ) A.双曲线B.双曲线的一支 C.两条射线D.一条射线 解析:选D.依题意|PM|-|PN|=2=|MN|, 所以点P的轨迹不是双曲线,而是一条射线. 2.若方程x2 10-k + y2 5-k =1表示双曲线,则k的取值范围是( ) A.(5,10) B.(-∞,5) C.(10,+∞) D.(-∞,5)∪(10,+∞)解析:选A.由题意得(10-k)(5-k)<0,解得5

双曲线及其标准方程教案

双曲线及其标准方程(第一课时) 教学目标: 1.掌握双曲线的定义,能说出其焦点、焦距的意义; 2.能根据定义,按照求曲线方程的步骤推导出双曲线的标准方程,熟练掌握两类标 准方程; 3.能解决较简单的求双曲线标准方程的问题; 4.培养学生观察、分析、归纳和逻辑推理能力。 教学重点:双曲线的定义和标准方程。 教学难点:双曲线标准方程的推导过程。 教学过程: 一、创设情景,引入新课: 师:我们先来思考这样一个问题:(打开几何画板)已知定点)0,1(1-F 和)0,1(2F ,定圆1C 的圆心为1F ,且半径为r ,动圆2C 过定点2F ,且与定圆相切。 (1)若4=r ,试求动圆圆心的轨迹;(2)若1=r ,试求动圆圆心的轨迹。 (教师结合几何画板演示分析): 师:当4=r 时,我们得到的轨迹是什么? 生:是椭圆。 是:为什么? 生:因为当4=r 时动圆2C 内切于定圆1C ,所以两个圆的圆心距1MF 满足 214MF MF -=,移项后可以得到:421=+MF MF 满足椭圆的定义,所以得到的轨迹是一个 以1F 、2F 为定点,4为定长的椭圆。 师:很好。那么,当1=r 呢,此时动圆2C 与定圆1C 相切有几种情况? 生:有两种情况:内切和外切。 师:我们先来考察两圆外切时的情况(演示),我们得到的轨迹满足什么条件? 生(同时教师板书):由于两圆外切,所以两个圆的圆心距1MF 满足 211MF MF +=,移项后可以得到:121=-MF MF 。(教师演示轨迹) 师:我们再来考察两圆内切时的情况(演示),我们得到的轨迹又满足什么条件? 生(同时教师板书):由于两圆内切,所以两个圆的圆心距1MF 满足 121-=MF MF ,移项后可以得到:121-=-MF MF 。(教师演示轨迹) 师(同时演示两种情况下的轨迹):我们可以得到与定圆相切且过定点的动圆的圆心满足 121±=-MF MF 即121=-MF MF ,圆心的轨迹我们称之为双曲线。 二、新课讲解: 1、定义给出 师:今天我们来学习双曲线。同学们能否结合刚才的问题给双曲线下个一般定义? 生:双曲线是到平面上两个定点1F 、2F 的距离的差的绝对值等于常数的点的轨迹。这两个定点叫 做双曲线的焦点,两焦点的距离叫做双曲线的焦距。 师:由椭圆的定义,一般情况下,我们设该常数为2a 。那么什么情况下表示的是双曲线的右支,什么情况下表示的是双曲线的左支? 生:当a MF MF 221=-时,表示的是双曲线的右支,当a MF MF 221-=-时,表示的是双曲线的左支。 2、定义探究 (教师引导学生分情况讨论): 师:这个常数2a 有没有限制条件? 生:有。这个常数2a 要比焦距21F F 小。

双曲线的定义及标准方程 (1)

双曲线的定义及标准方程 题型一、圆锥曲线的标准方程 例1、讨论 19252 2 =-+ -k y k x 表示何种圆锥曲线,它们有何共同特征. 分析:由于9≠k ,25≠k ,则k 的取值范围为9-k ,09>-k ,所给方程表示椭圆,此时k a -=252 ,k b -=92 , 162 2 2 =-=b a c ,这些椭圆有共同的焦点(-4,0),(4,0). (2)当259<-k ,09<-k ,所给方程表示双曲线,此时,k a -=252 ,k b -=92 ,162 2 2 =+=b a c ,这些双曲线也有共同的焦点(-4,0),)(4,0). (3)25

双曲线标准方程的推导

双曲线标准方程的推导Prepared on 21 November 2021

双曲线标准方程的推导 把平面内与两个定点1F ,2F 的距离的差的绝对值等于常数(小于12F F )的点的轨迹叫做双曲线.其中这两个定点叫做双曲线的焦 点,两定点间的距离叫做双曲线的焦距.即当动点设为M 时,双曲线即为点集P ={}122M MF MF a -= 分析:当│M F 1│>│M F 2│时,│M F 1│-│M F 2│=2a (M 在双曲线右支上) 当│M F 1│<│M F 2│时,│M F 1│-│M F 2│= -2a (M 在双曲线左支上) 设动点M 的坐标为(x,y ) 双曲线标准方程的推导: 当│M F 1│-│M F 2│=2a 时,有: √(x +c)2+y 2-√(x ?c)2+y 2=2a (移项) √(x +c)2+y 2=2a+√(x ?c)2+y 2 (两边平方) (x +c)2+y 2=4a 2+4a √(x ?c)2+y 2+(x ?c)2+y 2 (展开) x 2+2cx+c 2+y 2=4a 2+4a √(x ?c)2+y 2+x 2-2cx+c 2+y 2(移项) x 2?x 2+2cx+2cx +c 2?c 2+y 2-y 2=4a 2+4a √(x ?c)2+y 2(合并同类项) 4cx=4a 2+4a √(x ?c)2+y 2(两边除以4) cx=a 2+a √(x ?c)2+y 2(移项) cx-a 2=a√(x ?c)2+y 2(两边平方) c 2x 2-2a 2cx +a 4=a 2[(x ?c)2+y 2](展开)

相关文档
最新文档