勾股定理复习课教案

勾股定理复习课教案
勾股定理复习课教案

勾股定理复习课教案文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

课题:第18章勾股定理复习课

苏科版八年级数学上册 3.3勾股定理的简单应用 教学案(无答案)

§3.3勾股定理的简单应用教学案 学习目标: 1.能运用勾股定理及直角三角形的判定条件解决实际问题. 2.构造直角三角形及正确解出此类方程. 3.运用勾股定理解释生活中的实际问题. 自主学习 在Rt△ABC中,∠C=, (1)若BC=9,AC=12,则AB= ,(2)若BC=8,AC=10,则AC= (3)若AC=5,AB=13,则BC= ,(4)若AB+AC=9,BC=3,则AC= ,AB= 探究活动 例1、《九章算术》中有折竹问题:今有竹高一丈,末折抵地,去根三尺,问折高几何? 题意是:有一根竹子,原高一丈(1丈=10尺),中部有一处折断,竹梢触地面离竹根3尺,问折断处离地面多高 练习:在平静的湖面上,有一枝红莲高出水面1米,一阵风吹来,红莲被吹到一边,花朵齐及水面,已知红莲移动的水平距离为2米,问这里水深是多少?(画出图形并解答) 例2. 如图,AD是△ABC的中线,AD=24,AB=26,BC=20,求AC.

练习:在四边形ABCD中,∠B=90度AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积是多少? 例3. “引葭赴岸”是《九章算术》中的一道题:“今有池一丈,葭生 其中央,出水一尺,引葭赴岸,适与岸齐.问水深,葭长各几何?”题意是:有一个底面是边长为1O尺的正方形池塘,一棵芦苇AB生长在它的中央,高出水面BC为l尺.如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的B'(如图).问水深和芦苇长各多少?(画出几何图形并解答) 练习:1.如图,一个梯子AB长2.5米,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE的位置上,测得BD长为0.5米,则梯子顶端A下落了多少米. 2.如图,折叠长方形纸片AB CD,使点D落在边B C上的点F处(折痕为AE).已知AB=D C=6c m,A D=B C=10cm.求E C的长

《勾股定理》教学案例

《勾股定理》教学案例 《勾股定理》教学案例 教学目标:灵活运用勾股定理及其逆定理解决问题。 教学重点:勾股定理及其逆定理的灵活运用。 教学难点:勾股定理及其逆定理在实际生活中的运用。 教学过程: 教师出示大家易错的解答题第4题:一个长方体木块,长30厘米、宽24厘米、高18厘米,一只蚂蚁在木块表面从A点爬到B点,求这只蚂蚁爬行的最短路线。 同学们在小组内交流,得出如下方案: (1)前、右两面展开,沿展开面的对角线爬行; (2)前、上两面展开,沿展开面的对角线爬行; (3)左、上两面展开,沿展开面的对角线爬行。 这三种方案通过计算对比得出,将前、右两面展开,小蚂蚁走展开面的对角线路线最短。 教师根据自己的教学经验及时进行变式训练:一个圆柱体,底面直径6厘米,高5厘米,蚂蚁沿外表面爬行,从左下角A点爬到相对的右上角B点,求蚂蚁爬行的最短路线。 经同学们思考得到解题方法:将圆柱体的侧面展开得到一个长方形,将此长方形纵切平分,沿平分后矩形的对角线

走路线最短。 为强化学生掌握解题方法王老师又给学生出了这样一道变式题:一个圆柱体,底面直径4厘米,高8厘米,蚂蚁沿外表面从圆柱体左下角A点爬到相对的右上角B点,求蚂蚁爬行的最短路线。 同学们根据刚才的方法很快地求出了答案。 … … 教学探究: 王老师在出这道变式题时,我在想:蚂蚁若从A点沿着侧面的高线和上底面的直径爬到B点,这样走路线是否最短呢?以变式二为例我将两种方法对比计算,得出还是上述方法正确。 但这一想法促使我继续思考,假如圆柱体的地面直径和高变了,结果又怎样呢?我自己设计了一道变式题:一个圆柱体,底面直径5厘米,高2厘米,蚂蚁从圆柱体左下脚A 点爬到相对的右上B点,求蚂蚁爬行的最短路线。通过计算比较得到,蚂蚁蚂蚁沿着侧面的高线和上底面的直径爬,这样走路线是否最短。 引发我深层次地思考探究:在不同的情况下到底选用哪种方法? 课后,为探究这一问题,我编了三道变式题: (1)一个圆柱体,底面直径2厘米,高5厘米,蚂蚁

勾股定理实际应用教学设计

勾股定理应用的教学设计教学目标 1.会用勾股定理进行简单的计算。 2.通过探究,会运用勾股定理解释生活中的实际问题。 教学重点 勾股定理的应用。 教学难点 实际问题向数学问题的转化 教学过程 通过小组合作学习探究,研究勾股定理在实际中的应用 一、复习旧知 复习勾股定理以及一些简单的计算 (1)勾股定理: (2)求出下列直角三角形中未知的边. A C B 二、合作探究 通过四个问题,让学生明白勾股定理在实际生活中的应用,以及如何去使用勾股定理。 问题1.有一个边长为1米正方形的洞口,想用一个圆形盖去盖住这个洞口,则圆形盖半径至少为多少米.? 5 m处断裂,旗杆顶部落在离底部12 m处,问旗杆折断前 如下图,要将楼梯铺上地毯,则需要米长的地毯. 5米长的梯子AB,斜着靠在竖直的墙AO上,这时AO的距离为3米. ①球梯子的底端B距墙角O多少米? ②如果梯的顶端A沿墙下滑1米至C,请同学们猜一猜,底端B也将滑动1米吗? 算一算,底端滑动的距离。(结果保留1位小数). 6 1 A C B 2 30° C B 2 2

三.深化新知 “引葭赴岸”是《九章算术》中的一道题“今有池方一丈,葭生其中央,出水一尺,引葭赴 岸,适与岸齐。问水深、葭长各几何?” 四、课堂小结 本节课你有什么收获?你认为用勾股定理解决实际问题的关键是什么? 五、运用新知 1校园里有两棵树,相距15米,一棵树高10米,另一棵树高18米,一只小鸟从一棵树的顶 端飞到另一棵树的顶端,小鸟至少要飞米。 2如图,一根12米高的电线杆两侧各用15米的铁丝固定,两个固定点之间的距离 是。 4、一根32厘米的绳子被折成如图所示的形状钉在P、Q两点,PQ=16厘米,且RP⊥PQ,则RQ= 厘米。 3、小东拿着一根长竹竿进一个宽为三米的城门,他先横着拿不进去,又竖起来拿,结果竿比城 门高1米,当他把竿斜着时,两端刚好顶着城门的对角,问竿长多少米。 六、课后反思 我学到了什么—————— 还想知道什么——————

勾股定理导学案

A B 17.1.1 《勾股定理》第一课时导学案 学习目标:1、了解多种方法验证勾股定理,感受解决同一个问题方法的多样性。 2、通过实例进一步了解勾股定理,应用勾股定理进行简单的计算。 学习过程: 活动一 动手做一做 1、在右边空白处画出Rt△A B C 令∠C = 90°, 直角边A C = 3cm ,B C = 4cm , (1)用刻度尺量出斜边A B = ________(2)计算:__________,_____,222===AB BC AC 2、探究:222,,AB BC AC 之间的关系: 活动二 毕达哥拉斯的发现 1、图中两个小正方形分别为A 、B ,大正方形为C , 则三个正方形面积之间的关系:_______________ 2、设三个正方形围成的等腰直角三角形的直角边为a , 斜边为c ,则图中等腰直角三角形三边长度 之间的关系:_____________________ 活动三 探索与猜想 观察下面两幅图:(每个小正方形的面积为单位1) (1)你是怎样得到正方形C 的面积的?与同伴交流一下。 (2)猜想命题:如果直角三角形的两条直角边分别为a 、b ,斜边为c ,那么_______________ 活动四 认识赵爽弦图 活动五 证明猜想 已知:如图,在边长为c 的正方形中,有四个两直角边分别为a 、b , 斜边为c 全等的直角三角形, 求证: 222 a b c +=(提示:大正小正=S S S Rt +?4) 证明:

勾股定理:直角三角形两条_______的平方和等于_____的平方 如果直角三角形的两直角边分别为a 、b ,斜边为c ,那么_________________ 归纳直角三角形的主要性质: 在Rt △A B C 中,∠C = 90°, (1)两锐角的关系:∠ A + ∠ B = _____° (2)斜边与直角边的关系:若∠A = 30°,则 ________________ (3)三边之间的关系:______________________ 活动六 活学活用 1、如右图,在直角三角形中, x =______,y =______ 2、下列各图中所示的正方形的面积为多少。 (注:下列各图中的三角形均为直角三角形) 3、在Rt △A B C 中,∠C = 90°, (1)若a = 2,b = 3, 则c = _______ (2)若a = 1,c = 2, 则b = _______ (3)若c = 5,b = 4, 则a = _______ 4、在一个直角三角形中, 两边长分别为3、4,则第三边的长为______________ 5、(1)在Rt △A B C 中,∠C = 90°,∠A = 30°,AB = 4, 则BC = _______, 则AC = _______ (2)在Rt △A B C 中,∠A = 90°,BC = 7,AC = 5,则 AB = _________ x 8 6 13 5 y A B C

勾股定理教学案例

《勾股定理》教学案例 鱼窝头中学初三级何辉琼 一、教材分析 (一)教材的地位与作用 勾股定理是数学中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。 它在数学的发展中起着重要的作用,在现实世界中也有着广泛的应用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。 (二)教学目标 基于以上分析和数学课程标准的要求,制定了本节课的教学目标。 知识与技能: 1、了解勾股定理的文化背景,体验勾股定理的探索过程,了解利用拼图验证勾股定理的方法。 2、了解勾股定理的内容。 3、能利用已知两边求直角三角形另一边的长。 数学思考: 在勾股定理的探索过程中,培养合情推理能力,体会数形结合和从特殊到一般的思想。 解决问题: 1、通过拼图活动,体验数学思维的严谨性,发展形象思维。 2、在探索活动中,学会与人合作,并能与他人交流思维的过程和探索的结果。 情感与态度: 1、通过对勾股定理历史的了解,对比介绍我国古代和西方数学家关于勾股定理的 研究,激发学生热爱祖国悠久文化的情感,激励学生奋发学习。 2、在探索勾股定理的过程中,体验获得结论的快乐,锻炼克服困难的勇气,培养 合作意识和探索精神。 (三)教学重、难点 重点:探索和证明勾股定理 难点:用拼图方法证明勾股定理 二、学情分析 学生对几何图形的观察,几何图形的分析能力已初步形成。部分学生解题思维能力比较高,能够正确归纳所学知识,通过学习小组讨论交流,能够形成解决问题的思路。现在

的学生已经厌倦教师单独的说教方式,希望教师设计便于他们进行观察的几何环境,给他们自己探索、发表自己见解和展示自己才华的机会;更希望教师满足他们的创造愿望。 三、教学策略 本节课采用探究发现式教学,由浅入深,由特殊到一般地提出问题,鼓励学生采用观察分析、自主探索、合作交流的学习方法,让学生经历数学知识的形成与应用过程。 四、教学程序 地面图18.1-1

勾股定理导学案

勾股定理 1 勾股定理(一) 学习目标: 1. 了解勾股定理的发现过程,掌握勾股定理的容,会用面积法证明勾股定理。 2. 利用勾股定理,已知直角三角形的两边求第三条边的长。 学习重点:探索和验证勾股定理。 学习难点:证明勾股定理。 导学流程: 一、 自主学习 前置学习: 自学指导:阅读教材第64至66页,完成下列问题。 1. 教材第64至65页思考及探究。 2. 画一个直角边为3cm 和4cm 的直角△ABC ,用刻度尺量出AB 的长。(勾3,股4,弦5)。 以上这个事实是我国古代3000多年前有一个叫商高的人发现的,他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。”这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5。 再画一个两直角边为5和12的直角△ABC ,用刻度尺量AB 的长。 你是否发现23+24与25的关系,25+212和2 13的关系,即23+24_____25,25+212_____213,那么就有____2+____2=____2。(用勾、股、弦填空) 对于任意的直角三角形也有这个性质吗? 要点感知:如果直角三角形的两直角边长分别是a 、b , 斜边为c ,那么 ,即直角三角形中两直角边的平方和等于斜边的 。 二、展示成果 活动1 已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c 。求证:222a b c +=。 证明:如爽弦图, 思考:除此之外,还有证明勾股定理的其他办法吗? 活动2 如果将活动1中的图中的四个直角三角形按如图所拼,又该如何证明呢? 知识点归纳: 上述问题可视为命题1的证明 命题1如果直角三角形的两直角边长分别为a 、b , 斜边为c ,那么 。 总结:经过证明被确认正确的命题叫 。 命题1在我国称为 ,而在西方称为 。 三、合作探究 活动3 已知在Rt △ABC 中,∠C=90°,a 、b 、c 是△ABC 的三边,则 (1)a = 。(已知c 、b ,求a ) (2)b = 。(已知a 、c ,求b ) (3)c = 。(已知a 、b ,求c ) 活动4 △ABC 的三边a 、b 、c , (1)若满足222a b c +=,则∠C 是 角; (2)若满足222a b c +>,则∠C 是 角; (3)若满足222a b c +<,则∠C 是 角。 四、当堂自测 基础训练: 1. 在直角三角形ABC 中,∠C=90°,若=5a ,=12b ,则=c 。 2. 在直角三角形ABC 中,若=3a ,=5b ,则=c 。 3. 若把直角三角形的两条直角边同时扩大到原来的 2倍,则其斜边扩大到原来的 。 4. 在ABC ?中,90C ∠=?. b b

《勾股定理》教学设计方案#(精选.)

教学设计(《勾股定理》为主题) 班级:2015级3班学号:2015060336 姓名:吴玲性别:女 序言:勾股定理是几何中几个重要定理之一,揭示了直角三角形三边之间的数量关系,是对直角三角形性质的进一步学习和深入,它可以解决许多直角三角形中的计算问题,在实际生活中用途很大。它不仅在数学领域而且在其他自然科学领域中也被广泛地应用,而说明数学是一门基础学科,是人们生活的基本工具。 勾股定理知识是我国数学领域的璀璨明珠,代表着历代人民智慧和探索精神的结晶。通过学生亲身再次重温它的得来的过程从中感触我国数学知识源远流长和数学价值的伟大从中得到良好的思想的熏陶。

教学活动1 活动一:故事场景→发现新知 毕达哥拉斯是古希腊著名的数学家。相传在2500年以前,他在朋友家做客时,发现朋友家用地砖铺成的地面反映了直角三角 形的三边之间的某种数量关系。 地面 同学们,请你也来观察下图中的地面,看看能发现些什么? 提问:1)上图中的等腰直角三角形有什么特点? 2)等腰直角三角形是特殊的直角三角形,一般的的直 角三角形是否也满足这种特点? 引导学生分析情景、提出问题: 你是怎样观察这个砖铺的现场的? (从基本砖铺材料、图形单元、位置形态进行观察:铺设材料是 正方形砖块,其中丰富的图案都是由等腰Rt△色块作为基本单元 构成。) A B 由于对角线的作用,通过进一步的观察或者手工拼图可以发现用等腰直角三角形拼正方形的基本方法(充分展示出了等腰直 角三角形与正方形的结构关系)。

3)在课堂上开展分组活动,让学生亲手操作:对正方形进行 剪切、拼贴然后再将它们关联(由正方形的边长关系到等腰直角 三角形)起来从而实现真正意义上的发现----合围(以等腰直角三 角形的三边为边) 教学活动2 活动二、深入探究→网络信息 等腰Rt△有上述性质其它的Rt△是否也具有这个性质呢? 网格 提问: (1)你是如何计算那个建立在Rt△斜边上的正方形面积的? 怎样探索“其它”的Rt△的三边关系呢? 目标体验:有区别的看待直角三角形(从地板上的等腰直角三角 形出发,构建“其它”直角三角形并且在它的三边建立正方形以 突出便利于探究性学习的网格图形)。 (2)要求学生画一个两直角边分别为2,3的直角三角形,并以它的三边为边长(根据定义法辅用以直尺)建立正方形。 (3)计算各正方形面积并验证这个Rt△的三边存在的关 系。

3.3勾股定理的简单应用.doc

3.3 勾股定理的简单应用 学习目标:1、巩固勾股定理及其逆定理; 2、会用勾股定理及其逆定理解决问题。 教学重点:用勾股定理及其逆定理解决问题 教学难点:用勾股定理及其逆定理解决问题 【复习回顾】 问题1:勾股定理是如何描述的?符号语言如何表示? 问题2:你能说出这个定理的逆命题吗?符号语言如何表示? 【情境创设】 从远处看,斜拉桥的索塔、桥面与拉索组成许多直角 三角形.已知桥面以上索塔AB的高,怎样计算AC、AD、AE、 AF、AG的长? 思考,讨论并交流线段的长的计算. 【例题1】 【课堂练习1】 “引葭赴岸”是《九章算术》中另一道题“今有池方一丈,葭 生其中央,出水一尺,引葭赴岸,适与岸齐.问水深、葭长各 几何?”(有一个边长为10尺的正方形池塘,在水池正中央有 一根新生的芦苇,它高出水面1尺,如果把这根芦苇沿与水池 边垂直的方向拉向岸边,它的顶端恰好到达岸边.请问这个水 池的深度和这根芦苇的长度各是多少?) 【例题2探究】 【课堂练习2】 1、在△ABC中,AB=AC=17,BC=16,求△ABC的面积. 2、在△ABC中,AD⊥BC,AB=15,AD=12,AC=13,求△ABC的周长和面积. 【课堂小结】 本节课2个目标你达成个?分别是: :

3.3 勾股定理的简单应用练习 1、在一块平地上,离张大爷家屋前9m 处有一棵大树.在一次强风中,这棵树从离地面6m 处折断倒下,量得倒下部分的长是10m ,则大树倒下时能砸到张大爷的房子吗?() A.一定不会 B.可能会 C.一定会 D.无法确定 2、如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行() A.8米 B.10米 C.12米 D.14米 3、如图,是一个人字形屋架,为等腰三角形ABC ,跨度AB =24?m ,上弦AC =13m ,则中柱CD =________m . 4、如图,要在高AC 为6米,斜坡AB 长10米的楼梯表面铺地毯,地毯的长度至少需要多少米? 5、如图,一圆柱体的底面周长为40cm ,高AB 为15cm ,BC 是上底面的直径,一只蚂蚁从 点A 出发,沿着圆柱的侧面爬行到点C ,试求出爬行的最短路程. 6、某校A 与直线公路距离为3000m ,又与该公路上某车站D 的距离为5000m ,现要在公路 这边建一个小商店C ,使之与学校A 及车站D 的距离相等,那么该店与车站D 的距离是多少? D C B A

2013新版北师版数学八年级(上)上第一章勾股定理导学案

第一章勾股定理 第1课时探索勾股定理(1) 一、三角形的边角关系: 边: 角: 引例: 二、探索直角三角形三边的特殊关系: (1)画一个直角三角形,使其两边满足下面的条件,测量第三边的长度,完成下表;(2)猜想:直角三角形的三边满足什么关系? 勾股定理: 三、利用拼图验证勾股定理: 用四个全等的直角三角形拼出图1,并思考: 1.拼成的图1中有_______个正方形,___个直角三角形。 2.图中大正方形的边长为_______,小正方形的边长为_______。 3.你能请用两种不同方法表示图1中大正方形的面积,列出一个等式,验证勾股定理吗?

四、典型例题 例1、求出下列各图中x 的值。 例2、如图所示,强大的台风使得一根旗杆在离地面9米处折断倒下,旗杆顶部落在离旗杆底部12米处。旗杆折断之前有多高? 例3、飞机在空中水平飞行,某一时刻刚好飞到一个站着不动的女孩头顶正上方4000米处,过了25秒,飞机距离女孩头顶5000米处,则飞机的飞行速度是多少? 例4、求下图中字母所代表的正方形的面积。 x 15 17C B A

例6、直角三角形两直角边长分别为5cm ,12cm ,则斜边上的高为 . 五、知识巩固: 1.在△ABC 中,∠C=90°, (1)若BC =5,AC =12,则AB = ; (2)若BC =3,AB =5,则AC = ; (3)若BC ∶AC =3∶4,AB =10,则BC = ,AC = . 2.某农舍的大门是一个木制的矩形栅栏,它的高为2m ,宽为1.5m ,现需要在相对的顶点间用一块木棒加固,木棒的长为 . 3.若直角三角形的两直角边之比为3:4,斜边长为20㎝,则斜边上的高为 。 4.如图,所有的四边形都是正方形,所有的三角形都 是直角三角形,其中最大的正方形的边长为7cm , 则正方形A ,B ,C ,D 的面积之和为_______cm 2 . 5.一个直角三角形的两直角边长为3cm 、4cm ,斜边长为 a cm ,则以斜边为半径的圆的面积是 。 6.等腰三角形的腰长为13cm ,底边长为10cm ,则其面积为 .

几种简单证明勾股定理的方法

几种简单证明勾股定理的方法 ——拼图法、定理法 江苏省泗阳县李口中学沈正中 据说对社会有重大影响的10大科学发现,勾股定理就是其中之一。早在4000多年前,中国的大禹曾在治理洪水的过程中利用勾股定理来测量两地的地势差。迄今为止,关于勾股定理的证明方法已有500余种,各种证法融几何知识与代数知识于一体,完美地体现了数形结合的魅力。让我们动起手来,拼一拼,想一想,娱乐几种,去感悟数学 的神奇和妙趣吧! 一、拼图法证明(举例12种) 拼法一:用四个相同的直角三角形(直角边为a 、b ,斜边为c )按图2拼法。 问题:你能用两种方法表示左图的面积吗?对比两种不同的表示方法,你发现了什么? 分析图2:S 正方形=(a+b )2= c 2 + 4×2 1ab 化简可得:a 2+b 2 = c 2 拼法二:做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像左 图那样拼成两个正方形。 从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即 a 2+ b 2+4×21ab = c 2+4×21ab 整理得 a 2+b 2 = c 2 拼法三:用四个相同的直角三角形(直角边为a 、b ,斜边为c )按图3拼法。 问题:图3是由三国时期的数学家赵爽在为《周髀算经》作注时给出的。在图3中用同样的办法研究,你有什么发现?你能验证a 2+b 2=c 2吗? 分析图3:S 正方形= c 2 =(a-b )2+ 4×21ab 化简可得:a 2+b 2 = c 2 图1 图2 图3 图4 b a b a b a b a c b a c b a c b a c b a c b a c b a

勾股定理的简单应用教案

课题 3.3勾股定理的应用第1课时 学习目标1、在运用勾股定理解决实际问题的过程中,感受数学的“转化”思想, 2、进一步发展有条理思考和有条理表达的能力。 3、通过对勾股定理应用,培养解决实际问题的能力和审美能力。 教学重点解斜三角形问题转化为解直角三角形的问题 教学难点勾股定理及直角三角形的判定条件的应用的区别 教法教具自主探究合作交流 教师活动二次备课 一创设情境 勾股定理在生活中的应用 从远处看,斜拉桥的索塔、桥面与拉索组成许多直角三角形 二探索活动 已知桥面以上索塔AB的高,怎样计算AC、AD、AE、AF、AG的 长. A B C E F G D

二.例题教学 例1 九章算术中的“折竹”问题:今有竹高一丈,末折抵地,去根三尺,问折者高几何? 意思是:有一根竹子原高1丈(1丈=10尺),中部有一处折断,竹梢触地面处离竹根3尺,试问折断处离地面多高? 练习 “引葭赴岸”是《九章算术》中另一道题“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深、葭长各几何?” 题意是:有一个边长为10尺的正方形池塘,在水池正中央有一根新生的芦苇,它高出水面1尺,如果把这根芦苇沿与水池边垂直的方向拉向岸边,它的顶端恰好到达岸边.请问这个水池的深度和这根芦苇的长度各是多少? A C B 例2 如图,在△ABC中,AB=26,BC=20,BC边上的中线AD =24,求AC.

勾股定理与它的逆定理在应用上有什么区别? 三.展示交流 1.如图,在△ABC 中, AB =AC =17,BC =16,求△ABC 的面积. 2如图,在△ ABC 中,AD ⊥BC ,AB =15,AD =12,AC =13,求△ABC 的周长和面积. 3、如图,以△ABC 的三边为直径向外作半圆,且S 1+S 3=S 2,试判断△ABC 的形状? 四.总结 从勾股定理的应用中我们进一步体会到直角三角形与等腰三角形有着密切的联系;把研究等腰三角形转化为研究直角 D C B A D C B A

新北师大版八年级数学上册第一章勾股定理导学案(自编)已审

第一章勾股定理导学案 第1课时探索勾股定理(1) 一、学习目标:掌握勾股定理并能利用它来解决简单的实际问题。 二、预习设计: 1、三角形按角的大小可分为:、、。 2、三角形的三边关系: 三角形的任意两边之和;任意两边之差。 3、直角三角形的两个锐角; 4、在RtΔABC中,两条直角边长分别为a、b,则这个直角三角形的面积可以表示为:。 5、自学感知:探索直角三角形三边的特殊关系: (1)画一直角三角形,使其两边满足下面的条件,测量第三边的长度,完成下表; (2)猜想:直角三角形的三边满足什么关系? (3)任画一直角三角形,量出三边长度,看得到的数据是否符合你的猜想。猜想: 三、课堂探究::

如果下图中小方格的边长是1,观察图形,完成下表,并与同学交流:你是 怎样得到的? 思考: 每个图中正方形的面积与三角形的边长有何关系?归纳得出勾股定理。 勾股定理: 直角三角形等于; 几何语言表述:如图1.1-1,在RtΔABC中, C= 90°, 则:; 若BC=a,AC=b,AB=c,则上面的定理可以表示为:。 图1.1-1 课堂练习: 1、求下图中字母所代表的正方形的面积

落在离旗杆底部12米处。旗杆折断之前有多高? 三、师生互动: 例题.在△ABC 中,AB=AC=5cm ,BC=6cm,求△ABC 的面积. C B A

四、训练达标: 基础巩固: 1.在△ABC 中,∠C=90°, (1)若BC =5,AC =12,则AB = ; (2)若BC =3,AB =5,则AC = ; (3)若BC ∶AC =3∶4,AB =10,则BC = ,AC = . (4) 若AB=8.5,AC=7.5,则BC= 。 2.某农舍的大门是一个木制的矩形栅栏,它的高为2m ,宽为1.5m ,现需要在相对的顶点间用一块木棒加固,木棒的长为 . 3.在Rt △ABC 中,∠C=90°,AC=5,AB=13,则BC= ,该直角三角形的面积为 。 4.直角三角形两直角边长分别为5cm ,12cm ,则斜边上的高为 . 5.若直角三角形的两直角边之比为3:4,斜边长为20㎝,则斜边上的高为 。 能力提升: 6.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm ,则正方 形A ,B ,C ,D 的面积之和为_______cm 2 . 7.一个直角三角形的三边长为3、4和a ,则以a 的面积是 。 8.如图,点C 是以AB 为直径的半圆上一点,∠ACB=90AC=3,BC=4,则图中阴影部分的面积是 。9.等腰三角形的腰长为13cm ,底边长为10cm ,则其 面积为 . 10.△ABC 中,AB =15,AC =13,高AD =12,求△ABC 的周长。 课堂检测 1.在△ABC 中,∠C =90°,(l )若 a =5,b =12,则 c = (2)若c =41,a =9,则b = 2.等腰△ABC 的腰长AB =10cm ,底BC 为16cm ,则底边上的高为 ,面积为 第4题

勾股定理简单应用

勾股定理应用的教学设计 教学目标 1 ?会用勾股定理进行简单的计算。 2.通过探究,会运用勾股定理解释生活中的实际问题 教学重点 勾股定理的应用。 教学难点 实际问题向数学问题的转化 教学过程 通过小组合作学习探究,研究勾股定理在实际中的应用 一、 复习旧知 复习勾股定理以及一些简单的计算 ⑴勾股定理: ____________________________________________________ (2)求出下列直角三角形中未知的边. 通过四个问题,让学生明白勾股定理在实际生活中的应用,以及如何去使用勾股定理 问题1.有一个边长为1米正方形的洞口,想用一个圆形盖去盖住这个洞口, 则圆形盖半径至 少为多少米? ? 问题2.如图所示,一旗杆在离地面 5 m 处断裂,旗杆顶部落在离底部 12 m 处,问旗杆 折断前有多咼? 合作探究 B A 2 C C C

问题4.如图,一个5米长的梯子AB 斜着靠在竖直的墙A0上,这时A0的距离为3米. ① 球梯子的底端B 距墙角0多少米? ② 如果梯的顶端A 沿墙下滑1米至C,请同学们猜一猜,底端 B 也将滑动1米吗? 算一算,底端滑动的距离。(结果保留 1位小数). 三. 深化新知 “引葭赴岸”是《九章算术》中的一道题“今有池方一丈,葭生其中央,出水一尺 , 引 葭赴岸,适与岸齐。问水深、葭长各几何?” 四、课堂小结 本节课你有什么收获?你认为用勾股定理解决实际问题的关键是什么? 五、运用新知 1校园里有两棵树,相距15米,一棵树高10米,另一棵树高18米,一只小鸟从一棵树 的顶端飞到另一棵树的顶端,小鸟至少要飞 ___________ 米。 2如图,一根12米高的电线杆两侧各用 15米的铁丝固定,两个固定点之间的距离 问题3.如下图,要将楼梯铺上地毯,则需要 _____ 米长的地毯.

《勾股定理》教学案例

教学案例13 勾股定理(第一课时) 一、教材分析 (一)教材的地位和作用 “勾股定理”是人教版《数学》八年级下册第十八章第一节内容,分三课时完成。本节说课为第一课时,主要讲解勾股定理的探索证明以及简单应用。 勾股定理是几何中几个重要的定理之一,它揭示了直角三角形三边之间的一种美妙的数量关系,将数与形密切联系起来,既是直角三角形性质的拓展,也是后续学习“解直角三角形”的基础,因此这节课在知识体系中有着承上启下的作用。 本课时内容有学习勾股定理的发现、证明及简单应用。勾股定理的发现主要让学生亲自动手,在实践中观察、分析、发现、猜想得出直角三角形三边之间的数量关系,再对a2+b2=c2的直角三角三边之间的数量关系,再对a2、b2、c2的结构特点与几何中正方形的面积公式产生联想,确定以面积来证明猜想的基本思想。 (二)学情分析 (1)学生的认知基础:八年级学生已具备一定的分析与归纳能力,初步掌握了探索图形性质的基本方法,但是学生对用割补法和面积法证明几何命题还存在障碍,不能快速有效地将数与形有机结合起来。 (2)学生年龄心理特点:八年级的学生在心理与生理方面已经较为成熟,对待事物的看法有一定的个性见解,探究欲强。 二、教学任务 (一)教学目标 【知识与技能目标】 理解并掌握勾股定理的内容和证明,能够简单的运用勾股定理。 【过程与方法目标】 在学生经历“观察—猜想—归纳—验证”勾股定理的过程中,发展合情推理能力,体会数形结合和从特殊到一般的数学思想。

【情感态度与价值观目标】 通过对勾股定理历史的了解,感受数学文化,培养学生的民族自豪感,激发学习兴趣,在探究活动中,培养学生的合作交流意识和探索精神。 (二)教学重点、难点 【教学重点】探索发现并验证勾股定理。 【教学难点】用面积法和拼图法证明勾股定理。 三、教法与学法分析 (一)教法分析 好的课堂结构不是那种“填鸭式、膨胀式”的结构,而应该是留有很大余地的可塑性结构,充分调动学生学习的积极性和主动性。贯彻“以学生为主体,教师为主导”的教学原则,培养学生自主学习的能力和创新意识。根据教学内容的特点和学生的实际情况,本节课采用“自主探究”式的教学方法。 (二)学法分析 我国古代《学记》说,教师应做到“道而弗牵,强而弗抑,开而弗达”。意思是:引导学生而不牵着学生走,激励他们而不强加逼迫,启发他们独立思考,而不直接把结论告诉学生。在学习定理时,先设计好观察、实验用的图形。通过自己观察、实践探究出的新知识,进一步亲自动手尝试,对图形割、补、拼、凑,从而达到面积割补法的证明思想,从而让学生得到学习成功的体验。同时,在定理证明的探究过程中,以充满启发性的问题引路,并渗透“数形”结合的思想。 (三)、教学策略 【教法】引导探索法 【学法】自主探索合作交流 【教学手段】多媒体辅助教学 【学具准备】剪刀四个全等直角三角形 正是基于上述的指导,因此设计了以下的教学过程。 四、教学过程

14.2 勾股定理的应用

14.2 勾股定理的应用 教学目标 教学知识点:能运用勾股定理及直角三角形的判别条件(即勾股定理的逆定理)解决简单的实际问题. 能力训练要求:1.学会观察图形,勇于探索图形间的关系,培养学生的空间观念. 2.在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想. 情感与价值观要求:1.通过有趣的问题提高学习数学的兴趣. 2.在解决实际问题的过程中,体验数学学习的实用性,体现人人都学有用的数学. 教学重点难点: 重点:探索、发现给定事物中隐含的勾股定理及其逆及理,并用它们解决生活实际问题. 难点:利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题. 教学过程 1、创设问题情境,引入新课: 前几节课我们学习了勾股定理,你还记得它有什么作用吗? 例如:欲登12米高的建筑物,为安全需要,需使梯子底端离建筑物5米,至少需多长的梯子? 根据题意,(如图)AC是建筑物,则AC=12米,BC=5米,AB是梯子的长度.所以在Rt△ABC 中,AB2=AC2+BC2=122+52=132;AB=13米. 所以至少需13米长的梯子. 2、讲授新课:①、蚂蚁怎么走最近

出示问题:有一个圆柱,它的高等于12厘米,底面半径等于3厘米.在圆行柱的底面A 点有一只蚂蚁,它想吃到上底面上与A 点相对的B 点处的食物,需要爬行的的最短路程是多少?(π的值取3). (1)同学们可自己做一个圆柱,尝试从A 点到B 点沿圆柱的侧面画出几条路线,你觉得哪条路线最短呢?(小组讨论) (2)如图,将圆柱侧面剪开展开成一个长方形,从A 点到B 点的最短路线是什么?你画对了吗? (3)蚂蚁从A 点出发,想吃到B 点上的食物,它沿圆柱侧面爬行的最短路程是多少?(学生分组讨论,公布结果) 我们知道,圆柱的侧面展开图是一长方形.好了,现在咱们就用剪刀沿母线AA ′将圆柱的侧面展开(如下图). 我们不难发现,刚才几位同学的走法: (1)A →A ′→B ; (2)A →B ′→B ; (3)A →D →B ; (4)A —→B. 哪条路线是最短呢?你画对了吗? 第(4)条路线最短.因为“两点之间的连线中线段最短”. ②、做一做。李叔叔随身只带卷尺检测AD ,BC 是否与底边AB 垂直,也就是要检测 ∠DAB=90°,∠CBA=90°.连结BD 或AC ,也就是要检测△DAB 和△CBA 是否为直角三角形.很显然,这是一个需用勾股定理的逆定理来解决的实际问题. ③、随堂练习 出示投影片 A B A B

17.1.1勾股定理导学案

17.1 勾股定理(1) 学习目标: 1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。 2.培养在实际生活中发现问题总结规律的意识和能力。 3.介绍我国古代在勾股定理研究方面所取得的成就,激发爱国热情,勤奋学习。 重点:勾股定理的内容及证明。 难点:勾股定理的证明。 学习过程: 一.预习新知(阅读教材第64至66页,并完成预习内容。) 1正方形A、B 、C的面积有什么数量关系? 2以等腰直角三角形两直角边为边长的小正方形的面积和以斜边为边长的大正方形的面积之间有什么关系? 归纳:等腰直角三角形三边之间的特殊关系。 A B C (1)那么一般的直角三角形是否也有这样的特点呢? (2)组织学生小组学习,在方格纸上画出一个直角边分别为3和4的直角三角形,并以其三边为边长向外作三个正方形,并分别计算其面积。 (3)通过三个正方形的面积关系,你能说明直角三角形是否具有上述结论吗? (4)对于更一般的情形将如何验证呢?

二.课堂展示 方法一; 如图,让学生剪4个全等的直角三角形,拼成如图图形,利用面积证明。 S 正方形=_______________=____________________ 方法二; 已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c 。 求证:a 2+b 2=c 2。 分析:左右两边的正方形边长相等,则两个正方形 的面积相等。 左边S=______________ 右边S=_______________ 左边和右边面积相等, 即 化简可得。 方法三: 以a 、b 为直角边,以c 为斜边作两个全等的直角三角形,则每个直角三角形的面积等于ab. 把这两个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上. ∵ Rt ΔEAD ≌ Rt ΔCBE, ∴ ∠ADE = ∠BEC. ∵ ∠AED + ∠ADE = 90o, ∴ ∠AED + ∠BEC = 90o. ∴ ∠DEC = 180o―90o= 90o. ∴ ΔDEC 是一个等腰直角三角形, 它的面积等于 c 2. 又∵ ∠DAE = 90o, ∠EBC = 90o, ∴ AD ∥BC. ∴ ABCD 是一个直角梯形,它的面积等于_________________ 归纳:勾股定理的具体内容是 。 2 12 1 b b b

勾股定理学案

课题:18.1勾股定理(第1课时) 一、学习目标 1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。 2.培养在实际生活中发现问题总结规律的意识和能力。 3.介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习。 二、重点:勾股定理的内容及证明。 难点:勾股定理的证明。 三、学习准备: 预习课本P22———24页 四、课堂阅读 1. 目前世界上许多科学家正在试图寻找其他星球的“人”,为此向宇宙发出了许多信号,如地 球上人类的语言、音乐、各种图形等。我国数学家华罗庚曾建议,发射一种反映勾股定理的图形,如果宇宙人是“文明人”,那么他们一定会识别这种语言的。这个事实可以说明勾股定理的重大意义。尤其是在两千年前,是非常了不起的成就。 2.让学生画一个直角边为3cm 和4cm 的直角△ABC ,用刻度尺量出AB 的长。 以上这个事实是我国古代3000多年前有一个叫商高的人发现的,他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。”这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5。 再画一个两直角边为5和12的直角△ABC ,用刻度尺量AB 的长。 你是否发现32+42与52的关系,52+122和132的关系,即_______________,那么就有 ________________ 对于任意的直角三角形也有这个性质吗? 五、例习题分析 例1(补充)已知:在△ABC 中,∠C=90°, ∠A 、∠B 、∠C 的对边为a 、b 、c 。 求证:a 2+b 2=c 2。 分析:⑴让学生准备多个三角形模型,最好是有颜色的吹塑纸,让学生拼摆不同的形状,利用面积相等进行证明。 ⑵拼成如图所示,其等量关系为:4S △+S 小正=S 大正 ________________________ ______________ ⑶发挥学生的想象能力拼出不同的图形,进行证明。 ⑷ 勾股定理的证明方法,达300余种。这个古老的精彩的证法,出自我国古代无名数学家之手。激发学生的民族自豪感,和爱国情怀。 例2已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c 。 求证:a 2+b 2=c 2。 分析:左右两边的正方形边长相等,则两个正方形的面积相等。 A B b b

北师大版八年级数学上册1.1.2勾股定理的简单应用 同步训练卷

北师版八年级数学上册 1.1.2勾股定理的简单应用 同步训练卷 一、选择题(共10小题,3*10=30) 1.直角三角形的周长为12,斜边长为5,则面积为() A.12 B.10 C.8 D.6 2.如图,三个正方形围成一个直角三角形,64,100分别为所在正方形的面积,则图中字母M所代表的正方形的边长是() A.6 B.8 C.36 D.164 3.《九章算术》中的“折竹抵地”问题(如图):今有竹高一丈,末折抵地,去根六尺.问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部6尺远,问折断处离地面的高度是多少?设折断处离地面的高度为x尺,则可列方程为() A.x2-6=(10-x)2B.x2-62=(10-x)2 C.x2+6=(10-x)2D.x2+62=(10-x)2 4.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是() A.48 B.60 C.76 D.80 5.如图,在长方形ABCD中,AB=4,BC=6,将△ABC沿AC折叠,使点B落在点E处,CE交AD于点F,则DF的长等于()

A.35 B.53 C.73 D.54 6. 如图所示是一段楼梯,高BC 是3 m ,斜边AB 是5 m ,如果在楼梯上铺地毯,那么地毯的长至少需要( ) A .5 m B .6 m C .7 m D .8 m 7. 如图,直线l 上有三个正方形a ,b ,c ,若a ,c 的面积分别为5和11,则b 的面积为( ) A .4 B .6 C .16 D .55 8.有长度为9 cm ,12 cm ,15 cm ,36 cm ,39 cm 的五根木棒,用其中的三根首尾连接可搭成直角三角形的个数为( ) A .1 B .2 C .3 D .4 9.如图,长方形ABCD 的对角线AC =10,BC =8,则图中五个小长方形的周长之和为( ) A .14 B .16 C .20 D .28 10.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形的较长直角边长为a ,较短直角边长为b.若ab =8,大正方形的面积为25,则小正方形的边长为( ) A .9 B .6 C .4 D .3 二.填空题(共8小题,3*8=24)

探索勾股定理导学案

第一章勾股定理 1.探索勾股定理(一) 吉安市思源实验学校 学习目标 1、了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。 2、培养在实际生活中发现问题总结规律的意识和能力。 重点难点: 重点:勾股定理的简单计算和实际运用。 难点:勾股定理的证明。 教法学法 1.教学方法:引导—探究—发现法. 2.学习方法:自主探究与合作交流相结合. 第一环节:自主学习 一、学习准备(2分钟) 1、直角三角形两锐角的关系:直角三角形的两锐角。 2、三角形任意两边之和第三边,三角形任意两边之差第三边。 3、在RtΔABC中,两条直角边长分别为a、b,则这个直角三角形的面积可以表示为:。 4.写出平方差公式完全平方公式 5.阅读教材:第1节探索勾股定理(书本p2面) 二、合作探究(10分钟) 1.自学感知:探索直角三角形三边的特殊关系: (1)画一直角三角形,使其两边满足下面的条件,测量第三边的长度,完成下表;

(3)任画一直角三角形,量出三边长度,看得到的数据是否符合你的猜想。 猜想: 2.小组探究(15分钟) 如果下图中小方格的边长是1,观察图形,完成下表,并与同学交流:你是怎样得到的? 归纳小结:1.勾股定理: 直角三角形两直角边的 等于斜边的.(古代把直角三角形中较短的直角 边称为勾,较长的直角边称为股,斜边称为弦) 2、几何语言表述:如图1.1-1,在Rt ΔABC 中, C =90°, 若BC=a ,AC=b ,AB=c ,则上面的定理可以表示为: 3.实践练习: 1.求下图中字母所代表的正方形的面积 2.求出下列各图中x 的值。 3.下列说法正确的是( ) A.若a 、b 、c 是△ABC 的三边,则a 2+b 2=c 2; B.若a 、b 、c 是Rt △ABC 的三边,则a 2+b 2=c 2; C.若a 、b 、c 是Rt △ABC 的三边,∠A=90°,则a 2+b 2=c 2; D.若a Rt △ABC 的三边,∠C=90°,则a 2+b 2=c 2. 意图:小组合作意在让学生进一步发现直角三角形三边关系,得到勾股定理.效果:1.让学生归纳表述结论,可培养学生的抽象概括能力及语言表达能力. 2.通过作图培养学生的动手实践能力. 第三环节:展示交流(15分钟) 1.在△ABC 中,∠C=90°, (1)若BC =5,AC =12,则AB =; (2)若BC =3,AB =5,则AC =; (3)若BC ∶AC =3∶4,AB =10,则BC =,AC =. 2.在Rt △ABC 中,∠C=90°,AC=5,AB=13,则BC=,该直角三角形的面积为。 3.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,

相关文档
最新文档