薄膜干涉、等厚干涉、牛顿环

牛顿环干涉汇总

实验六、牛顿环干涉 光的干涉现象是光波动性的基本特征之一。牛顿环干涉是属于用分振幅的方法产生的定域干涉现象,亦是典型的等厚干涉条纹。“牛顿环”是牛顿在1675年制做天文望远镜时,偶然将一个望远镜的物镜放在平板玻璃上发现的。在实际工作中,利用牛顿环干涉来测定光波的波长、透镜的曲率半径或检查光学元件表面的光洁度、平整度和加工精度等。 实验目的 1. 观察等厚现象,考察其特点; 2. 掌握一种测量透镜曲率半径的方法; 3. 学习使用读数显微镜。 实验仪器 JXD3型读数显微镜(一套),钠光灯,牛顿环 实验原理 把一块曲率半径相当大的平凸透镜A的凸面放在一块很平的平玻璃B上, 那么在两者之间就形成类似劈尖形的空气薄层。如图(a) 。如果将一束单色光垂直地投射上去,则入射光

在空气层上下两表面反射且在上表面相遇将产生干涉。在反射光中形成一系列以接触点O 为中心的明暗相间的光环叫牛顿圈。各明圈(或暗圈)处空气薄层的厚度相等,故称为等厚干涉。 明、暗环的干涉条件分别是: λλ δk e =+=2 2 ??????=,3,2,1k (1) 2 ) 12(2 2λ λ δ+=+ =k e ??????=,2,1,0k (2) 其中 2 λ 一项是由于二束相干光线中,其中一束光从光疏媒质(空气)到光密媒质(玻璃)交界面上反射时,发生“半波损失”引起的。 由图(b )可得环半径r 与厚度e 的关系:2 22)(e R r R -== 即: 2 2 2e eR r -= R 系透镜A 的曲率半径。由于e R ??,所以上式近似为: R r e 22 = (3) 将(3)带入(1)、(2)明、暗环公式分别有 2 )12(2 λ R k r +=(明环) ??????=,3,2,1k (4) R k r λ=2 (暗环) ??????=,2,1,0k (5) 由(4)、(5)式可看出:以一定波长λ的光入射到牛顿环上形成干涉条纹后,只要测出某一级明环或暗环的半径,即可测出透镜的曲率半径。但在实际测量中,暗环较易对准,故以测量暗环为宜。还有一个要注意的问题是,在实验中利用暗环公式(5),来测定透镜曲率半径R 时是认为接触点O 处(r=0)是点接触,且接触处无脏东西或灰尘存在,但是,实际上由于存在脏物或灰尘及玻璃的弹性形变,接触点是很小的面接触,看到的是一个暗斑。在

等厚干涉牛顿环实验报告材料97459

等厚干涉——牛顿环 等厚干涉是薄膜干涉的一种。薄膜层的上下表面有一很小的倾角是,从光源发出的光经上下表面反射后在上表面附近相遇时产生干涉,并且厚度相同的地方形成同一干涉条纹,这种干涉就叫等厚干涉。其中牛顿环是等厚干涉的一个最典型的例子,最早为牛顿所发现,但由于他主张微粒子学说而并未能对他做出正确的解释。光的等厚干涉原理在生产实践中育有广泛的应用,它可用于检测透镜的曲率,测量光波波长,精确地测量微笑长度、厚度和角度,检验物体表面的光洁度、平整度等。 一.实验目的 (1)用牛顿环观察和分析等厚干涉现象; (2)学习利用干涉现象测量透镜的曲率半径; 二.实验仪器 读数显微镜钠光灯牛顿环仪

三. 实验原理 牛顿环装置是由一块曲率半径较大的平凸面放在一块光学玻璃平板(平镜)上构成的,如图。平凸透镜的凸面与玻璃平板之间的空气层厚度从中心到边缘逐渐增加,若以平行单光垂直照射到牛顿环上,则经空气层上、下表面反射的两光束存在光程差,他们在平凸透镜的凸面相遇后,将发生干涉。从透镜上看到的干涉花样是以玻璃接触点为中心的一系列明暗相间的圆环,称为牛顿环。同一干涉环上各处的空气层厚度是相同的,因此他属于等厚干涉。 图2 图3 由图2可见,若设透镜的曲率半径为R ,与接触点O 相距为r 处空气层的厚度为d ,其几何关系式为 2222222)(r d Rd R r d R R ++-=+-= 由于r R >>,可以略去d 2得

R r d 22 = (1) 光线应是垂直入射的,计算光程差时还要考虑光波在平玻璃上反射会有半波损失,,从而带来2λ的附加程差,所以总光程差为 2 2λ + =?d (2) 所以暗环的条件是 2 ) 12(λ +=?k (3) 其中 3,2,1,0=k 为干涉暗条纹的级数。综合(1)(2)(3)式可得第可k 级暗环的半径为 λkR r k =2 (4) 由式(4)可知,如果单色光源的波长λ已知,测出第m 级的暗环半径r m,,即可得出平图透镜的曲率半径R ;反之,如果R 已知,测出r m 后,就可计算出入射单色光波的波长λ。但是用此测量关系式往往误差很大,原因在于凸面和平面不可能是理想的点接触;接触压力会引起局部形变,使接触处成为一个圆形平面,干涉环中心为一暗斑。或者空气间隙层有了灰尘,附加了光程差,干涉环中心为一亮(或暗)斑,均无法确定环的几何中心。实际测量时,我们可以通过测量距中心较远的两个暗环半径r m 和r n 的平方差来计算曲率半径R 。因为 λMR r m =2 λnR r n =2 两式相减可得 λ)(22n m R r r n m -=-

等厚干涉牛顿环实验报告

等厚干涉牛顿环实验报告 Prepared on 22 November 2020

等厚干涉——牛顿环等厚干涉是薄膜干涉的一种。薄膜层的上下表面有一很小的倾角是,从光源发出的光经上下表面反射后在上表面附近相遇时产生干涉,并且厚度相同的地方形成同一干涉条纹,这种干涉就叫等厚干涉。其中牛顿环是等厚干涉的一个最典型的例子,最早为牛顿所发现,但由于他主张微粒子学说而并未能对他做出正确的解释。光的等厚干涉原理在生产实践中育有广泛的应用,它可用于检测透镜的曲率,测量光波波长,精确地测量微笑长度、厚度和角度,检验物体表面的光洁度、平整度等。 一. 实验目的 (1)用牛顿环观察和分析等厚干涉现象; (2)学习利用干涉现象测量透镜的曲率半径; 二. 实验仪器 读数显微镜钠光灯牛顿环仪 三. 实验原理 牛顿环装置是由一块曲率半径较大的平凸面放在一块光 学玻璃平板(平镜)上构成的,如图。平凸透镜的凸面与玻 璃平板之间的空气层厚度从中心到边缘逐渐增加,若以平行单光垂直照射到牛顿环上,则经空气层上、下表面反射的两光束存在光程差,他们在平

凸透镜的凸面相遇后,将发生干涉。从透镜上看到的干涉花样是以玻璃接触点为中心的一系列明暗相间的圆环,称为牛顿环。同一干涉环上各处的空气层厚度是相同的,因此他属于等厚干涉。 图2 图3 由图2可见,若设透镜的曲率半径为R ,与接触点O 相距为r 处空气层的厚度为d ,其几何关系式为 由于r R >>,可以略去d 2得 R r d 22 = (1) 光线应是垂直入射的,计算光程差时还要考虑光波在平玻璃上反射会有半波损失,,从而带来2λ的附加程差,所以总光程差为 2 2λ + =?d (2) 所以暗环的条件是 2 ) 12(λ +=?k (3) 其中 3,2,1, 0=k 为干涉暗条纹的级数。综合(1)(2)(3)式可得第可k 级暗环的半径为 λkR r k =2 (4) 由式(4)可知,如果单色光源的波长λ已知,测出第m 级的暗环半径r m,,即可得出平图透镜的曲率半径R ;反之,如果R 已知,测出r m 后,就可计算出入射单色光波的波长λ。但是用此测量关系式往往误差很大,原因在于凸面和平面不可能是理想的点接触;接触压力会引起局部形变,使接触处成为一个圆形平面,干涉环中心为一暗斑。或者空气间隙层有了灰尘,附加了光程差,干涉环中心为一亮(或暗)斑,均无法确定环的几何

牛顿环

引言 “牛顿环”是牛顿在1675年制作天文望远镜时,偶然把一个望远镜的物镜放在平板玻璃上发现的。因为是牛顿发现的,所以称为牛顿环。牛顿环实际上是一种利用分振方法实现等厚干涉现象,实验原理并不复杂,但却有其研究价值和实用意义。牛顿实验原理——光的干涉广泛应用于科学研究,工业生产和检验技术中。如:利用光的干涉法进行薄膜等厚、微小角度、曲面的曲率半径等几何量的精密测量,也普遍应用于检测加工工件表面的光洁度和平整度及机械零件的内力分布等。因此不管对于科学研究还是实验教学,研究牛顿环是很有意义的。 牛顿环干涉实验是大学物理实验中的一个经典实验项目,几乎所有的理科大学都开设有这样一个实验。牛顿环实验既能够培养学生的基本实验技能,又能提高学生解决问题的能力。 学生们在做此实验的过程中往往都需要眼睛紧紧地盯着显微镜目镜仔细观察,同时还需要移动牛顿环装置和调焦手轮,寻找最清晰的干涉条纹并要移动到最佳观察位置。学生长时间用肉眼观测数据容易出现视觉疲劳,造成干涉条纹数错和条纹位置测不准,最终导致实验结果的不准确。还有在传统的牛顿环实验中,教师要逐一检查学生调节后的现象工程量很大,不仅影响了教师的视力,而且该过程也不能够及时反馈学生实验的情况,严重影响了教学质量。在传统牛顿环实验装置中加入摄像头和显示器以达可到更好的教学效果,同时也可以保护教师和学生的眼睛。 1. 牛顿环实验的相关知识 1.1牛顿环实验的重要性 牛顿环实验是大学物理实验中的一个经典实验项目,是光学基础性实验。它的重要性首先在于,从原理上讲,它主要是研究光的等厚干涉,这在大学物理理论课上是作为一个重点章节讲述的,通过做相应的大学物理实验,可以加深学生对物理学理论的深刻理解,从实际动手操作中帮助学生学习物理学理论。其次,它不仅是典型的等厚干涉条纹,同时也为光的波动提供了重要的实验证据。再者,从牛顿环实验应用的角度来说,利用牛顿环可以测平凸透镜的曲率半径,入射光的波长以及根据牛顿环的干涉花样好薄膜干涉原理可以判定光学平面的质量。最后,就大学物理实验本身的角度来说,该实验对于加深对等厚干涉及半波损失概念的理解及读数显微镜的使用,发挥了重要的作用。同时也能够培养学生的基本实验技能和提高学生解决实际问题的能力。 1.2牛顿环的实验原理 牛顿环是光的一种干涉图样,是一些明暗相间的同心圆环。将一块曲率半径较大的平凸透镜放在一块平板玻璃上,用单色光照射透镜与玻璃板,就可以观察到一些明暗相间的同心圆环。由于空气薄膜是有中心即图1—1中的点O (平凸透镜与平板玻璃的接触点)开始向四周逐渐增厚,而与中心O 等距离的点处的空气膜是等厚的,所以光程差相等的地方就形成以接触点为中心的一族等厚干涉同心圆环即牛顿环,这些圆环明暗交替,且离接触点越远,环纹越密集。从反射光看到的牛顿环中心是暗的,从透射光看到的牛顿环中心是明的。若用白光入射,将观察到彩色圆环[1]。 如图1—1所示,当透镜凸面的曲率半径R 很大时,在P 点处相遇的两反射光线的集合程差为该处空气间隙厚度k e (表示第k 级条纹对应的空气膜厚度)的两倍,即2e k 。又因这两条光线来自光疏媒质上的反射,它们之间有一附加的半波损失即 2 ,所以在P 点处得两相干光的总光程差为:

牛顿环

第九章 光学 §9-6 牛顿环 教学目的:1、了解牛顿环等候干涉的原理 2、理解用牛顿环测量透镜曲率半径的原理及方法 教学重点:牛顿环形成明暗条纹得到原理 教学难点:牛顿环测量透镜曲率半径的原理 教学方法:讲授法,ppt 演示 教学安排: (一)引入: 17世纪初,物理学家牛顿在考察肥皂泡及其他薄膜干涉现象时, 把一个玻璃三棱镜压在一个曲率已知的透镜上,偶然发现 干涉圆 环,并对此进行了实验观测和研究。他发现,用一个曲率半径大的 凸透镜和一个平面玻璃相接触,用白光照射时,其接触点出现明暗 相间的同心彩色圆环,用单色光照射,则出现明暗相间的单色圆环。 这是由于光的干涉造成的,这种光学现象被称为“牛顿环”。 (二)新课讲授: 观察牛顿环的实验装置如图所示,在一块平玻璃B 上放一曲率 半径R 很大的平凸透镜A,在A 、B 之间便形成环状的空气劈形膜。 当单色平行光正入射时,在空气劈形膜的上、下表面发生反射形成 两束相干光,它们在平凸透镜下表面处相遇而发生干涉。 在显微镜下观察,可以看到一组干涉条纹,这些条纹是以接触点O 点为中心的同心圆环,称为牛顿环。 在空气层上下表面反射的两束相干光,它们之间的光程差为 22d λ δ=+ d 为空气薄层的厚度, 2 λ是光在空气层的下表面(空气—平玻璃分界面)反射时产生的半波损失。 牛顿环形成明环的条件为 2,(1,2,3)2d k k λ λ+==

形成暗条纹的条件为 2(21),(0,1,2,)22d k k λλ +=+= 在中心O 处,0d =,两反射光的光程差为 2 λ,所以形成暗斑。 由图可以得知 2222()2r R R d Rd d =--=- 由于2,R d d >>可以略去,所以2 2r Rd ≈ 由形成明环及暗环的条件公式解出d ,分别代入上式,可得明环半径为 1,2,3r k == 暗环半径为0,1,2,3,r k = = 在实验室里,常用牛顿环测定光波的波长或平凸透镜的曲率半径,在工业生产中则常利用牛顿环来检测透镜的质量。 例1 用钠光灯(黄光589.3nm λ=)做牛顿环实验,测得暗斑左边第16环的位置是23.61mm,测得暗斑左边第10环的位置是23.02mm,测得暗斑右边第10环的位置是17.48mm,测得暗斑右边第16环的位置是16.90mm 。求所用平凸透镜的曲率半径R ? 解:第16环的直径为161623.6116.90 6.71r r --=-= 第10环的直径为101023.0217.48 5.54r r --=-= 利用2 r kR λ=(暗环) 2261610614.331010274(1610)589.31024589.3D D R mm --==?=?-??? 例2 已知:用紫光照射。借助于低倍测量显微镜测得由中心往外数第k 级明环的半径 33.010k r m -=?,k 级往上数第16个明环半径316 5.010k r m -+=?,平凸透镜的曲率半径2.50R m =。求:紫光的波长? 解:根据明环半径公式:16k k r r +?=????=?? 221616k k r r R λ+-= 2222 7(5.010)(3.010) 4.01016 2.50m λ---?-?==??

课程设计:牛顿环干涉实验

探究外部因素对牛顿环干涉的影响 10级物本:周晨、陈杨华、许英磊 指导老师:尹真 摘要:本实验利用移测显微镜对牛顿环仪在不同条件下显示出的牛顿环进行观察,求出各种条件下所测得透镜的曲率半径,并分析这些条件对牛顿环测定透镜曲率半径的影响情况。关键词:牛顿环、曲率半径、牛顿环仪、移测显微镜 1 引言: 运用钠灯发出的光线作为实验的入射光线,光线经过牛顿环仪后,在牛顿环仪表面发生干涉现象,形成了一系列同心圆圈,运用移测显微镜进行测量,可以求得牛顿环仪中透镜的曲率半径。 2实验仪器及用具:移测显微镜、牛顿环仪、钠灯等 3实验原理: 牛顿环仪是由待测平凸透镜L和磨光的平玻璃板P叠合安装在金属框架F中构成的(图1).框架边上有三个螺旋H,用以调节L和P之间的接触,以改变干涉环纹的形状和位置.调节H时,不可旋得过紧,以免接触压力过大引起透镜 弹性形变,甚至损坏透镜。

当一曲率半径很大的平凸透镜的凸面与一平玻璃板相接触时,在透镜的凸面与平玻璃板之间形成一空气薄膜.薄膜中心处的厚度为零,愈向边缘愈厚,离接触点等距离的地方,空气膜的厚度相同,如图2所示,若以波长为λ的单色平行光投射到这种装置上,则由空气膜上下表面反射的光波将在空气膜附近互相干涉,两束光的光程差将随空气膜厚度的变化而变化,空气膜厚度相同处反射的两束光具有相同的光程差,形成的干涉条纹为膜的等厚各点的轨迹,这种干涉是一种等厚干涉。 在反射方向观察时,将看到一组以接触点为中心的亮暗相间的圆环形干涉条纹,而且中心是一暗斑[图3(a)];如果在透射方向观察,则看到的干涉环纹与反射光的干涉环纹的光强分布恰成互补,中心是亮斑,原来的亮环处变为暗环,暗环处变为亮环[图3(b) ],这种干涉现象最早为牛顿所发现,故称为牛顿环。

牛顿环等厚干涉标准实验报告

实验报告 学生姓名:学号:指导教师: 实验地点:实验时间: 一、实验室名称: 二、实验项目名称:牛顿环测曲面半径和劈尖干涉 三、实验学时: 四、实验原理: 1、等厚干涉 如图1所示,在C点产生干涉,光线11`和22`的光程差为△=2d+λ/2 式中λ/2是因为光由光疏媒质入射到光密媒质上反射时,有一相位 突变引起的附加光程差。 当光程差△=2d+λ/2=(2k+1)λ 即d=k λ/2时产生暗条纹; 当光程差△=2d+λ/2=2kλ/2, 即d=(k-1/2)λ/2时产生明条纹 图1 因此,在空气薄膜厚度相同处产生同一级的干涉条纹,叫等厚干涉条纹。 2、用牛顿环测透镜的曲率半径 将一个曲率半径较大的平凸透镜的凸面置于一块光学平板玻璃上则

可组成牛顿环装置。如图2所示。 这两束反射光在AOB 表面上的某一点E 相遇,从而产生E 点的干涉。由于AOB 表面是球面,所产生的条纹是明暗相间 的圆环,所以称为牛顿环,如图3所示。 将两块光学平玻璃重叠在一起,在一端插入一薄纸片,则在两玻璃板间形成一空气劈尖,如图4所示。K 级干涉暗条纹对应的薄膜厚度为d=k λ/2 k=0时,d=0, 即在两玻璃板接触处为零级暗条纹;若在薄纸处呈现k=N 级条纹,则薄纸片厚度为 d ’=N λ/2 若劈尖总长为L,再测出相邻两条纹之间的距离为△x,则暗条纹总数为N=L/△x , 即 d ’=L λ/2 △x 。 五、实验目的: 深入理解光的等厚干涉及其应用,学会使用移测显微镜。 六、实验内容: 1、用牛顿环测透镜的曲率半径 2、用劈尖干涉法测薄纸片的厚度 七、实验器材(设备、元器件): 牛顿环装置,移测显微镜,两块光学平玻璃板,薄纸片,钠光灯及电 图2 L d

等厚干涉牛顿环实验报告

等厚干涉牛顿环实验报告 This manuscript was revised on November 28, 2020

等厚干涉——牛顿环 等厚干涉是薄膜干涉的一种。薄膜层的上下表面有一很小的倾角是,从光源发出的光经上下表面反射后在上表面附近相遇时产生干涉,并且厚度相同的地方形成同一干涉条纹,这种干涉就叫等厚干涉。其中牛顿环是等厚干涉的一个最典型的例子,最早为牛顿所发现,但由于他主张微粒子学说而并未能对他做出正确的解释。光的等厚干涉原理在生产实践中育有广泛的应用,它可用于检测透镜的曲率,测量光波波长,精确地测量微笑长度、厚度和角度,检验物体表面的光洁度、平整度等。 一. 实验目的 (1)用牛顿环观察和分析等厚干涉现象; (2)学习利用干涉现象测量透镜的曲率半径; 二. 实验仪器 读数显微镜钠光灯牛顿环仪 三. 实验原理 牛顿环装置是由一块曲率半径较大的平凸面放在一块光 学玻璃平板(平镜)上构成的,如图。平凸透镜的凸面与玻 璃平板之间的空气层厚度从中心到边缘逐渐增加,若以平行单光垂直照射到牛顿环上,则经空气层上、下表面反射的两光束存在光程差,他们在平凸透镜的凸面相遇后,将发生干涉。从透镜上看到的干涉花样是以玻璃接触点为中心的

一系列明暗相间的圆环,称为牛顿环。同一干涉环上各处的空气层厚度是相同的,因此他属于等厚干涉。 图2 图3 由图2可见,若设透镜的曲率半径为R ,与接触点O 相距为r 处空气层的厚度为d ,其几何关系式为 由于r R >>,可以略去d 2得 R r d 22 = (1) 光线应是垂直入射的,计算光程差时还要考虑光波在平玻璃上反射会有半波损失,,从而带来λ的附加程差,所以总光程差为 2 2λ + =?d (2) 所以暗环的条件是 2 ) 12(λ +=?k (3) 其中 3,2,1, 0=k 为干涉暗条纹的级数。综合(1)(2)(3)式可得第可k 级暗环的半径为 λkR r k =2 (4) 由式(4)可知,如果单色光源的波长λ已知,测出第m 级的暗环半径r m,,即可得出平图透镜的曲率半径R ;反之,如果R 已知,测出r m 后,就可计算出入射单色光波的波长λ。但是用此测量关系式往往误差很大,原因在于凸面和平面不可能是理想的点接触;接触压力会引起局部形变,使接触处成为一个圆形平面,干涉环中心为一暗斑。或者空气间隙层有了灰尘,附加了光程差,干涉环中心为一亮(或暗)斑,均无法确定环

等厚干涉--牛顿环实验报告

等厚干涉——牛顿环 等厚干涉就是薄膜干涉的一种。薄膜层的上下表面有一很小的倾角就是,从光源发出的光经上下表面反射后在上表面附近相遇时产生干涉,并且厚度相同的地方形成同一干涉条纹,这种干涉就叫等厚干涉。其中牛顿环就是等厚干涉的一个最典型的例子,最早为牛顿所发现,但由于她主张微粒子学说而并未能对她做出正确的解释。光的等厚干涉原理在生产实践中育有广泛的应用,它可用于检测透镜的曲率,测量光波波长,精确地测量微笑长度、厚度与角度,检验物体表面的光洁度、平整度等。 一.实验目的 (1)用牛顿环观察与分析等厚干涉现象; (2)学习利用干涉现象测量透镜的曲率半径; 二.实验仪器 读数显微镜钠光灯牛顿环仪

三.实验原理 牛顿环装置就是由一块曲率半径较大的平凸面放在一块光学玻璃平板(平镜)上构成的,如图。平凸透镜的凸面与玻璃平板之间的空气层厚度从中心到边缘逐渐增加,若以平行单光垂直照射到牛顿环上,则经空气层上、下表面反射的两光束存在光程差,她们在平凸透镜的凸面相遇后,将发生干涉。从透镜上瞧到的干涉花样就是以玻璃接触点为中心的一系列明暗相间的圆环,称为牛顿环。同一干涉环上各处的空气层厚度就是相同的,因此她属于等厚干涉。

图2 图3 由图2可见,若设透镜的曲率半径为R,与接触点O 相距为r 处空气层的厚度为d,其几何关系式为 2222222)(r d Rd R r d R R ++-=+-= 由于r R >>,可以略去d 2得 R r d 22 = (1) 光线应就是垂直入射的,计算光程差时还要考虑光波在平玻璃上反射会有半波损失,,从而带来2λ的附加程差,所以总光程差为 22λ +=?d (2) 所以暗环的条件就是 2)12(λ +=?k (3) 其中 3,2,1,0=k 为干涉暗条纹的级数。综合(1)(2)(3)式可得第可k 级暗环的半径为 λkR r k =2 (4) 由式(4)可知,如果单色光源的波长λ已知,测出第m 级的暗环半径r m,,即可得出平图透镜的曲率半径R;反之,如果R 已知,测出r m 后,就可计算出入射单色光波的波长λ。但就是用此测量关系式往往误差很大,原因在于凸面与平面不可能就是理想的点接触;接触压力会引起局部形变,使接触处成为一个圆形平面,干涉环中心为一暗斑。或者空气间隙层有了灰尘,附加了光程差,干涉环中心为一亮(或暗)斑,均无法

等厚干涉牛顿环实验报告

等厚干涉——牛顿环等厚干涉是薄膜干涉的一种。薄膜层的上下表面有一很小的倾角是,从光源发出的光经上下表面反射后在上表面附近相遇时产生干涉,并且厚度相同的地方形成同一干涉条纹,这种干涉就叫等厚干涉。其中牛顿环是等厚干涉的一个最典型的例子,最早为牛顿所发现,但由于他主张微粒子学说而并未能对他做出正确的解释。光的等厚干涉原理在生产实践中育有广泛的应用,它可用于检测透镜的曲率,测量光波波长,精确地测量微笑长度、厚度和角度,检验物体表面的光洁度、平整度等。 一. 实验目的 (1)用牛顿环观察和分析等厚干涉现象; (2)学习利用干涉现象测量透镜的曲率半径; 二. 实验仪器 读数显微镜钠光灯牛顿环仪 三. 实验原理 牛顿环装置是由一块曲率半径较大的平凸面放在 一块光学玻璃平板(平镜)上构成的,如图。平凸透 镜的凸面与玻璃平板之间的空气层厚度从中心到边缘逐渐增加,若以平行单光垂直照射到牛顿环上,则经空气层上、下表面反射的两光

束存在光程差,他们在平凸透镜的凸面相遇后,将发生干涉。从透镜上看到的干涉花样是以玻璃接触点为中心的一系列明暗相间的圆环,称为牛顿环。同一干涉环上各处的空气层厚度是相同的,因此他属于等厚干涉。 图2图3 由图2可见,若设透镜的曲率半径为R ,与接触点O 相距为r 处空气层的厚度为d ,其几何关系式为 由于r R >>,可以略去d 2得 R r d 22 =(1) 光线应是垂直入射的,计算光程差时还要考虑光波在平玻璃上反射会有半波损失,,从而带来2λ的附加程差,所以总光程差为 2 2λ + =?d (2) 所以暗环的条件是 2 ) 12(λ +=?k (3) 其中K 3,2,1, 0=k 为干涉暗条纹的级数。综合(1)(2)(3)式可得第可k 级暗环的半径为 λkR r k =2(4) 由式(4)可知,如果单色光源的波长λ已知,测出第m 级的暗环半径r m,,即可得出平图透镜的曲率半径R ;反之,如果R 已知,测出r m 后,就可计算出入射单色光波的波长λ。但是用此测量关系式往往误差很大,原因在于凸面和平面不可能是理想的点接触;接触压力会引起局部形变,使接触处成为一个圆形平面,干涉环中心为一暗斑。或者空气间隙层有了灰尘,附加了光程差,干涉环中心为一亮(或

牛顿环干涉实验的相关问题及研究

牛顿环干涉实验的相关问题及研究 第一作者:王梓兆 学号:14051134 院系:航空科学与工程学院 第二作者:左冉东 学号:14051132 院系:航空科学与工程学院

牛顿环干涉实验的相关问题及研究 【摘要】 在判断透镜表面凸凹、精确检验光学元件表面质量、测量透镜表面曲率半径和液体折射率等方面,牛顿环干涉是一种非常常用的方法。通过观察牛顿环并进行计算,可以较为准确地得出结果,但同时,现实中是无法达到完美的理想效果的,所以实验中一定会出现一系列问题,本文对牛顿环干涉实验中出现的若干问题进行了研究。 【关键词】 牛顿环、光的干涉、一元线性回归 【实验原理】 牛顿环是一种光的干涉图样。是牛顿在1675年首先观察到的。将一块曲率半径较大的平凸透镜放在一块玻璃平板上,用单色光照射透镜与玻璃板,就可以观察到一些明暗相间的同心圆环。圆环分布是中间疏、边缘密,圆心在接触点O。从反射光看到的牛顿环中心是暗的,从透射光看到的牛顿环中心是明的。若用白光入射.将观察到彩色圆环。牛顿环是典型的等厚薄膜干涉。凸透镜的凸球面和玻璃平板之间形成一个厚度均匀变化的圆尖劈形空气簿膜,当平行光垂直射向平凸透镜时,从尖劈形空气膜上、下表面反射的两束光相互叠加而产生干涉。同一半径的圆环处空气膜厚度相同,上、下表面反射光程差

相同,因此使干涉图样呈圆环状。这种由同一厚度薄膜产生同一干涉条纹的干涉称作等厚干涉。 分析光路:将一大曲率半径的平凸玻璃透镜 A放在平板玻璃上即构成牛顿环仪。光源S 通过透镜L产生平行光束,再经倾角为450的 平板玻璃M反射后,垂直照射到平凸透镜上。 入射光分别在空气层的两表面反射后,穿过 M进入读数显微镜下,在显微镜中可以观察 到以接触点为中心的圆环形干涉条纹——牛顿环。 推导公式:根据光的干涉条件,在空气厚度为d的地方,有 2d+λ 2 =kλ(k=1,2,3...)明条纹 2d+λ 2=(2k+1)λ 2 (k=1,2,3...)暗条纹 式中左端的λ 2 为“半波损失”。令r为条纹半径,由右图可知: R2=r2+(R?d)2 化简后得r2=2Re?d2 当R>>d时,上式中的d2可以略去,因此 d=r2 将此式代入上述干涉条件,并化简,得r2=2k?1Rλ 2 k=1,2,3…明环 r2=kλR(k=1,2,3…)暗环 由上式可以看出,若测出了明纹或暗

变形牛顿环装置干涉条纹特点的研究及应用

变形牛顿环装置干涉条纹特点的研究及应用 摘要:牛顿环是典型的用分振幅方法实现的等厚干涉现象,一般采用平凸透镜加双凸透镜的模式实现,而牛顿环仪则往往采用平凸透镜加玻璃平板的模式实现。本文通过对牛顿环仪的变形,利用平凸透镜加平凸透镜的模式实现了牛顿环现象,分析了单色点光源下牛顿环干涉条纹的半径公式、分布规律以及中心斑明暗等特点,讨论了变形牛顿环装置在测量透镜曲率半径、介质折射率以及检验精密光学元件质量等方面的应用。 关键词: 牛顿环仪;变形牛顿环装置;干涉图样 Deformation Newton rings device the interference fringes characteristics of the research and application Abstract:Newton rings is a typical interference phenomenon with equal thickness ,which is the realized by the method of sub-amplitude, generally using flat with double convex lens to achieve, and Newton rings apparatus tends to use flat add glass plate to be achieved. Based on the Newton rings apparatus deformation, the article realizes the Newton rings phenomenon with the model of using two plano-convex lens added, analyses the formula of the radius, distribution and lightness and darkness of the center spot and other features under monochromatic light source of the Newton rings interference fringes ,and discusses the deformation Newton rings device in measuring lens radius, refractive index, and test the quality of precision optical components and other applications. Keywords:Newton rings apparatus; Deformation Newton rings installation; Interference pattern

等厚干涉牛顿环实验报告

等厚干涉牛顿环实验报告 Final revision on November 26, 2020

等厚干涉——牛顿环 等厚干涉是薄膜干涉的一种。薄膜层的上下表面有一很小的倾角是,从光源发出的光经上下表面反射后在上表面附近相遇时产生干涉,并且厚度相同的地方形成同一干涉条纹,这种干涉就叫等厚干涉。其中牛顿环是等厚干涉的一个最典型的例子,最早为牛顿所发现,但由于他主张微粒子学说而并未能对他做出正确的解释。光的等厚干涉原理在生产实践中育有广泛的应用,它可用于检测透镜的曲率,测量光波波长,精确地测量微笑长度、厚度和角度,检验物体表面的光洁度、平整度等。 一. 实验目的 (1)用牛顿环观察和分析等厚干涉现象; (2)学习利用干涉现象测量透镜的曲率半径; 二. 实验仪器 读数显微镜钠光灯牛顿环仪 三. 实验原理 牛顿环装置是由一块曲率半径较大的平凸面放在 一块光学玻璃平板(平镜)上构成的,如图。平凸透 镜的凸面与玻璃平板之间的空气层厚度从中心到边缘逐渐增加,若以平行单光垂直照射到牛顿环上,则经空气层上、下表面反射的两

光束存在光程差,他们在平凸透镜的凸面相遇后,将发生干涉。从透镜上看到的干涉花样是以玻璃接触点为中心的一系列明暗相间的圆环,称为牛顿环。同一干涉环上各处的空气层厚度是相同的,因此他属于等厚干涉。 图2 图3 由图2可见,若设透镜的曲率半径为R ,与接触点O 相距为r 处空气层的厚度为d ,其几何关系式为 由于r R >>,可以略去d 2得 R r d 22 = (1) 光线应是垂直入射的,计算光程差时还要考虑光波在平玻璃上反射会有半波损失,,从而带来λ的附加程差,所以总光程差为 2 2λ + =?d (2) 所以暗环的条件是 2 ) 12(λ +=?k (3) 其中 3,2,1, 0=k 为干涉暗条纹的级数。综合(1)(2)(3)式可得第可k 级暗环的半径为 λkR r k =2 (4) 由式(4)可知,如果单色光源的波长λ已知,测出第m 级的暗环半径r m,,即可得出平图透镜的曲率半径R ;反之,如果R 已知,测出r m 后,就可计算出入射单色光波的波长λ。但是用此测量关系式往往误差很大,原因在于凸面和平面不可能是理想的点接触;接触压力会引起局部形变,使接触处成为一个圆形平面,干涉环中心为一暗斑。或者空气间隙层有了灰尘,附加了光程差,干涉环中心为

牛顿环-等厚干涉标准实验报告

实验报告 学生姓名: 学 号: 指导教师: 实验地点: 一、实验室名称: 、实验项目名称:牛顿环测曲面半径和劈尖干涉 三、实验学时: 四、实验原理: 1等厚干涉 如图1所示,在C 点产生干涉,光线11'和22'的光程差为 △ =2d+入 12 式中入/2是因为光由光疏媒质入射到光密媒质上反射时, 有一相位突 当光程差 △ =2d+入/2=(2k+1)入12, 即d=k 入/2时 产生暗条纹; 当光程差 △ =2d+入/2=2k 入/2, 即d=(k — 1/2)入/2时 产生明条纹 因此,在空气薄膜厚度相同处产生同一级的干涉条纹 ,叫等厚干涉条 2、用牛顿环测透镜的曲率半径 将一个曲率半径较大的平凸透镜的凸面置于一块光学平板玻璃上则 实验时间: 变引起的附加光程差

可组成牛顿环装置。如图2所示。 这两束反射光在AOB 表面上的某一点E 相遇,从而产生E 点的干涉。由于AOB 表面是球面,所产生的条纹是明暗相间 的圆环,所以称为牛顿环,如图3所示。 将两块光学平玻璃重叠在一起,在一端插入一薄纸 片,则在两玻璃板 间形成一空气劈尖,如图4所示。K 级干涉暗条纹对应的薄膜厚度为 d=k 入/2 k=0时,d=0, 即在两玻璃板接触处为零级暗条纹;若在 薄纸处呈现k=N 级条纹,则薄纸片厚度为 d ' =N 入12 若劈尖总长为L,再测出相邻两条纹之间的距离为△ x,则暗条纹总数 为N =L/A x , 即 d ' =L 入 12 △ x 。 五、实验目的: 深入理解光的等厚干涉及其应用,学会使用移测显微镜 六、实验内容: 1、 用牛顿环测透镜的曲率半径 2、 用劈尖干涉法测薄纸片的厚度 七、实验器材(设备、元器件): 牛顿环装置,移测显微镜,两块光学平玻璃板,薄纸片,钠光灯及电 八、实验步骤: 1.用牛顿环测透镜的曲率半径 O 牛顿环 图2 ---- L

等厚干涉牛顿环实验报告

等厚干涉——牛顿环示范报告 【实验目的】 (1)用牛顿环观察和分析等厚干涉现象; (2)学习利用干涉现象测量透镜的曲率半径; (3)学会使用读数显微镜测距。 【实验原理】 在一块平面玻璃上安放上一焦距很大的平凸透镜,使其凸面与平面相接触,在接触点附近就形成一层空气膜。当用一平行的准单色光垂直照射时,在空气膜上表面反射的光束和下表面反射的光束在膜上表面相遇相干,形成以接触点为圆心的明暗相间的环状干涉图样, 称为牛顿环,其光路示意图如图。 如果已知入射光波长,并测得第k 级暗环的半径k r ,则可求得透镜的曲率半径R 。但实际测量时,由于透镜和平面玻璃接触时,接触点有压力产生形变或有微尘产生附加光程差,使得干涉条纹的圆心和环级确定困难。用直径 m D 、n D ,有 λ)(42 2 n m D D R n m --= 此为计算R 用的公式,它与附加厚光程差、圆心位置、绝对级次无 关,克服了由这些因素带来的系统误差,并且 m D 、 n D 可以是弦长。 【实验仪器】 JCD3型读数显微镜,牛顿环,钠光灯,凸透镜(包括三爪式透镜夹和固定滑座)。 【实验内容】 1、调整测量装置 按光学实验常用仪器的读数显微镜使用说明进行调整。调整时注意: (1)调节450玻片,使显微镜视场中亮度最大,这时,基本上满足入射光垂直于透镜的要求(下部反光镜不要让反射光到上面去)。 (2)因反射光干涉条纹产生在空气薄膜的上表面,显微镜应对上表面调焦才能找到清晰的干涉图像。 (3)调焦时,显微镜筒应自下而上缓慢地上升,直到看清楚干涉条纹时为止,往下移动显微镜筒时,眼睛一定要离开目镜侧视,防止镜筒压坏牛顿环。 (4)牛顿环三个压紧螺丝不能压得很紧,两个表面要用擦镜纸擦拭干净。 2、观察牛顿环的干涉图样 (1)调整牛顿环仪的三个调节螺丝,在自然光照射下能观察到牛顿环的干涉图样,并将干涉条纹的中心移到牛顿环仪的中心附近。调节螺丝不能太紧,以免中心暗斑太大,甚至损坏牛顿环仪。 (2)把牛顿环仪置于显微镜的正下方,使单色光源与读数显微镜上45?角的反射透明玻璃片等高,旋转反射透明玻璃 ,直至从目镜中能看到明亮均匀的光照。 (3)调节读数显微镜的目镜,使十字叉丝清晰;自下而上调节物镜直至观察到清晰的干涉图样。移动牛顿环仪,使中心暗斑(或亮斑)位于视域中心,调节目镜系统,使叉丝横

等厚干涉牛顿环实验报告

等厚干涉牛顿环实验报告Last revision on 21 December 2020

等厚干涉——牛顿环 等厚干涉是薄膜干涉的一种。薄膜层的上下表面有一很小的倾角是,从光源发出的光经上下表面反射后在上表面附近相遇时产生干涉,并且厚度相同的地方形成同一干涉条纹,这种干涉就叫等厚干涉。其中牛顿环是等厚干涉的一个最典型的例子,最早为牛顿所发现,但由于他主张微粒子学说而并未能对他做出正确的解释。光的等厚干涉原理在生产实践中育有广泛的应用,它可用于检测透镜的曲率,测量光波波长,精确地测量微笑长度、厚度和角度,检验物体表面的光洁度、平整度等。 一. 实验目的 (1)用牛顿环观察和分析等厚干涉现象; (2)学习利用干涉现象测量透镜的曲率半径; 二. 实验仪器 读数显微镜钠光灯牛顿环仪 三. 实验原理 牛顿环装置是由一块曲率半径较大的平凸面放在一块光 学玻璃平板(平镜)上构成的,如图。平凸透镜的凸面与玻 璃平板之间的空气层厚度从中心到边缘逐渐增加,若以平行单光垂直照射到牛顿环上,则经空气层上、下表面反射的两光束存在光程差,他们在平凸透镜的凸面相遇后,将发生干涉。从透镜上看到的干涉花样是以玻璃接触点为中心的

一系列明暗相间的圆环,称为牛顿环。同一干涉环上各处的空气层厚度是相同的,因此他属于等厚干涉。 图2 图3 由图2可见,若设透镜的曲率半径为R ,与接触点O 相距为r 处空气层的厚度为d ,其几何关系式为 由于r R >>,可以略去d 2得 R r d 22 = (1) 光线应是垂直入射的,计算光程差时还要考虑光波在平玻璃上反射会有半波损失,,从而带来2λ的附加程差,所以总光程差为 2 2λ + =?d (2) 所以暗环的条件是 2 ) 12(λ +=?k (3) 其中 3,2,1, 0=k 为干涉暗条纹的级数。综合(1)(2)(3)式可得第可k 级暗环的半径为 λkR r k =2 (4) 由式(4)可知,如果单色光源的波长λ已知,测出第m 级的暗环半径r m,,即可得出平图透镜的曲率半径R ;反之,如果R 已知,测出r m 后,就可计算出入射单色光波的波长λ。但是用此测量关系式往往误差很大,原因在于凸面和平面不可能是理想的点接触;接触压力会引起局部形变,使接触处成为一个圆形平面,干涉环中心为一暗斑。或者空气间隙层有了灰尘,附加了光程差,干涉环中心为一亮(或暗)斑,均无法确定环的几何

牛顿环等厚干涉标准实验报告

实验报告学生姓名:学号:指导教师: 实验地点:实验时间: 一、实验室名称: 二、实验项目名称:牛顿环测曲面半径和劈尖干涉 三、实验学时: 四、实验原理: 1、等厚干涉 如图1所示,在C点产生干涉,光线11`和22`的光程差为△=2d+λ/2 式中λ/2是因为光由光疏媒质入射到光密媒质上反射时,有一相位突变引起 的附加光程差。 当光程差△=2d+λ/2=(2k+1)λ 即d=k λ/2时产生暗条纹; 当光程差△=2d+λ/2=2kλ/2, 即d=(k-1/2)λ/2时产生明条纹 图1 因此,在空气薄膜厚度相同处产生同一级的干涉条纹,叫等厚干涉条纹。 2、用牛顿环测透镜的曲率半径 将一个曲率半径较大的平凸透镜的凸面置于一块光学平板玻璃上则可组成牛顿环装置。如图2所示。

这两束反射光在AOB 表面上的某一点E 相遇,从而产生E 点的干涉。由于AOB 表面是球面,所产生的条纹是明暗相间 的圆环,所以称为牛顿环,如图3所示。 将两块光学平玻璃重叠在一起,在一端插入一薄纸片,则在两玻璃板间形成一空气劈尖,如图4所示。K 级干涉暗条纹对应的薄膜厚度为d=k λ/2 k=0时,d=0, 即在两玻璃板接触处为零级暗条纹;若在薄纸处呈现k=N 级条纹,则薄纸片厚度为 d ’=N λ/2 若劈尖总长为L,再测出相邻两条纹之间的距离为△x,则暗条纹总数为N=L/△x , 即 d ’=L λ/2 △x 。 五、实验目的: 深入理解光的等厚干涉及其应用,学会使用移测显微镜。 六、实验内容: 1、用牛顿环测透镜的曲率半径 2、用劈尖干涉法测薄纸片的厚度 七、实验器材(设备、元器件): 牛顿环装置,移测显微镜,两块光学平玻璃板,薄纸片,钠光灯及电源。 八、实验步骤: 图2 L d

等厚干涉牛顿环实验报告

等厚干涉——牛顿环实验报告【实验目的】 (1)用牛顿环观察和分析等厚干涉现象; (2)学习利用干涉现象测量透镜的曲率半径; 【实验原理】 通常将同一光源发出的光分成两束光,在空间经过不同的路程后合在一起产生干涉。牛顿环是典型的等厚干涉现象。牛顿环实验装置通常是由光学玻璃制成的一个平面和一个曲率半径较大的球面组成,在两个表面之间形成一劈尖状空气薄层。以凸面为例,当单色光垂直入射时,在透镜表面相遇时就会发生干涉现象,空气膜厚度相同的地方形成相同的干涉条纹,这种干涉称作等厚干涉。在干涉条纹是以接触点为中心的一系列明暗相间的同心圆环,称牛顿环。 相关计算:由于透镜表面B点处的反射光1和玻璃板表面C点的反射光2在B点出发生干涉,在该处产生等厚干涉条纹。按照波动理论,设形成牛顿环处空气薄层厚度为d,两束相干光的光程差为: △=2d + λ/ 2 = kλ 当适合下列条件时有 △=2d + λ/ 2 = kλ---------(1)( K = 1,2,3,... 明环) △=2d + λ/ 2 = (2k+1)λ/2---------(2)( K = 1,2,3,... 暗环) 式中λ为入射光的波长,λ/2 是附加光程差,他是由 于光在光密介质面上反射时产生的半波损失而引起的 公式(2)表明,当K=0 时(零级),d=0,即平面玻 璃和平凸透镜接触处的条纹为暗纹。光程差Δ仅与d 有关, 即厚度相同的地方干涉条纹相同。平凸透镜曲率半径的测 量: 由几何关系,在B点可得:r2=R2-(R2-d2)=2Rd-d2 因为R>>d 所以得

上式表明d 与成正比,说明离中心越远,光程差增加越快,干涉条纹越来越密。 由公式:... (暗环)可知: 若测出第K级暗环的半径,且单色光的波长已知时,就能算出球面的曲率半径R 。但在实验中由于机械压力引起的形变以及球面上可能存在的微小尘埃,使得凸面和平面接触处不可能是一个理想的点,而是一个不很规则的圆斑,因此很难准确测出的值。比较简单的方法是测量距中心较远处的牛顿环直径。以暗环为例,当测得较远的第K级和第K+M级的暗环直径和时,由得 若已知λ,则透镜的曲率半径R可用逐差法求得。也 可由作图法求透镜的曲率半径R , 上式表明与K 为线性关系,作~ K 图,则图的 斜率为4Rλ,若已知λ则可求出凸透镜的曲率半径R 。 【实验仪器】 读数显微镜钠光灯平凸透镜和平面玻璃(或牛顿环装置) 【实验内容】 1、调整测量装置

相关文档
最新文档