监控系统(立杆)防雷施工设计方案

监控系统(立杆)防雷施工设计方案
监控系统(立杆)防雷施工设计方案

监控系统(立杆)防雷设计方案

编辑:万佳防雷负责人:帅一、概述

每年各种通讯控制系统或计算机网络因雷击而损坏的事例屡见不鲜,其中安防监控系统因受到雷击而引起设备损坏、自动化监控失灵的事件也时常发生。道路监控子系统中,有一部分前端摄像机安装在室外,对于雷雨多发地区,容易遭受雷击损坏,因此极有必要对这些设备进行防雷保护。

道路监控系统中,分布在各处的室外型监控摄像机,其交流220V供电电源通过两芯电缆、视频信号通过带BNC接头的10Base2细缆、RS485通信控制信号通过多芯电缆,传输至中心控制主机,进行集中监控。

为了防止雷电产生的感应过电压和过电流,在所有监控设备的电源线入口、信号线连接的设备两端均应安装相应的避雷器。监控系统中的前端摄像机一般分为室外安装型和室安装型,室型摄像机信号传输线缆和电源供给线缆均通过"地埋"方式布线,遭受雷击的机会较少。进行防雷器设备选型时,必须注意防雷保护器必须达到以下基本要求:

1)正常运行时,雷电保护器的接入应不影响信号的正常传输,雷电保护器的对地阻抗应尽可能大,串联在电路中的阻抗应尽可能小。

2)在雷电袭击通信总线时,雷电保护器应发挥良好的电压钳位作用,其钳位电压应低于RS485芯片的耐受电压水平。

3)在抑制不超过防雷器最大通流量的雷电袭击过程中,雷电保护器自身应完好。

4)雷电保护器对雷电袭击应具有足够快的响应速度。

二、监控系统防雷总体方案

1、直击雷的防护

直击雷的防护较简易的方法是采用避雷针,室外各球形摄像机由于分别分布在室外,距离较远,因此室外各摄像头须设计安装避雷针。具体设计方案为:在室外各球形摄像头的立杆上(立杆的顶部)分别安装一支避雷针,规格为φ16×1000mm镀锌圆钢,安装方式为焊接。

2、防雷接地要求

防雷接地由引下线、接地线和接地体组成。引下线是引导雷击电流从避雷针入地的通道。接地体埋于地下与引下线相连接,雷击电流由此泄放到,接地体满足接地电阻的要求。多种接地体距离无法大于20M时,必须加装地网隔离器。接地线一般采用40×4mm镀锌扁铁或25mm2 以上多股绝缘铜缆,一端焊接到接地体上,另一端引到室的等电位连接排上。接地体与引下线或接地线一般采用搭接焊,

焊接处必须牢固无虚焊,同时为确保接地电阻不大于4Ω,必须将接地体与建筑物大楼的基础地网可靠连接。对于监控中心及靠近建筑物的摄像头我们设计采用抽建筑物主钢筋的方法作联合接地,对于远离建筑的摄像头则需要在摄像头旁做一套人工接地体,具体如下地网设计方案。

3、电源系统的防雷

由于雷电冲击波的主要能量集中在从工频附近几十赫兹到几百赫兹的低端,所以雷电冲击波能量就容易与工频回路发生耦合、谐振,于是雷电冲击波从电源线路进入电子设备的几率,要比从信号线中进入的几率高得多,据统计,约有80%的雷击损坏电子设备的事故是由电源线引入的,因此应特别加强系统中设备电源的防雷措施。

1)在控制大楼总配电柜处,安装第一级加强型电源防雷器;

2)在中心控制室的监控系统配电箱处,安装第二级标准型电源防雷器;

3)在室外型云台摄像机电源入口处,安装标准型电源防雷器;

4)室外型固定摄像机,安装标准型电源防雷器;

4、视频信号线和云台控制线的防雷

选择这类避雷器型号时主要需考虑:

1)响应动作时间在10ns以下;

2)限制电压在50伏以下;

3)接入后对信号的衰减在0.1dB-0.8dB之间。

三、防雷器选型

网络二合一防雷器型号:WJX-2/RJ45

(网络+电源)二合一防雷保护器

1. 概述

本浪涌保护器参照国家标准GB/T18802.21-2004/IEC61643-21:2000设计。

2. 功能特点

适用于监控系统前端网络摄像机,无线遥控摄像机的电源线,网络线的雷电浪涌保护,,使其免受感应过电压、操作过电压和静电放电等所造成的损坏;同时带有不同电压等级的信号电源的防雷保护。整个产品的特点为:多级保护、通流容量大、限制电压低、响应时间快、插入损耗小、传输速率高等优点。

3. 使用环境

温度:-40℃~70℃;相对湿度:≤95%;大气压:70kPa~106 kPa.

4. 工作原理

浪涌保护器串接于被保护设备的前端,当传输线遭到感应雷及其它瞬时过电压冲击时,冲击电流通过浪涌保护器的保护支路将其泄放到,并将感应过电压拑位在设备允许的电压围,从而确保了运行设备的安全。

5. 技术指标

6 安装、使用和维护

6.1安装说明

6.1.1将保护器接入系统前,先检查地网接地电阻,应符合规要求。

6.1.2将保护器接入被保护设备前端,必须连接可靠。

6.1.3将保护器的接地线尽可能短地连接到机房保护接地母线上。

6.2注意事项

6.2.1保护器上有输入(IN)、输出(OUT)标志,输出端与被保护设备连接,切勿接反。否则会造成保护器的损坏,设备也无法得到保护。

6.2.2若由于插头座连接不良等因素引起损耗增大,应重新连接或更换保护器。

6.2.3用户不可随意拆卸保护器各部位的紧固件,以免造成损坏,影响正常工作。

6.3保护器的检查

6.3.1保护器无需特别维护,如被高压、雷击损坏,(LED指示灯熄灭时,表示已失去防雷保护功能)应更换保护器。

6.3.2用三用表“Ω×1”档测量网络信号的对应输入对输出阻值约为4.7Ω,若阻过大和异常应更换保护器。

6.3.3用三用表“Ω×10K”档测量网络信号线对雷地阻值,约为400kΩ;线对雷地、外壳对雷地的电阻,应为无穷大。若测得的阻值与上不符,应更换保护器。

7. 产品外观及接线图

监控立杆避雷针

万佳系列单针式雷电接闪器,是一条无感性,低阻抗的金属导体引下线,把接闪后的雷电电流输送到,并使被保护的天线铁塔或建筑物不发生带电。在大多数的情况下静电场电缆的冲击小于铁塔阻抗的1/10使被保护设备减少反击和感应过电压的危害。

适用围:

监控系统、摄像机支撑杆、石化仓库、加油站、建筑大楼、信标台,通信基站、气象台、军事基地、雷达机房、银行大楼等。

型号WJZ WJZ

雷电通流流量(In)200KA200KA

幅值衰减率8/20us 8/20us

陡度衰减倍率 8/20 us 8/20us

抗风强度40M/S40M/S

视频监控系统防雷方案

视频监控系统防雷方案 一、概述 随着科学技术的迅速发展,电子设备特别是弱电设备在各领域中的广泛应用,但是,利用微电子技术生产的设备,它的安全性、可靠性和电磁兼容性已成为人们非常关注的问题。在实际应用中,各种微电子设备对人为的或自然的电压、电流的冲击越来越频繁,它给我们生活和工作带来了无法估算的损失。而人为的或自然的电压、电流冲击大多数来源于四个方面:即雷击放电、静电放电、开关动作和强电磁脉冲。其中雷击入电对电子设备的损坏最为严重,破坏性极大为此,我们认为对雷电电磁脉冲(LEMP)的防护,不但是必要的,而且是必须实施的。 我们国家对雷电防护工作非常重视,在2000年1月1日颁布实施《中华人民共和国气象法》,伴随着国家强制性防雷标准(GB50057-94)的出台,以及因雷击而造成重大损失的雷灾事故不断增多,雷电防护已刻不容缓。 现代防雷技术的原则强调全方位防护、综合治理、层层设防,把防雷看作一个系统工程。根据国家有关规定,要求在建筑物的内外部各种系统上统一安装防雷装置。为了规范市场,确保防雷产品的可靠性,工程中使用的防雷产品要有相关部门出具的检测报告。 国家标准中也指出,要做到在建筑物及其内部设备安装了防雷装置以后达到万无一失的水平,从经济角度出发,做到这一点就太浪费了,而且即使按照国家标准规范设计的防雷装置的防雷安全度也并非100%。 本方案依据国家、国际有关标准,本着安全可靠,技术先进,经济合理原则,以及高度负责的精神,并根据贵单位的介绍,精心设计,力求将雷击的损害降到最低点。 二、设计方案

1、设计依据 国家标准《建筑物防雷设计规范》GB50057-94(2000年版) 国家标准《建筑物电子信息系统防雷技术规范》GB50343-94(2004年版) 国家标准《民用闭路监视电视系统工程技术规范》GB50198-94 国家标准《低压配电设计规范》 GB50054-95 《低压配电系统的电涌保护器(SPD)第一部分:性能要求和试验方法》 国际标准IEC61312-2《雷电电磁脉冲的防护》第二部分建筑物的屏蔽、内部等电位连接及接地》 2、建筑物防雷类别 由于本 ? 场所,根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)提供的建筑物防雷分类标准,本?防雷工程按第?类防雷建筑物设计。 3、了解情况:设备的安装位置和功能 (1)前端视频采集系统; a. 有?个室外点采用固定式摄像头,摄像头输入视频线来自前端光端机,摄像头电源来自适配器,适配器输入电源来自附近建筑物220V电源。 b. 有?个室外点采用带云台摄像头,摄像头输入视频线来自前端光端机,摄像头电源及云台控制线来自解码器,解码器输入控制线来自前端光端机,解码器输入电源来自附近建筑物220V电源。

立杆监控防雷方案.(DOC)

立杆监控防雷方案 问题: 1.防雷器的安装位置是在立杆底部还是顶部好(三合一)? 2.接地装置采用铜包钢棒和铜包钢绞线进行熔接,那铜包钢绞线和立杆怎么相连呢? 3.防雷器的接地线该怎么接?是接在立杆上,还是要和接地体相连?如果和接地体相连是不是要破坏底座把接地线和地下的绞线相连?? 4. 等电位,雷电流(这里指的是立杆上的避雷针接收直击雷)泄放过程中产生的反击,而是感应雷,由于放电使其监控线路感应的过电压问题。 5. 防雷器接在立杆下端的检线口。现在该怎么接地才能达到最好? ( 1).如果防雷器接地线和立杆内部的螺丝等相连接行不行?如果这样,那接地线就只能和立杆连接了。如果连接的话是直接焊接在底座上?? ( 2).如果防雷器接地线直接和水平接地体连接的话该怎么连接呢? 答: 按照相关规范,立杆设备需要做防雷,接闪器应该装在设备立杆不小于3米范围外,接闪器应高于设备立杆。 不过现在通常都不单独立避雷杆,而是在设备立杆上弄个金属针了事,当然必须要做接地的。 避雷器是防止线路大电流大电压浪涌损坏设备的,它本身就以一个―防雷设备‖,它的地应该远离接闪器的接地线。 按规范要求和标准原则来看: 问题1:最好的设计方案是在摄像机3米处架设独立避雷针,把摄像机保护起来,防雷器的安装位置应该就近与摄像机安装;如果避雷针直接是架设在立杆上的,那就要区分立杆是水泥(木材)还是铁杆的,是水泥的就要设引下线,铁杆的可以利用杆体。无论是水泥还是铁的杆,信号线、控制线、电源线就要用钢管屏蔽起来,在钢管两端要接地,且防雷接地

线与引下线在接地网的距离要大于5米,防雷器接地线与信号线不能跟信号线、控制线与电源线布在同一根钢管里。 问题2:可以采取铜铁连接器(转换头)可以解决! 问题3:防雷器接地线不能与立杆或引下线相连! 问题4:雷击破坏途径:(1)直击雷:雷电直接击在露天的摄像机上造成设备损坏;雷电直接击在架空线缆上造成线缆熔断。(2) 雷电波侵入:电源线、信号传输或进入监控室的金属管线遭到雷击或被雷电感应时,雷电波沿这些金属导线侵入设备,造成电位差使设备损坏。(3)雷电感应:当雷击中避雷针时,在引下线周围会产生很强的瞬变电磁场。处在电磁场中的监控设备和传输线路会感应出较大的电动势。这种现象叫电磁感应。当有带电的雷云出现时,在雷云下面的建筑物和传输线路上都会感应出与雷云相反的电荷。这种感应电荷在低压架空线路上可达100kv,信号线路上可40-60kv。这种现象叫静电感应。研究表明:静电感应方式引起的浪涌数倍于电磁感应引起的浪涌。电磁感应和静电感应称为感应雷,又叫二次雷击。它对设备的损害没有直击雷来的猛然,但它要比直击雷发生的机率大得多,按原邮电部的统计感应雷造成的雷击事故约占雷击事故总和的80%。 安装于监控立杆上方,用一根铜导线引到地下跟接地铜棒牢固焊接。 措施:前端设备如摄像头应置于接闪器(避雷针或其它接闪导体)有效保护范围之内。当摄像机独立架设时,原则上为了防止避雷针及引下线上的暂态高电位,避雷针最好距摄像机3-4米的距离。如有困难避雷针也可以架设在摄像机的支撑杆上,引下线可直接利用金属杆本身或选用Φ 8的镀锌圆钢。为防止电磁感应,沿电线杆引上的摄像机电源线和信号线应穿在金属管内以达到屏蔽作用,屏蔽金属管的两端均应接地。为防止雷电波沿线路侵入前端设备,应在设备前的每条线路上加装合适的避雷器,如电源线(DC24V或220V)、视频线、信号线和云台控制线。信号线传输距离长,耐压水平低,极易感应雷电流而损坏设备,为了将雷电流从信号传输线传导入地,信号过电压保护器须快速响应,在设计信号传输线的保护时必须考虑实际情况,根据信号的传输速率、信号电平,启动电压以及雷电通量等参数等选取正确的防雷设备。如图:

监控立杆防雷设计方案

监控立杆防雷设计方案 1、概述 每年各种通讯控制系统或计算机网络因雷击而损坏的事例屡见不鲜,其中安防监控系统因受到雷击而引起设备损坏、自动化监控失灵的事件也时常发生。道路监控子系统中,有一部分前端摄像机安装在室外,对于雷雨多发地区,容易遭受雷击损坏,因此极有必要对这些设备进行防雷保护。 道路监控系统中,分布在各处的室外型监控摄像机,其交流220V供电电源通过两芯电缆、视频信号通过带BNC接头的10Base2细缆、RS485通信控制信 号通过多芯电缆,传输至中心控制主机,进行集中监控。 为了防止雷电产生的感应过电压和过电流,在所有监控设备的电源线入口、信号线连接的设备两端均应安装相应的避雷器。监控系统中的前端摄像机一般分为室外安装型和室内安装型,室内型摄像机信号传输线缆和电源供给线缆均通过"地埋"方式布线,遭受雷击的机会较少。进行防雷器设备选型时,必须注意防雷保护器必须达到以下基本要求: 1)正常运行时,雷电保护器的接入应不影响信号的正常传输,雷电保护器的对地阻抗应尽可能大,串联在电路中的阻抗应尽可能小。 2)在雷电袭击通信总线时,雷电保护器应发挥良好的电压钳位作用,其钳位电压应低于RS485芯片的耐受电压水平。 3)在抑制不超过防雷器最大通流量的雷电袭击过程中,雷电保护器自身应完好。 4)雷电保护器对雷电袭击应具有足够快的响应速度。 二、监控系统防雷总体方案

1、直击雷的防护 直击雷的防护较简易的方法是采用避雷针,室外各球形摄像机由于分别分布在室外,距离较远,因此室外各摄像头须设计安装避雷针。具体设计方案为:在室外各球形摄像头的立杆上(立杆的顶部)分别安装一支避雷针,规格为 φ16×1000mm镀锌圆钢,安装方式为焊接。 2、防雷接地要求 防雷接地由引下线、接地线和接地体组成。引下线是引导雷击电流从避雷针入地的通道。接地体埋于地下与引下线相连接,雷击电流由此泄放到大地,接地体满足接地电阻的要求。多种接地体距离无法大于20M时,必须加装地网隔离器。接地线一般采用40×4mm镀锌扁铁或25mm2以上多股绝缘铜缆,一端焊接到接地体上,另一端引到室内的等电位连接排上。接地体与引下线或接地线一般采用搭接焊,焊接处必须牢固无虚焊,同时为确保接地电阻不大于 4Ω,必须将接地体与建筑物大楼的基础地网可靠连接。对于监控中心及靠近建筑物的摄像头我们设计采用抽建筑物主钢筋的方法作联合接地,对于远离建筑的摄像头则需要在摄像头旁做一套人工接地体,具体如下地网设计方案。 3、电源系统的防雷 由于雷电冲击波的主要能量集中在从工频附近几十赫兹到几百赫兹的低端,所以雷电冲击波能量就容易与工频回路发生耦合、谐振,于是雷电冲击波从电源线路进入电子设备的几率,要比从信号线中进入的几率高得多,据统计,约有80%的雷击损坏电子设备的事故是由电源线引入的,因此应特别加强系统中 设备电源的防雷措施。 1)在控制大楼总配电柜处,安装第一级加强型电源防雷器; 2)在中心控制室的监控系统配电箱处,安装第二级标准型电源防雷器;

室外网络监控系统防雷解决方案2016-6-14

前言: 有些地方雷电天气常发生,那么室外的监控摄像机怎么做防雷的呢? 正文: 现在从监控的组成说起 一、系统结构和引雷途径 1、系统结构 视频监控系统,由以下三部分组成: ①前端部分: 主要由彩色摄像机、镜头、云台、防护罩、支架等组成。 ②传输部分: 使用同轴电缆、网络线缆、电线、地埋和沿墙敷设等方式传输视频、音频或控制信号等。 ③终端部分: 主要由画面分割器、监视器、控制设备等组成。 2、引雷途径 监控系统遭受雷击,由以下几种途径对系统产生破坏。 ①直击雷: 雷电直接击在露天的摄像机上造成设备损坏。摄像机立杆没有任何保护,基本每次雷击都会被损坏。有部分室外立杆上安装避雷针,直接使用立杆杆体作为引下线,在引雷过程中,竿体上传导的雷电流通过与摄像机外壳的导体连接,仍然会对摄像机造成损害。 ②雷电波侵入: 电源线、信号传输线、视频线被雷电感应时,雷电波沿这些金属导线侵入设备,造成电位差使设备损坏。电磁感应和静电感应称为感应雷,又叫二次雷击。它对设备的损害没有直击雷来的猛然,但它要比直击雷发生的机率大得多,按原邮电部的统计感应雷造成的雷击事故约占雷击事故总和的80%。 二、方案设计依据标准和规范 依据中国GB标准与部委颁发的防雷设计规范的要求,根据监控系统自身的特点,对视频监控系统都必须有完整完善之防护措施,才能保证该系统能正常运作。这包括电源供电系统、控制信号系统、视频传输设备等装置应有防护装置保护。 此方案的主要技术依据为: 1、《建筑物防雷设计规范》GB 50057-94(2000年版) 2、《计算机信息系统防雷保安器》GA 173-1998 3、《计算机信息系统雷电电磁脉冲安全防护规范》 GA 267-2000 4、《电子计算机房设计规范》 GB 50174-93 5、《计算站场地技术文件》GB2887-89 6、《计算站场地安全要求》GB9361-88 7、《雷电电磁脉冲的防护》IEC1312 8、《过电压保护器》 VDE-0675 9、《建筑与建筑群综合布线系统工程设计规范》CECS 72-97 三、应对措施 根据对监控系统的结构分析,以及雷电可能的侵入途径,现对监控系统设计作以下防雷解决方案。 1、前端设备的防雷

视频监控系统防雷接地概述

视频监控系统防雷接地概述 一、防雷概述 雷电是一种常见且非常壮观的自然现象,它具有极大的破坏力,对人类的生命、财产安全造成巨大的危害。随着安全监控系统在银行、交通、小区、库房管理中的迅速普及应用,监控系统设备因雷击破坏的可能性就大大增加了,其后果可能会使整个监控系统运行失灵,并造成难以估计的经济损失。因此如何对安装监控系统实施切实有效的防雷保护,保证系统安全可靠运行,成为当前一项紧迫的重要课题。为了对安全监控系统采取有效的防雷保护措施,保障监控系统正常可靠的运行,首先应明确监控系统遭受雷击损害的主要原因以及雷电可能的侵入途径,尤其是针对因雷击点的调查分析,在分析其损坏原因的基础上,正确选择和使用监控系统设备的防雷保护装置,以及对信号、电源线路的合理布线、屏蔽、等电位连接及接地方式等方面进行深入的研究和探讨。

二、监控系统雷击事故分析 1、前端设备直击雷防护措施不完善: 监控系统前端设备有室外和室安装两种情况,安装在室的摄像机一般不用考虑直击雷防护;安装室外的摄像机一般是利用灯杆、独立支撑杆或是安装在建筑物外墙上,通过对多年来对监控系统事故调查中发现,有些前端设备没有在直击雷保护区域,甚至有些地方,特别是独立架设的支撑杆没有任何防直击雷措施,当发生雷击时,雷电将直接击中前端设备,直接摧毁前前端设备。 2、传输线路敷设不符合要求: 传输线路是前端设备和终端设备之间的纽带,也是雷电侵入设备的一个重要途径,然而在工程施工中往往忽视了传输线路的防雷。从防雷角看,穿金属管埋地敷设方式防雷效果最佳,架空线最容易遭受雷击,并且破坏性大,波及围广。然而我们发现施工方在敷设线路时,为节约成本和降低施工难困,大多的数线路都是采用架空敷设,而且电源线与信号线缆捆扎在一起,没有分开敷设,也没有采取屏蔽和接地措施,此种情况下,电源线路将会通过耦合在信号线上感应出电压,我们通过实际测量也发现,在视频同轴电缆上常常会有十几伏甚至几十伏的感应过电压,此过电压长期加在设备两端,导致设备损坏。 虽然某些场合采用的是埋地敷设,但由于埋地时是穿的PVC管而不是金属管,当雷击发生时,PVC管并不能对雷电流起到屏蔽作用,并不能阻止雷击事故的发生,大量的事实显示,雷击造成埋地线缆故障,大约占总故障的30%左右,即使雷击比较远的地方,也仍然会有部分雷电流流入电缆。

监控系统防雷设计方案

监控系统防雷设计方案(总7 页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

监控系统(立杆)防雷设计方案 编辑:万佳防雷负责人:杨帅一、概述 每年各种通讯控制系统或计算机网络因雷击而损坏的事例屡见不鲜,其中安防监控系统因受到雷击而引起设备损坏、自动化监控失灵的事件也时常发生。道路监控子系统中,有一部分前端摄像机安装在室外,对于雷雨多发地区,容易遭受雷击损坏,因此极有必要对这些设备进行防雷保护。 道路监控系统中,分布在各处的室外型监控摄像机,其交流220V供电电源通过两芯电缆、视频信号通过带BNC接头的10Base2细缆、RS485通信控制信号通过多芯电缆,传输至中心控制主机,进行集中监控。 为了防止雷电产生的感应过电压和过电流,在所有监控设备的电源线入口、信号线连接的设备两端均应安装相应的避雷器。监控系统中的前端摄像机一般分为室外安装型和室内安装型,室内型摄像机信号传输线缆和电源供给线缆均通过"地埋"方式布线,遭受雷击的机会较少。进行防雷器设备选型时,必须注意防雷保护器必须达到以下基本要求: 1)正常运行时,雷电保护器的接入应不影响信号的正常传输,雷电保护器的对地阻抗应尽可能大,串联在电路中的阻抗应尽可能小。 2)在雷电袭击通信总线时,雷电保护器应发挥良好的电压钳位作用,其钳位电压应低于RS485芯片的耐受电压水平。 3)在抑制不超过防雷器最大通流量的雷电袭击过程中,雷电保护器自身应完好。 4)雷电保护器对雷电袭击应具有足够快的响应速度。 二、监控系统防雷总体方案 1、直击雷的防护 直击雷的防护较简易的方法是采用避雷针,室外各球形摄像机由于分别分布在室外,距离较远,因此室外各摄像头须设计安装避雷针。具体设计方案为:在室外各球形摄像头的立杆上(立杆的顶部)分别安装一支避雷针,规格为φ16×1000mm镀锌圆钢,安装方式为焊接。 2、防雷接地要求 防雷接地由引下线、接地线和接地体组成。引下线是引导雷击电流从避雷针入地的通道。接地体埋于地下与引下线相连接,雷击电流由此泄放到大地,接地体满足接地电阻的要求。多种接地体距离无法大于20M时,必须加装

监控立杆防雷设计方案

监控立杆防雷设计方案 一、概述 每年各种通讯控制系统或计算机网络因雷击而损坏的事例屡见不鲜,其中安防监控系统因受到雷击而引起设备损坏、自动化监控失灵的事件也时常发生。道路监控子系统中,有一部分前端摄像机安装在室外,对于雷雨多发地区,容易遭受雷击损坏,因此极有必要对这些设备进行防雷保护。 道路监控系统中,分布在各处的室外型监控摄像机,其交流220V供电电源通过两芯电缆、视频信号通过带BNC接头的10Base2细缆、RS485通信控制信号通过多芯电缆,传输至中心控制主机,进行集中监控。 为了防止雷电产生的感应过电压和过电流,在所有监控设备的电源线入口、信号线连接的设备两端均应安装相应的避雷器。监控系统中的前端摄像机一般分为室外安装型和室内安装型,室内型摄像机信号传输线缆和电源供给线缆均通过"地埋"方式布线,遭受雷击的机会较少。进行防雷器设备选型时,必须注意防雷保护器必须达到以下基本要求: 1)正常运行时,雷电保护器的接入应不影响信号的正常传输,雷电保护器的对地阻抗应尽可能大,串联在电路中的阻抗应尽可能小。 2)在雷电袭击通信总线时,雷电保护器应发挥良好的电压钳位作用,其钳位电压应低于RS485芯片的耐受电压水平。 3)在抑制不超过防雷器最大通流量的雷电袭击过程中,雷电保护器自身应完好。 4)雷电保护器对雷电袭击应具有足够快的响应速度。 二、监控系统防雷总体方案

1、直击雷的防护 直击雷的防护较简易的方法是采用避雷针,室外各球形摄像机由于分别分布在室外,距离较远,因此室外各摄像头须设计安装避雷针。具体设计方案为:在室外各球形摄像头的立杆上(立杆的顶部)分别安装一支避雷针,规格为φ16×1000mm镀锌圆钢,安装方式为焊接。 2、防雷接地要求 防雷接地由引下线、接地线和接地体组成。引下线是引导雷击电流从避雷针入地的通道。接地体埋于地下与引下线相连接,雷击电流由此泄放到大地,接地体满足接地电阻的要求。多种接地体距离无法大于20M时,必须加装地网隔离器。接地线一般采用40×4mm镀锌扁铁或25mm2 以上多股绝缘铜缆,一端焊接到接地体上,另一端引到室内的等电位连接排上。接地体与引下线或接地线一般采用搭接焊,焊接处必须牢固无虚焊,同时为确保接地电阻不大于4Ω,必须将接地体与建筑物大楼的基础地网可靠连接。对于监控中心及靠近建筑物的摄像头我们设计采用抽建筑物主钢筋的方法作联合接地,对于远离建筑的摄像头则需要在摄像头旁做一套人工接地体,具体如下地网设计方案。 3、电源系统的防雷 由于雷电冲击波的主要能量集中在从工频附近几十赫兹到几百赫兹的低端,所以雷电冲击波能量就容易与工频回路发生耦合、谐振,于是雷电冲击波从电源线路进入电子设备的几率,要比从信号线中进入的几率高得多,据统计,约有80%的雷击损坏电子设备的事故是由电源线引入的,因此应特别加强系统中设备电源的防雷措施。 1)在控制大楼总配电柜处,安装第一级加强型电源防雷器; 2)在中心控制室的监控系统配电箱处,安装第二级标准型电源防雷器;

煤矿安全监控系统的防雷措施

煤矿安全监控系统的防 雷措施 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

煤矿安全监控系统的防雷措施1我国煤矿监控系统防雷现状分析 随着现代化管理意识的增强和以计算机为核心的煤矿安全监控技术的日益成熟,煤矿安全生产监控系统在全国大中型矿井中已比较广泛地得到应用。这些系统从中心监控微机系统、通讯设备、检测设备和执行设备等的投资到安装调试,其资金投入少则几十万元,多则几百万元。但是,目前在煤矿安全生产监控系统发展上,生产厂家的注意力主要集中在监测与控制的性能指标上,对一些不常发生的系统安全问题则关注不够,因此在电路设计时没能给予充分的重视。如系统自身防雷击能力就不同程度地存在缺陷。近年来,行业主管部门注意到了这个问题,并组织专家对原《煤矿监控系统总体设计规范》进行了修订,对相关内容提出了明确要求。但是很多较早安装并正工作在煤矿中的系统,其固有隐患仍没能得到解决。当携带有大能量的雷电击中系统防雷能力较薄弱的通讯传输线路,尤其在击中有一定高度的架空传输线路后,尽管传输线路使用的是屏蔽线缆,并要求做可靠接地(如果屏蔽效果不好,接地质量较差则更危险),但雷电的危险能量仍能窜入线路中,并进入正在运行的设备,轻则造成设备损坏,重则有可能因设备损坏造成电火花外漏,由电火花引起井下瓦斯和煤尘的爆炸。

2防雷措施的解决方案 通过对我国煤矿正在使用的多种安全生产监控系统的防雷技术进行全面的调查研究,并与一些厂家进行了技术研讨后提出了如下解决方案:在地面中心站机房外被避雷系统保护的区域距中心站有一定距离的范围内,加装一级安全栅;在井下和地面分站到中心站的通信线路上,在距分站距离较近的安全地带也加装一级安全栅,用这两个安全栅来吸收线路上传来的雷电能量,即让雷电能量首先冲击安全栅,由安全栅负责将雷电能量及瞬间电压电流峰值限制在一个安全值内,然后再传到中心站计算机和分站计算机接口,这样就可解决雷击损坏设备的问题。使用两个安全栅的电路连接方法如图1所示。安全栅电路原理图见图2。 图1防雷击安全栅电路连接示意图

监控立杆的安装以及地笼防雷接地

监控立杆概述: 1、本次投标监控立杆均按照高4米横臂1米,来进行制作。没有特殊情况所有监控立杆预埋件混凝土为C25砼,所配钢筋符合国标及受风要求。其中水泥为425号普通硅酸盐水泥。混凝土的配比和最小水泥用量应符合GBJ204-83的规定; 2、监控杆必须有良好接地最好加引线导入地下(建议导电不走杆体),其接地电阻小于4欧; 3、预埋件地脚螺栓法兰盘以上的螺纹包扎良好以防损坏螺纹。根据预埋件安装图正确放置监控立杆预埋件,保证支臂杆的伸出方向与行车道垂直(或按工程师要求)地脚螺栓作为主筋; 4、监控立杆基础的混凝土浇注面平整度小于5mm/m尽量保持立杆预埋件水平。预埋件法兰盘低出周围地面20~30 mm ,再用C25细石砼把加强肋盖住,以防止积水; 5、杆旁、控制箱旁、电缆拐弯处、电缆管直线长度超过50米时或两端电缆管不在同一平面相距100 mm以上时,必须设置手孔井。手孔井的内围尺寸要求为500(长)×500(宽)×600(深)MM,用砾石铺层作为渗水用;手孔井四壁必须抹水泥沙浆。 6、控制箱由设备厂家根据所需容量配备,外壳采用优质冷轧钢板壁厚不小于1.2mm外表喷室外塑粉并做好防水防盗及散热。 7、结构用钢不得影响材料和机械性能的裂纹、分层、重皮、夹渣等缺陷麻点或划痕的深度不得大于钢材厚度负公差的1/2,且不应大于0.5mm。 8、设计依据:设计风载:23m/s2,疲劳寿命:30年,按国家最新标准版本《碳素结构钢》、《电气装置安装工程电缆线路施工及验收规范》、《钢结构工程施工及验收规范》、《钢筋混凝土工程施工验收规范》等相关规范进行施工。 监控立杆制作要求: 1、符合现行国家标准的规定,并有合格证明文件。碳素钢采用E43型焊条,焊条质量应符合最新国标的规定,绝不使用药皮脱落、焊芯生锈或受潮的焊条,以及带锈的焊丝。焊接尺寸符合设计要求,焊缝金属表面的焊波均匀,不得影响强度的裂纹、夹渣、焊瘤、烧穿、未溶合、弧坑和针状气孔,并且无褶皱和中断

安防监控系统防雷设计方案

文档收集于互联网,已重新整理排版.word版本可编辑.欢迎下载支持. 1文档来源为:从网络收集整理.word版本可编辑. 安防监控系统防雷设计方案 1前言 安防监控系统防雷设计在实际应用中很少用到,但是这是很重要的一方面,尤其室外监控系统,雷电天气常出现的地方更应做防雷设计。 2概述 我们首先应准确了解安防监控系统的系统构成,进而,准确分析安防监控系统遭受雷击损害的主要原因以及可能的雷击过电压的入侵途径。在此基础上,选用合适的防雷保护装置,研究和探讨信号、电源线路的合理布放,明确屏蔽及接地方式,方可给出准确的、系统的防雷解决方案。有效提高安防监控系统的抗雷击过电压干扰能力,优化系统的整体防雷水平。 3安防监控系统构成、分类及雷电防护概述 3.1安防监控系统的构成 3.1.1安防监控系统,一般由以下三部分组成 前端部分:主要由黑白(彩色)摄像机、云台、防护罩、支架等组成。 传输部分:使用同轴电缆、电线、双绞线,采取架空、地埋或沿墙敷设等方式传输音频、视频、控制信号和馈送交、直流电源等。 终端部分:主要由控制设备、画面分割器、监视器、录像存储设备等组成。

3.1.2安防监控系统的防雷分类 依传输部分的传输方式分类,安防监控系统主要分为如下几类: 文档收集于互联网,已重新整理排版.word版本可编辑.欢迎下载支持1文档来源为:从网络收集整理.word版本可编辑. A.同轴电缆传输监控系统:雷电防护重点在于传输电缆的两端线路接口防护及传输电缆自身的保护; B.双绞线传输监控系统:雷电防护重点在于,前端及终端的电源防护及双绞线接口防护; C.光缆传输监控系统:雷电防护重点在于,前端及终端的电源防护及光缆自身屏蔽铠层及加强筋的防护; D.微波传输监控系统:防护重点在于,前后两站无线设备的自身直击雷防护。 3.2安防监控系统遭受雷击损害的主要原因 3.2.1直击雷 A.雷电直接击中露天的摄像机上,直接损毁设备; B.雷电直接击在线缆上,造成线缆熔断、损坏。 3.2.2雷电侵入波 安防监控系统的电源线、信号传输线或进入监控室的其它金属线缆遭到雷击或被雷电感应时,雷电波沿这些金属导线/导体侵入设备,导致高电位差使设备损坏。 3.2.3雷电感应 电磁感应:当附近区域有雷击闪络时,在雷击落实通道周围会产生强大的

监控系统防雷方案

闭路监控系统防雷方案 目录 一、封面———————————————————————————————————第1页 二、目录———————————————————————————————————第2页 三、防雷概述—————————————————————————————————第3页 四、闭路监视系统简介——————————————————————————————第3页 五、雷击破坏途径————————————————————————————————第4页 六、闭路监控系统防雷措施————————————————————————第4页~第7页 1、防雷设计的依据—————————————————————————————第4页 2、浪涌保护器选择注意事项—————————————————————————第5页 3、LEiK雷克产品应用案例——————————————————————————第5页 4、防雷器选型配置说明———————————————————————————第6页 5、防雷器防护连接示意图——————————————————————第6页~第7页 七、闭路监控系统防雷接地————————————————————————第7页~第8页 1、室外前端摄像机单独防雷接地方案—————————————————————第7页 2、室内监控中心机房防雷共用接地方案————————————————————第8页 八、闭路监控系统防雷方案配置清单———————————————————第8页~第9页 九、防雷接地材料配置清单———————————————————————第9页~第10页

安防视频监控系统的防雷设计方案【最新版】

安防视频监控系统的防雷设计方案1 视频监控系统防雷 1. 视频监控系统的组成 (1)前端部分:主要是由摄像机、镜头、云台、防护罩、支架、解码器等组成; (2)传输部分:使用电缆、电线采取架空、地埋或沿墙敷设等方式传输视频、音频或控制信号等; (3)终端部分:主要由画面分割器、监视器、控制设备、录像存储设备等组成。 2. 视频监控系统遭受雷击损害的主要原因 (1)直击雷:雷电直接击在露天的摄像机上造成设备损坏或雷电直接击在架空线缆上造成线缆损毁。这种雷击方式造成的损坏最严重,但出现几率比较小。

(2)感应雷:又称二次雷,它分为电磁感应和静电感应。当附近区域有雷击闪落时,在雷击落实通道周围会产生强大的顺变电磁场。处在电磁场的监控设备和传输线路会感应出较大的电动势,这种现象叫做电磁感应;当有带电的雷云出现时,在雷云下面的建筑物和传输线路上会感应出与雷云相反的电荷,这种现象叫做静电感应。感应雷造成的设备损坏没有直击雷造成的破坏大,但出现的几率比较高,约占现代雷击事故的80%以上。 (3)雷电侵入波:监控系统的电源线、信号传输线或进入监控室的其他金属线缆遭到雷击或被雷电感应时雷电波沿这些金属导线/导体侵入设备,导致高电位差使设备损坏。 二 监控立杆防雷接地设计 1. 众所周知,雷电具有极大的破坏性,其电压高达数百万伏,瞬间电流可高达数十万安培。雷击所造成的破坏性后果体现于下列三种层次: (1)设备损坏,人员伤亡;

(2)设备或元器件寿命降低; (3)传输或存储的信号、数据(模拟或数字)收到干扰或丢失,甚至使电子设备产生误动作而瘫痪整个系统。 对于监控点来说遭到直击雷破坏的可能性很小。随着现代电子技术的不断发展,大量精密电子设备的使用和联网,破坏大量电子设备的罪魁祸首主要是感应雷击、过电压、操作过电压一级雷电波入侵过电压,每年各种通讯控制系统或网络因雷击而受破坏的事屡见不鲜,其中安防监控系统因受到雷击引起设别损坏,自动化监控失灵的事件也常有发生。前端摄像机设计均为室外安装方式,对于雷雨多发地区必须设计安装防雷系统。 2. 室外摄像机大多数选择金属或水泥杆安装,在这里简要介绍金属立杆的选择要求: (1)监控杆为圆锥钢杆,其中双臂监控杆立杆高10米,臂长1.5米,壁厚4mm;单臂杆高12m,臂长1.5m,壁厚4mm。监控杆上口直径80mm,下口直径200mm。监控立杆的支臂为碳钢管,直径60mm,壁厚3mm;

监控立杆接地设计

监控立杆防雷接地设计 众所周知,雷电具有极大的破坏性,其电压高达数百万伏,瞬间电流可高达数十万安培。雷击所造成的破坏性后果体现于下列三种层次:①设备损坏,人员伤亡; ②设备或元器件寿命降低;③传输或储存的信号、数据(模拟或数字)受到干扰或丢失,甚至使电子设备产生误动作而暂时瘫痪或整个系统停顿。 对于监控点来说遭到直接雷击破坏的可能性很小。随着现代电子技术的不断发展,大量精密电子设备的使用和联网,破坏大量电子设备的罪魁祸首主要是感应雷击、过电压、操作过电压以及雷电波入侵过电压,每年各种通讯控制系统或网络因雷击而受破坏的事例屡见不鲜,其中安防监控系统因受到雷击引起设备损坏,自动化监控失灵的事件也常有发生。前端摄像机设计均为室外安装方式,对于雷雨多发地区必须设计安装防雷电系统。 室外摄像机大多数选择金属或水泥立杆安装,在这里简要介绍金属立杆的选择要求: 1、监控杆为圆锥钢杆,其中双臂监控立杆高10m,臂长1.5m,壁厚4mm,;单臂杆高12m,臂长1.5m,壁厚4mm。监控杆上口直径80mm,下口直径200mm。监控立杆的支臂为碳钢管(Q235),直径60mm,壁厚3mm (部分立杆高度可根据实际要求按比例减少) 2、摄像机立杆表面热镀锌后用专用设备对其表面进行抛光处理,采用活碳酸漆,再静电喷塑对其表面处理。镀锌层厚度≥85um,塑层厚度≥85um,抗风能力≥45m/s,表面层保用五年,摄像机立杆保用二十年,紧固件螺钉及螺母为不锈钢。 3、摄像机立杆颜色为乳白色。 4、室外机箱结构为露天防雨箱设计。机箱高度为300mm,宽度为200mm,厚度为150mm米。箱体防护等级达到IP54防护等级。需要有机箱基础,整体美观,表面喷涂明显的警示标志,机箱离地面高度不小于300mm。

安防监控系统防雷设计方案

安防监控系统防雷设计方案 一、概述 众所周知,雷电具有极大的破坏性,其电压高达数百万伏,瞬间电流可高达数十万安培。雷击所造成的破坏性后果体现于下列三种层次: ①设备损坏,人员伤亡; ②设备或元器件寿命降低; ③传输或储存的信号、数据(模拟或数字)受到干扰或丢失,甚至使电子设备产生误动作而暂时瘫痪或整个系统停顿。 目前,世界上各种建筑、设施大多数仍在使用传统的避雷针防雷。用避雷针防止直接雷击实践证明是经济和有效的。但是,随着现代电子技术的不断发展,大量精密电子设备的使用和联网,避雷针对这些电子设备的保护却显得无能为力。避雷针不能阻止感应雷击过电压、操作过电压以及雷电波入侵过电压,而这类过电压却是破坏大量电子设备的罪魁祸首。每年各种通讯控制系统或网络因雷击而受破坏的事例屡见不鲜,其中安防监控系统因受到雷击引起设备损坏,自动化监控失灵的事件也常有发生。安防监控子系统中部分前端摄像机设计为室外安装方式,对于雷雨多发地区必须设计安装防雷电系统。 二、方案设计说明 系统防雷方案包括外部防雷和内部防雷两个方面:外部防雷包括避雷针、避雷带、引下线、接地极等等,其主要的功能是为了确保建筑物本体免受直击雷的侵袭,将可能击中建筑物的雷电通过避雷针、避雷带、引下线等,泄放入大地。

内部防雷系统是为保护建筑物内部的设备以及人员的安全而设置的。通过在需要保护设备的前端安装合适的避雷器,使设备、线路及大地形成一个有条件的等电位体。将可能进入的雷电流阻拦在外,将因雷击而使内部设施所感应到的雷电流得以安全泄放入地,确保后接设备的安全。 避雷带、引下线(建筑物钢筋)和接地等构成的外部防雷系统,主要是为了保护建筑物本体免受雷击引起的火灾事故及人身安全事故,而内部防雷系统则是防止感应雷和其他形式的过电压侵入设备造成损坏,这是外部防雷系统无法保证的。 雷电对电气设备的影响,主要由以下四个方面造成: ①直击雷; ②传导雷; ③感应雷; ④开关过电压。 直击雷:雷电直接击中建筑物,雷电的不到50%的能量将会从引下线等外部避雷设施泄放到大地,其中接近40%的能量将通过建筑物的供电系统分流,其中5%左右的能量通过建筑物的通信网络线缆分流,其余的雷击能量通建筑物的其他金属管道、缆线分流。这里的能量分配比例会随着建筑物内的布线状况和管线结构而变化。直击雷波形为10/350us。 传导雷(雷电波侵入):在更大的范围内(几公里甚至几十公里),雷电击中电力或信息通讯线路,然后沿着传输线路侵入设备。其中地电位反击也是传导雷中的一种:雷电击中附近建筑物或附近其他物体、地面,导致地电压升高,并在周围形成巨大的跨步电压。雷电可能通过接地系统或

监控立杆接地设计

众所周知,雷电具有极大的破坏性,其电压高达数百万伏,瞬间电流可高达数十万安培。雷击所造成的破坏性后果体现于下列三种层次:①设备损坏,人员伤亡; ②设备或元器件寿命降低;③传输或储存的信号、数据(模拟或数字)受到干扰或丢失,甚至使电子设备产生误动作而暂时瘫痪或整个系统停顿。 对于监控点来说遭到直接雷击破坏的可能性很小。随着现代电子技术的不断发展,大量精密电子设备的使用和联网,破坏大量电子设备的罪魁祸首主要是感应雷击、过电压、操作过电压以及雷电波入侵过电压,每年各种通讯控制系统或网络因雷击而受破坏的事例屡见不鲜,其中安防监控系统因受到雷击引起设备损坏,自动化监控失灵的事件也常有发生。前端摄像机设计均为室外安装方式,对于雷雨多发地区必须设计安装防雷电系统。 室外摄像机大多数选择金属或水泥立杆安装,在这里简要介绍金属立杆的选择要求: 1、监控杆为圆锥钢杆,其中双臂监控立杆高10m,臂长,壁厚4mm,;单臂杆高12m,臂长,壁厚4mm。监控杆上口直径80mm,下口直径200mm。监控立杆的支臂为碳钢管(Q235),直径60mm,壁厚3mm (部分立杆高度可根据实际要求按比例减少) 2、摄像机立杆表面热镀锌后用专用设备对其表面进行抛光处理,采用活碳酸漆,再静电喷塑对其表面处理。镀锌层厚度≥85um,塑层厚度≥85um,抗风能力≥45m/s,表面层保用五年,摄像机立杆保用二十年,紧固件螺钉及螺母为不锈钢。 3、摄像机立杆颜色为乳白色。 4、室外机箱结构为露天防雨箱设计。机箱高度为300mm,宽度为200mm,厚度为150mm米。箱体防护等级达到IP54防护等级。需要有机箱基础,整体美观,表面喷涂明显的警示标志,机箱离地面高度不小于300mm。 前端摄像机主要分为两类: 前端设备直击雷的防护

立杆如何做防雷

立杆监控防雷怎么做问题 方案 问题: 1.防雷器的安装位置是在立杆底部还是顶部好(三合一)? 2.接地装置采用铜包钢棒和铜包钢绞线进行熔接,那铜包钢绞线和立杆怎么相连呢? 3.防雷器的接地线该怎么接?是接在立杆上,还是要和接地体相连?如果和接地体相连是不是要破坏底座把接地线和地下的绞线相连?? 4. 等电位,雷电流(这里指的是立杆上的避雷针接收直击雷)泄放过程中产生的反击,而是感应雷,由于放电使其监控线路感应的过电压问题。 5. 防雷器接在立杆下端的检线口。现在该怎么接地才能达到最好? ( 1).如果防雷器接地线和立杆内部的螺丝等相连接行不行?如果这样,那接地线就只能和立杆连接了。如果连接的话是直接焊接在底座上?? ( 2).如果防雷器接地线直接和水平接地体连接的话该怎么连接呢? 答: 按照相关规范,立杆设备需要做防雷,接闪器应该装在设备立杆不小于3米范围外,接闪器应高于设备立杆。 不过现在通常都不单独立避雷杆,而是在设备立杆上弄个金属针了事,当然必须要做接地的。避雷器是防止线路大电流大电压浪涌损坏设备的,它本身就以一个―防雷设备‖,它的地应该远离接闪器的接地线。 按规范要求和标准原则来看: 问题1:最好的设计方案是在摄像机3米处架设独立避雷针,把摄像机保护起来,防雷器的安装位置应该就近与摄像机安装;如果避雷针直接是架设在立杆上的,那就要区分立杆是水泥(木材)还是铁杆的,是水泥的就要设引下线,铁杆的可以利用杆体。无论是水泥还是铁的杆,信号线、控制线、电源线就要用钢管屏蔽起来,在钢管两端要接地,且防雷接地线与引下线在接地网的距离要大于5米,防雷器接地线与信号线不能跟信号线、控制线与电源线布在同一根钢管里。 问题2:可以采取铜铁连接器(转换头)可以解决! 问题3:防雷器接地线不能与立杆或引下线相连! 问题4:雷击破坏途径:(1)直击雷:雷电直接击在露天的摄像机上造成设备损坏;雷电直接击在架空线缆上造成线缆熔断。(2) 雷电波侵入:电源线、信号传输或进入监控室的金属管线遭到雷击或被雷电感应时,雷电波沿这些金属导线侵入设备,造成电位差使设备损坏。(3)雷电感应:当雷击中避雷针时,在引下线周围会产生很强的瞬变电磁场。处在电磁场中的监控设备和传输线路会感应出较大的电动势。这种现象叫电磁感应。当有带电的雷云出现时,在雷云下面的建筑物和传输线路上都会感应出与雷云相反的电荷。这种感应电荷在低压架空线路上可达100kv,信号线路上可40-60kv。这种现象叫静电感应。研究表明:静电感应方式引起的浪涌数倍于电磁感应引起的浪涌。电磁感应和静电感应称为感应雷,又叫二次雷击。它对设备的损害没有直击雷来的猛然,但它要比直击雷发生的机率大得多,按原邮电部的统计感应雷造成的雷击事故约占雷击事故总和的80%。 安装于监控立杆上方,用一根铜导线引到地下跟接地铜棒牢固焊接。

安防监控系统防雷设计方案

安防监控系统防雷设计方案 1前言 安防监控系统防雷设计在实际应用中很少用到,但是这是很重要的一方面,尤其室外监控系统,雷电天气常出现的地方更应做防雷设计。 2概述 我们首先应准确了解安防监控系统的系统构成,进而,准确分析安防监控系统遭受雷击损害的主要原因以及可能的雷击过电压的入侵途径。在此基础上,选用合适的防雷保护装置,研究和探讨信号、电源线路的合理布放,明确屏蔽及接地方式,方可给出准确的、系统的防雷解决方案。有效提高安防监控系统的抗雷击过电压干扰能力,优化系统的整体防雷水平。 3安防监控系统构成、分类及雷电防护概述3.1安防监控系统的构成 3.1.1安防监控系统,一般由以下三部分组成 前端部分:主要由黑白(彩色)摄像机、云台、防护罩、支架等组成。 传输部分:使用同轴电缆、电线、双绞线,采取架空、地埋或沿墙敷设等方式传输音频、视频、控制信号和馈送交、直流电源等。 终端部分:主要由控制设备、画面分割器、监视器、录像存储设备等组成。

3.1.2安防监控系统的防雷分类 依传输部分的传输方式分类,安防监控系统主要分为如下几类: A.同轴电缆传输监控系统:雷电防护重点在于传输电缆的两端线路接口防护及传输电缆自身的保护; B.双绞线传输监控系统:雷电防护重点在于,前端及终端的电源防护及双绞线接口防护; C.光缆传输监控系统:雷电防护重点在于,前端及终端的电源防护及光缆自身屏蔽铠层及加强筋的防护; D.微波传输监控系统:防护重点在于,前后两站无线设备的自身直击雷防护。 3.2安防监控系统遭受雷击损害的主要原因 3.2.1直击雷 A.雷电直接击中露天的摄像机上,直接损毁设备; B.雷电直接击在线缆上,造成线缆熔断、损坏。 3.2.2雷电侵入波 安防监控系统的电源线、信号传输线或进入监控室的其它金属线缆遭到雷击或被雷电感应时,雷电波沿这些金属导线/导体侵入设备,导致高电位差使设备损坏。 3.2.3雷电感应 电磁感应:当附近区域有雷击闪络时,在雷击落实通道周围会产生强大的瞬变电磁场。处在电磁场中的监控设备和传输线路会感应出较大的电动势,以致损坏、损毁设备。 静电感应:当有带电的雷云出现时,在雷云下面的建筑物和传输线路上会感

室外监控立杆基础、手井、接地、顶管、线圈、安装接线等施工指导手册

室外监控立杆基础、手井、接地、顶管、线圈、安装接线等施工指导手册一、概述 本手册是为了让项目实施人员尽快掌握施工要求及方法,保证施工质量,供相关人员参考,由于现场情况不一,实际操作情况还需要进行调整。 参考标准: 电气装置安装工程电缆线路施工及验收规范GB50168-2006 混凝土结构施工质量验收标准gb50204-2015 电气装置安装工程接地装置施工及验收规范GB 50169-2016 二、施工方法及工艺 2.1 工程勘察 现场勘察就是了解现场情况,把所有需要记录的数据通过拍照、绘图等方式详细地记录下来,并编制成文档及图纸,在施工前需完成勘察工作。2.2 施工现场的准备工作 施工现场必备的各种施工用具及计量仪器设备,检查各种设备的性能,保证满足施工要求。 组织施工组成员学习施工安全知识,准备安全防护用具。 一切准备工作结束后,开始展开施工。 2.3 立杆基础施工 (1)确定基础位置 立杆基础开挖时,首先根据前期勘察资料或借助纬度仪、GPS等仪器,落实点位具体位置,并根据施工图确定基础开挖具体位置。 (2)基础尺寸参考

基础开挖需要根据立杆横臂(以L杆为例)确定立杆基础尺寸,必须满足设计图纸要求,如现场条件不满足时应保证立杆基础的体积和设计体积相等,基础规格可参考下表。 若立杆防风等级高于8级、抗震等级高于5级或基础开挖处土质松的话,基础均需要加大。 (3)基础施工流程 基础浇筑完成后,必须要养护一段时间,对采用硅酸盐水泥、普通硅酸盐水泥或矿渣硅酸盐水泥拌制的混凝土,不得少于7天,养护期内温度确保零上5摄氏度及以上。对掺用缓凝外加剂、矿物掺和料或有抗渗性能要求的混凝土,不得少于14天,以确保混凝土能达到一定的安装强度。基础的浇注、混凝土强度等级必须符合GB50204-2015的要求。 立杆基础的开挖、浇筑流程,如下面所示: 1)基础在开挖过程中需注意垂直、美观,一般土质情况下打两根角钢(一般情况1.5m)下去,做接地使用; 2)打入角钢后(角钢末端预留30公分露出坑底泥土面),基础底部采用直径为:8MM的圆钢筋敷设一层尺寸为:20CM*20CM的钢筋网并浇筑上20公分厚混凝土,表面抹至水平状态,作为立杆基础的占底层;3)两根角钢,通过扁铁和地笼焊接,并将地笼固定,固定时需要注意地笼的相位,确保杆件横臂垂直车辆行驶方向,地笼的地脚螺杆从基础

相关文档
最新文档