氨的测定(纳氏试剂分光光度法)

氨的测定(纳氏试剂分光光度法)
氨的测定(纳氏试剂分光光度法)

氨的测定(纳氏试剂分光光度法)

1 概要

1-1 在碱性溶液中,氨与纳氏试剂生成黄色的化合物,此化合物的最大吸收波长为425nm。

1-2 如水样含有联氨时,因联氨与纳氏试剂也生成黄色的化合物,故产生严重干扰。在联氨含量小于0.2mg/l时,可用加入碘的方法消除干扰。

1-3 本法的测定范围为0.1-2.5mg/l。

2 仪器

2-1 分光光度计(附10mm比色皿)。

2-2 10ml比色管。

3试剂

3-1纳氏试剂:称取10g HgI2和7g KI加入少量除盐水研磨成糊状,并补充少量除盐水至全部溶解。在不断搅拌下

加入50ml30%NaOH溶液,移入100ml容量瓶中并稀至刻度,

摇匀,置暗处数天。待溶液完全澄清后,小心地用虹吸法

将上部澄清液移入棕色瓶中,保存于暗处。

3-2 氨标准溶液的配制:

3-2-1 储备液(1ml含0.1mgNH3):称取0.3147g在1100C烘干1-2h的优级纯NH3Cl,用除盐水稀至1000ml,摇匀。

3-2-2 工作溶液(1ml含0.01mg NH3):量取适量的储备液,用除盐水准确稀释至十倍。

3-310%酒石酸钾钠溶液(重/容):称取10g酒石酸钾钠,用除盐水溶解并稀至100ml,加入2ml纳氏试剂,于暗处放置2-3天后,用虹吸法取其上层澄清液备用。

3-42%Al2(SO4)3溶液(重/容)。

3-530%乙酸锌溶液(重/容)。

3-60.002mol碘溶液。

4测定方法

4-1工作曲线的绘制:

4-1-1 按下表取一组氨工作溶液于一组10ml的比色管中,并分别用除盐水准确稀释至刻度。

4-1-2 各加入0.5ml 10%酒石酸钾钠溶液和0.2ml纳氏试剂,混匀。待10min后,用分光光度计波长425nm和10mm比色皿,以蒸馏水作参比测定吸光度,根据测得的吸光度和相应的氨含量绘制工作曲线。

4-2水样的测定:

4-2-1当水样中不含联氨时,取10ml水样按上述绘制工作曲线的步续加试剂发色后,测定吸光度,查工作曲线即得水样中氨含量。

4-2-22当水样联氨含量在0.2mg/l以下时,取10ml水样加

0.2ml0.002 mol碘溶液,放置15-20 min后,按上述绘

制工作曲线的步续加试剂发色后,测定吸光度,查工作曲线即得水样中氨含量。

测定有色水样时,应于100ml水样中加1ml2%Al2(SO4)3溶液进行脱

色后测定;当水样中加入纳氏试剂后发生浑浊,说明含有硫化物,应另取20 ml水样,事先加入10滴30%乙酸锌溶液,摇匀后静止2小时,取上部澄清液进行测定。

铁的测定

(见火力发电厂水、汽试验方法SS-18-1-84和SS-18-2-84)

十八碳叔胺的测定

1 概要

胺在PH3-4的溶液中,能与甲基橙反应生溶解于有机溶剂的黄色络合物,其颜色深浅与含量成正比,在425nm波长下测定其吸光度。

2 仪器

2-1 分光光度计。

2-2 250ml分液漏斗。

2-3 10mm比色皿。

3 试剂

3-1 标准工作溶液的配制(1ml含0.01mg十八碳叔胺):准确称取0.0100g工业10%十八碳叔胺,溶于含有0.03g冰乙酸的蒸馏水中,加热至70-750C,在快速搅拌下滴加冰乙酸至溶液成中性,冷却后用蒸馏水稀至1000ml。

3-2醋酸--醋酸钠缓冲溶液:

称取125g醋酸钠溶于500ml除盐水中,加入300ml冰乙酸,用除盐水稀至1000ml。

3-30.1%甲基橙溶液。

3-4 CHCL3 (分析纯)。

3-5 异丙醇(分析纯)。

4测定方法

4-34-1工作曲线的绘制:

按下表取一组十八碳叔胺工作溶液于一组100ml的容量瓶中,并分别用除盐水准确稀释至刻度,摇匀。

依次加入一组250ml分液漏斗中,加入4ml醋酸--醋酸钠缓冲溶液,摇匀,加入1.5ml0.1%甲基橙溶液,静止5min后加入20ml 分析纯CHCL3摇匀,再加入0.5ml异丙醇摇匀,静止5min,由分液漏斗下放出比色液,在425nm波长下,根据测得的吸光度和相应的十八碳叔胺含量,并绘制标准曲线。

4-2水样的测定:

取水样100ml置于250ml分液漏斗中,按上述绘制工作曲线的步续加试剂显色后,用CHCL3作参比,测定吸光度,查工作曲线即得水样中十八碳叔胺含量。

ECH-833化学除氧剂的测定

1、概要

ECH-833新型化学除氧剂其主要成份为二甲基酮肟(DMKO),DMKO在稀酸中经加热(100o C)水介。水介后产生的还原胺将三价铁离子Fe3+还原成二价铁离子Fe2+,在PH为2.5~2.9条件下与邻菲罗林生成红色络合物。该络合物的最大吸收波长为510nm。

2、仪器

2.1、分光光度计附50~100mm比色皿;

2.2、50ml比色管;

2.3、水浴锅;

2.4、PH计。

3、试剂

3.1、0.025mol / l盐酸邻菲罗啉溶液

称取0.587克盐酸邻菲罗啉溶解于100ml高纯水中;

3.2、0.5mol / l氨基乙酸溶液

溶解37.54克氨基乙酸(NH3CH2COOH)于500 ml高纯水中,加200ml 0.5mol / l盐酸溶液调节PH值为2.9后,移入1000ml容量瓶中,用高纯水稀至刻度,摇匀;

3.3、0.1mol / l氨三乙酸溶液

称取19.15克氨三乙酸【N(CH2COOH)2】于500ml烧杯中,加入

200~300ml高纯水,在不断搅拌下,先加少量固体氢氧化钠后再加0.1mol / l氢氧化钠溶液至氨三乙酸全部溶解,然后继续用0.1mol / l 氢氧化钠溶液调节PH至6.0,移入1000 ml容量瓶中,用高纯水稀至刻度,摇匀;

3.4、缓冲试剂混合液

量取5体积0.025mol / l盐酸邻菲罗啉溶液、5体积0.5mol / l氨基乙酸溶液与1体积0.1mol / l氨三乙酸溶液混合,该溶液可保存三天;

3.5、高铁标准液(1ml含100ugFe3+)

称取0.8634克硫酸高铁铵溶于50ml 1.0mol / l盐酸溶液中,待全部溶解后,移入1000ml容量瓶中,用高纯水稀至刻度,摇匀;

3.6、二甲基酮肟标准溶液(1ml含1mgMDKO)

称取1.000克标准二甲基酮肟溶解于500ml高纯水中,移入1000ml 容量瓶中,用高纯水稀至刻度,摇匀;

3.7、二甲基酮肟工作溶液(1ml含10ugMDKO)

取二甲基酮肟标准溶液10ml,注入1000ml容量瓶中,用高纯水稀至刻度,摇匀。

4、测定方法

4.1、工作曲线的绘制

4.1.1、按下表吸取二甲基酮肟工作溶液(1ml含10ugMDKO),分别注于一组50ml比色管中,用高纯水稀至刻度,摇匀;

二甲基酮肟标准色基的配制

4.1.2、加入0.1ml 2%H2SO4溶液和0.5ml高铁标准液,摇匀;

4.1.3、置于100℃水浴锅中准确加热5分钟;

4.1.4、充分冷却后,加入10ml缓冲试剂混合液,摇匀;

4.1.5、用分光光度计在510nm波长下用100mm(或50mm)比色皿测定其吸光度。根据测得的吸光度和相关的二甲基酮肟含量,绘制成工作曲线。

4.2、水样的测定

4.2.1、于两支50ml比色管中分别量取50ml水样,加入0.1ml 2%H2SO4;

4.2.2、在其中一根比色管中加入0.5ml高铁标准溶液,摇匀;

4.2.3、将两支比色管置于100℃水浴锅中准确加热5分钟,充分冷却;

4.2.4、加入10ml缓冲试剂混合液,摇匀;

4.2.5、用分光光度计在510nm波长下用100mm(或50mm)比色皿测定其吸光度;

4.2.6、根据两根比色管中的试样之吸光度的差值来查工作曲线,即得水样中二甲基酮肟的含量。

紫外分光光度法测定蛋白质含量

上海百贺仪器科技有限公司提供www.southhk.cn 紫外分光光度法测定蛋白质含量 摘要: 考马斯亮兰G250与蛋白质结合,在0-1000ug/ml范围内,于波长595nm 处的吸光度与蛋白质含量成正比,可用于蛋白质含量的测定。考马斯亮兰G250 与蛋白质结合迅速,结合产物在室温下10分钟内较为稳定,是一种较好的蛋白 质定量测定方法。 1.实验部分 1.1仪器与试剂: Labtech UV POWER紫外分光光度计;玻璃比色皿一套;考马斯亮蓝G250; 牛血清蛋白;超纯水。 1.2试液的制备: 牛血清蛋白标准溶液(1000ug/ml)的制备称取100mg牛血清蛋白置100ml 容量瓶中,加入超纯水溶解并定容。 考马斯亮兰G250试剂称取100mg考马斯亮兰G250,溶于50ml95%的乙 醇后,加入120ml85%的磷酸,用水稀释至1升。 2.结果与讨论 2.1校正曲线的绘制 准确吸取1000ug/ml牛血清蛋白标准溶液0.0、0.02、0.04、0.06、0.08、0.1ml 分别加入到6只10ml试管中,然后用超纯水补充到0.1ml,各试管分别加入5ml 考马斯亮兰G250试剂,混合均匀后,即可依次在595nm处测定吸光度。以浓度 为横坐标,吸光度为纵坐标绘制校正曲线如下图,校正曲线方程为 A=0.613556C+0.001008,R=0.9994。

上海百贺仪器科技有限公司www.southhk.cn 2.2精密度 配制0.6mg/ml牛血清蛋白的考马斯亮兰溶液连续进样6次,得到吸光度的 相对标准偏差。 表1精密度测定结果 次数123456RSD% A0.26260.26220.26200.26280.26290.26260.13 2.3稳定性 取1mg/ml牛血清蛋白标准溶液每十分钟测定一次,50分钟内的吸光度变化 如下表2。 表2稳定度测定结果 时间(min)A1A2A3A平均 00.55110.55230.55160.5517 100.52040.51840.51680.5185 200.49100.49010.49030.4905 300.47650.47160.47210.4734 400.45240.44750.44400.4480 500.39820.39350.40310.3983 3.结论 该方法测定快速、简便,干扰物少,是目前灵敏度较高的蛋白质含量测定 的紫外分光光度法。

纳氏试剂分光光度法

纳氏试剂分光光度法 一、原理 碘化汞和碘化钾的碱性溶液与氨反映生成淡红棕色胶态化合物,其色度与氨氮含量成正比,通常可在波长410~425nm范围内测其吸光度,计算其含量. 本法最低检出浓度为0.025mg/L(光度法),测定上限为2mg/L.采用目视比色法,最低检出浓度为0.02mg/L.水样做适当的预处理后,本法可用于地面水,地下水,工业废水和生活污水中氨氮的测定. 二、仪器 1 带氮球的定氮蒸馏装置:500mL凯氏烧瓶,氮球,直形冷凝管和导管. 2 分光光度计 3 pH计 四、试剂 配制试剂用水均应为无氨水 1 无氨水可选用下列方法之一进行制备: 1.1 蒸馏法:每升蒸馏水中加0.1mL硫酸,在全玻璃蒸馏器中重蒸馏,弃去 50mL初馏液,按取其余馏出液于具塞磨口的玻璃瓶中,密塞保存. 1.2 离子交换法:使蒸馏水通过强酸型阳离子交换树脂柱. 2 1mol/L盐酸溶液. 3 1mol/L氢氧化纳溶液. 4 轻质氧化镁(MgO):将氧化镁在500℃下加热,以出去碳酸盐. 5 0.05%溴百里酚蓝指示液:pH60.~7.6. 6 防沫剂,如石蜡碎片. 7 吸收液: 7.1 硼酸溶液:称取20g硼酸溶于水,稀释至1L. 7.2 0.01mol/L硫酸溶液. 8 纳氏试剂:可选择下列方法之一制备: 8.1 称取20g碘化钾溶于约100mL水中,边搅拌边分次少量加入二氯化汞(HgCl2)结晶粉末(约10g),至出现朱红色沉淀不易溶解时,改写滴加饱和二氯化汞溶液,并充分搅拌,当出现微量朱红色沉淀不再溶解时,停止滴加二氯化汞溶液. 另称取60g氢氧化钾溶于水,并稀释至250mL,冷却至室温后,将上述溶液徐徐注入氢氧化钾溶液中,用水稀释至400mL,混匀.静置过夜将上清液移入聚乙烯瓶中,密塞保存. 8.2 称取16g氢氧化纳,溶于50mL水中,充分冷却至室温. 另称取7g碘化钾和碘化汞(HgI2)溶于水,然后将此溶液在搅拌下徐徐注入氢氧化纳溶液中,用水稀释至100mL,贮于聚乙烯瓶中,密塞保存. 9 酒石酸钾纳溶液:称取50g酒石酸钾纳KNaC4H4O6·4H2O)溶于100mL水中,加热煮沸以除去氨,放冷,定容至100Ml. 10 铵标准贮备溶液:称取3.819g经100℃干燥过的优级纯氯化铵(NH4Cl)溶于水中,移入1000mL容量瓶中,稀释至标线.此溶液每毫升含1.00mg氨氮. 11 铵标准使用溶液:移取5.00mL铵标准贮备液于500mL容量瓶中,用水稀释至标线.此溶液每毫升含0.010mg氨氮. 五、测定步骤

邻二氮菲分光光度法测定微量铁实验报告

实验一邻二氮菲分光光度法测定微量铁 实验目的和要求 1.掌握紫外可见分光光度计的基本操作; 2.掌握邻二氮菲分光光度法测定微量铁的原理和方法; 3.掌握吸收曲线绘制及最大吸收波长选择; 4.掌握标准曲线绘制及应用。 实验原理 邻二氮菲(1,10—邻二氮杂菲)是一种有机配位剂,可与Fe2+形成红色配位离子: Fe2++3 N N N N 3 Fe 2+ 在pH=3~9范围内,该反应能够迅速完成,生成的红色配位离子在510nm波长附近有一吸收峰,摩尔吸收系数为1.1×10-4,反应十分灵敏,Fe2+ 浓度与吸光度符合光吸收定律,适合于微量铁的测定。 实验中,老师我们又见面了采用pH=4.5~5的缓冲溶液保持标准系列溶液及样品溶液的酸度;采用盐酸羟胺还原标准储备液及样品溶液中的Fe3+并防止测定过程中Fe2+被空气氧化。 实验仪器与试剂 1.752S型分光光度计 2.标准铁储备溶液(1.00×10-3mol/L) 3.邻二氮菲溶液(0.15%,新鲜配制) 4.盐酸羟胺溶液(10%,新鲜配制) 5.NaAC缓冲溶液 6.50ml容量瓶7个 7.1cm玻璃比色皿2个 8.铁样品溶液 实验步骤 1.标准系列溶液及样品溶液配制,按照下表配制铁标准系列溶液及样品溶液。

2.吸收曲线绘制用1cm比色皿,以1号溶液作为参比溶液,测定4号溶液在各个波长处的吸光度,绘制吸收曲线,并找出最大吸收波长。 3.标准曲线制作

在选定最大吸收波长处,用1cm 比色皿,以1号溶液作为参比溶液,分别测定2至7号溶液的吸光度,平行测定3次,计算吸光度平均值,绘制标准曲线。 实验数据处理 1、 样品中铁的计算 2.50 50.00 C C X ? =读取值 Cx=4.65×10-5 ×50.00/2.50=9.30×10-4 mol/L 2、 摩尔吸光系数计算 在标准曲线的直线部分选择量两点,读取对应的坐标值,计算邻二氮菲配位物在最大吸收波长出的摩尔吸光系数: 1 21 2c -c A A ε-= ε=(0.460-0.233)/(0.00006-0.00004)=2.00×10-5 7 样品溶液 4.65×10-5 mol/ml

紫外-可见分光光度法测定有色溶液 (2)

紫外-可见分光光度法测有色溶液最大吸收波波长 一、实验目的 1.学习紫外-可见分光光度法的原理; 2.掌握紫外-可见分光光度法测定的实验技术; 3.了解掌握U-3010型紫外-可见分光光度仪的构造及使用方法。 二、实验原理 1.紫外-可见吸收光谱法(称紫外-可见分光光度法)以溶液中物质的分子或离 子对紫外和可见光谱区辐射能的选择性吸收为基础而建立起来的一类分析法。根据最大吸收波长可做定性分析;根据朗伯-比尔定律(标准曲线法和标准加入法)可做定量分析。紫外-可见分光光度法定性分析原理:根据吸收曲线中吸收峰的数目、位置、相对强度以及吸收峰的形状进行定性分析。 2.紫外-可见分光光度法定量分析原理,根据朗伯-比耳定律:A=εbc,当入 射光波长λ及光程b一定时,在一定浓度范围内,有色物质的吸光度A与该物质的浓度c成正比。定量分析常用的方法是标准曲线法即只要绘出以吸光度A为纵坐标,浓度c为横坐标的标准曲线,测出试液的吸光度,就可以由标准曲线查得对应的浓度值,即未知样的含量。 3.仪器由五个部分组成:即光源、单色器、吸收池、检测器和信号显示记录装 置。 三、仪器与试剂 日立U-3010型紫外-可见分光光度仪;吸量管;乙醇;待测溶液;烧杯等。 四、实验步骤 1.接通电源,启动计算机,打开主机电源开关,启动工作站并初始化仪器,预 热半小时。 2.在工作接口上选择测量项目为光谱扫描,设置扫描参数(起点:650nm,终 点:250nm,速度:中,间隔:1.0nm,单次扫描) 3.将两个均装有无水乙醇的1cm石英比色皿放入测量池中,进行基线扫描。 4.基线做好后,按下面的顺序进行操作:做Baseline→换样(换上待测样品置 于Sample池)→进入Analysis Method对相关的参数进行设定→Sample命名→Ready→Measure进行测量,寻找待测溶液的最大吸收波长,再在最大吸收波长处分别测定待测溶液的吸光度。

水质氨氮的测定纳氏试剂分光光度法

水质氨氮的测定方法纳氏试剂分光光度法 1. 含义本测定方法适用于地表水、地下水、生活污水和工业废水中氨氮的测定。 当水样体积为50 ml ,使用20 mm 比色皿时,本方法的检出限为0.025 mg/L,测定下限为0.10 mg/L ,测定上限为 2.0 mg/L (均以N 计)。 2. 方法原理以游离态的氨或铵离子等形式存在的氨氮与纳氏试剂反应生成淡红棕色络合物,该络合物的吸光度与氨氮含量成正比,于波长420 nm 处测量吸光度。 3. 检测依据 水质氨氮的测定纳氏试剂分光光度法HJ 535-2009 4. 检测程序 4.1 试剂和材料 除非另有说明,分析时所用试剂均使用符合国家标准的分析纯化学试剂,实验用水为按4: 1 制备的水。 4.1.1 无氨水,在无氨环境中用下述方法之一制备。 (1 )离子交换法 蒸馏水通过强酸性阳离子交换树脂(氢型)柱,将流出液收集在带有磨口玻璃塞的玻璃瓶内。每升流出液加10 g 同样的树脂,以利于保存。 (2)蒸馏法 在 1 000 ml 的蒸馏水中,加0.1 ml 硫酸(ρ=1.84 g/ml ),在全玻璃蒸馏器中重蒸馏,弃去前50 ml 馏出液,然后将约800 ml 馏出液收集在带有磨口玻璃塞的玻璃瓶内。每升馏出液加10 g 强酸性阳离子交换树脂(氢型)。 (3)纯水器法用市售纯水器临用前制备。 4.1.2 轻质氧化镁(MgO)不含碳酸盐,在500 ℃下加热氧化镁,以除去碳酸盐。 4.1.3 盐酸,ρ (HCl)=1.18 g/ml 。 4.1.4 纳氏试剂,可选择下列方法的一种配制。 (1)二氯化汞- 碘化钾- 氢氧化钾(HgCl 2-KI-KOH )溶液 称取15.0 g 氢氧化钾(KOH),溶于50 ml 水中,冷却至室温。称取 5.0 g 碘化钾

分光光度法测定水中铁离子含量.

专业项目课程课例 项目十二分光光度法测定水中铁离子含量 一、项目名称:分光光度法测定水中铁离子含量 二、项目背景分析 课程目标:本课程是培养分析化学操作技能和操作方法的一门专业实践课,以定量分析的基本理论为基础,以实验强化理论,以期提高化工工作者的分析操作能力。 功能定位:在定量分析中我们常常用到分光光度分析法,它具有操作简便、快速、准确等优点,在工农业生产和科学研究中具有很大的实用价值。是仪器分析的基础实验,也是一种重要的定量分析方法。分光光度法测定水中铁离子含量的测定项目综合训练了学生分光光度计使用、系列标准溶液配制、标准曲线绘制等多个技能。 学生能力:学生通过相关基础学科的学习已经具备了相应的化学知识和定量分析知识,也具备一定的独立操作和思维能力。 项目实施条件:该项目是仪器分析的基础实验,一般中职学校具备相关的实训实习条件,学生有条件完成相应的实习任务。 三、教学目标 1、了解721可见分光光度计的构造 2、了解分光光度法测定原理 3、掌握721可见分光光度计的操作方法 4、掌握分光光度法测定分析原始记录的设计 5、掌握分光光度法测定分析报告的设计 6、掌握分光光度法测定水中铁离子含量的测定方法 7、掌握分光光度法测定水中铁离子含量的分析原始记录和分析报告的填写 四、工作任务 1

2 五、参考方案 参考方案一 1、邻二氮杂菲-Fe 2+ 吸收曲线的绘制 用吸量管吸取铁标准溶液(20μg/mL )0.00、2.00、4.00mL ,分别放入三个50mL 容量瓶中,加入1mL 10%盐酸羟胺溶液,2mL 0.1%邻二氮杂菲溶液和5mL HAc-NaAc 缓冲溶液,加水稀释至刻度,充分摇匀。放置10min ,用3cm 比色皿,以试剂空白(即在0.0mL 铁标准溶液中加入相同试剂)为参比溶液,在440~560nm 波长范围内,每隔20~40nm 测一次吸光度,在最大吸收波长附近,每隔5~10nm 测一次吸光度。在坐标纸上,以波长λ为横坐标,吸光度A 为纵坐标,绘制A 和λ关系的吸收曲线。从吸收曲线上选择测定Fe 的适宜波长,一般选用最大吸收波长λmax 。 2、标准曲线的制作 用吸量管分别移取铁标准溶液(20μg/mL )0.00、2.00、4.00、6.00、8.00、10.00mL ,分别放入6个50mL 容量瓶中,分别依次加入1.00mL 10%盐酸羟胺溶液,稍摇动;加入2.00mL 0.1%邻二氮杂菲溶液及5.00mL HAc-NaAc 缓冲溶液,加水稀释至刻度,充分摇匀。放置10min ,用1cm 比色皿,以试剂空白(即在0.00mL 铁标准溶液中加入相同试剂)为参比溶液,选择λmax 为测定波长,测量各溶液的吸光度。在坐标纸上,以含铁量为横坐标,吸光度A 为纵坐标,绘制标准曲线。 3、水样中铁含量的测定 取三个50mL 容量瓶,分别加入5.00mL (或10.00mL 铁含量以在标准曲线范围内为合适)未知试样溶液,按实验步骤2的方法显色后,在λmax 波长处,用1cm 比色皿,以试剂空白为参比溶液,平行

分光光度法(附答案)

分光光度法(附答案) 一、填空题1. 分光光度法测定样品的基本原理是利用朗伯-比尔定律,根据不同浓度样品溶液对光信号具有不同的_____,对待测组分进行定量测定。答案:吸光度(或吸光性,或吸收) 2. 分光光度法测定样品时,比色皿表面不清洁是造成测量误差的常见原因之一,每当测定有色溶液后,一定要充分洗涤。可用_____涮洗,或用_____浸泡。注意浸泡时间不宜过长,以防比色皿脱胶损坏。 答案:相应的溶剂(1+3)HNO 3 3. 分光光度法测定土壤中总砷时,制备土壤样品过程中,需取过2mm筛的土样,用玛瑙研钵将其研细至全部通过_____mm筛后,备用。答案:0.149 4. 光度法测定森林土壤全磷的样品,在碱熔完成后,应加入_____℃的水溶解熔块,并用硫酸和热水多次洗涤坩埚。答案:80 二、判断题 1. 应用分光光度法进行试样测定时,由于不同浓度下的测定误差不同,因此选择最适宜的测定浓度可减少测定误差。一般来说,透光度在20%~65%或吸光值在0.2~0.7之间时,测定误差相对较小。( ) 答案:正确 2. 分光光度法主要应用于测定样品中的常量组分含量。( ) 答案:错误正确答案为:分光光度法主要应用于测定样品中的微量组分。 3. 应用分光光度法进行样品测定时,同一组比色皿之间的差值应小于测定误差。( ) 答案:错误正确答案为:测定同一溶液时,同组比色皿之间吸光度相差应小于0.005,否则需进行校正。4. 应用分光光度法进行样品测定时,摩尔吸光系数随比色皿厚度的变化而变化。( ) 答案:错误正确答案为:摩尔吸光系数与比色皿厚度无关。 5. 分光光度法测定土壤中总砷时,在样品中加入酸,并在电热板上加热,目的是分解有机物和氧化样品中各种形态存在的砷,使之成为可溶态的砷。()答案:正确 6. 分光光度法测定土壤中总砷时,应直接称取新鲜的土样进行测定。()答案:错误正确答案为:应称取风干或冷冻干燥的样品测定。 7. 分光光度法测定土壤样品中总砷时,有机物会干扰测定,应加酸并加热分解,以消除其于扰。() 答案:正确 8. 硼氢化钾-硝酸银分光光度法测定土壤中总砷时,样品消解过程中所加的酸分别是盐酸、硝酸和磷酸。()答案:错误正确答案为:样品消解所加的酸分别是盐酸、硝酸和高氯酸。 9. 分光光度法测定生活垃圾或土壤中砷时,若所用试剂中含有少量氰化物,可用乙酸铅脱脂棉吸收去除。()答案:错误正确答案为:乙酸铅脱脂棉吸收去除的是试剂中的硫化物。 10. 光度法测定土壤中全氮时,如需提供烘干基含量,则应测定土壤水分,并进行折算。(答案:正确 11. 光度法测定土壤中包括硝态和亚硝态氮的全氮时,若铁粉中含有大量的碳会干扰测定,所以在选择时应注意。()答案:错误正确答案为:若铁粉含有大量的氮会干扰测定,所以在选择时应注意。

常用紫外分光光度法测定蛋白质含量

6种方法测定蛋白质含量 一、微量凯氏(kjeldahl)定氮法 样品与浓硫酸共热。含氮有机物即分解产生氨(消化),氨又与硫酸作用,变成硫酸氨。经强碱碱化使之分解放出氨,借蒸汽将氨蒸至酸液中,根据此酸液被中和的程度可计算得样品之氮含量。若以甘氨酸为例,其反应式如下:nh2ch2cooh+3h2so4——2co2+3so2+4h2o+nh3 (1) 2nh3+h2so4——(nh4)2so4 (2) (nh4)2so4+2naoh——2h2o+na2so4+2nh3 (3) 反应(1)、(2)在凯氏瓶内完成,反应(3)在凯氏蒸馏装置中进行。 为了加速消化,可以加入cuso4作催化剂,k2so4以提高溶液的沸点。收集氨可用硼酸溶液,滴定则用强酸。实验和计算方法这里从略。 计算所得结果为样品总氮量,如欲求得样品中蛋白含量,应将总氮量减去非蛋白 氮即得。如欲进一步求得样品中蛋白质的含量,即用样品中蛋白氮乘以6.25即得。 二、双缩脲法(biuret法) (一)实验原理 双缩脲(nh3conhconh3)是两个分子脲经180℃左右加热,放出一个分子氨后得到的产物。在强碱性溶液中,双缩脲与cuso4形成紫色络合物,称为双缩脲反应。凡具有两个酰胺基或两个直接连接的肽键,或能过一个中间碳原子相连的肽键,这类化合物都有双缩脲反应。 紫色络合物颜色的深浅与蛋白质浓度成正比,而与蛋白质分子量及氨基酸成分无关,故可用来测定蛋白质含量。测定范围为1-10mg蛋白质。干扰这一测定的物质主要有:硫酸铵、tris缓冲液和某些氨基酸等。 此法的优点是较快速,不同的蛋白质产生颜色的深浅相近,以及干扰物质少。主要的缺点是灵敏度差。因此双缩脲法常用于需要快速,但并不需要十分精确的蛋白质测定。 (二)试剂与器材 1. 试剂: (1)标准蛋白质溶液:用标准的结晶牛血清清蛋白(bsa)或标准酪蛋白,配制成10mg/ml的标准蛋白溶液,可用bsa浓度1mg/ml的a280为0.66来校正

水质 肼的测定 对二甲氨基苯甲醛分光光度法

HZHJSZ0092 水质肼的测定对二甲氨基苯甲醛分光光度法 HZ-HJ-SZ-0092 水质对二甲氨基苯甲醛分光光度法 1 范围 本方法规定了测定水中肼的对二甲氨基苯甲醛分光光度法 试料体积1~10mL±?·?·¨?ì2a?Tò??????a0.002mg/L 更高浓度的样品 氨基脲脲素分别高达20200mg/L以上时干扰测定 NO2ˉ 大于1mg/L时产生干扰 肼与对二甲基苯甲醛作用于波长458nm 处进行分光光度测定 本方法所有试剂均为符合国家标准或专业标准的分析纯试剂 3.1 盐酸  3.2 盐酸溶液HCl  3.3 乙醇95% 3?è?4g对二甲氨基苯甲醛溶于200 mL 95%乙醇和20mL 盐酸Array 中 155g/L剧毒)15.5g 溶于水中如叠氮化钠中含肼 将叠氮化钠溶于适量水中滤液置烧杯中不断搅拌待大部分叠氮化钠析出后经无水乙醇脱水后 2放在干燥器内冷却 注意精制操作应在通风柜内进行 100mg/L2HCl)或0.4060g硫酸肼(N2H4 H2SO4) 3.2?¨á?ò?è?1000mL容量瓶中 3.7 肼标准溶液吸取肼标准贮备液(3.6)10.0mLó?HCl 溶液(3.2)稀释至标线 4.1 分光光度计 4.2 具塞比色管  5 试样制备 5.1 采样与贮存样品均使用玻璃瓶 用盐酸固定可保存24h ·?±e?óè???±ê×?èüòo(3.7)0.5 2.00 6.00 10.00mL加入10mL对二甲氨基苯甲醛溶液 混匀用10cm光程的比色皿于458nm 波长处测定吸光度

含量为横坐标绘制校准曲线 检查水样pH值 将水样调至7左右 加蒸馏水稀释至25mL标线20min 后用10cm光程的比色皿于458nm 波长处测定吸光度 6.3 空白试验 取10mL蒸馏水代替水样 7 结果计算 试样中肼含量C(mg/L)按下式计算 mìg 分析试样体积  8 精密度和准确度 8个实验室对0.1000.800mg/L的标准溶液结果如下 0.9%  8.2 再现性 三个浓度的实验室间相对标准偏差分别为4.4%0.9% 9 参考文献 GB/T 15507-1995 è????ù?Do?óD?¢D?μ?1ìì???á£?úè¥?aê???3?μ?êyoáéy???ùoó?òà?D?è¥3y?ó?ê è???±e???ùóD??12′?ê± 3.2?ù?ó1% 的碘化钾0.4mL混匀再按操作步骤(6.2)进行 用20%氢氧化钠溶液调至水样成红色于通风柜中加HCl (3.2)至红色消失 3.1再按操作步骤(6.2)进行 水样的酸度调到1N后 A3 计算 如测定结果以水合肼计因1.56份N2H4

实验分光光度法测定铁

实验分光光度法测定铁 The following text is amended on 12 November 2020.

实验十四邻二氮菲分光光度法测定铁的含量 一、实验目的 1.学习吸光光度法测量波长的选择方法; 2.掌握邻二氮菲分光光度法测定铁的原理及方法; 3. 掌握分光光度计的使用方法。 二、实验原理 分光光度法是根据物质对光选择性吸收而进行分析的方法,分光光度法用于定量分析的理论基础是朗伯比尔定律,其数学表达式为:A=εb C 邻二氮菲(又称邻菲罗啉)是测定微量铁的较好试剂,在pH=2~9的条件下,二价铁离子与试剂生成极稳定的橙红色配合物。摩尔吸光系数ε=11000 L·mol-1·cm-1。在显色前,用盐酸羟胺把Fe3+还原为Fe2+。 2Fe3++2NH 2OHHCl→2Fe2++N 2 +4H++2H 2 O+2Cl- Fe2+ + Phen = Fe2+ - Phen (橘红色) 用邻二氮菲测定时,有很多元素干扰测定,须预先进行掩蔽或分离,如钴、镍、铜、铅与试剂形成有色配合物;钨、铂、镉、汞与试剂生成沉淀,还有些金属离子如锡、铅、铋则在邻二氮菲铁配合物形成的pH范围内发生水解;因此当这些离子共存时,应注意消除它们的干扰作用。 三、仪器与试剂 1.醋酸钠:l mol·L-1; 2.盐酸:6 mol·L-1; 3.盐酸羟胺:10%(用时配制); 4.邻二氮菲(%):邻二氮菲溶解在100mL1:1乙醇溶液中; 5.铁标准溶液。 (1)100μg·mL-1铁标准溶液:准确称取(NH 4) 2 Fe(SO 4 ) 2 ·12H 2 0于烧杯中, 加入20 mL 6 mol·L-1盐酸及少量水,移至1L容量瓶中,以水稀释至刻度,摇匀. 6.仪器:7200型分光光度计及l cm比色皿。 四、实验步骤 1.系列标准溶液配制 (1)用移液管吸取10mL100μg·mL-1铁标准溶液于100mL容量瓶中,加入2mL 6 mol·L-1盐酸溶液, 以水稀释至刻度,摇匀. 此溶液Fe3+浓度为10μg·mL-1. (2) 标准曲线的绘制: 取50 mL比色管6个,用吸量管分别加入0 mL,2 mL,4 mL, 6 mL, 8 mL和10 mL10μg·mL-l铁标准溶液,各加l mL盐酸羟胺,摇匀; 经再加2mL邻二氮菲溶液, 5 mL醋酸钠溶液,摇匀, 以水稀释至刻度,摇匀后放置 10min。 2.吸收曲线的绘制 取上述标准溶液中的一个, 在分光光度计上,用l cm比色皿,以水为参比溶液,用不同的波长,从440~560 nm,每隔10 nm测定一次吸光度,在最大吸收波长

分光光度法测食品中亚硝酸盐含量中标准曲线的制作及影响因素

分光光度法测食品中亚硝酸盐含量中标准曲线的制作及影响因素 摘要:标准曲线是直接用标准溶液制作的曲线,是用来描述被测物质的浓度(或含量)在分析仪器响应信号值之间定量关系的曲线。在分光光度法测食品中亚硝酸盐含量分析中,被测物质的浓度在仪器上的响应信号值在一定范围内呈直线关系,试样测定的结果可以从标准曲线上查出。因此标准曲线制作的好坏,将会影响测定结果的准确度。 关键词:分光光度法食品亚硝酸盐制作标准曲线影响因素 标准曲线是直接用标准溶液制作的曲线,是用来描述被测物质的浓度(或含量)在分析仪器响应信号值之间定量关系的曲线。在用分光光度法分析食品中亚硝酸盐含量时,被测物质的浓度在仪器上的响应信号值在一定范围内呈直线关系,试样测定的结果可以从标准曲线上查出。因此标准曲线制作的好坏,将会影响测定结果的准确度。 1、标准曲线的表达式 标准曲线应是一条通过原点的直线,如果坐标上各浓度点基本在一条直线上可不进行回归处理,但在实验中不可避免地存在测定误差,往往会有一、二点偏离直线,此时可用最小二乘法进行回归分析,然后绘制曲线,通常称为回归直线,而代表回归直线方程叫回归方程,表达式为:y=bx+a(式中:b为直线斜率,a为Y轴上的截距,x为被测溶液的浓度,y为吸光度,是多次测定结果的平均值)。 在实际工作中,制作亚硝酸盐标准曲线的目的,是要借助它来查出试样中亚硝酸盐的浓度,而不是由x值通过回归方程去求得最可靠的y值,为了便于将观察到仪器响应信号值代人回归方程中直接计算试样的浓度或含量,勿需去绘制标准曲线再从曲线上查出被测物的浓度,改用下式计算:x=by+a(式中:a为X轴线上的截距,其它解释同前)。 2、标准曲线的参数 标准曲线有3个参数,即相关系数r,斜率b和截距a。 (1)相关系数(r):相关系数是表示变量x与y之间的线性关系的密切程度。如果r=1则所有点都落在一条直线上。y与x完全呈现线性关系,但在分析中总存在随机误差,所以,一般r≥0.999即可。它无量纲,取至最后一个9后面保留一位数字。不进行数值修约。当相关系数太差时,其实验水平受到怀疑,应查找原因,重新绘制标准曲线。为了使回归方程比较好,在制作标准曲线的实验中应细心操作,最好在每个浓度点特别是高、低浓度点作重复测定3次,取平均值来计算回归方程。

紫外可见分光光度法含量测定

【含量测定】照紫外-可见分光光度法(附录V A)测定。 1.仪器与测定条件:室温:____℃相对湿度:____% 分析天平编号:;水浴锅编号:; 紫外可见分光光度计编号:; 2.对照品溶液的制备: 取西贝母碱对照品适量,精密称定,加三氯甲烷制成每1ml含_______mg的溶液,即得。 3. 供试品溶液的制备: 取本品粉末(过三号筛)约______g,精密称定,置具塞锥形瓶中,加浓氨试液3ml,浸润1小时。加三氯甲烷-甲醇(4:1)混合溶液40ml,置80℃水浴加热回流2小时,放冷,滤过,滤液置50ml量瓶中,用适量三氯甲烷-甲醇(4:1)混合溶液洗涤药渣2~3次,洗液并入同一量瓶中,加三氯甲烷-甲醇(4:1)混合溶液至刻度,摇匀,即得。 4.标准曲线的制备: 精密量取对照品溶液0.1ml、0.2ml、0.4ml、0.6ml、1.0ml,置25ml具塞试管中,分别补加三氯甲烷至10.0ml,精密加水5ml、再精密加0.05%溴甲酚绿缓冲液(取溴甲酚绿0.05g,用0.2mol/L氢氧化钠溶液6ml使溶解,加磷酸二氢钾1g,加水使溶解并稀释至100ml,即得)2ml,密塞,剧烈振摇,转移至分液漏斗中,放置30分钟。取三氯甲烷液,用干燥滤纸滤过,取续滤液,以相应的试剂为空白。 5.测定法: 照紫外-可见分光光度法(附录ⅤA),在nm波长处测定吸光度,以吸光度为纵坐标,浓度为横坐标,绘制标准曲线。依法测定吸光度,从标准曲线上读出供试品溶液中含西贝母碱的重量,计算,即得。 6.结果与计算 6.1 标准曲线制备:

对照品批号 纯 度 S 对照品来源 干燥条件 对照品称重W 对(mg) 各浓度点稀释倍数f 对 溶液浓度C 对(ug/ml) 吸光度A 对 线性回归方程 A=( )C +/-( ) r =( ) 计算公式: W S C f ?= 对对对 C 对= 6.2 样品测定: 水分Q 取样量W 样(g ) 样品稀释倍数f 样 样品吸光度A 样 样品平均吸光度A 样 浓度C(ug/ml) 含量X (%) 平均含量X (%) 计算公式:() %100Q 110W f C X 6 ?-???= 样样 样 X 1= X 2= 7.本品按干燥品计算,含总生物碱以西贝母碱(C 27H 43NO 3)计,不得少于0.050%。 结果: 规定 检验人: 检验日期: 复核人: 复核日期:

亚甲基蓝分光光度法测定工业及生活污水中硫的含量

本科毕业论文题目:亚甲基蓝分光光度法测定工业及 生活废水中的硫化物含量 学院:化学与化工学院 班级:06级化学五班 姓名:张翠云 指导教师:王海青职称:副教授完成日期:2010年06 月05 日

亚甲基蓝分光光度法测定工业及 生活废水中的硫化物含量 摘要:本文采用亚甲基蓝分光光度法测定工业及生活废水中硫化物的含量。实验结果表明:最低检出限浓度为0.02μg·mL-1,在0~25μg·mL-1范围内,相关系数r=0.9992,符合标准曲线对相关系数的要求(r>0.9990),即所测定硫化物含量具有真实性,是测定工业及生活废水中的硫化物含量的一种有效方法。 关键词:亚甲基蓝分光光度法;硫化物;水质分析

目录 1 引言 (1) 2 实验部分 (2) 2.1 实验原理 (2) 2.2 仪器和试剂 (2) 2.2.1 仪器 (2) 2.2.2 试剂 (3) 2.3 实验过程 (4) 2.3.1 水样采集及固定 (4) 2.3.2 标准曲线的绘制 (4) 2.3.3 样品的测定 (5) 2.3.4 空白测定 (6) 3 结果与讨论 (6) 3.1 实验结果分析 (6) 3.2 实验影响因素 (7) 3.2.1 水样预处理过程的影响 (7) 3.2.2 标定过程的影响 (7) 3.2.3 显色过程的影响 (8) 3.3 实验问题及解决 (8) 参考文献 (9) 致谢 (10)

1引言 此论文依据中华人民共和国环境保护行业标准GB-T 16489-1996,亚甲基蓝分光广度法测定水质硫化物[1,3]所写。该标准适用于地下水,化工,选矿等工业废水和生活废水中硫化物的测定,本次实验主要对大同地区矿水,甘河,高地,小站等四个采样点的水中硫化物进行测定。 我们通常说的水质硫化物系指水中溶解性的无机硫化物和酸溶性金属硫化物,具体包括溶解性的H2S、HS-、S2-以及存在悬浮物中的可溶性硫化物和酸可溶性金属硫化物和一些未电离的有机,无机类硫化物。它们是细菌在厌氧条件分解水中硫酸盐和有机含硫化合物而产生的。 由于这些硫化物随废水排出,往往以硫化氢的形式不断溢散于空气中,毒性很大。它可与人体细胞色素,氧化酶及该物质中的二硫键(-S-S)作用,影响细胞的氧化过程,造成细胞缺氧而危害人的生命,硫化氢除自身腐蚀金属外还可使污水中的生物氧化生成硫酸进而腐蚀下水道。因此硫化物的含量已成为水体污染的一项重要指标,近几年来水质硫化物的测定已成为一项常规的监测项目。 对于水和废水中硫化物的测定方法已有很多报道,属仪器测定方法的有荧光法,间接原子吸收法,紫外分光广度法,亚甲基蓝分光光度法等。属化学分析法的则有碘量法等各种容量滴定法。紫外分光广度法简便快速,但灵敏度较差;荧光法和间接原子吸收法有较好的选择性,主要用于废水中微量硫化物的测定,测定范围通常为0.007~0.8μg·mL-1。亚甲基蓝分光光度法和碘量法则是测定废水中硫化物的经典法。通常样品中硫化物含量小于1mg·L-1时采用前者,样品中硫化物含量大于1mg·L-1时采用后者。但由于某些废水成分复杂,干扰因素较多,用碘量法测定时有时存在较大误差,即碘量法的适用范围有一定限制,一般适用于硫化物含量较高且干扰因素较少的水样。而亚甲基蓝分光光度法由于灵敏度高,最低检出限浓度为0.02μg·mL-1,选择性好,加上予处理装置一般能消除干扰,因此作为首选方法。 采用该方法测定的关键几步:水样采集及固定;标准曲线的绘制;样品的测定;空白测定等。注意的是,由于水中硫化物含量与气象因素及环境因素等有关,即在硫化物的测定中,影响因素[12-14]很多,尤其是水样的采集固定以及

紫外分光光度法测定饮料中的苯甲酸

紫外分光光度法测定饮料中的防腐剂—苯甲酸 一、目的要求 1.了解和熟悉紫外可见分光光度计。 2.掌握紫外可见分光光度法测定苯甲酸的方法和原理。 3.学习掌握用标准曲线定量分析的方法。 二、实验原理 为了防止食品在储存、运输过程中发生腐败、变质,常在食品中添加少量防腐剂。防腐剂使用的品种和用量在食品卫生标准中都有严格的规定,苯甲酸及其钠盐、钾盐是食品卫生标准允许使用的主要防腐剂之一。我国规定了苯甲酸(盐)在碳酸饮料中最大使用量为0.2g/kg。苯甲酸具有芳香结构,在波长225nm和272nm处有强吸收 由于食品中苯甲酸用量很少,同时食品中其它成分也可能产生干扰,因此一般需要预先将苯甲酸与其它成分分离。从食品中分离防腐剂常用的方法有蒸馏法和溶剂萃取法等。本实验测定雪碧中苯甲酸,含有人工合成色素、甜味剂等,但一般在紫外区无吸收,故不干扰测定,样品不用处理,苯甲酸(钠)在225nm处有最大吸收,可在225nm波长处测定标准溶液及样品溶液的吸光度,绘制标准曲线法,可求出样品中苯甲酸的含量。 三、仪器与试剂 日立UV-3010紫外-可见光谱仪;1cm石英比色皿;苯甲酸(AR);市售饮料 四、操作步骤 1.苯甲酸标准储备液配制: 称取0.1000g苯甲酸于100mL容量瓶中,加适量蒸馏水定容,配制成 1mg/mL溶液,吸取此液5mL于50mL容量瓶中,用蒸馏水定容至刻度,每毫升溶液相当于苯甲酸100ug。

2.标准曲线绘制: 取苯甲酸标准储备液0. 00、1. 00、2. 00、4. 00、6.00mL,分别置于50mL容量瓶中,用蒸馏水溶液稀释至刻度。以水为对照液,测定其中5号标准溶液的紫外可见吸收光谱(测定波长范围为 200~350nm),找出λ 个标准溶液的吸光度A。 3.样品处理和测定: 雪碧饮料除二氧化碳后,准确移取2.5mL于100mL容量瓶中,用蒸馏水定容,在λ 五、结果与计算 从曲线上找出相应的苯甲酸浓度C x,按下列公式计算样品中苯甲酸含量。 w=C x×V 1/V2V 1样品定容后体积V2所取样品体积 六、提问 1.举例说明日常生活中遇到的哪些食品中有防腐剂? 2.用什么方法从样品中把苯甲酸分离出来?

紫外分光光度法测定未知物

紫外分光光度法测定未知物 1.仪器 1.1紫外分光光度计(UV-1801型);配石英比色皿(1cm)2个 1.2容量瓶(100mL):10个;容量瓶(250mL)1个 1.3吸量管(10mL、5mL):各1支 1.4移液管(20mL、25mL、50mL):各1支 2.试剂 2.1标准溶液(1mg/mL):维生素C、水杨酸、苯甲酸、山梨酸、邻二氮菲分别配成1mg/mL的标准溶液,作为储备液。 2.2未知液:浓度约为(40~60ug/mL)。(其必为给出的五种物质之一) 3.实验操作 3.1比色皿配套性检查 石英比色皿装蒸馏水,以一只比色皿为参比,在测定波长下调节透射比为100%,测定其余比色皿的透射比,其偏差应小于0.5%,可配成一套使用。 3.2未知物的定性分析 将五种标准储备液均稀释成10ug/mL的试液(配制方法由选手自定)。以蒸馏水为参比,于波长200~350nm范围内扫描五种溶液,绘制吸收曲线,根据所得到的吸收曲线对照标准谱图,确定被测物质的名称,并依据吸收曲线确定测定波长。五种标准物质溶液的吸收曲线参五种标准物质溶液的吸收曲线参五种标准物质溶液的吸收曲线参五种标准物质溶液的吸收曲线参考考考考附图附图附图附图。。。。 3.3未知物定量分析 根据未知液吸收曲线上测定波长处的吸光度,确定未知液的稀释倍数,并配制待测溶液3份,进行平行测定。 推荐方法 3.3.1维生素C含量的测定:准确吸取1mg/mL的维生素C标准储备液50.00mL,在250mL容量瓶中定容(此溶液的浓度为200ug/mL)。再分别准确移取1、2、4、6、8、10mL上述溶液,在100mL容量瓶中定容(浓度分别为2、4、8、12、16、20 ug/mL)。准确移取20.00mL维生素C未知液,在100mL容量瓶中定容,于

纳氏试剂分光光度法注意事项

纳氏试剂比色法测定水体中氨氮常见问题与解决办法 纳氏试剂比色法是测定水中氨氮的国家标准方法,但实际工作中情况复杂,很多问题需要分别深入探讨并加以解决。不少专家学者和专业技术人员对纳氏试剂比色法测定氨氮作了研究,我们根据工作经验,对纳氏试剂比色法测定水体中氨氮常见问题进行了总结,以期更好的指导实际工作。 1实验原理 1.1纳氏试剂配制原理:纳氏试剂的正确配制,影响方法的灵敏度。了解纳氏反应机理,是正确配制纳氏试剂的关键。纳氏试剂由Nessler于1856年发明,有2种配制方法,常用HgCl2与KI反应的方法配制,其反应过程如下: 显色基团为[HgI4]2-,它的生成与I-浓度密切相关。开始时,Hg2 与I-按反应(1)式生成红色沉淀HgI2,迅速与过量I-按反应(2)式生成[HgI4]2-淡黄色显色基团;当红色沉淀不再溶解时,表明I-不再过量,应立即停止加入HgCl2,此时可获得最大量的显色基团。若继续加入HgCl2,反应(3)式和(4)式就会显著进行,促使显色基团不断分解,同时产生大量HgI2红色沉淀,从而引起纳氏试剂灵敏度的降低。 1 2氨氮反应原理 了解氨氮反应原理对我们理解反应过程,控制反应条件有重要意义。纳氏试剂与氨氮反应的情况较为复杂,随反应物质含量不同而分别按方程式(5)~(9)进行。 一般情况,纳氏试剂主要用于微量氨氮测定,其反应式为(5)式和(8)式。(9)式表明NH3与NH4 在水溶液中可相互转化,主要受溶液pH的影响。 1.3酒石酸钾钠掩蔽原理 水体中常见金属离子有Ca2 、Mg2 、Fe2 、Mn2 等,若含量较高,易与纳氏试剂中OH-或I-反应生成沉淀或浑浊,影响比色。因而在加入纳氏试剂前,需先加入酒石酸钾钠,以掩蔽这些金属离子,其掩蔽原理如下: 2氨氮实验的影响因子及解决方法 2.1商品试剂纯度 纳氏试剂比色法实验所用试剂主要有KNaC4H6O6·4H2O、KI、HgCl2、KOH。某些市售分析纯试剂常达不到要求,从而给实验造成较大影响,据我们的经验,影响实验的试剂主要是KNaC4H6O6·4H2O和HgCl2。 不合格酒石酸钾钠会导致实验空白值高和引起实际水样浑浊,影响测定。不纯试剂从外观上难以鉴别,只有通过预实验检验才能判定是否符合要求。 HgCl2为无色结晶体或白色颗粒粉末,变质的HgCl2试剂常见红色粉末夹杂其中。据经验,试剂中含有少量红色粉末的试剂还可使用,但仍要避免称取红色粉末配制反应试剂。2.2反应试剂配制 纳氏试剂有2种配制方法[2],第一种方法利用KI、HgCl2和KOH配制,第二种方法利用KI、HgI2和KOH配制。2种方法均可产生显色基团[HgI4]2-,一般常用第一种方法配制。该方法关键在于把握HgCl2的加入量,这决定着获得显色基团含量的多少,进而影响方法的灵敏度。但方法未给出HgCl2的确切用量,需要根据试剂配制过程中的现象加以判断,经验性强,因而较难把握。有人据经验总结出HgCl2与KI的用量比为0.44∶1时(即8.8gHgCl2溶于20gKI溶液),效果很好。我们依据上述纳氏试剂配制反应原理,根据反应方程(5)式和(6)式得出HgCl2与KI的最佳用量比为0.41∶1(即8 2gHgCl2溶于20gKI溶液),以此比例配制的纳氏试剂经多次实验检验,灵敏度均能达到实验要求。

紫外分光光度法测定蛋白质含量实验报告.docx

紫外分光光度法测定蛋白质含量 一、实验目的 1.学习紫外光度法测定蛋白质含量的原理; 2.掌握紫外分光光度法测蛋白质含量的实验技术。 二、实验原理 1.测蛋白质含量的方法主要有:①测参数法:折射率、相对密度、紫外吸收等;②基于化学反应:定氮法、双缩脲法、Folin―酚试剂法等。本实验采用紫外分光光度法。 2.蛋白质中的酪氨酸和色氨酸残基的苯环中含有共轭双键,因此,蛋白质具有吸收紫外光的性质,其最大吸收峰位于280nm附近(不同蛋白质略有不同)。在最大吸收波长处,吸光度与蛋白质溶液的浓度服从朗伯―比尔定律。 利用紫外吸收法测蛋白质含量的准确度较差,原因有二:①对于测定那些与标准蛋白质中酪氨酸和色氨酸含量差异较大的蛋白质,有一定误差,故该法适于测定与标准蛋白质氨基酸组成相似的蛋白质;②样品中含有的嘌呤、嘧啶等吸收紫外光的物质,会出现较大干扰。 三、仪器与试剂 TU―1901紫外可见分光光度计、标准蛋白质溶液3.00mg·mL-1、0.9%NaCl 溶液、试样蛋白质溶液。 10mL比色管、1cm石英比色皿、吸量管。 四、实验步骤 1.绘制吸收曲线 用吸量管吸取2mL3.00mg·mL-1标准蛋白质溶液于10mL比色管中,用0.9%NaCl溶液稀释至刻度,摇匀。用1cm石英比色皿,以0.9%NaCl溶液作参比溶液,在190~400nm间每隔5nm测一次吸光度Abs,记录数据并作图。 2.绘制标准曲线 用吸量管分别吸取1.0、1.5、2.0、2.5、3.0mL3.00mg·mL-1标准蛋白质溶液于10mL比色管中,用0.9%NaCl溶液稀释至刻度,摇匀。用1cm石英比色皿,以0.9%NaCl溶液作参比溶液,在波长280nm处分别测其吸光度,记录数据并作图。 3.样品测定 取适量浓度试样蛋白质溶液,在波长280nm处测其吸光度,重复三次。在已经得到标准曲线的情况下,为了使测量结果准确度高,待测溶液的浓度需在标准曲线的线性范围内,所以,先测定试样蛋白质原液的吸光度(1.363),估算浓度为2.0960 mg·mL-1,再将原试液稀释至5倍(即取2mL试液,用0.9%NaCl 溶液稀释至刻度,摇匀),估算浓度为0.4192 mg·mL-1,测吸光度,重复三次五、数据处理与结果分析

水质氨氮的测定纳氏试剂分光光度法

水质氨氮的测定纳氏试剂 分光光度法 The following text is amended on 12 November 2020.

实验三水质氨氮的测定——纳氏试剂分光光度法 仪器和药品: 天平、称量纸、玻璃棒、手套、擦镜纸 可见分光光度计:具20 mm比色皿(6只) 比色管:50mL,40支;25mL,40支 移液管:20mL,5支;10、5、1mL各5支 容量瓶:250、500mL和1000ml 5个;100mL,10个 烧杯:200mL,5个 量筒100ml,5个 聚乙烯瓶、棕色瓶各5个 加热装置 氢氧化钠、碘化钾、碘化汞、酒石酸钾钠、氯化铵 一、目的和意义 水中的氨氮来源于生活污水中含氮有机物受微生物作用分解产物、某些工业废水以及农田排水。水中氨氮含量与人们的生产和生活有密切的关系,如果水中氨氮浓度过高会造成鱼类死亡,水质变臭,无法达到人们正常饮用和使用的标准。 掌握纳氏试剂光度法测定水中氨氮的原理和方法。 二、方法原理 以游离态的氨或铵离子等形式存在的氨氮与纳氏试剂反应生成淡红棕色络合物,该络合物的吸光度与氨氮含量成正比,于波长420 nm处测量吸光度。 水样中含有悬浮物、余氯、钙镁等金属离子、硫化物和有机物时会产生干扰。若样品中存在余氯,可加入适量的硫代硫酸钠溶液去除,用淀粉-碘化钾试纸检验余氯是否除尽。在显色时加入适量的酒石酸钾钠溶液,可消除钙镁等金属离子的干扰。若水样浑浊或有颜色时可用预蒸馏法或絮凝沉淀法处理。 三、溶液配制 1、纳氏试剂【碘化汞-碘化钾-氢氧化钠溶液】 称取 g氢氧化钠,溶于50 ml水中,冷却至室温。称取 g碘化钾和 g碘化汞,溶于水中,然后将此溶液在搅拌下,缓慢加入到上述50 ml氢氧化钠溶液中,用水稀释至100 ml。贮于聚乙烯瓶内,用橡皮塞或聚乙烯盖子盖紧。 2、酒石酸钾钠溶液,ρ=500 g/L。 称取 g酒石酸钾钠(KNaC4H6O6·4H2O)溶于100 ml水中,加热煮沸以驱除氨,充分冷却后稀释至100 ml。 3、氨氮标准溶液氯化铵分子量 氨氮标准贮备溶液,ρN =1000 mg/L。 称取 g氯化铵(优级纯,在100~105℃干燥2 h),溶于水中,移入1000 ml容量瓶中,稀释至标线。

相关文档
最新文档