高等数学不定积分综合测试题.doc

高等数学不定积分综合测试题.doc
高等数学不定积分综合测试题.doc

第四章测试题 A 卷

一、填空题 (每小题 4 分,共 20 分)

1、函数 2 x 为 的一个原函数 .

2、已知一阶导数 ( f ( x) dx)1 x 2 ,则 f (1) =

3、若 xf (x)dx

arctan x C ,则

1 dx =

f (x)

4、已知 f (x) 二阶导数 f (x) 连续,则不定积分

xf ( x)dx =

cosx

5、不定积分

cos xd (e

) =

二、选择题 (每小题 4 分,共 20 分)

1、已知函数 (x 1)2

为 f ( x) 的一个原函数, 则下列函数中是

f (x) 的原函数的是 [ ] (A) x 2 1 (B)

x 2 1 (C) x 2

2x (D)

x 2

2x

2、已知

e x

f (x)dx e x sin x

C ,则

f ( x) dx =

[ ]

(A) sin x C

(B)

cosx C

(C)

cosx sin x C

(D)

cos x sin x C

3、若函数

ln x

为 f ( x) 的一个原函数, 则不定积分

xf ( x) dx =

[ ]

x

(A)

1 ln x

C

(B)

1 ln x

C

x

x

(C) 1 2ln x

C

(D)

1 2ln x C

x

x

4、已知函数 f ( x) 在 ( ,

) 内可导,且恒有 f ( x) =0,又有 f ( 1)

1,则函数

f (x)

=

[ ]

(A) -1 (B) -1

(C) 0 (D)

x

5、若函数 f (x) 的一个原函数为

1 1

(A) (B)

x x2 三、解答题

dx

1、( 7 分)计算. x2 (1 x2 )

2、( 7 分)计算

dx

x .

1 e x3

3、( 7 分)计算dx .

2

x 1

4、( 7 分)计算dx .

2 5x

x 4 5、( 8 分)计算dx . ln x ,则一阶导数 f ( x) = [ ]

(C) ln x (D) x ln x

6 x5 x

6、( 7 分)计算x3e x2 dx .

7、( 8 分)已知 f (sin 2 x) cos2 x tan2 x0 x 1 ,求 f ( x) .

8、( 9 分)计算I e ax cos bxdx.

第四章测试题 B 卷

一、填空题( 20 分)

1、不定积分 d (sin x).

2、已知 f (x)dx F ( x) C,

3、若 f (ln x)dx 1 x2 C ,

2

4、( x 1)( x3 1)dx 则 F ( x) f ( x)dx.

则 f (x)dx.

.

5、lnx2dx .

二、选择题( 25 分)

1、若 f ( x)dx x2 C , 则 xf (1 x2 )dx [ ]

(A) 2(1 x2 )2 C (B) 2(1 x2 )2 C

(C) 1

(1 x2 ) 2 C (D)

1

(1 x2 )2 C

2 2

2、设 f ( x)dx 2x x C , 则 f ( x) [ ]

(A) 2x x C (B) 2x ln 2 1 (C) 2x ln 2 2 (D) 2x ln22 1

ln 2 2

3、 1 dx [ ]

1 x

( A)ln 1 x C (B)ln(1 x) C

( C)ln (1 x) C (D)ln 1 x C

4、存在常数 A、 B、C,使得 1 dx [ ]

1)( x2

(x 2)

( A)

A B

)dx (B)

Ax Bx (

1 2

( 2 )dx x x 2 x 1 x 2

(C)(

A

1 Bx C )dx ( D)(

Ax

B )dx

x x2 2 x 1 x2 2

5、若e x 在 ( , ) 上的不定积分是 F (x) C ,则[ ]

(A) F ( x) e x C, x 0

(B) F ( x)

e x C, x 0 e x C, x 0 e x C 2, x 0

(C) F ( x) e x , x 0

(D) F ( x)

e x , x 0 e x 2, x 0 e x , x 0

三、计算题( 48 分)

1、( 7 分)求积分

102arccosx dx . 2 、( 7 分)求dx .

x2 3

1 x 1 x 1

3、( 7 分)dx . 4 、( 01,数二, 8 分)求dx .

x( x2 (2x2 x2

1) 1) 1

5、( 8 分)求积分

1

dx . 6 、( 06,数二, 11 分)求arcsin e x dx. sin x cos x e x

四、( 7 分)计算ln sin x dx

sin 2 x

第四章测试题 A 卷答案

一、填空题

1、 2x

ln 2

2 、

2 3

、 1

x 2

1 x 4 C

4

、 xf ( x) f (x) C

2

2

4

5、 e cosx (cos x 1) C 二、选择题

1、 D

2、C3 、 C 4

、 A 5

、 B

三、解答题

1、

1 arctan x C

2 、 x

ln(1 e x

) C

3 、 1 x 2

1

ln( x 2 1) C

x

2 2

4、 1

ln x

1 C

5

、 6 6 x 6arctan 6 x C

6 、 1 (x 2 e x

2

e x 2 )

C

3 x 4

2

7、 f ( x)

ln(1 x) 1 x 2 C

8

a 2 e ax

(b sin bx a cosbx) C

2

b 2

第四章测试题 B 卷答案

一、填空题

1、 sin x

C

2、 F 2 ( x) C

3 、 e

x

C

4 、 x 3

2 x 5

2 x

2

3

x C

2

3 5

3

5、 xln x 2

2x C

二、选择题

1、C

2、C

3、D

4、C

5、C

三、计算题

1、 1 102 arccosx C 2 、 2 x 1 3 3 x 1 66 x 1 6ln( 6 x 1 1) C

2 ln10

3、1 ln x2 C.

4 、arctan(

x ) C

5 、ln 1 tan

x C 2

2

1 x

2 2

x 1

6、解:

arcsin e x x x x x x e x

e x dx arcsine de e arcsine e 1 e2 x dx

e x x e x

dx e x arcsine x

de x

arcsine

e 2 x e 2 x 1

1

令 sect e x e x arcsin e x sect tantdt e x arcsin e x sectdt

tan t

e x arcsine x ln sect tant C e x arcsine x ln e x e 2 x 1 C

四、ln sin x dx cot x lnsin x cot x x C .

sin2 x

高数不定积分例题

不定积分例题 例1、设)(x f 的一个原函数是x e 2-,则=)(x f ( ) A 、x e 2- B 、2-x e 2- C 、4-x e 2- D 、4x e 2- 分析:因为)(x f 的一个原函数是x e 2- 所以)(x f ='=-)(2x e 2-x e 2- 答案:B 例2、已知?+=c x dx x xf sin )(,则=)(x f ( ) A 、x x sin B 、x x sin C 、x x cos D 、x x cos 分析:对?+=c x dx x xf sin )(两边求导。 得x x xf cos )(=,所以= )(x f x x cos 答案:C 例3、计算下列不定积分 1、dx x x 23)1(+ ? 2、dx x e e x x x )sin 3(2-+? 分析:利用基本积分公式积分运算性质进行积分,注意在计算时,对被积函数要进行适当的变形 解:1、dx x x 23)1 (+?dx x x x )12(3++ =? c x x x dx x dx x xdx +-+=++=? ??22321ln 22112 2、dx x e e x x x )sin 3(2-+?dx x dx e x ??+=2sin 1)3(c x e x +-+=cot 3ln 1)3( 例4、计算下列积分

1、dx x x ?-21 2、dx e e x x ?+2) 1( 分析:注意到这几个被积函数都是复合函数,对于复合函数的积分问题一般是利用凑微分法,在计算中要明确被积函数中的中间变量)(x u ?=,设法将对x 求积分转化为对)(x u ?=求积分。 解:1、dx x x ?-21c x x d x +--=---=?2221)1(1121 2、dx e e x x ?+2) 1(c e e d e x x x ++-=++=?11)1()1(12 例5、计算?+xdx x sin )1( 分析:注意到这些积分都不能用换元积分法,所以要考虑分部积分,对于分部积分法适用的函数及u ,v '的选择可以参照下列步骤①凑微分,从被积函数中选择恰当的部分作为dx v ',即dv dx v =',使积分变为?udv ;②代公式,?udv ?-=vdu uv ,计算出dx u du '=;③计算积分?vdu 解:?+xdx x sin )1(???--=+=x x xd xdx xdx x cos cos sin sin ?+-+-=---=c x x x x x xdx x x cos sin cos cos )cos cos (

非常好的定积分与微积分基本定理复习讲义

定积分与微积分基本定理复习讲义[备考方向要明了] 考什么怎么考 1.了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念. 2.了解微积分基本定理的含义. 1.考查形式多为选择题或填空题. 2.考查简单定积分的求解. 3.考查曲边梯形面积的求解. 4.与几何概型相结合考查. 1.定积分 (1)定积分的相关概念:在∫b a f(x)d x中,a,b分别叫做积分下限与积分上限,区间[a,b]叫做积分区间,f(x)叫做被积函数,x叫做积分变量,f(x)d x叫做被积式. (2)定积分的几何意义 ①当函数f(x)在区间[a,b]上恒为正时,定积分∫b a f(x)d x的几何意义是由直线x=a,x=b(a≠b),y=0和曲线y=f(x)所围成的曲边梯形的面积(左图中阴影部分). ②一般情况下,定积分∫b a f(x)d x的几何意义是介于x轴、曲线f(x)以及直线x=a,x=b之间的曲边梯形面积的代数和(右上图中阴影所

示),其中在x轴上方的面积等于该区间上的积分值,在x轴下方的面积等于该区间上积分值的相反数. (3)定积分的基本性质:①∫b a kf(x)d x=k∫b a f(x)d x. ②∫b a[f1(x)±f2(x)]d x=∫b a f1(x)d x±∫b a f2(x)d x. ③∫b a f(x)d x=∫c a f(x)d x+∫b c f(x)d x. [探究] 1.若积分变量为t,则∫b a f(x)d x与∫b a f(t)d t是否相等? 提示:相等. 2.一个函数的导数是唯一的,反过来导函数的原函数唯一吗? 提示:一个函数的导数是唯一的,而导函数的原函数则有无穷多个,这些原函数之间都相差一个常数,在利用微积分基本定理求定积分时,只要找到被积函数的一个原函数即可,并且一般使用不含常数的原函数,这样有利于计算. 3.定积分∫b a[f(x)-g(x)]d x(f(x)>g(x))的几何意义是什么? 提示:由直线x=a,x=b和曲线y=f(x),y=g(x)所围成的曲边梯形的面积. 2.微积分基本定理:如果f(x)是区间[a,b]上的连续函数,并且F′(x)=f(x),那么∫b a f(x)d x=F(b)-F(a),这个结论叫做微积分基本定理,又叫做牛顿—莱布尼兹公式.为了方便,常把F(b)-F(a)记成F(x)| b a,即∫b a f(x)d x=F(x) |b a=F(b)-F(a). 课前预测: 1.∫421 x d x等于( ) A.2ln 2 B.-2ln 2 C.-ln 2 D.ln 2

完整word版,高等数学考研辅导练习题不定积分定积分及常微分方程

《高等数学》考研辅导练习4 不定积分 1. 求()x f x e -=在R 上的一个原函数。 2. 已知2 2 2 (sin )cos tan f x x x '=+,求()01f x x <<。 3. 设 2 ()f x dx x C =+?,则2(1)xf x dx -=? 。 4. 计算 3。 5。 计算。 6. 计算 71 (2) dx x x +?。 7。 计算。 8. 计算 21 13sin dx x +?。 9。 计算172 2 1sin cos dx x x ? 。 10. 计算 () 2 2 sin cos x dx x x x +?。 11. 计算 ()()2 ln ()ln ()()()()f x f x f x f x f x dx ''''++?。 12. 设()arcsin xf x dx x C =+? ,则 1 () dx f x =? 。 13. 设2 2 2(1)ln 2 x f x x -=-,且(())ln f x x ?=,求()x dx ??。 14. 计算arctan 23/2(1)x xe dx x +?。 15. 计算x 。 16. 计算 1sin 22sin dx x x +?。 17. 计算ln t tdt α ? 。 18. 计算()ln n x dx ?。 《高等数学》考研辅导练习5 定积分 1.设02 ()2 l kx x f x l c x l ? ≤≤??=??<≤??,求0 ()()x x f t dt Φ=?。 2. 设1 ()2()f x x f x dx =+? ,则()f x = 。 3. 计算 {}2 23 min 2,x dx -? 。 4. 已知()f x 连续,且满足()()1f x f x -=,则 2 2cos 1()x dx f x π π-+?= 。

高等数学-不定积分例题、思路和答案(超全)

第4章不定积分 内容概要 课后习题全解 习题4-1

1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。 思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分! ★(1) 思路: 被积函数 5 2 x -=,由积分表中的公式(2)可解。 解:5 322 23x dx x C --==-+? ★(2)dx - ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:1 14111 3332223()2 4dx x x dx x dx x dx x x C --=-=-=-+???? ★(3)22x x dx +?() 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:22 32122ln 23x x x x dx dx x dx x C +=+=++???() ★(4)3)x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:3153 222223)325x dx x dx x dx x x C -=-=-+??? ★★(5)4223311x x dx x +++? 思路:观察到422223311311 x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。

解:42232233113arctan 1 1x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 21x dx x +? 思路:注意到222221111111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。 解:22 21arctan .11x dx dx dx x x C x x =-=-+++??? 注:容易看出(5)(6)两题的解题思路是一致的。一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。 ★(7)x dx x x x ?34134(-+-)2 思路:分项积分。 解:3411342x dx xdx dx x dx x dx x x x x --=-+-?????34134(-+-)2 223134ln ||.423 x x x x C --=--++ ★(8) 23(1dx x -+? 思路:分项积分。 解: 2231(323arctan 2arcsin .11dx dx x x C x x =-=-+++?? ★★(9) 思路=?11172488x x ++==,直接积分。 解:715888.15 x dx x C ==+?? ★★(10) 221(1)dx x x +? 思路:裂项分项积分。

(完整版)定积分测试题

题 号 一 二 三 四 总分 统分人 分 数 得 分 一、选择 (8小题,共26分) 得分 阅卷人 1. 4)(2 x dt t f x =? ,则=?dx x f x 40)(1( ) A 、16 B 、8 C 、4 D 、2 2.设正值函数 )(x f 在],[b a 上连续,则函数 dt t f dt t f x F x b x a ? ?+=) (1 )()(在),(b a 上至少有( )个根。 A 、0 B 、1 C 、2 D 、3 3. =+? dx x x 3 1 ( ) A .18 B . 3 8 C . 1 D .0 4.设 )(x ?''在[b a ,]上连续,且a b =')(?,b a =')(?,则 ?='''b a dx x x )()(??( ) (A )b a - (B )21(b a -) (C ))(2 1 22b a + (D ))(2 122 b a - 5. 19 3 8 dx x +? 定积分作适当变换后应等于 A 、3 23xdx ? B 、30 3xdx ? C 、 2 3xdx ? D 、3 23xdx --?  6.sin 22y x x ππ?? -=???? 在 ,上的曲线与轴围成图形的面积为 A 、 22 sin xdx π π-?  B 、2 sin xdx π ? C 、0 D 、 22 sin x dx π π-? 7.2 1 x xe dx +∞ -=? 广义积分 A 、 12e B 、12e - C 、e D 、+∞ 8 . 2 ()d ()(0)0(0)2lim x x f x x f x f f x →'==?若为可导函数,且已知,,则之值为 A 、0 B 、1 C 、2 D 、1 2 二、填空 (2小题,共5分) 得分 阅卷人

高等数学不定积分例题思路和答案超全

高等数学不定积分例题思路和答案超全 内容概要 课后习题全解 习题4-1 :求下列不定积分1.知识点:。直接积分法的练习——求不定积分的基本方法思路分析:!利用不定积分的运算性质和基本积分公式,直接求出不定积分(1)★思路: 被积函数,由积分表中的公式(2)可解。 解: (2)★思路: 根据不定积分的线性性质,将被积函数分为两项,分别积分。解: (3)★思路: 根据不定积分的线性性质,将被积函数分为两项,分别积分。:解. (4)★思路: 根据不定积分的线性性质,将被积函数分为两项,分别积分。解: (5)思路:观察到后,根据不定积分的线性性质,将被积函数分项,分别积分。

解: (6)★★思路:注意到,根据不定积分的线性性质,将被积函数分项,分别积分。 解: 注:容易看出(5)(6)两题的解题思路是一致的。一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。(7)★思路:分项积分。 解: (8)★思路:分项积分。 解: (9)★★思路:?看到,直接积分。 解: (10)★★思路: 裂项分项积分。解: (11)★解: (12)★★思路:初中数学中有同底数幂的乘法:指数不变,底数相乘。显然。 解: (13)★★思路:应用三角恒等式“”。 解: (14)★★思路:被积函数,积分没困难。 解: (15)★★思路:若被积函数为弦函数的偶次方时,一般地先降幂,再积分。 解: (16)★★思路:应用弦函数的升降幂公式,先升幂再积分。 解: () 17★思路:不难,关键知道“”。 :解. ()18★思路:同上题方法,应用“”,分项积分。 解: ()19★★思路:注意到被积函数,应用公式(5)即可。 解: ()20★★思路:注意到被积函数,则积分易得。 解: 、设,求。2★知识点:。考查不定积分(原函数)与被积函数的关系思路分析::。即可1直接利用不定积分的性质解::等式两边对求导数得 、,。求的原函数全体设的导函数为3★知识点:。仍为考查不定积分(原函数)与被积函数的关系思路分析:。连续两次求不定积分即可解:,由题意可知:。所以的原函数全体为、证明函数和都是的原函数4★知识点:。考查原函数(不定积分)与被积函数的关系思路分析:。只需验证即可解:,而、,且在任意点处的切线的斜率都等于该点的横坐标的倒数,求此曲线的方程。一曲线通过点5★知识点:属于第12章最简单的一阶线性微分方程的初值问题,实质仍为考查原函数(不定积分)与被积函数的关系。 思路分析:求得曲线方程的一般式,然后将点的坐标带入方程确定具体的方程即可。 解:设曲线方程为,由题意可知:,; 又点在曲线上,适合方程,有, 所以曲线的方程为 、,:问6一物体由静止开始运动,经秒后的速度是★★(1)在秒后物体离开出发点的距离是多少?

《高等数学》不定积分课后习题详解Word版

不定积分内容概要

课后习题全解 习题4-1 1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。 思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分!★(1) 思路: 被积函数 5 2 x- =,由积分表中的公式(2)可解。 解:53 22 2 3 x dx x C -- ==-+ ? ★ (2)dx - ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:114 111 333 222 3 ()2 4 dx x x dx x dx x dx x x C -- -=-=-=-+ ???? ★(3)2 2x x dx + ?() 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:223 21 22 ln23 x x x x dx dx x dx x C +=+=++ ??? ( ) ★(4)3) x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:3153 2222 2 3)32 5 x dx x dx x dx x x C -=-=-+ ??

★★(5)4223311 x x dx x +++? 思路:观察到422223311311 x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。 解:42232233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 21x dx x +? 思路:注意到222221111111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项, 分别积分。 解:2221arctan .11x dx dx dx x x C x x =-=-+++??? 注:容易看出(5)(6)两题的解题思路是一致的。一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。 ★(7)x dx x x x ?34134(-+-)2 思路:分项积分。 解:3411342x dx xdx dx x dx x dx x x x x --=-+-?? ???34134(-+-)2 223134ln ||.423 x x x x C --=--++ ★(8) 23(1dx x -+? 思路:分项积分。 解: 2231(323arctan 2arcsin .11dx dx x x C x x -=-=-+++?? ★★(9) 思路=11172488x x ++==,直接积分。 解:715888.15 x dx x C ==+? ★★(10)221(1)dx x x +? 思路:裂项分项积分。

高等数学不定积分习题

第四章 不 定 积 分 § 4 – 1 不定积分的概念与性质 一.填空题 1.若在区间上)()(x f x F =',则F(x)叫做)(x f 在该区间上的一个 , )(x f 的 所有原函数叫做)(x f 在该区间上的__________。 2.F(x)是)(x f 的一个原函数,则y=F(x)的图形为?(x)的一条_________. 3.因为 dx x x d 2 11)(arcsin -= ,所以arcsinx 是______的一个原函数。 4.若曲线y=?(x)上点(x,y)的切线斜率与3 x 成正比例,并且通过点A(1,6)和B(2,-9),则该 曲线方程为__________?。 二.是非判断题 1. 若f ()x 的某个原函数为常数,则f ()x ≡0. [ ] 2. 一切初等函数在其定义区间上都有原函数. [ ] 3. ()()()??'='dx x f dx x f . [ ] 4. 若f ()x 在某一区间内不连续,则在这个区间内f ()x 必无原函数. [ ] 5. =y ()ax ln 与x y ln =是同一函数的原函数. [ ] 三.单项选择题 1.c 为任意常数,且)('x F =f(x),下式成立的有 。 (A )?=dx x F )('f(x)+c; (B )?dx x f )(=F(x)+c; (C )? =dx x F )()('x F +c; (D) ?dx x f )('=F(x)+c. 2. F(x)和G(x)是函数f(x)的任意两个原函数,f(x)≠0,则下式成立的有 。 (A )F(x)=cG(x); (B )F(x)= G(x)+c; (C )F(x)+G(x)=c; (D) )()(x G x F ?=c. 3.下列各式中 是| |sin )(x x f =的原函数。 (A) ||cos x y -= ; (B) y=-|cosx|; (c)y={ ;0,2cos , 0,cos <-≥-x x x x (D) y={ . 0,cos ,0,cos 21<+≥+-x c x x c x 1c 、2c 任意常数。 4.)()(x f x F =',f(x) 为可导函数,且f(0)=1,又2 )()(x x xf x F +=,则f(x)=______.

定积分及微积分基本定理练习题及答案

定积分与微积分基本定理练习题及答案 1.(2011·宁夏银川一中月考)求曲线y =x2与y =x 所围成图形的面积,其中正确的是( ) A .S =??01(x2-x)dx B .S =??01(x -x2)dx C .S =??01(y2-y)dy D .S =??01(y -y)dy [答案] B [分析] 根据定积分的几何意义,确定积分上、下限和被积函数. [解读] 两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x≥x2,故函数y =x2与y =x 所围成图形的面积S =??0 1(x -x2)dx. 2.(2010·山东日照模考)a =??02xdx ,b =??02exdx ,c =??02sinxdx ,则a 、b 、c 的大小关系 是( ) A .a2,c =??0 2sinxdx =-cosx|02 =1-cos2∈(1,2), ∴c

高等数学微积分复习题

第五章 一元函数积分学 1.基本要求 (1)理解原函数与不定积分的概念,熟记基本积分公式,掌握不定积分的基本性质。 (2)掌握两种积分换元法,特别是第一类换元积分法(凑微分法)。 (3)掌握分部积分法,理解常微分方程的概念,会解可分离变量的微分方程,牢记非齐次 线性微分方程的通解公式。 (4)理解定积分的概念和几何意义,掌握定积分的基本性质。 (5)会用微积分基本公式求解定积分。 (6)掌握定积分的凑微分法和分部积分法。 (7)知道广义积分的概念,并会求简单的广义积分。 (8)掌握定积分在几何及物理上的应用。特别是几何应用。 2.本章重点难点分析 (1) 本章重点:不定积分和定积分的概念及其计算;变上限积分求导公式和牛顿—莱布 尼茨公式;定积分的应用。 (2) 本章难点:求不定积分,定积分的应用。 重点难点分析:一元函数积分学是微积分学的一个重要组成部分,不定积分可看成是微分运算的逆运算,熟记基本积分公式,和不定积分的性质是求不定积分的关键,而定积分则源于曲边图形的面积计算等实际问题,理解定积分的概念并了解其几何意义是应用定积分的基础。 3.本章典型例题分析 例1:求不定积分sin3xdx ? 解:被积函数sin3x 是一个复合函数,它是由()sin f u u =和()3u x x ?==复合而成,因此,为了利用第一换元积分公式,我们将sin3x 变形为'1 sin 3sin 3(3)3x x x = ,故有 ' 111 sin 3sin 3(3)sin 3(3)3(cos )333 xdx x x dx xd x x u u C ===-+??? 1 3cos33 u x x C =-+ 例2:求不定积分 (0)a > 解:为了消去根式,利用三解恒等式2 2 sin cos 1t t +=,可令sin ()2 2 x a t t π π =- << ,则 cos a t ==,cos dx a dt =,因此,由第二换元积分法,所以积分 化为 2221cos 2cos cos cos 2 t a t a tdt a tdt a dt +=?==??? 2222cos 2(2)sin 22424a a a a dt td t t t C =+=++?? 2 (sin cos )2 a t t t C =++ 由于sin ()2 2 x a t t π π =- << ,所以sin x t a = ,arcsin(/)t x a =,利用直角三角形直接写

高等数学-不定积分例题、思路和答案(超全)

第4章不定积分

习题4-1 1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。 思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分! ★(1) 思路: 被积函数52 x - =,由积分表中的公式(2)可解。 解: 53 2 2 23x dx x C -- ==-+? ★(2) dx - ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:1 14111 33322 23()2 4dx x x dx x dx x dx x x C - - =-=-=-+???? ★(3)22 x x dx +? () 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:2 2 3 2122ln 23 x x x x dx dx x dx x C +=+=++? ??() ★(4) 3)x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解: 3153 22 222 3)325 x dx x dx x dx x x C -=-=-+?? ★★(5)4223311x x dx x +++? 思路:观察到422 223311311 x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积 分。 解:4223 2233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 21x dx x +?

思路:注意到 22222 111 1111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。 解:22 21arctan .11x dx dx dx x x C x x =-=-+++??? 注:容易看出(5)(6)两题的解题思路是一致的。一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。 ★(7)x dx x x x ? 34134( -+-)2 思路:分项积分。 解:34 11342x dx xdx dx x dx x dx x x x x --=-+-?????34134(- +-)2 223134 ln ||.423 x x x x C --=--++ ★ (8) 23(1dx x -+? 思路:分项积分。 解 :2231( 323arctan 2arcsin .11dx dx x x C x x =-=-+++? ? ★★ (9) 思路 =? 1117248 8 x x ++==,直接积分。 解 : 7 15 8 88 .15x dx x C ==+? ? ★★(10) 221 (1)dx x x +? 思路:裂项分项积分。 解: 222222 111111 ()arctan .(1)11dx dx dx dx x C x x x x x x x =-=-=--++++???? ★(11)21 1 x x e dx e --? 解:21(1)(1)(1).11 x x x x x x x e e e dx dx e dx e x C e e --+==+=++--??? ★★(12) 3x x e dx ?

定积分测试题

题 号 一 二 三 四 总分 统分人 分 数 得 分 一、选择 (8小题,共26分) 得分 阅卷人 1. 4)(2 x dt t f x =? ,则=?dx x f x 40)(1( ) A 、16 B 、8 C 、4 D 、2 2.设正值函数 )(x f 在],[b a 上连续,则函数dt t f dt t f x F x b x a ? ?+=) (1 )()(在),(b a 上至少有( )个根。 A 、0 B 、1 C 、2 D 、3 3. =+? dx x x 3 1 ( ) A .18 B . 3 8 C . 1 D .0 4.设 )(x ?''在[b a ,]上连续,且a b =')(?,b a =')(?,则 ?='''b a dx x x )()(??( ) (A )b a - (B )21(b a -) (C ))(2 1 22b a + (D ) )(2122 b a - 5. 19 3 8 dx x +? 定积分作适当变换后应等于 A 、 3 2 3xdx ? B 、30 3xdx ? C 、 2 3xdx ? D 、3 2 3xdx --?  6.sin 22y x x ππ?? -=???? 在 ,上的曲线与轴围成图形的面积为 A 、 22 sin xdx π π-?  B 、2 sin xdx π? C 、0 D 、 22 sin x dx π π-? 7.2 1 x xe dx +∞ -=? 广义积分 A 、 12e B 、12e - C 、e D 、+∞ 8 . 2 ()d ()(0)0(0)2lim x x f x x f x f f x →'==?若为可导函数,且已知,,则之值为 A 、0 B 、1 C 、2 D 、 1 2

[全]高等数学之不定积分的计算方法总结[下载全]

高等数学之不定积分的计算方法总结不定积分中有关有理函数、三角函数有理式、简单无理函数的求法,是考研中重点考察的内容,也是考研中的难点。不定积分是计算定积分和求解一阶线性微分方程的基础,所以拿握不定积分的计算方法很重要。不定积分考查的函数特点是三角函数、简单无理函数、有理函数综合考查,考查方法是换元积分法、分部积分法的综合应用。不定积分的求法的理解和应用要多做习题,尤其是综合性的习题,才能真正掌握知识点,并应用于考研。 不定积分的计算方法主要有以下三种: (1)第一换元积分法,即不定积分的凑微分求积分法; (2)第二换元积分法 (3)分部积分法常见的几种典型类型的换元法:

樂,Q? o 金J犷- / .乍治阳必厶二如皿盒.「宀丄" 名% =a仏 找.』x二a沁沁r 年”十I '九久二严詈严妬5inx八ic5兄厶 整 I—炉 叶严 山二启虫? 常见的几种典型类型的换元法 题型一:利用第一换元积分法求不定积分

分析: 1-3 ? - IK )-忑.旦r x 二)祝成);网><可久切 二2氐化如(長)寸 a 花不直押、朱 J 、 解: 2少弋協“尤十C__

-辿迪牆H JS m 弟 R Eff 洱 ->1和弟r 直 - —7朮呻' g 丄 U P A J 齐—系卩£.§计 一 H a8~t ' J 乂 u D y " ?朮?

p o r t v 卩 J (r 4 5*〉J" 卩?对渎 t-k )+c p T + T d ? g T + c m -辿」

当积分j/O心(X)不好计算容易计算时[使用分部私jf(A-)Jg(.v)二f(x)g(x)- J g(x)df(x).常见能使用分部积分法的类型: ⑴卩"“dx J x n srn xdx J尢"cos皿等,方法是把。',sin-t, cosx 稽是降低X的次数 是化夫In 尢9 arcsine arctanx. 例11: J (1 + 6-r )arctanAz/.r :解:arctan f xdx等,方法是把疋; Jx" arcsm11xdx

同济大学(高等数学)_第四章_不定积分

第四章不定积分 前面讨论了一元函数微分学,从本章开始我们将讨论高等数学中的第二个核心内容:一元函数积分学.本章主要介绍不定积分的概念与性质以及基本的积分方法. 第1节不定积分的概念与性质 不定积分的概念 在微分学中,我们讨论了求一个已知函数的导数(或微分)的问题,例如,变速直线运动中已知位移函数为 =, s s t () 则质点在时刻t的瞬时速度表示为 =. () v s t' 实际上,在运动学中常常遇到相反的问题,即已知变速直线运动的质点在时刻t的瞬时速度 v v t =, () 求出质点的位移函数 =. s s t () 即已知函数的导数,求原来的函数.这种问题在自然科学和工程技术问题中普遍存在.为了便于研究,我们引入以下概念.

1.1.1原函数 定义 1 如果在区间I 上,可导函数()F x 的导函数为()f x ,即对任一x I ∈,都有 ()()F x f x '= 或 d ()()d F x f x x =, 那么函数()F x 就称为()f x 在区间I 上的原函数. 例如,在变速直线运动中,()()s t v t '=,所以位移函数()s t 是速度函数()v t 的原函数; 再如,(sin )'cos x x =,所以 sin x 是 cos x 在 (,) -∞+∞上的一个原函 数.1 (ln )'(0),x x x =>所以ln x 是1x 在(0,)+∞的一个原函数. 一个函数具备什么样的条件,就一定存在原函数呢这里我们给出一个充分条件. 定理1 如果函数()f x 在区间I 上连续,那么在区间I 上一定存在可导函数()F x ,使对任一∈x I 都有 ()()'=F x f x . 简言之,连续函数一定有原函数.由于初等函数在其定义区间上都是连续函数,所以初等函数在其定义区间上都有原函数. 定理1的证明,将在后面章节给出. 关于原函数,不难得到下面的结论:

高等数学定积分复习题

1. 求 dx e x ?-2ln 01。5.解:设t e x =-1,即)1ln(2+=t x ,有dt t t dx 122+= 当0=x 时,0=t ;当2ln =x 时,1=t 。 dt t dt t t dx e x )111(21211021 0222ln 0???+-=+=- 22)1arctan 1(2)arctan (210π- =-=-=x t . 2. 求由两条曲线2x y =与2y x =围成的平面区域的面积。 .解:两条曲线的交点是)0,0(与)1,1(,则此区域的面积 31)3132()(1 0323210=-=-=?x x dx x x S 3. 求反常积分 ?+∞-+222x x dx 。 解:dx x x x x dx x x dx b b b b )2111(lim 3 12lim 222222+--=-+=-+???+∞→+∞→+∞ 4ln 3 1)4ln 21(ln lim 31)21ln(lim 312=++-=+-=+∞→+∞→b b x x b b b 5、 4. 设???≤<≤≤-+=20,02,13)(32x x x x x f ,求?-22)(dx x f 解:原式=??-+0 22 0)()(dx x f dx x f ---------5分 =14 ----------5分 6. 求由曲线32,2+==x y x y 所围成的区域绕x 轴旋转而得的旋转体体积。 解:两曲线交点为(-1,1)(3,9)-------2分 面积?--+=3122)32(dx x x S π ---------5分 =17 256 7. 计算定积分2 2π π -? 8. 设()f x 在区间[,]a b 上连续,且()1b a f x dx =?,求() b a f a b x dx +-?。 答案:解:令u a b x =+-,则当x a =时,u b =;当x b =时,u a =,且d x d u =-, 故 ()b a f a b x dx +-?=()a b f u du -? =()1b a f x dx =?。

高等数学第四章不定积分课后习题详解

第4章不定积分 内容概要

课后习题全解 习题4-1 1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。 思路分析: 利用不定积分的运算性质和基本积分公式,直接求出不定积分! ★(1) 思路: 被积函数 5 2 x- =,由积分表中的公式(2)可解。 解: 53 2 2 2 3 x dx x C -- ==-+ ? ★(2)dx ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。

解:1 14111 33322 23 ()2 4dx x x dx x dx x dx x x C - - -=-=-=-+???? ★(3)22x x dx +?() 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:2 2 3 2122ln 23 x x x x dx dx x dx x C +=+=++? ??() ★(4)3)x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:315 3 2 2 222 3)325 x dx x dx x dx x x C -=-=-+?? ★★(5)422 331 1 x x dx x +++? 思路:观察到422 223311311 x x x x x ++=+++后,根据不定积分的线性性质, 将被积函数分项,分别积分。 解:42232233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 2 1x dx x +? 思路:注意到22222 111 1111x x x x x +-==-+++,根据不定积分的线性性质,将

定积分与微积分基本定理复习讲义

定积分与微积分基本定理复习讲义 河南省卢氏县第一高级中学山永峰 考 什么怎么考 1.了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念. 2.了解微积分基本定理的含义. 1.考查形式多为选择题或填空题. 2.考查简单定积分的求解. 3.考查曲边梯形面积的求解. 4.与几何概型相结合考查. [归纳·知识整合] 1.定积分 (1)定积分的相关概念:在∫b a f(x)d x中,a,b分别叫做积分下限与积分上限,区间[a,b]叫做积分区间,f(x)叫做被积函数,x叫做积分变量,f(x)d x叫做被积式. (2)定积分的几何意义 ①当函数f(x)在区间[a,b]上恒为正时,定积分∫b a f(x)d x的几何意义是由直线x=a,x=b(a≠b),y=0和曲线y=f(x)所围成的曲边梯形的面积(左图中阴影部分). ②一般情况下,定积分∫b a f(x)d x的几何意义是介于x轴、曲线f(x)以及直线x=a,x=b 之间的曲边梯形面积的代数和(右上图中阴影所示),其中在x轴上方的面积等于该区间上的积分值,在x轴下方的面积等于该区间上积分值的相反数. (3)定积分的基本性质:①∫b a kf(x)d x=k∫b a f(x)d x. ②∫b a[f1(x)±f2(x)]d x=∫b a f1(x)d x±∫b a f2(x)d x. ③∫b a f(x)d x=∫c a f(x)d x+∫b c f(x)d x. [探究] 1.若积分变量为t,则∫b a f(x)d x与∫b a f(t)d t是否相等? 提示:相等. 2.一个函数的导数是唯一的,反过来导函数的原函数唯一吗? 提示:一个函数的导数是唯一的,而导函数的原函数则有无穷多个,这些原函数之间都相差一个常数,在利用微积分基本定理求定积分时,只要找到被积函数的一个原函数即可,并且一般使用不含常数的原函数,这样有利于计算. 3.定积分∫b a[f(x)-g(x)]d x(f(x)>g(x))的几何意义是什么? 提示:由直线x=a,x=b和曲线y=f(x),y=g(x)所围成的曲边梯形的面积. 2.微积分基本定理:如果f(x)是区间[a,b]上的连续函数,并且F′(x)=f(x),那么∫b a f(x)d x

高等数学 定积分及其应用复习题

第五、六章 定积分及其应用 (1) 一.判断题 ( )1.函数)(x f 在区间],[b a 上有界,则)(x f 在],[b a 上可积. ( )2.若)(x f 在[b a ,]上可积,则)(x f 在[b a ,]上连续. ( )3.设)(x f 在),(+∞-∞内连续,则? =x a dt t f x G )()(是)(x f 的一个原函数. ( )4. ? ?=b a b a dx x f k dx x kf )()(,??=dx x f k dx x kf )()(都对. ( )5.函数)(x f 在],[b a 上有定义,则存在一点],[b a ∈ξ,使 )()()(a b f dx x f b a -=? ξ. ( ). 二.填空题 1.设?= x x tdt x f 2 ln )(,则=')2 1(f . 2.?=x tdt dx d 1sin , dx d ?b a x 2 s i n dx = . 3.若),1(2) (0 2x x dt t x f +=? 则=)2(f . 4.1 1xdx -? = . 5. ? +21 42 )1 (dx x x = , ?-10241dx x = . 三.计算题 1. ? -e e dx x 1 ln 2.dx x x ?-π 53sin sin 3.设???? ?>-≤=1 , 11, )(2 x x x x x f ,求 ? 20 )(dx x f . 4.dt t dx d x x ?+32411 5.20 0arctan lim x tdt x x ?→ 四.对任意x ,试求使 ? -+=x a x x dt t f 352)(2成立的连续函数)(x f 和常数a . 五.证明题:设)(x f 在闭区间],[b a 上连续,在开区间),(b a 内可导,且0)('≤x f ,证明

(完整word版)高等数学不定积分相关题目和答案

不定积分 一、填空题(每小题3分,共15分) 1. 如果x e -是函数()f x 的一个原函数,则 ()f x dx =? 。 2. 若()2cos 2 x f x dx C =+?,则()f x = 。 3. 设1 ()f x x =,则()f x dx '=? 。 4. ()()f x df x =? 。 5. sin cos x xdx =? 。 二、单项选择题(每小题3分,共15分) 1. 设3 ()ln sin 44 f x dx x C =+?,则()f x =( )。 A . cot 4x B . cot 4x - C . 3cos4x D . 3cot 4x 2. ln x dx x =?( ) 。 A . 2 1ln 2x x C + B . 2 1ln 2 x C + C . ln x C x + D . 221ln x C x x -+ 3. 若()f x 为可导、可积函数,则( )。 A . ()()f x dx f x ' ??=?? ? B . ()()d f x dx f x ??=?? ? C . ()()f x dx f x '=? D . ()()df x f x =? 4. 下列凑微分式中( )是正确的。 A . 2 sin 2(sin )xdx d x = B . d = C . 1ln ()x dx d x = D . 2 1 arctan ()1xdx d x =+ 5. 若 2()f x dx x C =+?,则2(1)xf x dx -=?( ) 。 A . 22 2(1)x C ++ B . 22 2(1)x C --+ C . 221(1)2x C ++ D . 221 (1)2 x C --+ 三、计算题(每小题8分,共48分) 1. 21 94dx x -? 2. 3. dx x ? 4. arcsin xdx ? 5. dx x x x ?++21arctan 6. .) 1(212 2 2 dx x x x ?++ 四、综合题(本大题共2小题, 总计22分) 1.(10分)求?'''?-'dx x f x f x f x f x f ]) () ()()()([3 2的值。 2.(12分)设()F x 为()f x 的一个原函数,当0x ≥时有2 ()()sin (0)0,()0f x F x x F F x ==≥且,求()f x 。

相关文档
最新文档