圆锥曲线的极坐标方程 焦半径公式 焦点弦公式

圆锥曲线的极坐标方程 焦半径公式 焦点弦公式
圆锥曲线的极坐标方程 焦半径公式 焦点弦公式

圆锥曲线的统一焦半径公式在解题中的应用

圆锥曲线的统一焦半径公式 在解题中的应用 宜昌二中 黄群星 我们在解决有关直线与圆锥曲线的关系问题时,经常会用到焦半径公式。解决这类问题,我们可以用到的公式有:平面上两点之间的距离公式,弦长公式,三种圆锥曲线的焦半径公式,和圆锥曲线的统一焦半径公式。最后一个公式往往被大家忽视,现在我想专门谈谈这个公式的使用。 一.在椭圆中的运用: 例1:已知椭圆22221(0)x y a b a b +=>> 的离心率为2 ,过右焦点F 且斜率为k (>0)的直 线与C 相交与A,B 两点,若3AF FB =,求k 的值。 解法一:∵ 2 e = ∴12b a = 设椭圆的方程为22 221,4x y b b += 右焦点为,0), 设直线的方程为my x =,设1122(,),(,)A x y B x y 222440x y b my x ?+-=?? =? ?222 (4)0m y b ?++-= ∵3AF FB =1122,)3(,)x y x y ?--=123y y ?=-① 122 (4)y y m -+=+ ② 2 122(4) b y y m -?=+ ③ 将①带入②得 1224y y m ?=????=-?+? ∴2221222 94(4)m b b y y m m --?==++212m ?= k>0, ∴m>0, ∴2 m k ==解法二; 由题意得3AF FB = =cos 3θ?=

∴sin tan 3 k θθ= ==即 评述:解法二应用了圆锥曲线的统一焦半径公式,从而大大简化了解题的过程。那么,在什么情况下可以用这个公式呢? 先看这个公式的结构:1cos ep PF e θ = ±,其中,e 是离心率,P 为焦准距,θ是过焦点 的直线的倾斜角,正是由于倾斜角的存在,使得这个公式在解决有关过焦点的直线的斜率和倾斜角的问题时相当便捷,而且,公式是根据圆锥曲线的统一定义推导出来,对椭圆,双曲线和抛物线都适用,这是它的一大优越之处。 二.在双曲线中的运用: 例2:双曲线的中心为原点O ,焦点在x 轴上,两条渐近线分别为12,l l ,经过右焦点F 垂直于1l 的直线分别交12,l l 于A,B 两点,已知,,OA AB OB 成等差数列,且,BF FA 同向 ① 求双曲线的离心率 ② 设直线AB 被双曲线所截得的线段的长为4,求双曲线的方程。 解:① 如图 ∵FA=b,OF=c, ∴OA=a ,∵OF 平分角∠AOB ∴OA AF OB BF = 设FB=mb,OB=m a ,则有2AB OA OB =+ 即12(1)2b m b a ma e a +=+? =∴= ② 设直线AB 的倾斜角为θ , cos b c θ= = ∴ 41c o s 1c o s e p e p e e θθ+=+- 4p p += 2 a P c c ?=-= 有∵ 6,3c a c b a ===∴= ∴ 双曲线的方程为 2 2 1369 x y -= 评述:双曲线的焦半径公式PF =a ex ±,由于正负号和绝对值符号的存在,使得这个公式在运用起来又很多不方便,而统一焦半径公式正好巧妙的解决了这一问题。 三.在抛物线中的使用: 例3:平面上一点P 到点F (1,0)的距离与它到直线x=3的距离之和为4, ① 求点P 的轨迹方程

高中数学-圆锥曲线有关焦点弦的几个公式及应用.

圆锥曲线有关焦点弦的几个公式及应用 如果圆锥曲线的一条弦所在的直线经过焦点,则称此弦为焦点弦。圆锥曲线的焦点弦问题涉及到离心率、直线斜率(或倾斜角)、定比分点(向量)、焦半径和焦点弦长等有关知识。焦点弦是圆锥曲线的“动脉神经”,集数学知识、思想方法和解题策略于一体,倍受命题人青睐,在近几年的高考中频频亮相,题型多为小题且位置靠后属客观题中的压轴题,也有作为大题进行考查的。本文介绍圆锥曲线有关焦点弦问题的几个重要公式及应用,与大家交流。 定理1已知点是离心率为的圆锥曲线的焦点,过点的弦与的焦点所在的轴的夹角为,且。(1)当焦点内分弦时,有;(2)当焦点外分弦时(此时曲线为双曲线),有。 证明设直线是焦点所对应的准线,点在直线上的射影分别为,点在 直线上的射影为。由圆锥曲线的统一定义得,,又,所以。 (1)当焦点内分弦时。 如图1,,所以 。

图1 (2)当焦点外分弦时(此时曲线为双曲线)。 如图2,,所以 。 图2 评注特别要注意焦点外分焦点弦(此时曲线为双曲线)和内分焦点弦时公式的不同,这一点很容易不加区别而出错。 例1(2009年高考全国卷Ⅱ理科题)已知双曲线的右焦点为,过且斜率为的直线交于两点。若,则的离心率为()

解这里,所以,又,代入公式得,所 以,故选。 例2(2010年高考全国卷Ⅱ理科第12题)已知椭圆的离心 率为。过右焦点且斜率为的直线于相交于两点,若,则() 解这里,,设直线的倾斜角为,代入公式得,所以 ,所以,故选。 例3 (08高考江西卷理科第15题)过抛物线的焦点作倾斜角为 的直线,与抛物线交于两点(点在轴左侧),则有____ 图3

高考数学竞赛圆锥曲线中与焦点弦相关的问题

与焦点弦相关的问题 8.椭圆、双曲线、抛物线的焦点弦性质(定值1) 问题探究8 已知椭圆22 143 x y +=,1F 为椭圆之左焦点,过点1F 的直线交椭圆于A ,B 两点,是否存在实常数λ,使AB FA FB λ=?u u u r u u u r u u u r 恒成立.并由此求∣AB ∣的最小值.(借用柯西不等式) 实验成果 动态课件 椭圆的焦点弦的两个焦半径倒数之和为常数 11112 ||||AF BF ep += 备用课件 双曲线的焦点弦的两个焦半径倒数之和为常数 AB 在同支 11112 ||||AF BF ep += AB 在异支 11112 | |||||AF BF ep -= 备用课件 抛物线的焦点弦的两个焦半径倒数之和为常数 112 ||||AF BF ep += 备用课件

9.椭圆、双曲线、抛物线的正交焦点弦性质(定值2) 问题探究9 已知椭圆22 143 x y +=,1F 为椭圆之左焦点,过点1F 的直线12,l l 分别交椭圆于A ,B 两点和C ,D 两点,且12l l ⊥,是否存在实常数λ,使AB CD AB CD λ+=?u u u r u u u r u u u r u u u r 恒成立.并由此求 四边形ABCD 面积的最小值和最大值. 实验成果 动态课件 椭圆互相垂直的焦点弦倒数之和为常数 ep e CD AB 22||1||12 -= + 备用课件 双曲线互相垂直的焦点弦倒数之和为常数 ep e CD AB 2| 2|||1||12-=+ 备用课件 抛物线互相垂直的焦点弦倒数之和为常数 ep e CD AB 22||1||12 -= + 备用课件

圆锥曲线的极坐标方程、焦半径公式、焦点弦公式

圆锥曲线的极坐标方程、焦半径公式、焦点弦公式 湖北省天门中学 薛德斌 一、圆锥曲线的极坐标方程 椭圆、双曲线、抛物线可以统一定义为:与一个定点(焦点)的距离和一条定直线(准线)的距离的比等于常数e 的点的轨迹. 以椭圆的左焦点(双曲线的右焦点、抛物线的焦点)为极点,过点F 作相应准线的垂线,垂足为K ,以FK 的反向延长线为极轴建立极坐标系. 椭圆、双曲线、抛物线统一的极坐标方程为: θ ρcos 1e ep -=. 其中p 是定点F 到定直线的距离,p >0 . 当0<e <1时,方程表示椭圆; 当e >1时,方程表示双曲线,若ρ>0,方程只表示双曲线右支,若允许ρ<0,方程就表示整个双曲线; 当e=1时,方程表示开口向右的抛物线. 二、圆锥曲线的焦半径公式 设F 为椭圆的左焦点(双曲线的右焦点、抛物线的焦点),P 为椭圆(双曲线的右支、抛物线)上任一点,则 ∵PQ e PF =,∴)cos (p PF e PF +=θ,其中FH p =,=θ〈x 轴,FP 〉 ∴焦半径θ cos 1e ep PF -=. 当P 在双曲线的左支上时,θcos 1e ep PF +- =. 推论:若圆锥曲线的弦MN 经过焦点F ,则有 ep NF MF 211=+.

三、圆锥曲线的焦点弦长 若圆锥曲线的弦MN 经过焦点F , 1、椭圆中,c b c c a p 2 2=-=,θ θπθ2222cos 2)cos(1cos 1c a ab e ep e ep MN -=--+-=. 2、双曲线中, 若M 、N 在双曲线同一支上,θ θπθ2222 cos 2)cos(1cos 1c a ab e ep e ep MN -=--+-=; 若M 、N 在双曲线不同支上,2 222 cos 2cos 1cos 1a c ab e ep e ep MN -=--+-=θθθ. 3、抛物线中,θ θπθ2sin 2)cos(1cos 1p p p MN =--+-=. 四、直角坐标系中的焦半径公式 设P (x,y )是圆锥曲线上的点, 1、若1F 、2F 分别是椭圆的左、右焦点,则ex a PF +=1,ex a PF -=2; 2、若1F 、2F 分别是双曲线的左、右焦点, 当点P 在双曲线右支上时,a ex PF +=1,a ex PF -=2; 当点P 在双曲线左支上时,ex a PF --=1,ex a PF -=2; 3、若F 是抛物线的焦点,2p x PF + =.

圆锥曲线的焦点弦公式及应用(难)

圆锥曲线有关焦点弦的几个公式及应用如果圆锥曲线的一条弦所在的直线经过焦点,则称此弦为焦点弦。圆锥曲线的焦点弦问题涉及到离心率、直线斜率(或倾斜角)、定比分点(向量)、焦半径和焦点弦长等有关知识。焦点弦是圆锥曲线的“动脉神经”,集数学知识、思想方法和解题策略于一体,倍受命题人青睐,在近几年的高考中频频亮相,题型多为小题且位置靠后属客观题中的压轴题,也有作为大题进行考查的。本文介绍圆锥曲线有关焦点弦问题的几个重要公式及应用,与大家交流。 定理1已知点是离心率为的圆锥曲线的焦点,过点的弦与的焦点所在的轴的夹角为,且。(1)当焦点内分弦时,有;(2)当焦点外分弦时(此时曲线为双曲线),有。 证明设直线是焦点所对应的准线,点在直线上的射影分别为,点在直线上的射影为。由圆锥曲线的统一定义得,,又,所以。 (1)当焦点内分弦时。 如图1,,所以。 图1

(2)当焦点外分弦时(此时曲线为双曲线)。 如图2,,所以 。 图2 评注特别要注意焦点外分焦点弦(此时曲线为双曲线)和内分焦点弦时公式的不同,这一点很容易不加区别而出错。 例1(2009年高考全国卷Ⅱ理科题)已知双曲线的右焦点为,过且斜率为的直线交于两点。若,则的离心率为() 解这里,所以,又,代入公式得,所以,故选。 例2(2010年高考全国卷Ⅱ理科第12题)已知椭圆的离心 率为。过右焦点且斜率为的直线于相交于两点,若,则()

解这里,,设直线的倾斜角为,代入公式得,所以,所以,故选。 例3 (08高考江西卷理科第15题)过抛物线的焦点作倾斜角为 的直线,与抛物线交于两点(点在轴左侧),则有____ 图3 解如图3,由题意知直线与抛物线的地称轴的夹角,当点在轴左侧时, 设,又,代入公式得,解得,所以。 例4(2010年高考全国卷Ⅰ理科第16题)已知是椭圆的一个焦点,是短轴的一个端点,线段的延长线交于点,且,则的离心率为___解设直线与焦点所在的轴的夹角为,则,又,代入公式得,所以。 例5(自编题)已知双曲线的离心率为,过左焦点 且斜率为的直线交的两支于两点。若,则___解这里,,因直线与左右两支相交,故应选择公式,代入公式得,所以所以,所以。

圆锥曲线弦长公式

圆锥曲线弦长公式 关于直线与圆锥曲线相交求弦长,通用方法是将直线代入曲线方程,化为关于x的一元二次方程,设出交点坐标,利用韦达定理及弦长公式求出弦长,这种整体代换,设而不求的思想方法对于求直线与曲线相交弦长是十分有效的,然而对于过焦点的圆锥曲线弦长求解利用这种方法相比较而言有点繁琐,利用圆锥曲线定义及有关定理导出各种曲线的焦点弦长公式就更为简捷。. 椭圆的焦点弦长若椭圆方程为,半焦距为,焦点,设过的直线的倾斜角为交椭圆于A、B两点,求弦长。解:连结,设,由椭圆定义得,由余弦定理得 ,整理可得,同理可求得,则弦长 同理可求得焦点在y轴上的过焦点弦长为(a为长半轴,b为短半轴,c为半焦距) 结论:椭圆过焦点弦长公式: 二

. 双曲线的焦点弦长 设双曲线,其中两焦点坐标为 ,过的直线的倾斜角为,交双曲线于A、B两点,求弦长|AB|。 。 解:(1)当时,(如图2)直线与双曲线的两个交点A、B在同一交点上,连,设,由双曲线定义可得,由余弦定理可得 整理可得,同理,则可求得弦长

(2)当或时,如图3,直线l与双曲线交点A、B在两支上,连,设,则,,由余弦定理可得, 整理可得,则 因此焦点在x轴的焦点弦长为 同理可得焦点在y轴上的焦点弦长公式 三

其中a为实半轴,b为虚半轴,c为半焦距,为AB的倾斜角。. 抛物线的焦点弦长 若抛物线与过焦点的直线相交于A、B两点,若的倾斜角为,求弦长|AB|(图4) 解:过A、B两点分别向x轴作垂线为垂足,设,,则点A的横坐标为,点B横坐标为,由抛物线定义可得 即 则 同理的焦点弦长为

的焦点弦长为,所以抛物线的焦点弦长为 由以上三种情况可知利用直线倾斜角求过焦点的弦长,非常简单明确,应予以掌握。 一

圆锥曲线的极坐标方程、焦半径公式、焦点弦公式

圆锥曲线的极坐标方程、焦半径公式、焦点弦公式 湖北省天门中学薛德斌 一、圆锥曲线的极坐标方程 椭圆、双曲线、抛物线可以统一定义为:与一个定点(焦点)的距离和一条定直线(准线)的距离的比等于常数e的点的轨迹. 以椭圆的左焦点(双曲线的右焦点、抛物线的焦点)为极点,过点F作相应准线的垂线,垂足为K,以FK的反向延长线为极轴建立极坐标系. ep 椭圆、双曲线、抛物线统一的极坐标方程为:. 1ecos 其中p是定点F到定直线的距离,p>0. 当0<e<1时,方程表示椭圆; 当e>1时,方程表示双曲线,若ρ>0,方程只表示双曲线右支,若允许ρ<0,方程就表示整个双曲线; 当e=1时,方程表示开口向右的抛物线. 二、圆锥曲线的焦半径公式 设F为椭圆的左焦点(双曲线的右焦点、抛物线的焦点),P为椭圆(双曲线的右支、抛物线)上任一点,则 ∵PF e PQ,∴PF e(PF cos p),其中p FH,〈x轴,FP〉∴焦半径PF ep . 1ecos 当P在双曲线的左支上时,PF ep 1ecos . 推论:若圆锥曲线的弦MN经过焦点F,则有 112 . MF NF ep

2 cos 2 . c 2 2 2 三、圆锥曲线的焦点弦长 若圆锥曲线的弦 MN 经过焦点 F , a 2 b 2 ep ep 2ab 2 1、椭圆中, p , MN c c 1 ecos 1 ecos( ) a 2 c 2、双曲线中, ep ep 2ab 2 若 M 、N 在双曲线同一支上, MN ; 1 ecos 1 ecos( ) a 2 c 2 cos ep ep 2ab 2 若 M 、N 在双曲线不同支上, MN . 1 ecos 1 ecos c 2 cos a 2 3、抛物线中, MN p p 2p . 1 cos 1 cos( ) sin 四、直角坐标系中的焦半径公式 设 P (x,y )是圆锥曲线上的点, 1、若 F 、F 分别是椭圆的左、右焦点,则 PF 1 2 1 a ex ,PF 2 a ex ; 2、若 F 、 F 分别是双曲线的左、右焦点, 1 2 当点 P 在双曲线右支上时, PF 1 ex a , PF 2 ex a ; 当点 P 在双曲线左支上时, PF 1 a ex , PF 2 a ex ; 3、若 F 是抛物线的焦点, PF x p . 2

圆锥曲线焦点弦问题

圆锥曲线焦点弦问题

θ2222 sin 2c a ab - 高考题:1.过抛物线)0(22 >=p py x 的焦点F 作倾斜角为300的直线与抛物线交于A 、B 两点(点A 在y 轴左侧),则 =FB AF 解:由公式:11cos +-= λλθe 得:11-21+=λλ,解得λ=3,∴=FB AF 3 1 2.双曲线122 22=-b y a x ,AB 过右焦点F 交双曲线与A 、B ,若直线AB 的斜率为3, 4=则双曲线的离心率e= 解:∵由已知tan θ=3∴θ=600, 由公式:11cos +-= λλθe 得:e 11-21+=λλ=1 41 -4+ ∴ e= 5 6 3.(2010高考全国卷)已知椭圆C :12222=+b y a x (a>b>0),离心率23 =e ,过右焦点且 斜率为k (k>0)的直线与C 相交于A 、B 两点,若3=,则k=( B )

A 、1 B 、2 C 、3 D 、2 解:由公式:11 cos +-= λλθe 得cos θ=3 1∴ k=tan θ=2;故选B 。 4.2009年高考全国卷Ⅱ理科题)已知双曲线的右焦点为 ,过 且斜率为的直线交 于 两点。若 ,则 的离心率为( ) 解 这里,所以,又,代入公式得,所 以 ,故选。 5.(08高考江西)过抛物线的焦点作倾斜角为的直线,与抛物 线交于 两点(点在轴左侧),则有____ 图3 解 如图3,由题意知直线 与抛物线的地称轴的夹角 ,当点 在 轴左侧时, 设,又,代入公式得,解得,所以。

6.(2010年高考全国卷Ⅰ理科第16题)已知是椭圆的一个焦点,是短轴的一个端点,线段的延长线交于点,且,则的离心率为___解设直线与焦点所在的轴的夹角为,则,又,代入公式得,所以。 7.已知双曲线的离心率为,过左焦点且斜率为的直线交的两支于两点。若,则___ 解这里,,因直线与左右两支相交,故应选择公式,代入公式得,所以所以,所以。8.(2009年高考福建)过抛物线的焦点作倾斜角为的直线,交抛物线于两点,若线段的长为8,则___ 解由抛物线焦点弦的弦长公式为得,,解得。 11.(2007年重庆卷第16题)过双曲线的右焦点作倾斜角为的直线,交双曲线于两点,则的值为___ 解易知均在右支上,因为,离心率,点准距 ,因倾斜角为,所以。由焦半径公式得, 。

焦半径公式

椭圆x^2/a^2+y^2/b^2=1(a>b>0)的左准线为l,左右焦点分别为F1、F2,抛物线C2以F2为焦点,l为准线,点P是C1、C2的一个公共点,则 F1F2/PF1-PF1/PF2= 设点P的横坐标为m, 则由焦半径公式,PF1=a+em,PF2=a-em, 因为点P又在以F2为焦点,l为准线的抛物线上,l的方程为x=-a2/c; 所以,P到l的距离d=m-(-a2/c)=m+a2/c 抛物线满足:抛物线上的点到焦点的距离=到准线的距离; 所以d=PF2 即:m+a2/c=a-em 得:m=a2(c-a)/c(a+c) 所以,em=a(c-a)/(a+c) 所以,PF1=a+em=2ac/(a+c),PF2=2a2/(a+c) 所以,F1F2/PF1=(a+c)/a,PF1/PF2=c/a; F1F2/PF1-PF1/PF2=(a+c)/a-c/a=1; 椭圆的焦半径公式

设M(xo,y0)是椭圆x^2/a^2+ y^2/b^2=1(a>b>0)的一点,r1和 r2分别是点M与点F1(-c,0),F2(c,0)的距离,那么(左焦半径)r1=a+ex0,(右焦半径)r2=a -ex0,其中e是离心率。 推导:r1/∣MN1∣= r2/∣MN2∣=e 可得:r1= e∣MN1∣= e(a^2/ c+x0)= a+ex0,r2= e∣MN2∣= e(a^2/ c-x0)= a-ex0。 同理:∣MF1∣= a+ex0,∣MF2∣= a-ex0。 编辑本段双曲线的焦半径公式 双曲线的焦半径及其应用: 1:定义:双曲线上任意一点M与双曲线焦点的连线段,叫做双曲线的焦半径。 2.已知双曲线标准方程x^2/a^2-y^2/b^2=1 点P(x,y)在左支上 │PF1│=-(ex+a) ;│PF2│=-(ex-a) 点P(x,y)在右支上 │PF1│=ex+a ;│PF2│=ex-a 编辑本段抛物线的焦半径公式 抛物线r=x+p/2 通径:圆锥曲线(除圆)中,过焦点并垂直于轴的弦 双曲线和椭圆的通径是2b^2/a焦准距为a^2/c-c 抛物线的通径是2p 抛物线y^2=2px (p>0),C(Xo,Yo)为抛物线上的一点,焦半径|CF|=Xo+p/2.

圆锥曲线焦半径

设A 11(,)x y 椭圆的焦点弦的两个焦半径倒数之和为常数(焦准距倒数的2倍) 11112||||ep AF BF +=22a b = 椭圆中(A 点靠下,过2F 类似)21||cos b AF a c θ=+,2 1||cos b BF a c θ =-,θ为焦点弦的倾斜角. 椭圆焦半径公式:2111||[()]a AF e x ex a c =--=+;2 211||()a AF e x a ex c =-=- 双曲线的焦点弦同支(异支)的两个焦半径倒数之和(之差的绝对值)为常数(焦准距倒数的2倍) AB 同支11112||||ep AF BF +=22a b = AB 异支11112||||||ep AF BF -=22a b = 双曲线中(A 点靠下,过2F 类似)同左支21||cos b AF a c θ=-,2 1||cos b BF a c θ =+, θ为焦点弦的倾斜角;异支(B 点在右支)21|||cos |b AF c a θ=+,2 1|||cos |b BF c a θ=- 双曲线焦半径公式:11||||AF a ex =+,21||||AF a ex =- A 在左支:2111||()a AF e x a ex c =--=--;2 211||()a AF e x a ex c =-=-。 A 在右支:2111||[()]a AF e x ex a c =--=+;2 211||()a AF e x ex a c =-=- 抛物线的焦点弦(A 点靠下)的两个焦半径倒数之和为常数(焦准距倒数的2倍) 111122|||| ep p AF BF +==||1cos p AF θ=- ,||1cos p BF θ=+ 抛物线焦半径公式:1||2p AF x =+

焦半径公式的证明

焦半径公式的证明 【寻根】椭圆的根在哪里?自然想到椭圆的定义:到两定点F1,F2(|F1F2|=2c)距离之和为定值2a(2a>2c)的动点轨迹(图形). 这里,从椭圆的“根上”找到了两个参数c和a. 第一个参数c,就确定了椭圆的位置;再加上另一个参数a,就确定了椭圆的形状和大小.比较它们的“身份”来,c比a更“显贵”. 遗憾的是,在椭圆的方程里,却看不到c的踪影,故有人开玩笑地说:椭圆方程有“忘本”之嫌. 为了“正本”,我们回到椭圆的焦点处,寻找c,并寻找关于c的“题根”. 一、用椭圆方程求椭圆的焦点半径公式 数学题的题根不等同数学教学的根基,数学教学的根基是数学概念,如椭圆教学的根基是椭圆的定义.但是在具体数学解题时,不一定每次都是从定义出发,而是从由数学定义引出来的某些已知结论(定理或公式)出发,如解答椭圆问题时,经常从椭圆的方程出发. 【例1】已知点P(x,y)是椭圆上任意一点,F1(-c,0)和F2(c,0)是椭圆的两个焦 点.求证:|PF1|=a+;|PF2|=a -. 【分析】可用距离公式先将|PF1|和|PF2|分别表示出来.然后利用椭圆的方程“消y”即可. 【解答】由两点间距离公式,可知 |PF1|= (1) 从椭圆方程解出 (2) 代(2)于(1)并化简,得

|PF1|=(-a≤x≤a) 同理有|PF2|=(-a≤x≤a) 【说明】通过例1,得出了椭圆的焦半径公式 r1=a+ex r2=a-ex (e=) 从公式看到,椭圆的焦半径的长度是点P(x,y)横坐标的一次函数. r1是x的增函数,r2是x的减函数,它们都有最大值a+c,最小值a-c.从焦半径公式,还可得椭圆的对称性质(关于x,y轴,关于原点). 二、用椭圆的定义求椭圆的焦点半径 用椭圆方程推导焦半径公式,虽然过程简便,但容易使人误解,以为焦半径公式的成立是以椭圆方程为其依赖的.为了看清焦半径公式的基础性,我们考虑从椭圆定义直接导出公式来. 椭圆的焦半径公式,是椭圆“坐标化”后的产物,按椭圆定义,对焦半径直接用距离公式即可. 【例2】P (x,y)是平面上的一点,P到两定点F1(-c,0),F2(c,0)的距离的和为2a(a>c>0).试用x,y的解析式来表示r1=|PF1|和r2=|PF2|. 【分析】问题是求r1=f(x)和r2=g(x).先可视x为参数列出关于r1和r2的方程组,然后从中得出r1和r2. 【解答】依题意,有方程组 ②-③得 代①于④并整理得r1-r2=⑤ 联立①,⑤得 【说明】椭圆的焦半径公式可由椭圆的定义直接导出,对椭圆的方程有自己的独立性.由于公式中含c而无b,其基础性显然. 三、焦半径公式与准线的关系

双曲线弦长公式例题

类型三:综合练习 1.已知中心在原点的双曲线C 的右焦点为,右顶点为 (Ⅰ)求双曲线C 的方程; (Ⅱ)若直线 A 和 B 且(其中为原点),求k 的取值范围。 2.已知直线1+=ax y 与双曲线1322=-y x 交于A 、B 点。 (1)求a 的取值范围;(2)若以A B 为直径的圆过坐标原点,求实数a 的值; 3.(1)椭圆C:122 22=+b y a x (a >b >0)上的点A ),(231到两焦点的距离之和为4,求椭圆的方程; (2)设K 是(1)中椭圆上的动点,F 1是左焦点,求线段F 1K 的中点的轨迹方程; 对接高考(圆锥曲线) 1 、【2015高考新课标1,文5】已知椭圆E 的中心为坐标原点,离心率为 12 ,E 的右焦点与抛物线2:8C y x =的焦点重合,,A B 是C 的准线与E 的两个交点,则AB = ( ) (A ) 3 (B )6 (C )9 (D )12 2、【2015高考四川,文7】过双曲线2 2 13y x -=的右焦点且与x 轴垂直的直线交该双曲线的两条渐近线于A 、B 两点,则|AB |=( ) ()2,0) :=l y kx 2?> OA OB O

(A (B (C )6 (D 3、【2015高考陕西,文3】已知抛物线22(0)y px p =>的准线经过点(1,1)-,则抛物线焦点坐标为( ) A .(1,0)- B .(1,0) C .(0,1)- D .(0,1) 4、【2015高考湖南,文6】若双曲线22 221x y a b -=的一条渐近线经过点(3,-4),则此双曲线的离心率为( ) A B 、54 C 、43 D 、53 5、设是椭圆22 22:1(0)x y E a b a b +=>>的左、右焦点,P 为直线上一点,12PF F ?是底角为的等腰三角形,则E 的离心率为() ()A 12()B 23()C 34 ()D 45 6、 等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B 两点,AB =C 的实轴长为() () A () B () C 4() D 8 7、【2015高考北京,文20】(本小题满分14分)已知椭圆C :2233x y +=,过点()D 1,0且不过点()2,1E 的直线与椭 圆C 交于A , B 两点,直线AE 与直线3x =交于点M . (I )求椭圆C 的离心率; (II )若AB 垂直于x 轴,求直线BM 的斜率; 8、【2015高考陕西,文20】如图,椭圆2222:1(0)x y E a b a b +=>>经过点(0,1)A - . (I)求椭圆E 的方程; 12F F 32a x =30

焦点弦公式及其应用

焦点弦公式及其应用 焦点弦公式及其应用论文关键词:焦点弦公式,应用 在近年来的高考数学试题中,经常出现圆锥曲线焦点弦问题.用常规方法解决这类问题时,由于解题过程复杂,运算量较大,所以很容易出现差错. 为了准确而迅速地解决圆锥曲线焦点弦问题.我们可以利用下面介绍的焦点弦公式. 设圆锥曲线的离心率为,焦准距为,过焦点的弦AB与主轴(即椭圆长轴、双曲线实轴、抛物线对称轴)的夹角为θ,则可以推导出弦AB的长度公式,简称焦点弦公式.特别当离心率时,焦点弦公式还可以化简. 1、当时,圆锥曲线为椭圆, ; 2、当时,圆锥曲线为抛物线, . 图1 下面对焦点弦公式进行证明. 证法一如图1,设椭圆C:焦点为,过焦点F的弦AB的倾斜角为,当时,弦AB在直线L:上.由直线L和椭圆C的方程可得 .

设点A、B的坐标分为和,则.由焦半径公式得弦AB的长度为 ∵焦准距为,∵.当时,公式也成立. 对于双曲线和抛物线用同样的方法可以证明. 证法二设圆锥曲线的离心率为,焦准距为,则极坐标方程为,过焦点的弦AB与x轴的夹角为θ.当时,如图2.∵,. ∵ .即. 当时,同理可以推得. 利用焦点弦公式,可以巧妙地解决与圆锥曲线焦点弦有关的各种问题.现在分别举例如下. 一、在椭圆中的应用 例1 (2008年高考安徽卷文科22题) 已知椭圆,其相应于焦点F(2,0)的准线方程为x=4. (∵)求椭圆C的方程; (∵)已知过点F1(-2,0)倾斜角为的直线交椭圆C于A,B两点.,求证: (∵)过点F1(-2,0)作两条互相垂直的直线分别交椭圆C于点A、B和D、E,求的最小值. 解:(∵)由已知得,又,所以. 故所求椭圆C的方程为. (∵)因为直线AB倾斜角为,,,,。 由焦点弦,可得=得证.

焦半径公式

如图,F 为圆锥曲线的焦点,l 为相应于焦点F 的圆锥曲线的准线,过点F 作准线l 的垂线,垂足为k ,令||FK p =,M 为圆锥曲线上任意一点,MN l ⊥于 N ,FH MN ⊥于H ,设xFM θ∠=,依圆锥曲线的统一定义有 || || MF e MN =⑴,又||||||||||co ||s MN NH MH FK MH p MF θ=±=±=+,代入(1)有 ||cos || MF e p MF θ =+,1|c |os ep MF e θ = -⑵。 若直线MF 交圆锥曲线于另一点M ',同理可证|cos |1ep M F e θ '= +⑶,由此还可推出过焦点F 的弦长为222||||||1cos 1cos 1cos ep ep ep MM MF M F e e e θθθ''=+=+= -+-⑷,两焦半径的比为||1cos ||1cos MF e M F e θθ+='-⑸。 例1:过抛物线2(0)y ax a =>的焦点F ,作一直线交抛物线于P 、Q 两点,若线段PF 与FQ 的长分别 为p 、q ,则11 p q +=4a 。 例2:已知椭圆长轴长为6, 焦距为过椭圆的左焦点1F 作直线交椭圆于M 、 N 两点,设21(0)F F M ααπ∠=≤≤,当α=566 ππ 或时,||MN 等于椭圆短轴长。 例3:过双曲线2 2 12 y x -=的右焦点作直线l 交双曲线于A 、B 两点,若实数λ使 得||AB λ=的直线l 恰有3条,则λ= 4 。 例4:过椭圆的一个焦点作一条与长轴夹角为30?的弦AB ,若||AB 恰好等于焦点到准线距离的2倍, 则此椭圆的离心率为2 3 。 例5:1F 、2F 分别是椭圆2212 x y +=的左、右焦点,过1F 作倾斜角为4π 的直线与椭圆交于P 、Q 两点, 求2F PQ 的面积。 解:首先求出边PQ 的长度,它是过焦点1F 的弦,其倾斜角 4π ,2a =,1b =,1c =, 故2|2 |PQ == - 而2F 到直线PQ 的距离为12sin ||4 F F π =2F PQ 的面积为14 23。 例6:过椭圆22 1 3x y +=的右焦点2F 作直线l 交椭圆于A 、B 两点,若22||:|2|AF BF =,则左焦点1F 到 直线 l 的距离d 。 例7:过双曲线222222b x a y a b -= P 、Q 两点,若OP OQ ⊥,||4PQ =,则双曲线的方程为2233x y -=。 解:设直线PQ 的倾斜角为θ,则tan θ= 23 sin 8 θ=,又设直线PQ 的方程为)y x c =-,11() ,P x y ,22(),Q x y ,OP OQ ⊥,1212 0x x y y ∴+=,即1212 0)()x x x c x c --=,化简得2121238()30c x x x x c +--=⑴,将直线方程代入双曲线方程,整理得22222222()()356350a b x a cx a c a b --++=,将上述方程的根与系数的关系代入⑴化简整理得2 2 3b a =⑵,由弦长公式④得2 22222 24|||/8| 5343ab b a ab b c =?-=-⑶,将⑵代入⑶化简,即得21a =,从而23b =,故所求双曲线方程为2233x y -=。

圆锥曲线的焦半径(角度式)

圆锥曲线的焦半径——角度式 一 椭圆的焦半径 设P 是椭圆22 221x y a b +=(0a b >>)上任意一点,F 为它的一个焦点,则 PFO θ∠=,则2 cos b PF a c θ = - 上述公式定义PFO θ∠=,P 是椭圆上的点,F 是焦点,O 为原点,主要优点是焦点在左右上下均适用,无需再单独讨论 证明:设PF m =,另一个焦点为F ',则PF FF FP ''=- 两边平方得:2 2 2 2PF FF FF FP FP '''=-?+ 即:222(2)44cos a m c cm m θ-=++ 得:2 cos b PF a c θ =- 1 过椭圆22 143 x y +=的右焦点F 任作一直线交椭圆于A 、B 两点,若AF BF += AF BF λ,则λ的值为 2 (2002全国理)设椭圆22 221x y a b +=(0a b >>)的一个焦点F ,过F 作一条直 线交椭圆于P 、Q 两点,求证:11 PF QF +为定值,并求这个定值 结论:椭圆的焦点弦所在的焦半径的倒数和为定值,即 2112a AF BF b +=

3(2007重庆理)在椭圆22 221x y a b +=(0a b >>)上任取三个不同的点1P ,2P ,3P , 使122223321PF P P F P P F P ∠=∠=∠,2F 为右焦点,证明12 2232111 PF P F P F ++为定值,并求此定值 结论:若过F 作n 条夹角相等的射线交椭圆于1P ,2P , ,n P ,则 21 211 1n na PF P F P F b +++ = 4 F 是椭圆2 212 x y +=的右焦点,由F 引出两条相互垂直的直线a ,b ,直线a 与 椭圆交于点A 、C ,直线b 与椭圆交于B 、D ,若1FA r =,2FB r =, 3FC r =, 4 FD r =,则下列结论一定成立的是( ) A 1234 r r r r +++=1234r r r r +++=C 1234 1111r r r r +++=12341111 r r r r +++=5 F 是椭圆22 143 x y +=的右焦点,过点F 作一条与坐标轴不垂直的直线交椭圆于 A 、 B ,线段AB 的中垂线l 交x 轴于点M ,则AB FM 的值为 6(2010辽宁理)设椭圆C :22 221x y a b +=(0a b >>)的左焦点为F ,过点F 的 直线与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60°,2AF FB =

圆锥曲线的焦点弦问题(特征梯形)

课题:探究抛物线中的焦点弦问题 【学习目标】: 探讨解决抛物线中有关焦点弦问题的思想方法. 【问题探究】: 抛物线定义:平面内与一个定点F 的距离和一条定直线l 距离相等的点的轨迹. 问题一:已知过抛物线2 2(0)y px p =>的焦点F 的直线 交抛物线于1122(,),(,)A x y B x y 两点,则?AB = (1):12AB x x p =++ (2):m i n AB 问题二、已知过抛物线22(0)y px p =>的焦点F 的直线 交抛物线于,A B 两点,' ',A B 为,A B 在准线上的射影, 则' ' ?A FB ∠= (3):' ' 90A FB ∠= (4):以Q 为圆心,以'' A B 为直径的圆切AB 于F 点 (x 1,y 1) (x 2,y 2) x y B′ A′ (x 1,y 1) (x 2,y 2) x y F′B′ A′Q

问题三、已知过抛物线2 2(0)y px p =>的焦点F 的直线 交抛物线于,A B 两点,'' ,A B 为,A B 在准线上的射影, 则以,A B 为直径的圆与准线的位置关系? (5):以P 为圆心,以AB 为直径的圆切''A B 于Q 点 (6):90AQB ∠ = 问题四、已知过抛物线2 2(0)y px p =>的焦点F 的直线 交抛物线于1122(,),(,)A x y B x y 两点,则1212?,?x x y y == (7):22 121 2,4 p x x yy p ==- 问题五、已知过抛物线22(0)y px p =>的焦点F 的直线 交抛物线于1122(,),(,)A x y B x y 两点,则11 ?AF BF += (8):112A F B F p += (x 1,y 1) (x 2,y 2) x y B′ A′Q P (x 1,y 1) (x 2,y 2) x y (x 1,y 1) (x 2,y 2) x y

双曲线的弦长公式与面积(不过焦点的弦)

第 1 页 共 1 页 双曲线的弦长公式与面积(不过焦点的弦) 双曲线 ()0,01- 2 22 2>>=b a b y a x 与直线m kx y l +=:相交于AB 两点,求AB 的弦长. 设 设()()2211,,,y x B y x A 则()()()2122122 1221241x x x x k y y x x AB -++=-+-= 将 m kx y +=代 入 1 - 2 22 2=b y a x 得: ( ) ??? ????---=?-=+∴=-2222 222212222212 22222222-20-2--a k b b a m a x x a k b km a x x b a m a kmx a x a k b () 2 2 2 2 2222 212 212 2141k a b m a k b ab k x x x x k AB -+-+=-++==∴. 双曲线与直线交点的判别式:() 2222224m a k b b a +-=?用来判断是否有两个交点问题. 面积问题:双曲线与直线m kx y l +=:相交与两点,()00,y x C 为AB 外任意一点,求ABC S ?.设C 到l 的距离为d ,则222222200200-1 21 21a k b m a k b ab m y kx k m y kx AB d AB S ABC -+?+-=++-==△. 直线与双曲线交点问题: (1)直线m kx y +=与双曲线()0,01- 2 2 2 2 >>=b a b y a x 有两个交点时, ( )04222222>+-=?m a k b b a ;() 04222222=+-=?m a k b b a ,有仅有一个交点; ()042 222 2 2<+-=?m a k b b a ,没有交点. (2)过点()00,y x P 的直线与双曲线有一个交点情况需要分类讨论: ①当a b x y ±=00时,点P 在渐近线上,当a x ±=0时,有两条直线(一条切线,一条与另一条 渐近线平行的直线);②当a x ±≠0时,且在双曲线外部,有三条直线(两条切线,一条与另一条渐近线平行的直线); ③当()0,01-220220>>>b a b y a x 时(点P 在双曲线内部),一定有交点,当直线斜率a b k ±=时, 有一交点,当直线斜率a b k ±≠时,有两个交点.

圆锥曲线的极坐标方程焦半径公式焦点弦公式

圆锥曲线的极坐标方程 极坐标处理二次曲线问题教案 知识点精析 椭圆、双曲线、抛物线可以统一定义为:与一个定点(焦点)的距离和一条定直线(准线)的距离的比等于常数e 的点的轨迹. 以椭圆的左焦点(双曲线的右焦点、抛物线的焦点)为极点,过点F 作相应准线的垂线,垂足为K ,以FK 的反向延长线为极轴建立极坐标系. 椭圆、双曲线、抛物线统一的极坐标方程为: θ ρcos 1e ep -=. 其中p 是定点F 到定直线的距离,p >0 . 当0<e <1时,方程表示椭圆; 当e >1时,方程表示双曲线,若ρ>0,方程只表示双曲线右支,若允许ρ<0,方程就表示整个双曲线; 当e=1时,方程表示开口向右的抛物线. 引论(1)若 1+cos ep e ρθ = 则0<e <1当时,方程表示极点在右焦点上的椭圆 当e=1时时,方程表示开口向左的抛物线 当e >1方程表示极点在左焦点上的双曲线 (2 )若1-sin ep e ρθ = 当 0<e <1时,方程表示极点在下焦点的椭圆 当e=1时,方程表示开口向上的抛物线

当 e >1时!方程表示极点在上焦点的双曲线 (3)1+sin ep e ρθ = 当 0<e <1时,方程表示极点在上焦点的椭圆 当e=1时,方程表示开口向下的抛物线 当 e >1时!方程表示极点在下焦点的双曲线 例题选编 (1)二次曲线基本量之间的互求 例1.确定方程10 53cos ρθ = -表示曲线的离心率、焦距、长短轴长。 解法一:31025333 1cos 1cos 55 ρθθ? ==-- 31053 e P ∴==, 2332555851015103383c a c a a b a c c c ???===??????∴????????-===?????? 2225155( )()882 b ∴=-= 31554e ∴=方程表示椭圆的离心率,焦距,25 54 长轴长,短轴长 解法二:根据极坐标的定义,对右顶点对应点的极角为0,因此只需 令0θ=,右顶点的极径,同理可得左顶点的的极径。根据左右顶点极径之和等于长轴长,便可以求出长轴。 点睛,解法一采用待定系数法比较常规,解法二利用极坐标的定义, 简洁而有力,充分体现了极坐标处理问题的优势。下面的弦长问

高考数学竞赛圆锥曲线中与焦点弦相关的问题

与焦点弦相关的问题 8.椭圆、双曲线、抛物线的焦点弦性质(定值1) 问题探究8 已知椭圆22 143 x y +=,1F 为椭圆之左焦点,过点1F 的直线交椭圆于A ,B 两点,是否存在实常数λ,使AB FA FB λ=?恒成立.并由此求∣A B∣的最小值.(借用柯西不等式) 实验成果 动态课件 椭圆的焦点弦的两个焦半径倒数之和为常数 11112 ||||AF BF ep += 备用课件 双曲线的焦点弦的两个焦半径倒数之和为常数 AB 在同支 11112 ||||AF BF ep += AB 在异支 11112 | |||||AF BF ep -= 备用课件 抛物线的焦点弦的两个焦半径倒数之和为常数 112 ||||AF BF ep += 备用课件

9.椭圆、双曲线、抛物线的正交焦点弦性质(定值2) 问题探究9 已知椭圆22 143 x y +=,1F 为椭圆之左焦点,过点1F 的直线12,l l 分别交椭圆于A ,B 两点和C,D两点,且12l l ⊥,是否存在实常数λ,使AB CD AB CD λ+=?恒成立.并由此求四边 形AB CD面积的最小值和最大值. 实验成果 动态课件 椭圆互相垂直的焦点弦倒数之和为常数 ep e CD AB 22||1||12 -= + 备用课件 双曲线互相垂直的焦点弦倒数之和为常数 ep e CD AB 2| 2|||1||12-=+ 备用课件 抛物线互相垂直的焦点弦倒数之和为常数 ep e CD AB 22||1||12 -= + 备用课件

10.椭圆、双曲线、抛物线的焦点弦与其中垂线性质(定值3) 问题探究10 已知椭圆22 143 x y +=,1F 为椭圆之左焦点,过点1F 的直线交椭圆于A,B 两点,AB 中垂线交x 轴于点D ,是否存在实常数λ,使1AB F D λ=恒成立? 实验成果 动态课件 设椭圆焦点弦AB 的中垂线交长 轴于点D ,则∣D F∣与∣AB ∣之比为离心率的一半(F 为焦点) 备用课件 设双曲线焦点弦AB 的中垂线交焦点所在直线于点D ,则∣D F∣与∣AB ∣之比为离心率的一半(F 为焦点) 备用课件 设抛物线焦点弦AB 的中垂线与对称轴交于点D ,则∣DF ∣与 ∣AB ∣之比为离心率的一半(F 为焦点) 备用课件

相关文档
最新文档