水泥试验检测计算(例题)

水泥试验检测计算(例题)
水泥试验检测计算(例题)

一、抗压强度计算

1、甲组水泥抗压强度破坏荷重为93.6 94.0 97.5 96.5 96.6 94.5(kN)求其抗压强度值。

答: 六个试块的单块抗压强度值分别为:

X1=93.6/1.6= 58.5 MPa

X2=94.0/1.6= 58.8 MPa

2、(kN)

X3=67.3/1.6= 42.1 MPa

X4=67.5/1.6= 42.2 MPa

X5=66.0/1.6= 41.2 MPa

X6=56.7/1.6= 35.4 MPa

六个单块的平均值X=(40.3+40.4+42.1+42.2+41.2+35.4)/6=40.3 MPa

∵第六块强度值35.4MPa不在(40.3×0.9=36.3MPa)~(40.3×1.1=44.3 MPa)范围内∴必须剔除35.4 MPa的数据,取剩下5个取平均值

最终平均值X=(40.3+40.4+42.1+42.2+41.2)/5=41.2 MPa

∴其抗压强度值为41.2MPa

二、抗折强度

1、一组水泥抗折强度数据为5.7, 4.7, 4.8(MPa),求其抗折强度

答:

1

S=40mm

∴P

1

答:(C1-A1)=18.0-11.0=7.0mm

(C2-A2)=13.0-10.5=2.5mm

平均值=[(C1-A1)+(C2-A2)]/2=(7.0+2.5)/2=4.8mm

差值=7.0-2.5=4.5mm

∵差值超过4.0mm(新规不作要求)

∴应用同一样品立即重做一次试验。

五、细度

1、某水泥样品用负压筛法筛析,取样量为25.00g, 筛余物的质量为1.40g,所用试验筛的修正系数为1.05. 求该水泥的细度.

答: F=(Rs/H)·100=(1.40/25.00)×100=5.6 %

Fc=F·C=5.6×1.05=5.9 %

2、

答: F t1

F t2

1 1.898 cm3,Ss

ρ=

验后,所得的检测数据如下:第一次透气试验T1=48.0s,t1=20.0℃,第二次透气试验T2=48.4s,t2=20.0℃,求该水泥的比表面积S。(在20.0℃时,空气粘度η=0.0001808 Pa·S;在26.0℃时,空气粘度η=0.0001837 Pa·S)

m=ρV(1-ε)=3.03×1.898×(1-0.53)=2.703 g

334650.0)53.01(9.600001808.003.353.0)5.01(0.480001837.017.33080331=?-????-????=

S cm 2/g 336050.0)53.01(9.600001808.003.353.0)5.01(4.480001837.017.3308033

2=?-????-????=S cm 2

/g S=( S 1+ S 2)/2=3360 cm 2/g=336 m 2/kg

2、检测一组硅酸盐水泥的比表面积,已知所用勃氏仪的试料层体积V=1.890 cm 3,Ss =3080cm 2/g, ρs =3.17g/cm 3,T s =60.9s, εs=0.5,t s =26.0℃,所测水泥的密度ρ

=T2Pa 1S 2=S

水泥或石灰稳定材料中水泥或石灰剂量测定方法

T0809-2009水泥或石灰稳定材料中水泥或石灰剂量测定方法 (EDTA滴定法) 1.1 本方法适用于在工地快速测定水泥和石灰稳定材料中水泥和石灰的剂量,并可用于检查现场拌和和摊铺的均匀性。 1.2 本办法适用于在水泥终凝之前的水泥含量测定,现场土样的石灰剂量应在路拌后尽快测试,否,则需要用相应龄期的 EDTA 二钠标准溶液消耗量的标准曲线确定。 1.3 本方法也可以用来测定水泥和石灰综合稳定材料中结合料的剂量。 2.1 滴定管〈酸式) :50mL, 1 支。 2.2 漓定台:1 个。 2.3 滴定管夹::1个。 2.4 大肚移液管:10mL,50mL , 10 支。 2.5 锥形瓶(即三角瓶) :200mL,20 个。 2. 6 烧杯:2000mL(或1OOOmL),l 只;300mL,10 只。 2. 7 容量瓶:1000mL,1个 2. 8 搪瓷杯:容量大于1200mL,10只。 2. 9 不锈钢棒(或粗玻璃棒)10根。 2.10 量筒:lOOmL 和 5mL ,各 1 只,50mL,2只 2.11 棕色广口瓶:60ml, 1 只〈装钙红指示剂)。 2.12电子天平:量称不小于1500g,感量0.01g。 2.13 秒表:1 只。 2.14 表面皿:9cm , 10 个。 2.15 研钵:φ12-13cm, 1 个。 2.16 洗耳球:1个。 2.17 精密试纸:pH12-14 2.18 聚乙烯桶:20L (装蒸馏水和氯化铵及 EDTA 二钠标准溶液)3个, 5L,大口桶10个。 2.19 毛刷、去污粉、吸水管、塑料勺、特种铅笔,厘米纸 2.20 瓶(塑料) :500mL, 1 只。 3.1 0.1mol/m3乙二胺四乙酸二钠(EDTA二钠标准溶液(简称 EDTA 二钠标准溶液):准确称取 EDTA 二钠(分析纯)37. 23g ,用 40 -50℃的二氧化碳蒸馏水溶解,待全部溶解并冷却至室温后,定容至 IOOOmL。 3.2 10%氯化铵(NH4Cl)溶液:将500g氯化铵(分析纯或化学纯)放在10L的聚乙烯桶内,加蒸馏水4500mL,充分振荡,使氯化铵完全溶解。也可以分批在1000mL的烧杯内配制,然后倒入塑料桶内摇匀。 3.3 1.8%氢氧化钠(内含三乙醇胺)溶液:用电子天平称18g氢氧化钠(NaOH)(分析纯),放入洁净干燥的1000mL烧杯中,加1000mL蒸馏水使其全部溶解,待溶液冷却至室温后,加入2mL三乙醇胺(分析纯),搅拌均匀后储于塑料桶中。 3.4 钙红指示剂:将0.2g钙试剂羧酸钠(分子式C21H13N2NaO7S,分子量460.39)与20g预先在105℃烘箱中烘1h的硫酸钾混合。一起放入研钵中,研成极细粉末,储于棕色广口瓶中,以防吸潮。

配合比计算实例

配合比计算实例

混凝土配合比计算 进行混凝土配合比计算时,其计算公式和有关参数表格中的数值均系以干燥状态骨料为基准。当以饱和面干骨料为基准进行计算时,则应做相应的修正。(干燥状态骨料系指含水率小于0.5%的细骨料或含水率小于0.2%粗骨料)配合比设计需要的基本参数 1、混凝土的强度要求――――强度等级 2、所设计混凝土的稠度要求―――坍落度 3、所使用的水泥品种、强度等级及其质量水平,即强 度等级富余系数 4、粗细集料的品种、最大粒级、细度以及级配情况 5、可能掺用的外加剂或掺合料 配合比计算步骤: 1 根据设计强度等级计算混凝土的配制强度: f cu,o≥f cu,k+1.645σ 2 根据水泥强度、掺合料的种类和掺量及石子种类计算 W/B = αa·f b/(f cu,o+αa·βb·f b) 3 根据要求坍落度、不同种类石子粒径和外加剂的减水

理论用水量:查表 或m'w0=0.25(H -90)+坍落度为90mm 时相应石子粒 径的用水量 H ——设计坍落度(mm )。 掺外加剂时的用水量: m w0 = m ’w0(1-β) β——外加剂的减水率。 4 根据掺外加剂时的用水量和经计算并选定的水胶比计算胶凝材料总量; 5 根据胶凝材料总量和外加剂的掺量计算外加剂用量; 6 根据胶凝材料总量和掺合料掺量计算水泥用量; 7 计算砂、石用量 1) 确定混凝土拌和物的容重: m fo +m co +m go +m so +m wo =m cp 2) 计算砂石总量; 3) βs =(H -60)0.05+相应水灰比和石子粒径对应的砂率 4)根据砂石总量和选定的砂率值计算砂用量、石用量; 混凝土配合比的试配: 至少采用三个不同的配合比: 1)、基准配合比; B W m m wo bo =so go so s m m m += β

机械设计基础公式计算例题

一、计算图所示振动式输送机的自由度。 解:原动构件1绕A 轴转动、通过相互铰接的运动构件2、3、4带动滑块5作往复直线移动。构件2、3和4在C 处构成复合铰链。此机构共有5个运动构件、6个转动副、1个移动副,即n =5,l p =7,h p =0。则该机构的自由度为 3-2) 3-3) 同理,当设a >d 时,亦可得出 得c d ≤b d ≤a d ≤ 分析以上诸式,即可得出铰链四杆机构有曲柄的条件为:

(1)连架杆和机架中必有一杆是最短杆。 (2)最短杆与最长杆长度之和不大于其他两杆长度之和。 上述两个条件必须同时满足,否则机构中便不可能存在曲柄,因而只能是双摇杆机构。 通常可用以下方法来判别铰链四杆机构的基本类型: 四、从动件位移s与凸轮转角?之间的关系可用图表示,它称为位移曲线(也称? S曲线) -位移曲线直观地表示了从动件的位移变化规律,它是凸轮轮廓设计的依据 凸轮与从动件的运动关系 五、凸轮等速运动规律

???? ? ?? ?? == ====00 0dt dv a h S h v v ? ?ω?常数从动件等速运动的运动参数表达式为 等速运动规律运动曲线 等速运动位移曲线的修正 ,两轮的中心距α=630mm ,主动带轮转速1n 1 450 r/min ,能传递的最大功率P=10kW 。试求:V 带中各应力,并画出各应力1σ、σ2、σb1、σb2及σc 的分布图。 附:V 带的弹性模量E=130~200MPa ;V 带的质量q=0.8kg/m ;带与带轮间的当量摩擦系数fv=0.51;B 型带的截面积A=138mm2;B 型带的高度h=10.5mm 。

混凝土搅拌站水泥罐基础设计

100t水泥罐基础设计计算书一、工程概况 某大型工程混凝土搅拌站采用100t水泥罐,水泥罐直径,顶面高度20m。水泥罐基础采用C25钢筋混凝土整体式扩大基础,基础断面尺寸为×+×。 二、设计依据: 1、《建筑结构荷载规范(2006版)》(GB50009-2001) 2、《混凝土结构设计规范》(GB50010-2010) 3、《建筑地基基础设计规范》(GB50007-2011) 4、《钢结构设计规范》(GB50017-2003)。 三、荷载计算 1、水泥罐自重:8t;满仓时水泥重量为100t。 2、风荷载计算: 宜昌市50年一遇基本风压:ω0=㎡, 风荷载标准值: ωk=βzμsμz ω0 其中:βz=,μz=,μs=,则: ωk=βzμsμz ω0=×××= kN/㎡ 四、水泥罐基础计算 1、地基承载力验算 考虑水泥罐满仓时自重荷载和风荷载作用。 水泥罐满仓时自重荷载:G k =1000+80=1080kN

混凝土基础自重荷载:G ck=(××+××)×24=407kN 风荷载:风荷载作用点高度离地面,罐身高度15m,直径。 F wk=×15×= 风荷载对基底产生弯矩:M wk=×(+2)=·m 基础底面最大应力: p k,max= G ck+G k bh+ M wk W= 错误!+ 错误!=。 2、基础配筋验算 (1) 基础配筋验算 混凝土基础底部配置Φ16钢筋网片,钢筋间距250mm,按照简支梁验算。 混凝土基础承受弯矩:M max=×(1 8×207××=362kN 按照单筋梁验算: αs= M max f c bh02= 362×106 ×3200×8502= ξ=1-1-2αs=1-错误!=<ξb= A s=f c bξh0 f y= 错误!=1403mm 2 在基础顶部及底部均配筋13Φ16,A s 实=13×201=2613mm 2 > A s=1403mm2,基础配筋满足要求。 (2) 基础顶部承压验算 考虑水泥罐满仓时自重荷载和风荷载作用。 迎风面立柱柱脚受力:

普通混凝土配合比设计试配与确定继续教育自测题答案

普通混凝土配合比设计试配与确定继续教育自测题答案

普通混凝土配合比设计、试配与确定 第1题 已知水胶比为0.40,查表得到单位用水量为190kg,采用减水 率为20%的减水剂,试计算每方混凝土中胶凝材料用量 kg A.425 B.340 C.380 D.450 答案:C 您的答案:C 题目分数:3 此题得分:3.0 批注: 第2题 普通混凝土的容重一般为 _____ kg/m3 A.2200~2400 B.2300~2500 C.2400~2500 D.2350~2450 答案:D 您的答案:D 题目分数:3 此题得分:3.0 批注: 第3题 已知水胶比为0.35,单位用水量为175kg,砂率为40%,假定每立方米混凝土质量为2400kg,试计算每方混凝土中砂子用量 kg A.438 B.690 C.779 D.1035 答案:B 您的答案:B 题目分数:3 此题得分:3.0 批注: 第4题 某材料试验室有一张混凝土用量配方,数字清晰为 1:0.61:2.50:4.45,而文字模糊,下列哪种经验描述是正确 的。 A.水:水泥:砂:石 B.水泥:水:砂:石

C.砂:水泥:水:石 D.水泥:砂:水:石 答案:B 您的答案:B 题目分数:3 此题得分:3.0 批注: 第5题 预设计 C30 普通混凝土,其试配强度为() MPa A.38.2 B.43.2 C.30 D.40 答案:A 您的答案:A 题目分数:3 此题得分:3.0 批注: 第6题 关于水灰比对混凝土拌合物特性的影响,说法不正确的是( ) A.水灰比越大,粘聚性越差 B.水灰比越小,保水性越好 C.水灰比过大会产生离析现象 D.水灰比越大,坍落度越小 答案:D 您的答案:D 题目分数:3 此题得分:3.0 批注: 第7题 要从控制原材料的的质量上来确保混凝土的强度,以下说法不正确的是( )。 A.尽量使用新出厂的水泥 B.选用含泥量少、级配良好的骨料 C.对水质没有要求 D.合理选择、使用减水剂 答案:C 您的答案:C 题目分数:3 此题得分:3.0 批注:

机械设计基础习题..

《机械设计基础》习题 机械设计部分 目录 8 机械零件设计概论 9 联接 10 齿轮传动 11 蜗杆传动 12 带传动 13 链传动 14 轴 15滑动轴承 16 滚动轴承 17 联轴器、离合器及制动器 18 弹簧 19机械传动系统设计 8机械零件设计概论 思考题 8-1 机械零件设计的基本要求是什么? 8-2 什么叫失效?机械零件的主要失效形式有几种?各举一例说明。 8-3 什么是设计准则?设计准则的通式是什么? 8-4 复习材料及热处理问题。复习公差与配合问题。 8-5 什么是零件的工艺性问题?主要包含哪几方面的问题? 8-6 什么是变应力的循环特性?对称循环应力和脉动循环应力的循环特性为多少?8-7 什么是疲劳强度问题?如何确定疲劳极限和安全系数? 8-8 主要的摩擦状态有哪四种? 8-9 磨损过程分几个阶段?常见的磨损有哪几种? 8-10 常见的润滑油加入方法有哪种?

9 联 接 思 考 题 9-1 螺纹的主要参数有哪些?螺距与导程有何不同?螺纹升角与哪些参数有关? 9-2 为什么三角形螺纹多用于联接,而矩形螺纹、梯形螺纹和锯齿形螺纹多用于传动?为 什么多线螺纹主要用于传动? 9-3 螺纹副的自锁条件是什么?理由是什么? 9-4 试说明螺纹联接的主要类型和特点。 9-5 螺纹联接为什么要预紧?预紧力如何控制? 9-6 螺纹联接为什么要防松?常见的防松方法有哪些? 9-7 在紧螺栓联接强度计算中,为何要把螺栓所受的载荷增加30%? 9-8 试分析比较普通螺栓联接和铰制孔螺栓联接的特点、失效形式和设计准则。 9-9 简述受轴向工作载荷紧螺栓联接的预紧力和残余预紧力的区别,并说明螺栓工作时所 受的总拉力为什么不等于预紧力和工作载荷之和。 9-10 简述滑动螺旋传动的主要特点及其应用。 9-11 平键联接有哪些失效形式?普通平键的截面尺寸和长度如何确定? 9-12 为什么采用两个平键时,一般布置在沿周向相隔180°的位置,采用两个楔键时,相 隔90°~120°,而采用两个半圆键时,却布置在轴的同一母线上? 9-13 试比较平键和花键的相同点和不同点。 9-14 简述销联接、焊接、粘接、过盈联接、弹性环联接和成形联接的主要特点和应用场合。 习 题 9-1 试证明具有自锁性螺旋传动的效率恒小于50%。 9-2 试计算M24、M24×1.5螺纹的升角,并指出哪种螺纹的自锁性好。 9-3 图示为一升降机构,承受载荷F =150 kN ,采用梯形螺纹,d = 60 mm ,d 2 = 56 mm ,P = 8 mm ,线数n = 3。支撑面采用推力球轴承,升降台的上下移动处采用导向滚轮,它们的摩擦阻力近似为零。试计算: (1)工作台稳定上升时的效率(螺纹副当量摩擦系数为0.10)。 (2)稳定上升时加于螺杆上的力矩。 (3)若工作台以720 mm/min 的速度上升,试按稳定运转条件求螺杆所需转速和功率。 (4)欲使工作台在载荷F 作用下等速下降,是否需要制动装置?加于螺杆上的制动力矩是多少? 题9-3图 题9-4图 题9-5图 9-4 图示起重吊 钩最大起重 量F = 50 kN ,吊钩材 料为35钢。牵曳力F R F F 导向滚轮 齿轮 制动轮 推力球轴承

水泥罐基础验算

水泥罐基础验算 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

集料拌和站基础及立柱设计计算书 汉十铁路客运专线HSSG-6标段一工区砼拌和站设置两台HZS-180型拌合机,每台拌合机配备6个罐,共4个水泥罐,每个拌和站的两个水泥罐基础联体设置。 一、设计资料 (1)每个水泥罐自重8t,装满水泥重100t,合计108t;水泥罐直径。水泥罐基础采用C25钢筋砼条形承台基础满足两个水泥罐同时安装。6个罐放置在圆环形基础上,圆环内径7米,外径米,基础高,外露。基础采用φ18@300mm×300mm上下两层钢筋网片,架立筋采用φ18@450mm×450mm钢筋双排双向布置,基础顶预埋地脚钢板与水泥罐支腿满焊。 (2)水泥罐总高米,罐高米,罐径米,柱高5m,柱子为4根正方形布置,柱子间距为米,柱子材料为厚度8mm的钢管柱。 施工前先对地基进行处理,处理后现场检测,测得地基承载力超过350kpa。 二、水泥罐基础计算书 1、计算基本参数 水泥罐自重8t,装满水泥共重108t。 水泥罐总高米,罐高米,柱高5m。 2、地基承载力计算 水泥罐基础要求的承载力

1)砼基础面积:S=; 砼体积:V=×=; 底座自重:Gd=×2500×=(砼自重按2500kg/m3); 2)装满水泥的水泥罐自重:Gsz=6×108×=; 3)总自重为:Gz=Gd+Gsz=+=; 4)基底承载力:P=Gz/S==102kpa; 5) 基底经处理后检测的承载力P’≥140kpa; 6) P≤P’ 经验算,地基承载力满足要求。 水泥罐基础满足地基承载力要求,则主机也同时满足承载力要求。 3、抗倾覆计算 抗倾覆计算以空罐计算,空罐计算满足则抗倾覆满足。 由于水泥搅拌机属于受风敏感且筒体高度较大,为确保筒体和施工人员的安全,根据《高耸结构设计规范》(GBJ135-2006以下简称高规),应考虑风荷载对结构的影响。 1)风荷载强度计算:跟全国风压表,枣阳地区最大风荷载取值为㎡。 2)风力计算: 平均作用高度为:H=2+5=; 单根水泥罐的风力大小为F=A×W=××=; 1个水泥罐的叠加倾覆力矩

施工配合比计算例题

【例】某室内现浇钢筋混凝土梁,混凝土设计强度等级为C25,施工要求坍落度为35~50mm ,混凝土为机械搅拌和机械振捣,该施工单位无历史统计资料。采用原材料情况如下: 水泥:强度等级42.5的普通水泥,水泥强度等级值的富余系数为1.13,密度ρc=3.1g/cm3; 中砂:级配合格,细度模数2.7,表观密度ρos=2650kg/m3,堆积密度为ρos ′=1450 kg/m3; 碎石:级配合格,最大粒径为40mm ,表观密度ρog=2700kg/m3,堆积密度为ρog ′=1520 kg/m3, 水:自来水。 试求:混凝土的初步配合比。 初步配合比 1. 确定配制强度(fcu,o) )(2.330.5645.125645.1,,MPa f f k cu o cu =?+=+=σ 2. 确定水灰比(W/C) 6.00 .4807.046.02.330.4846.0=??+?=+=ce b a cuo ce a f f f c w ααα MPa f f g ce c ce 0.485.4213.1,=?=?=γ 3. 确定用水量(mwo) 查表,则1m3混凝土的用水量可选用mwo=175㎏。 4. 确定水泥用量(mco) )(27364 .0175)(00kg C W m m w c === 5. 确定砂率s β 由W/C=0.64,碎石最大粒径为40mm ,查表5—25,取合理 砂率为36%。 6. 计算砂石用量(mso ,mgo) 1)体积法 1101.02700 2650100017531002730=?++++go s m m 36.0=+go so so m m m 解得:mso=702㎏,mgo=1248㎏。 2)质量法 假定混凝土拌合物的表观密度为2400㎏/m3,则: mso+mgo=2400-175-273 36.0=+go so so m m m 解得:mso=702㎏,mgo=1250㎏ 初步配合比为:mwo=175㎏,mco=273㎏, mso=702㎏,mgo=1250㎏。

100t水泥罐基础设计计算

3.8m*3.8m*120k n/m 2 =1732.8kn J01 地面标高3.5m ① 素填土 0.88m J02 地面标高3.5m ① 素填土 0.44m J03 地面标高3.5m ① 素填土 0.41m ③ 淤泥质粉质粘土 ③ 淤泥质粉质粘土 ③ 淤泥质粉质粘土 -5.79m 粉土 loot 水泥罐基础设计计算 1、 水泥罐自重 G1: 200kn (20t)估 2、 水泥自重 G2: 1000kn (100t) 3、 基础承台自重 G3: 3.8m*3.8m*1.2m*26=451kn 4、荷载组合:(G1+G2+G3)*1.2 (分项系数)=1981.2kn 、受力分析 1、承台地基承载力:按12t/m 2估算,承台地基承载力为 2、桩承载力需达到 1981.2k n-1732.8k n=248.4kn 三、单桩承载力计算 1、土层极限侧摩阻力系数 -1.72m -4.76m ④ 粉土 粉土 根据上述柱状图,打入桩范围内平均层厚:素填土 2.92m 、淤泥质粉质粘土 4.67m 、 荷载

粉土1.41m。打入桩的极限侧摩阻力标准值为:20Kpa、14Kpa、30Kpa,故打入桩桩身范围内(9m) 土层平均极限侧摩阻力为:(2.92m*20+4.67m*14+1.41m*30) /9m=18.45Kpa 2、单根桩承载力计算 单桩的容许承载力为:[P]=1/1.5*( U* a *H* T)(不计桩端承载力) 式中:[P]------沉桩容许承载力 U ----- 桩周长, a——震动沉桩影响系数,锤击沉桩取1.0 H——桩入土深度,9.0m T -----桩侧土的极限摩阻力,取18.45Kpa; ①如采用直径 273钢管桩,则单桩的 容许承载力为:[P]=1/1.5* ( U* a *H* T) =1/1.5*0.273*3.14*1.0*9*18.45=94.89kn,需打入的根数为248.4kn/94.89kn=2.61 根,取3 根, 布置如图: 3.8m ②如采用直径 630钢管桩,则单桩的 容许承载力为:[P]=1/1.5* ( U* a *H* T)

水泥稳定材料水泥含量测定-EDTA滴定法

JTG E51-2009(T 0809-2009) 1、目的和适用范围 (1)本实验方法适用于在工地快速测定水泥和石灰稳定土中水泥和石灰的剂量,并可用以检查拌和的均匀性。用于稳定土可以是细粒土,也可以是中粒土和粗粒土。工地水泥和石灰稳定土含水量的少量变化(±2%),实际上不影响测定结果。用本方法进行一次剂量测定,只需10min左右。 (2)本方法也可以用来测定水泥和石灰稳定土中结合料的剂量。 3. 试剂 (1)0.1mol/L乙二胺四乙酸二钠(简称EDTA二钠)标准液;准确称取EDTA二钠(分析纯)37.226g,用微热的无二氧化蒸馏水溶解,待全部溶解并冷却至室温,定容至1000mL。 (2)10%氯化铵溶液:将500g氯化铵(分析纯或化学纯)放在10L聚乙烯桶内,加蒸馏水4500mL,充分振荡,使氯化铵完全溶解。也可以分批在1000mL的烧杯内配制,然后倒入塑料桶内摇匀。 (3)1.8%氢氧化钠(内含三乙醇胺)溶液:用100g托盘天平称取18g氢氧化钠(分析纯),放入洁净干燥的1000mL烧杯中,加入1000mL蒸馏水使其全部溶解,待溶解冷却至室温后,置入2mL三乙醇胺(分析纯),搅拌均匀后储于塑料桶中。 (4)钙红指示剂:将0.2g钙试剂羟(qiang)酸钠(分子式C21H13O7N2SNa ).与20g预先在105℃烘箱中烘1h的硫酸钾混合,一起放入瓷研钵中,研成极细粉末,储于棕色广口瓶中,以防吸水变潮。 4.准备标准曲线 (1)取样:取工地用石灰和集料,风干后分别过2.0mm或2.5mm筛,用烘干法或酒精燃烧法测其含水量(如为水泥可假定其含水量为0%)。 (2)混合料组成的计算: 1)公式:干料质量=湿料质量/(1+含水量) 2)计算步骤:①干混合料质量=300g/(1+最佳含水量) ②干土质量=干混合料质量/[1+石灰(或水泥)剂量] ③干石灰(或水泥)质量=干混合料-干土质量 ④湿土质量=干土质量X(1+土的风干含水量) ⑤湿石灰质量=干石灰X(1+石灰的风干含水量) ⑥石灰土中应加入的水=300g-湿土质量-湿石灰质量 (3)准备5种试样,每种2个样品(以水泥集料为例)如下: 第一种:称2份300g集料(如为细粒土,则每份的质量可以减为100g)分别放在2个搪瓷杯内,集料的含水量应等于工地预期达到的最佳含水量。集料中所加的水应与工地所用的水相同(300g为湿质量)。 第二种:准备2份水泥剂量为2%的水泥土混合料试样,每份均重300g,并分别放在2个搪瓷杯内。水泥土混合料的最佳含水量应等于工地预期达到的最佳含水量。混合料中所加的水应与工地所用的水相同。 第三种、四种、五种:各准备2份水泥剂量分别为4%、6%、8%的水泥混合料试样,每份均重300g,并分别放在6个搪瓷杯内,其他要求同第一种。(在此,准备标准曲线的水泥剂量为:0%、2%、4%、6%和8%,实际工作中应使工地实际所用水泥或石灰的剂量位于准备标准曲线时所用剂量的中间)

150吨水泥罐基础设计计算书

一、水泥罐基础设计 盾构区间砂浆拌合站投入一个100t 型和一个150t 型两个水泥罐,100t 型水泥罐直径3m ,支腿邻边间距2.05m ;150t 型水泥罐直径3.3m ,支腿邻边间距2.2m 。根据以往盾构区间砂浆拌合站施工经验、现场地质条件以及基础受力验算,水泥罐基础采用C30钢筋砼条形承台基础满足两个水泥罐同时安装。基础尺寸8m (长)×4m (宽)×0.8m (高),基础埋深0.6m ,外漏0.2m ,承台基础采用Φ16@150mm ×150mm 上下两层钢筋网片,架立筋采用450mm ×450mm φ12钢筋双排双向布置,基础顶预埋地脚钢板与水泥罐支腿满焊。具体布置见下图: . 水泥罐平面位置示意图

二、水泥罐基础计算书 1、计算基本参数 水泥罐自重约20t,水泥满装150t,共重170t。 水泥罐支腿高3m,罐身高18m,共高21m。 单支基础4m×4m×0.8m钢筋砼。 2、地基承载力计算 计算时按单个水泥罐计算 单个水泥罐基础要求的地基承载力为: δ1= 根据资料可知:原设计路面按汽一超20级设计,汽一超20级后轴标准荷载为130KN,单轴轮胎和路面接触面积为:460mm×200mm,通过受力计算,其地基承载力为: δ2= 因δ1≤δ2,即地基承载力复核要求。 3、抗倾覆计算 风荷载(500N/m2) 武汉地区按特大级风荷载考虑,风力水平 荷载为500N/m2, 抗倾覆计算以空罐计算,空罐计算满足则 抗倾覆满足。 水平风荷载产生的弯矩为: ?M 水泥罐空罐自重20t,则基础及水泥罐总重为:

抗倾覆极限比较: 即水泥罐的抗倾覆满足要求,水泥罐是安全的。 4、基础配筋 基础配筋属于构造配筋,配筋率必须满足§≥ 0.15%,经计算断面配筋, @150Φ16钢筋满足要求。

配合比计算实例

配合比计算实例 例题一 某工程为七层框架结构,砼梁板设计强度等级为C25,使用的材料如下: (1)42.5普通硅酸盐水泥(2)细度模数2.6的河砂(3)5~31.5mm的卵石施工坍落度要求为30~50mm,根据经验可确定用水量为160kg/m3,砂率33%,请计算出每立方米砼各材料用量。 1、计算试配强度当无统计数据时,C25砼σ=5.0MPa f cu.o=f cu.k+1.645×σ=25+1.645×5.0 =33.2MPa 2、计算水灰比w/c=αa·f ce/(f cu.o+αa·αb·f ce)=0.48×1.13×42.5/(33.2+0.33×0.48×1.13×42.5)=0.56 (满足干燥环境钢砼最大水灰比要求) 3、计算每立方米水泥用量m w0=160kg/m3 m c0=m w0/(w/c)=160/0.56=286kg/m3 (满足干燥环境钢砼最小水泥用量要求) 4、重量法计算各材料用量m c0+m w0+m s0+m g0=2400 m s0/(m s0+m g0)= 33% 解得:m w0=160kg/m3 m c0=286kg/m3 m s0=622kg/m3 m g0=1262kg/m3m w0:m c0:m s0:m g0=0.56:1:2.17:4.41 例题二 某工程欲配C35砼,坍落度为80mm,工程中使用炼石P.O42.5水泥(富余系数1.13);闽江细砂,细度模数为2.2;河卵石,粒级5~31.5mm。查表后,经调整得出用水量为185kg/m3,砂率为32%,试用计算施工配合比。 1、计算试配强度当无统计数据时,C35砼σ=5.0MPa f cu.o=f cu.k+1.645×σ=35+1.645×5.0=43.2MPa 2、计算水灰比w/c=αa·f ce/(f cu.o+αa·αb·f ce)=0.48×1.13×42.5/(43.2+0.48×0.33×1.13×42.5)=0.45 3、用水量m w0=185kg/m3。 4、计算水泥用量m c0=m w0/(w/c)=185/0.45=411kg/m3(水灰比及最小水泥用量均符合标准要求) 5、按重量法计算基准配合比2400=m c0+m w0+m s0+m g0 βs= m s0 /(m s0+m g0)=32%解得:m s0=577kg/m3m g0=1227kg/m3

水泥或石灰剂量测定方法

水泥或石灰剂量测定方法 (一)EDTA滴定法 1、目的和适用围 (1)本试验方法适用于在工地快速测定水泥和石灰稳定土中水泥和石灰的剂量,并可用以检查拌和的均匀性。用于稳定的土可以是细粒土,也可以是中粒土和粗粒土。本方法不受水泥和石灰稳定土龄期(7d 以)的影响。工地水泥和石灰稳定土含水量的少量变化(土2%),实际上不影响测定结果。用本方法进行一次剂量测定,只需10min 左右。 EDTA滴定法的化学原理:先用10%的NH4Cl弱酸溶出水泥稳定材料中的Ga2+,然后 用EDTA二钠标准溶液夺取Ga2+,, EDTA二钠标准溶液的消耗量与相应的水泥剂量(水泥剂量的大小正比于Ga2+的数量)存在近似线性关系。 (2)本方法也可以用来测定水泥和石灰稳定土中结合料的剂量。2、仪器设备 (1)滴定管(酸式)50mL,1支。 (2)滴定台,1个。 (3)滴定管夹,1个。 (4)大肚移液管: 10mL, 10支。 (5)锥形瓶(即三角瓶):200mL,20个。 (6)烧杯:2000mL(或1000mL),1只;300mmL,10只 (7)容量瓶:1000mL,1个。

(8)搪瓷杯:容量大于1200mL,10只。 (9)不锈钢棒(或粗玻璃棒),10根。 (10)量筒:100mL和5mL,各1只;50mL,2只。 (11)棕色广口瓶:60mL,1只(装钙红)。 (12)托盘天平:称500g、感量0.5g和称量100g、感量0.1g,各1台。 (13)秒表1只。 (14)表面皿:Φ9cm,10个。 (15)研钵:Φ12-Φ13cm,1个。 (16)土样筛:筛孔2.0mm或2.5mm,1个。 (17)洗耳球(1两或2两),1个。 (18)精密试纸:1)pHI2-pH14。 (19)聚乙烯桶20L,1个(装蒸馏水);10L,2个(装氯化按及EDTA二钠标准液);5L,1个(装氢氧化钠)。 (20)毛刷、去污粉、吸水管、塑料勺、特种铅笔、厘米纸。(21)洗瓶(塑料)500mL,1只。 3、试剂(1)0.1mol/m3乙二胺四乙酸二钠(简称EDTA二钠)标准液:准确称取EDTA二钠(分析纯)37.23g,用微热的无二氧化碳蒸馏水溶解,待全部溶解并冷至室温后淀容至1000mL。 简述:EDTA二钠37.23g+蒸馏水1000ml (2)10%氯化铵(NH4Cl)溶液:将500g氯化铰(分析纯或化学纯)放在10L聚乙烯桶,加蒸馏水4500mL,充分振荡,使氯化按完全溶

配合比计算实例

混凝土配合比计算 进行混凝土配合比计算时,其计算公式和有关参数表格中的数值均系以干燥状态骨料为基准。当以饱和面干骨料为基准进行计算时,则应做相应的修正。(干燥状态骨料系指含水率小于0.5%的细骨料或含水率小于0.2%粗骨料)配合比设计需要的基本参数 1、混凝土的强度要求――――强度等级 2、所设计混凝土的稠度要求―――坍落度 3、所使用的水泥品种、强度等级及其质量水平,即强 度等级富余系数 4、粗细集料的品种、最大粒级、细度以及级配情况 5、可能掺用的外加剂或掺合料 配合比计算步骤: 1 根据设计强度等级计算混凝土的配制强度: f cu,o≥f cu,k+1.645σ 2 根据水泥强度、掺合料的种类和掺量及石子种类计算 W/B = αa·f b/(f cu,o+αa·βb·f b) 3 根据要求坍落度、不同种类石子粒径和外加剂的减水 理论用水量:查表

或m'w0=0.25(H -90)+坍落度为90mm 时相应石子粒 径的用水量 H ——设计坍落度(mm )。 掺外加剂时的用水量: m w0 = m ’w0(1-β) β——外加剂的减水率。 4 根据掺外加剂时的用水量和经计算并选定的水胶比计 算胶凝材料总量; 5 根据胶凝材料总量和外加剂的掺量计算外加剂用量; 6 根据胶凝材料总量和掺合料掺量计算水泥用量; 7 计算砂、石用量 1) 确定混凝土拌和物的容重: m fo +m co +m go +m so +m wo =m cp 2) 计算砂石总量; 3) βs =(H -60)0.05+相应水灰比和石子粒径对应的砂率 4)根据砂石总量和选定的砂率值计算砂用量、石用量; 混凝土配合比的试配: 至少采用三个不同的配合比: 1)、基准配合比; 2)、非基准配合比1,基准水灰比+0.05、基准砂率+1%; B W m m wo bo =so go so s m m m +=β

机械设计基础公式计算例题

机械设计基础公式计算 例题 文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

一、计算图所示振动式输送机的自由度。 解:原动构件1绕A 轴转动、通过相互铰接的运动构件2、3、4带动滑块5作往复直线移动。构件2、3和4在C 处构成复合铰链。此机构共有5个运动构件、6个转动副、1个移动副,即n =5,l p =7,h p =0。则该机构的自由度为 F =h l p p n --23=07253-?-?=1 二、在图所示的铰链四杆机构中,设分别以a 、b 、c 、d 表示机构中各构件的长度,且设a <d 。如果构件AB 为曲柄,则AB 能绕轴A 相对机架作整周转动。为此构件AB 能占据与构件AD 拉直共线和重叠共线的两个位置B A '及B A ''。由图可见,为了使构件AB 能够转至位置B A ',显然各构件的长度关系应满足 c b d a +≤+ (3-1) 为了使构件AB 能够转至位置B A '',各构件的长度关系应满足 c a d b +-≤)(或b a d c +-≤)( 即c d b a +≤+ (3-2) 或b d c a +≤+ (3-3) 将式(3-1)、(3-2)、(3-3)分别两两相加,则得 同理,当设a >d 时,亦可得出 得c d ≤b d ≤a d ≤ 分析以上诸式,即可得出铰链四杆机构有曲柄的条件为: (1)连架杆和机架中必有一杆是最短杆。 (2)最短杆与最长杆长度之和不大于其他两杆长度之和。

上述两个条件必须同时满足,否则机构中便不可能存在曲柄,因而只能是双摇杆机构。 通常可用以下方法来判别铰链四杆机构的基本类型: (1)若机构满足杆长之和条件,则: ① 以最短杆为机架时,可得双曲柄机构。 ② 以最短杆的邻边为机架时,可得曲柄摇杆机构。 ③ 以最短杆的对边为机架时,可得双摇杆机构。 (2)若机构不满足杆长之和条件则只能获得双摇杆机构。 三、 k = 12v v =121221t C C t C C =21t t =21??= θ θ-?+?180180 即k = θ θ-?+?180180 θ=11 180+-?k k 式中k 称为急回机构的行程速度变化系数。 四、从动件位移s 与凸轮转角?之间的关系可用图表示,它称为位移曲线(也称 ?-S 曲线)位移曲线直观地表示了从动件的位移变化规律,它是凸轮轮廓设 计的依据 凸轮与从动件的运动关系 五、凸轮等速运动规律 ???? ? ? ? ?? == ====00 0dt dv a h S h v v ? ?ω?常数从动件等速运动的运动参数表达式为 等速运动规律运动曲线 等速运动位移曲线的修正 六、凸轮等加等减速运动规律(抛物线运动规律)

吨水泥罐基础设计计算书

一、水泥罐基础设计 盾构区间砂浆拌合站投入一个100t 型和一个150t 型两个水泥罐,100t 型水泥罐直径3m ,支腿邻边间距2.05m ;150t 型水泥罐直径3.3m ,支腿邻边间距2.2m 。根据以往盾构区间砂浆拌合站施工经验、现场地质条件以及基础受力验算,水泥罐基础采用C30钢筋砼条形承台基础满足两个水泥罐同时安装。基础尺寸8m (长)×4m (宽)×0.8m (高),基础埋深0.6m ,外漏0.2m ,承台基础采用Φ16@150mm ×150mm 上下两层钢筋网片,架立筋采用450mm ×450mm φ12钢筋双排双向布置,基础顶预埋地脚钢板与水泥罐支腿满焊。具体布置见下图: . 1 单支基础4m ×4m ×0.8m 钢筋砼。 2、地基承载力计算 计算时按单个水泥罐计算 单个水泥罐基础要求的地基承载力为: δ1=21700+0.825106.3+20126.3k /m 0.1344 N MPa ?===? 根据资料可知:原设计路面按汽一超20级设计,汽一超 20级后轴标准荷载为130KN,单轴轮胎和路面接触面积为:460mm ×200mm ,通过受力计算,其地基承载力为: 水泥罐平面位置示意图

δ2= ()1301000 1.413460200MPa ???=????? 因δ1≤δ2,即地基承载力复核要求。 3、抗倾覆计算 武汉地区按特大级风荷载考虑,风力水平 荷载为500N/m 2, 抗倾覆计算以空罐计算,空罐计算满足则 抗倾覆满足。 水平风荷载产生的弯矩为: 0.5 3.3182+3=356.4KN M =???÷(18)?M 水泥罐空罐自重20t ,则基础及水泥罐总重为: 抗倾覆极限比较: 即水泥罐的抗倾覆满足要求,水泥罐是安全的。 4、基础配筋 基础配筋属于构造配筋,配筋率必须满足§≥ 0.15%,经计算断面配筋, @150Φ16钢筋满足要求。

混凝土配合比例题

某工程现浇室内钢筋混凝土梁,混凝土设计强度等级为C30,施工采用机械拌合和振捣,坍落度为50mm。所用原材料如下: 水泥:普通水泥,28天实测水泥强度为48MPa;p= 3100kg/m 3;砂:中砂,级配2区合格,2650kg/m3;石子:卵石5?40mm , g= 2650kg/m 3;水:自来水(未掺外加剂),p = 1000kg/m 3。 用体积法计算该混凝土的初步配合比。 解:(1 )计算混凝土的施工配制强度f eu, 0: 根据题意可得:f eu, k=,杳表取o^,则 f eu, 0 = f eu, k + o =+ X= (2)确定混凝土水灰比m^/m c ①按强度要求计算混凝土水灰比m w/m c 根据题意可得:f ce=人a=, a=,则混凝土水灰比为: m w — ______ a f ce m e f cu ,0 a b f ce ②按耐久性要求复核 由于是室内钢筋混凝土梁,属于正常的居住或办公用房屋内,杳表知混凝土的最大水灰比值为, 出的水灰比未超过规定的最大水灰比值,因此能够满足混凝土耐久性要求。 (3)确定用水量m wo 根据题意,集料为中砂,卵石,最大粒径为40mm ,杳表取m wo = 160kg。 (4)计算水泥用量m co ① 计算:m co= 匹 =-160= 320kg m w / m c0.50 ②复核耐久性 由于是室内钢筋混凝土梁,属于正常的居住或办公用房屋内,杳表知每立方米混凝土的水泥用量为 260kg,计算出的水泥用量320kg不低于最小水泥用量,因此混凝土耐久性合格。 (5 )确定砂率伍 根据题意,混凝土采用中砂、卵石(最大粒径40mm )、水灰比,杳表可得伶=28%?33%,取伍=30? s —1.采 38.2 0.48 48.0 0.48 0.33 48.0 = 0.50 计算 30 %。

配合比设计例题

普通混凝土配合比设计例题 某办公楼现浇钢筋混凝土柱,该柱位于室内,不受雨雪影响。设计要求混凝土强度等级为C25,坍落度为35~50 mm ,采用机械拌合,机械振捣。混凝土强度标准差为σ=5.0 MPa 。采用的原材料如下: 普通硅酸盐水泥,强度等级为42.5,实测强度为43.5 MPa ,密度为3000 kg/m 3;中砂,M x =2.5,表观密度为s ρ= 2650 kg/m 3;碎石,最大粒径D max =20mm ,表观密度为g ρ= 2700 kg/m 3;水为自来水。 试设计混凝土配合比;如果施工现场测得砂子的含水率为3%,石子的含水率为1%,试换算施工配合比。 解: 1、确定初步配合比 (1) 确定混凝土配制强度0,cu f 。 σ645.1,,+≥k cu o cu f f =25 MPa+l.645×5 MPa=33.2 MPa (2) 计算水灰比 碎石回归系数a α= 0.53,b α= 0.20,,由公式4-10得出下列公式, 61.05.4320.053.02.335.4353.00,=??+?=+=???ce b a cu ce a f f f C W ααα 考虑耐久性要求,对照混凝土的最大水灰比和最小水泥用量表,对于室内干燥环境,钢筋混凝土的最大水灰比为0.60,故可初步确定水灰比为0.60。 (3) 确定用水量 此题要求坍落度为35~50 mm ,碎石最大粒径为20mm ,查表4—20,确定每立方米混凝土用水量为0w m =195 kg 。 (4)计算水泥用量 kg kg m W C m wo co 32619567.1=?=?= 考虑耐久性要求,对照混凝土的最大水灰比和最小水泥用量表,对于室内干燥环境,钢筋混凝土的最小水泥用量为280kg ,小于326 kg ,故可初步确定

100t水泥罐基础设计计算

100t水泥罐基础设计计算 一、荷载 1、水泥罐自重G1:200kn(20t)估 2、水泥自重G2:1000kn(100t) 3、基础承台自重G3:3.8m*3.8m*1.2m*26=451kn 4、荷载组合:(G1+G2+G3)*1.2(分项系数)=1981.2kn 二、受力分析 1、承台地基承载力:按12t/m2估算,承台地基承载力为3.8m*3.8m*120kn/m2=1732.8kn 2、桩承载力需达到1981.2kn-1732.8kn=248.4kn 三、单桩承载力计算 1、土层极限侧摩阻力系数 J01 J02 J03地面标高3.5m 地面标高3.5m 地面标高3.5m ①素填土①素填土①素填土 0.44m 0.41m 0.88m ③淤泥质粉质粘土③淤泥质粉质粘土③淤泥质粉质粘土 -1.72m -4.76m ④粉土-5.79m ④粉土④粉土 根据上述柱状图,打入桩范围内平均层厚:素填土2.92m、淤泥质粉质粘土4.67m、粉土1.41m。打入桩的极限侧摩阻力标准值为:20Kpa、14Kpa、30Kpa,故打入桩桩身范

围内(9m)土层平均极限侧摩阻力为:(2.92m*20+4.67m*14+1.41m*30)/9m=18.45Kpa 2、单根桩承载力计算 单桩的容许承载力为:[P]=1/1.5*(U*а*H*τ)(不计桩端承载力) 式中:[P]------沉桩容许承载力 U--------桩周长, а-----震动沉桩影响系数,锤击沉桩取1.0 H------桩入土深度,9.0m τ-----桩侧土的极限摩阻力,取18.45Kpa; ①如采用直径273钢管桩,则单桩的容许承载力为:[P]=1/1.5*(U*а*H*τ)=1/1.5*0.273*3.14*1.0*9*18.45=94.89kn,需打入的根数为248.4kn/94.89kn=2.61根,取3根,布置如图: 3.8m 0.650m 2.5m 0.650m 3.8m ②如采用直径630钢管桩,则单桩的容许承载力为:[P]=1/1.5*(U*а*H*τ)=1/1.5*0.63*3.14*1.0*9*18.45=218.99kn,需打入的根数为248.4kn/218.99kn=1.1根,取2根。

水泥剂量滴定操作规程

水泥剂量滴定操作规程 一、将所有用于试验的器具清洗干净。 二、用天平称取混合料1000g置于搪瓷杯中,加入2000ml 10%氯化铵溶液,用玻璃棒充分搅拌3分钟,放置沉淀,直至出现清液为止。将上部清液移到烧杯内,搅匀加盖表面器待测。 三、用移液管吸取上层(液面下1~2CM)悬浮液10ml放入三角瓶内,同时放入50ml,1.8%氢氧化钠(内含三乙醇胺)溶液,检测PH值为12.5~13.0可继续试验,加入黄豆大小钙红指示剂,摇匀,溶液呈玖瑰红色。 四、用EDTA二钠标准液滴定到蓝色为终点,记录EDTA二钠的耗量,从水泥剂量标准曲线上查对水泥剂量。 五、重复上述过程进行下一次试验。 六、清洗干净器具备用。 路面材料强度仪 使用前应先检查两立柱上的螺母是否紧固,如有松动,则应拧紧; 并按所做试验的要求,选用相应的测力环和压力头等度验仪器附件。先 将测力环通过固定螺钉紧固在顶梁下,再将有关附件(如压头)固定在 测力环上。其他所需附件分别按有关试验规程安装使用。 2、试验时,将试件置于丝杠盘上,按规程要求调整好试件与仪器间 的相互位置。如需电动,接通电源,将选择手柄处于所需的“快速”或 “慢速”位置,扳动升降开关到“升”处,丝杠盘徐徐上升,即可进行 试验。如需手动,则将开关置于“停”处,将选择手柄处于“手动”位 置,插上并摇动摇把,即可升降丝杠盘和试件,可用于其它需要施加垂 直载荷的各种试验。试验所加的载荷量,可从测力环的百分表上读出。 如在扳动快、慢手柄达不到应有的位置,可适当摇动摇把,使相配 齿轮正常啮合,即可使手柄进到应有位置。

贝克曼梁法 (1)在测试路段布置测点,其距离随测试需要而定,测点应在路面行车车道的轮迹带上,并用白油漆或粉笔划上标记。(2)将试验车后轮轮隙对准测点后约3 ~ 5cm处的位置上。 (3)将弯沉仪插入汽车后轮之间的缝隙处,与汽车方向一致,梁臂不得碰到轮胎,弯 沉仪测头置于测点上(轮隙中心前方3 ~ 5m处),并安装百分表于弯沉仪的测定杆上,百分表调零,用手指轻轻叩打弯沉仪,检查百分表是否稳定回零。弯沉仪可以是单侧 测定,也可以双侧同时测定。(4)测定者吹哨发令指挥汽车缓缓前进,百分表随路面变形的增加而持续向前转动。当表针转动到最大值时,迅速读取初读数L1 。汽车仍在继续前进,表针反向回转:待汽车驶出弯沉影响半径(3m以上)后,吹口哨或挥动红旗 指挥停车。待表针回转稳定后读取终读数L2 。汽车前进的速度宜为5km/h左右。 路面构造深度 (1)用扫帚或毛刷子将测点附近的路面清扫干净,面积不小于30cm*30cm. (2)用小铲装砂沿筒向圆筒中注满砂,手提圆筒上方,在路表面上轻轻地叩打3次,使砂密实,补足砂面用钢尺一次刮平.注:不可直接用量砂筒装砂,以免影响量砂密度的均匀性. (3)将砂倒在路面上,用底面粘有橡胶片的推平板,由里向外重复做摊铺运动,稍稍用力将砂细心地尽可能的向外摊开,使砂填入凹凸不路表面的空隙中,尽可能将砂摊成圆形,并不得在表面上留有浮动余砂.注意摊铺时不可用力过大或向外推挤. (4)用钢板尺测量所构成圆的两个垂直方向的直径,取其平均值,准确至5mm. (5)按以上方法,同一处平行测定不少于3次,3个测点均位于轮迹带上,测点间距 3--5m.该处的测定位置以中间测点的位置表示. 重型动力触探 (1)试验前将触探架安装平稳,使触探保持垂直地进行。垂直度的最大偏差不得超过2%;(2)贯入时应使穿心锤自由落下。地面上的触探杆的高度不宜过高,以免倾斜与摆动太大;(3)锤击速率宜为每分钟15~30击; (4)及时记录每贯入0.10m所需的锤击数; (5)对于一般砂、圆砾和卵石,触探深度不宜超过12~15m;超过该深度时,需考虑触探杆的侧壁摩阻的影响; (6)每贯入0.1m所需锤击数连续三次超过50击时,应停止试验

相关文档
最新文档