(整理)偏微分方程与积分变换

(整理)偏微分方程与积分变换
(整理)偏微分方程与积分变换

福州大学

研究生课程授课计划表2010—2011 学年第 1 学期

土木工程学院

开课学院:

005

学院代码:

0504912

课程编号:

偏微分方程与积分变换

课程名称:

40

总学时:

2

学分:

胡昌斌

任课教师:

04037

教师代码:

填表日期:2010年9月1日

课堂授课方式简表

(2010 —2011 学年第 1 学期)

开课学院:土木学院

填表说明:1、讲课序数指本堂课为本课程的第几次授课,单位时间(上午或下午或晚上)内的教学算“一次讲课”;

2、授课方式填写:①课堂讲授;②课堂讨论;③实验、上机;④复习备考;

3、课程类型填写:学位课或非学位课。

4、总学时包括考试2~3学时,复习备考的学时不能超过一次讲课学时数。

5、本表应根据校历填写,注意扣除国家法定假日和校运动会时间。

研究生课程授课计划表

研究生课程授课计划表

注:每章填写一页,不够可另加页。

研究生课程授课计划表

注:每章填写一页,不够可另加页。

研 究 生 课 程 授 课 计

划 表

注:每章填写一页,不够可另加页。

研究生课程授课计划表

注:每章填写一页,不够可另加页。

研究生课程授课计划表

注:每章填写一页,不够可另加页。

研究生课程授课计划表

注:每章填写一页,不够可另加页。

研究生课程授课计划表

注:每章填写一页,不够可另加页。

研究生课程授课计划表

注:每章填写一页,不够可另加页。

研究生课程授课计划表

注:每章填写一页,不够可另加页。

研究生课程授课计划表

注:每章填写一页,不够可另加页。

研 究 生

课 程 授 课 计 划 表

注:每章填写一页,不够可另加页。

积分变换论文

河南城建学院 期末考试(论文) 题目:Laplace变换在定积分中的应用 系别:电气与电子工程系 专业:电气工程及其自动化 班级:0912102(班) 学号:091210247 学生姓名:张晓东 指导教师:秦志新 完成日期:2011.05.23

河南城建学院 期末考试(论文)任务书

摘要 Laplace变换应用广泛,本文只给出一些最基本的性质和应用举例,以求举一反三,从而激活思绪,开阔思路,扩大视野,增强学习兴趣。 为了更好的掌握高等数学中关于定积分的内容,使一些利用高等数学的思想解决起来很难,或者无法解决的定积分问题利用laplace 变换的思想考虑会很快、很容易的得出结果。这就使高等数学中定积分的问题转换成S域中的问题,这样就可以利用laplace变换这个方便的解题工具去解决。 本文中只是把laplace变换作为解题工具,最终要解决的是定积分问题。所以,laplace只是手段,解决高等数学中的定积分问题才是最终目的! 关键字:laplace 工具解决定积分

一、 问题的提出 在高等数学学习中,定积分的计算是我们不容易掌握的,因为这一部分学习中问题的形式灵活多变,多种多样。例如:∫ ∞ 0! n t n d t ,∫∞0t e at ωsin - d t 计算时需要分步积分,且要连续的运用分步积分法。甚至,有时一个定积分的求解的问题能花费我们很长的时间,且做到最后还有可能得到无法求解的结果。例如形如0 () f t dt t +∞ ?的定积分。而对于这种问题在高等数学中还没有一个系统的,方便快捷的解题思路。只有听过解决一般定积分所用的经典方法去进行计算,而这样则会造成事倍功半的结果。 二、 解决的思路 如果我们利用积分变换中laplace 变换的思想去考虑和解决这些问题就会得到很快、很简单的解决。Laplace 变换是在S 域中进行积分,它可以把一些复杂的时域函数的定积分的求解转化到S 域中再进行分析求解。例如:利用laplace 的微分性质、积分性质、位移性质、延迟性质,这样就可以绕过很多复杂的数学计算,而使求解变得简单、快捷。下面利用利用具体定积分来分别说明laplace 变换的性质在解决定积分中的应用。 三、 方法分析 1、 利用laplace 变换的微分性质

偏微分方程理论的归纳与总结

偏微分方程基本理论的归纳与总结 偏微分方程是储存自然信息的载体,自然现象的深层次性质可以通过数学手段从方程中推导出来.最为一种语言,微分方程在表达自然定律方面比文字具有更强的优越性.微分方程是一个庞大的体系,它的基本问题就是解的存在性和唯一性.该学科的主要特征是不存在一种可以统一处理大多数偏微分方程的适定性问题的普适的方法和理论.这是与常微分方程有显著差异的地方.这种特性使得我们将方程分为许多种不同类型,这种分类的依据主要来自数学与自然现象这两个方面.从数学的角度,方程的类型一般总是对应于一些普遍的理论和工具.换句话讲,如果能建立一个普遍性的方法统一处理一大类方程问题,那么这个类型就被划分出来.而从自然现象的角度,我们又可以根据不同的运动类型以及性质将方程进行分类.当然这两种方式常常不能截然区分,通常它们是相互关联的,这就造成方程的概念有许多重叠现象. 根据数学的特征,偏微分方程主要被分为五大类,它们是: (1)线性与拟微分方程,研究这类方程的主要工具是Fourier分析方法; (2)椭圆型方程,它的方法是先验估计+泛函分析手段; (3)抛物型方程,主要是Galerkin方法,算子半群,及正则性估计; (4)双曲型方程,对应于Galerkin方法; (5)一阶偏微分方程,主要工具是数学分析方法. 从自然界的运动类型出发,偏微分方程可分为如下几大类: (1)稳态方程(非时间演化方程); (2)耗散型演化方程,这类方程描述了时间演化过程中伴有能量损耗与补充的自然运动.相变与混沌是它们的主要内容; (3)保守系统,如具有势能的波方程.该系统控制的运动是与外界隔离的,及无能量输入,也无能量损耗.行波现象与周期运动是它们的主要特征; (4)守恒律系统,这类方程是一阶偏微分方程组,它们与保守系统具有类似的性质,可视为物质流的守恒.激波行为是由守恒律系统来控制. 下面具体来介绍三类经典方程: 三类典型方程:椭圆型方程,抛物型方程,双曲型方程,即偏微分方程模型的建立,解问题的解法以及三类典型方程的基本理论. 关于三类典型方程定解问题的解题方法,它们主要是分离变量法、积分变换法、特征线法、球面平均法、降维法和Green 函数方法. 关于三类典型方程的基本理论——极值原理和能量估计,并由此给出了解的唯一性和稳定性的相关结论. 具体来说,关于二阶线性椭圆形方程,我们研究它的古典解和弱解.前者主要介绍了基本解、调和函数的基本性质、Green 函数、极值原理、最大模估计、能量方法和变分原理;而后者的研究则需要知道Sobolev空间的相关知识再加以研究;关于二阶线性抛物型方程,主要研究它的Fourier 变换、特殊的求解方法、基本解、方程式和方程组的最大值原理以及最大模估计、带有非经典边界条件和非局部项的方程式的最大值原理及能量方法;关于二阶线性双曲型方程,主要研究初值问题的求解方法、初值问题的能量不等式与解的适定性、以及混合问题的能量模估计与解的适定性. 椭圆、抛物和双曲这三类线性偏微分方程解的适定性问题,它们分别以拉普拉斯方程、热传导方程和波动方程作为代表.具体地说,对于某些规则的求解区域试图求出满足特定线性偏微分方程和定解条件的具体解,这就决定了存在性问题;再利用方程本身所具有的特殊性质,将证明所求解是唯一的,也就解决了唯一性问题;关于连续依赖性问题,需要在不同函数空

《积分变换与数理方程》教学大纲

《积分变换与数理方程》教学大纲 课程编号:112004 开课学期:4 适用专业:电子信息科学与技术编写教师:赵玉泉 学时:36 学分:2 审核:彭光含 第一部分说明 一、课程的性质、作用 《积分变换与数理方程》是继《高等数学》之后的一门数学课程,是电子信息科学与技术专业学生的必选课。其中积分变换是《信号与线性系统分析》课程的一部分,为使学生更集中地学习《信号与线性系统分析》的理论知识而将这部分数学知识从中分离出来,单独组成本课程。因此学生只有具备了本课程的基础知识和基本技能,才可能学习《信号与线性系统分析》等专业课程。即该课程内容是以后学习多门专业课程的必备工具。 二、课程的任务与基本要求 本课程内容主要有:信号与信号的基本运算、卷积与卷积和、傅立叶变换、拉普拉斯变换及Z变换。这些内容要求学生都必须掌握。 信号部分,要求学生掌握信号的种类、信号的基本运算、阶跃函数及冲激函数定义与运算。 卷积及卷积和部分,要求学生掌握卷积的定义、性质及计算方法。 傅立叶变换部分,要求掌握傅立叶级数、傅立叶变换的定义及性质。 拉普拉斯变换部分,要求学生掌握拉普拉斯变换的定义、性质及逆变换。 离散信号的Z变换,要求掌握Z变换的定义、性质。 三、教学方法建议 积分变换与数理方程课程,其理论性很强。从教学的实际情况看,学生普遍感到难度大。因此,在教学方法上一般宜采用教师讲授。 对于积分变换,学生感觉困难的主要原因是公式多,记不住。有的学生虽记住了公式,但不能灵活运用。建议: 1、冲击函数的教学,最好不涉及广义函数的概念和理论,以免学生感到复杂难懂。

2、信号与积分变换中,图像多,宜制作一批教学挂图或幻灯片辅助教学。 3、要引导学生适当复习,寻找公式的记忆方法,务必熟记公式。 4、要多列举范例,帮助学生理解公式,学会如何综合运用公式。 四、本课程与其他课程的关系 为学习本课程,学生必须具备较扎实的复数、级数、三角函数、待定系数等初等数学知识与复变函数、导数、积分等高等数学知识,具备一定的普通物理特别是电磁学方面的知识。因此,该课程以初等数学、高等数学、电磁学等课程为基础,同时它又是学习《信号与线性系统分析》、《电路》等课程的基础。 第二部分本文 一、基本内容与学时分配 (一)信号 1、复数的知识………………………………………………………………(1学时) 教学内容要点:(1)、复数的三种表示式(2)、正、余弦函数的指数形式2、信号………………………………………………………………………(1学时)教学内容要点:(1)、连续信号和离散信号(2)周期信号和非周期信号 (3)、实信号和复信号 3、阶跃函数和冲激函数……………………………………………………(3学时)教学内容要点:(1)、阶跃函数和单位阶跃函数序列(2)、冲激函数和单位序列 (3)、冲激函数的导函数和积分(4)、冲激函数的性质 4、信号的基本运算…………………………………………………………(2学时) 教学内容要点:(1)、加法和乘法(2)、平移和反转(3)、尺度变换 (二)卷积 1、卷积积分…………………………………………………………………(2学时) 教学内容要点:(1)、卷积积分定义(2)、卷积的图示(3)、卷积的计算 2、卷积积分的性质………………………………………………………(2学时) 教学内容要点:(1)、卷积的代数运算(2)、函数与冲激函数的卷积 (3)、卷积的微分与积分 3、卷积和……………………………………………………………………(2学时) 教学内容要点:(1)、卷积和定义(2)、卷积和的图示(3)、卷积和的性质

复变函数与积分变换重点公式归纳

复变函数与积分变换复习提纲 第一章 复变函数 一、复变数和复变函数 ()()()y x iv y x u z f w ,,+== 二、复变函数的极限与连续 极限 A z f z z =→)(lim 0 连续 )()(lim 00 z f z f z z =→ 第二章 解析函数 一、复变函数),(),()(y x iv y x u z f w +==可导与解析的概念。 二、柯西——黎曼方程 掌握利用C-R 方程?????-==x y y x v u v u 判别复变函数的可导性与解析性。 掌握复变函数的导数: y x y x y y x x v iv iu u v iu y f i iv u x f z f +==-=+-=??=+=??= ΛΛ1)(' 三、初等函数 重点掌握初等函数的计算和复数方程的求解。 1、幂函数与根式函数 θθθθθin n n n n n e r n i n r i r z w =+=+==)sin (cos )sin (cos 单值函数 n k z i n n e r z w π2arg 1+== (k =0、1、2、…、n-1) n 多值函数 2、指数函数:)sin (cos y i y e e w x z +== 性质:(1)单值.(2)复平面上处处解析,z z e e =)'((3)以i π2为周期 3、对数函数 ππk i z k z i z Lnz w 2ln )2(arg ln +=++== (k=0、±1、±2……) 性质:(1)多值函数,(2)除原点及负实轴处外解析,(3)在单值解析分枝上:k k z z 1 )'(ln = 。 4、三角函数:2cos iz iz e e z -+= i e e z iz iz 2sin --= 性质:(1)单值 (2)复平面上处处解析 (3)周期性 (4)无界 5、反三角函数(了解) 反正弦函数 )1(1 sin 2z iz Ln i z Arc w -+= =

(完整版)复变函数与积分变换习题答案

一、将下列复数用代数式、三角式、指数式表示出来。 (1) i 解:2 cos sin 2 2 i i e i ππ π ==+ (2) -1 解:1cos sin i e i πππ-==+ (3) 1+ 解:()/3122cos /3sin /3i e i πππ+==+ (4) 1cos sin i αα-+ 解: 2221cos sin 2sin 2sin cos 2sin (sin cos )2 2 2 2 22 2sin cos()sin()2sin 222222 i i i i i e παα α α α α α αααπαπαα?? - ??? -+=+=+? ?=-+-= ??? (5) 3z 解:()3333cos3sin3i z r e r i θθθ==+ (6) 1i e + 解:()1cos1sin1i i e ee e i +==+ (7) 11i i -+ 解:3/411cos3/4sin 3/411i i i i e i i i πππ--==-==+++ 二、计算下列数值 (1) 解: 1ar 21ar 21ar 2 b i ctg k a b i ctg a b i ctg a π?? + ??? = =??=??? (2) 解:6 2263634632 22i k i i i i e i e e e i πππππππ?? ??++ ? ??? ????+ ????=+????====-+? ??=-?

(3) i i 解:( )2222i i k k i i e e ππππ???? +-+ ? ??? ?? == (4) 解:( ) 1/2222i i k k e e ππππ???? ++ ? ??? ?? == (5) cos5α 解:由于:()()5 5 2cos5i i e e ααα-+=, 而: ()()()() ()()()() 5 5 5 55 5 5 5 55 cos sin cos sin cos sin cos sin n n i n n n n i n n e i C i e i C i αααααααααα-=--==+==-=-∑∑ 所以: ()()()()()()()()()()() 5555055550 4 3 2 5 3 543251cos5cos sin cos sin 21 cos sin 112 5cos sin cos sin cos 5cos sin 10cos sin cos n n n n n n n n n n n C i i C i i C i ααααααααααααααααα --=--=?? =+-????=+-??=++=-+∑∑ (6) sin5α 解:由于:()() 5 5 2sin 5i i e e ααα--=, 所以: ()()()()()()()()()()() () 5555055550 5234 245552341sin 5cos sin cos sin 21 cos sin 1121 sin cos sin sin cos sin 10cos sin 5sin cos n n n n n n n n n n n C i i i C i i i C i C i i ααααααααααααααααα --=--=?? =--? ??? =--??=++=-+∑∑ (7) cos cos2cos n ααα+++L L 解:

积分变换的认识与应用

积分变换的一些应用 积分变换 积分变换是数学中对于函数的作用子,理论上用以处理微分方程等问题。所谓积分变换,就是通过积分运算,把一个函数变成另一个函数的变换。最常见的积分变换有两种:傅里叶变换和拉普拉斯变换,其他的还包括梅林变换和汉克尔变换等。积分变换法凭借着它灵活方便的特点在理工科方面有很大的应用,本文将会讲述关于傅里叶变换和拉普拉斯变换的一些应用。 傅里叶变换 定义 傅里叶其实是一种分析信号的方法,既可以分析信号的成分,也可以利用这些成分合成信号。设f(t)是t的周期函数,如果t满足狄里赫莱条件:在下一个周期内具有有限个间断点,并且在这些间断点上函数是有限值;在一个周期内具有有限个极值点;绝对可积。则函数满足傅里叶变换: 它存在逆变换,则傅里叶逆变换: 有一种特殊的变换叫离散傅里叶变换,它是对一个序列进行的变换,为: 傅里叶变换是数字信号处理领域一种很重要的算法。要知道傅里叶变换算法的意义,首先要了解傅里叶原理的意义。傅里叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加。而根据该原理创立的傅里叶变换算法利用直接测量到的原始信号,以累加方式来计算该信号中不同正弦波信号的频率、振幅和相位。 个别应用 傅里叶变换最常见于图像处理跟数学信号处理中,而现在现在我介绍其中一种比较不错的应用:加密、解密图像。 根据Candan等人提出的离散分数傅里叶变换的定义为,X(n)是带有N个矢量元素的输入信号,是变换核矩阵,是分数阶。Soo-Chang Pei 等人将离散分数傅里叶变换核矩阵定义为,当N为奇数时,矩阵 ,当N为偶数时,,是一个对角矩阵,其对角线上的元素是V中年每列特征向量的特征根。我们将NXN DFT矩阵定义为: ,进而可以将阶DFRFT矩阵定义为:

复变函数与积分变换精彩试题及问题详解

复变函数与积分变换试题(一) 一、填空(3分×10) 1.)31ln(i --的模 ,幅角 。 2.-8i 的三个单根分别为: , , 。 3.Ln z 在 的区域内连续。 4.z z f =)(的解极域为: 。 5.xyi y x z f 2)(22+-=的导数=')(z f 。 6.=?? ? ???0,sin Re 3z z s 。 7.指数函数的映照特点是: 。 8.幂函数的映照特点是: 。 9.若)(ωF =F [f (t )],则)(t f = F )][(1ω-f 。 10.若f (t )满足拉氏积分存在条件,则L [f (t )]= 。 二、(10分) 已知222 1 21),(y x y x v +-=,求函数),(y x u 使函数),(),()(y x iv y x u z f +=为 解析函数,且f (0)=0。 三、(10分)应用留数的相关定理计算 ?=--2||6)3)(1(z z z z dz 四、计算积分(5分×2) 1.?=-2 ||) 1(z z z dz

2.? -c i z z 3 )(cos C :绕点i 一周正向任意简单闭曲线。 五、(10分)求函数) (1 )(i z z z f -= 在以下各圆环内的罗朗展式。 1.1||0<-

复变函数与积分变换公式

复变函数复习提纲 (一)复数的概念 1.复数的概念:z = X ? iy , X, y 是实数,x = Rez,y=lmz.r=_i. 中的幅角。 3)arg Z与arctan~y之间的关系如下: X y 当X 0, arg Z= arctan 丄; X y y -0,arg Z= arctan 二 ! X y y :: O,arg Z= arctan -二 J X 4)三角表示:Z = Z(COS8 +isin0 ),其中日=argz;注:中间一定是“ +”号。 5)指数表示:Z = ZeF,其中V - arg z。 (二)复数的运算 1.加减法:若Z I=X I iy1, z2=X2 iy2,贝廿z1二z2= x1二x2i y1- y2 2.乘除法: 1)若z1 = x1 iy1, Z2 =X2 iy2,贝U 狂h[N×2 一y$2 i x2% x1y2 ; 乙_ X1+ i y_ (x1 十 i 和X—i y_ XX y*y y x;。X Z2 X2+ i% (对讪-X )i2y 2+2X222+ 2X22 2)若Z I=Iz I e i^,z2 =∣z2 e iθ ,则 Z1Z2 = ZIll Z2 e i(t1也; 3.乘幕与方根 1)若Z= Z(COS J isin * n (CoS n i Sinn )= n e i"。 2)幅角:在Z=O时,矢量与X轴正向的夹角, 记为Arg Z (多值函数);主值arg Z 是位于(-理,二]注:两个复数不能比较大小 2.复数的表示

2)若 Z = IZ(COSB+isinT)=∣ze i ^,则 (三)复变函数 1?复变函 数: w = f z ,在几何上可以看作把 Z 平面上的一个点集 D 变到W 平面上的一个点集 G 的映射 . 2 ?复初等函数 1)指数函数:e z =e x cosy isiny ,在Z 平面处处可导,处处解析;且 注:e z 是以2二i 为周期的周期函数。(注意与实函数不同) 3)对数函数: LnZ=In z+i (argz + 2kιι) (k=0,±1,±2八)(多值函数); 主值:In Z = Inz+iargz 。(单值函数) ?1 LnZ 的每一个主值分支In z 在除去原点及负实轴的 Z 平面内处处解析,且 Inz Z 注:负复数也有对数存在。 (与实函数不同) 3)乘幕与幕函数:a — e bLna (a = 0) ; Z b = e bLnZ (Zn 0) 注:在除去原点及负实轴的 Z 平面内处处解析,且 Z S -bz b j 。 Sin z,cos Z 在 Z 平面内解析,且 Sinz = cosz, CoSZ=-Sinz 注:有界性Sin z 兰1, cosz ≤1不再成立;(与实函数不同) Z ■ Z Z ■ Z ,,,, e -e e +e 4) 双曲函数 ShZ ,chz = 2 2 ShZ 奇函数,ChZ 是偶函数。ShZ I ChZ 在Z 平面内解析,且 ShZ =chz, ChZ i - ShZ O (四)解析函数的概念 1 ?复变函数的导数 1)点可导: f r fZ0;fZ 0 2)区域可导:f Z 在区域内点点可导。 2 ?解析函数的概念 1 f 日 +2kπ ..日 +2kπ ) Z n I cos ----------- 十 ISi n -------- I n n (k =0,12…n -1)(有n 个相异的值) 4)三角函数: iz -iz e -e Sin Z = 2i iz JZ . e +e , sin z , ,cos z ,tgz ,ctgz 2 cos z cosz Sin Z

(高等数学) 偏微分方程

第十四章 偏微分方程 物理、力学、工程技术和其他自然科学经常提出大量的偏微分方程问题.由于实践的需要和一些数学学科(如泛函分析,计算技术)的发展,促进了偏微分方程理论的发展,使它形成一门内容十分丰富的数学学科. 本章主要介绍一阶偏微分方程、线性方程组及二阶线性偏微分方程的理论.在二阶方程中,叙述了极值原理、能量积分及惟一性定理.阐明了一些解的性质和物理意义,介绍典型椭圆型、双曲型、抛物型方程的常用解法:分离变量法,基本解,格林方法,黎曼方法,势位方法及积分变换法.最后,扼要地介绍了有实用意义的数值解法:差分方法和变分方法. §1 偏微分方程的一般概念与定解问题 [偏微分方程及其阶数] 一个包含未知函数的偏导数的等式称为偏微分方程.如果等式不止一个,就称为偏微分方程组.出现在方程或方程组中的最高阶偏导数的阶数称为方程或方程组的阶数. [方程的解与积分曲面] 设函数u 在区域D 内具有方程中所出现的各阶的连续偏导数,如果将u 代入方程后,能使它在区域D 内成为恒等式,就称u 为方程在区域D 中的解,或称正规解. ),,,(21n x x x u u = 在n +1维空间),,,,(21n x x x u 中是一曲面,称它为方程的积分曲面. [齐次线性偏微分方程与非齐次线性偏微分方程] 对于未知函数和它的各阶偏导数都是线性的方程称为线性偏微分方程.如 ()()()()y x f u y x c y u y x b x u y x a ,,,,=+??+?? 就是线性方程.在线性方程中,不含未知函数及其偏导数的项称为自由项,如上式的f (x,y ).若自由项不为零,称方程为非齐次的.若自由项为零,则称方程为齐次的. [拟线性方程与半线性方程] 如果一个方程,对于未知函数的最高阶偏导数是线性的,称它为拟线性方程.如 ()()()()()()0,,,,,,,,,,,,22222122211=+??+??+??+???+??u y x c y u u y x b x u u y x a y u u y x a y x u u y x a x u u y x a 就是拟线性方程,在拟线性方程中,由最高阶偏导数所组成的部分称为方程的主部.上面方程的主部为 ()()()22222122211,,,,,,y u u y x a y x u u y x a x u u y x a ??+???+?? 如果方程的主部的各项系数不含未知函数,就称它为半线性方程.如 ()()()()0,,,,,,2222=??+??+??+??y y u y x d x y u y x c y u y x b x u y x a 就是半线性方程. [非线性方程] 不是线性也不是拟线性的方程称为非线性方程.如 1)()1(222=??+??+y u x u u 就是一阶非线性偏微分方程. [定解条件] 给定一个方程,一般只能描写某种运动的一般规律,还不能确定具体的运动状态,所以把这个方程称为泛定方程.如果附加一些条件(如已知开始运动的情况或在边界上受到外界的约束)后,就能完全确定具体运动状态,称这样的条件为定解条件.表示开始情况的附加条件称为初始条件,表示在边界上受到约束的条件称为边界条件. [定解问题] 给定了泛定方程(在区域D 内)和相应的定解条件的数学物理问题称为定解问题.根据不同定解条件,定解问题分为三类.

学习复变函数与积分变换的心得

学习复变函数与积分变换的心得 这个学期我们学习了复变函数与积分变换这门课程,虽然它同概率统计一样也是考查课,但它的应用及延伸远比概率统计广,复杂得多。我从中学到了很多,上课也感受到了这门课程的魅力及授课老师的精彩的讲课。 每周二都很空闲,除了体育课就没课了,又因为这门课程是公共考查课,是四个班级在一起上课,所以有时候经常想逃课,但自从上了梁老师的一堂课,就感觉到了他是一个很负责的老师,他每次来教室都来得很早,他很喜欢点名,上课上的也很生动,他经常会叫同学上黑板做题目,来检查学生学得怎么样,他不希望同学带早餐进教室。以后的星期二基本上都没逃过课,我深深地被复变函数与积分变换这门课程给吸引住了。 关于这门课程,首先,它作为一门工科类各专业的重要基础理论课程,它与工程力学、电工技术、电磁学、无线电技术、信号系统和自动控制等课程的联系十分密切,其理论方法应用广泛。同时,作为一门工程数学的课程,它主要是以工程背景为依托来展开讨论和研究的,其前提就是为了服务于实际工程。其次,复变函数与积分变换作为一门工程数学课程,概念晦涩难懂、计算繁琐和逻辑推理不易理解。它既具有传统数学的一些特点,又具有与实际工程相结合才能理解的特点。传统数学主要注重对于基本概念的理解和对理论的讲解,要求理论推导具有严密的逻辑性,而不太注重其实际应用。而工程数学在推导定理或概念的过程中就会出现一些不完全符合严密逻辑的推理,但在现实中又是实实在在存在的一些特殊情况。如单位脉冲函数,对于集中于一点或一瞬时的量如点电荷、脉冲电流等,这些物理量都可以用通常的函数形式来描述。 复变函数是在实变函数的基础上产生和发展起来的一个分支,复变函数与积分变换中的理论和方法不仅是数学的许多后续课程如数理方程泛函分析多复变函数调和分析等课程的基础,而且在其它自然科学和各种工程技术领域特别是信号处理以及流体力学电磁学热学等的研究方面有着广泛的应用,可以说复变函数与积分变换既是一门理论性较强的课程,又是解决实际问题的有力工具各高校普遍将复变函数与积分变换课程作为工科各专业的一门重要的必修科来开设,尤其作为电子、机电自动化等电力专业的学生而言,该课程更是一门必不可少的专业基础类必修课,它为电路分析信号与系统以及自动控制原理等后续专业课程的学

复变函数与积分变换 复旦大学出版社 习题六答案

习题六 1. 求映射1w z = 下,下列曲线的像. (1) 22x y ax += (0a ≠,为实数) 解:2 2 2 2 11i=+i i x y w u v z x y x y x y == = - +++ 2 2 1x x u x y ax a = == +, 所以1w z = 将22x y ax +=映成直线1u a =. (2) .y kx =(k 为实数) 解: 2 2 2 2 1i x y w z x y x y = =- ++ 2 22 2 2 2 x y kx u v x y x y x y = =- =- +++ v ku =- 故1w z = 将y kx =映成直线v ku =-. 2. 下列区域在指定的映射下映成什么? (1)Im()0, (1i)z w z >=+; 解: (1i)(i )()i(+)w x y x y x y =+?+=-+ ,. 20.u x y v x y u v y =-=+-=-< 所以Im()Re()w w >. 故(1i)w z =+?将Im()0,z >映成Im()Re()w w >. (2) Re(z )>0. 00, 00. Im(w )>0. 若w =u +i v , 则 2 2 2 2 ,u v y x u v u v = = ++ 因为0 + 故i w z = 将Re(z )>0, 00,Im(w )>0, 12 12 w > (以(12 ,0)为圆心、12 为半径的圆) 3. 求w =z 2在z =i 处的伸缩率和旋转角,问w =z 2将经过点z =i 且平行于实轴正向的曲线的切线方向映成w 平面上哪一个方向?并作图.

复变函数与积分变换期末试题(附有答案)

复变函数与积分变换期末试题 一.填空题(每小题3分,共计15分) 1. 2 3 1i -的幅角是( 2,1,0,23±±=+-k k ππ);2. )1(i Ln +-的主值是 ( i 4 32ln 21π + );3. 211)(z z f +=,=)0() 5(f ( 0 ),4.0=z 是 4sin z z z -的( 一级 )极点;5. z z f 1 )(=,=∞]),([Re z f s (-1 ); 二.选择题(每题3分,共15分) 1.解析函数),(),()(y x iv y x u z f +=的导函数为( ); (A ) y x iu u z f +=')(; (B )y x iu u z f -=')(; (C ) y x iv u z f +=')(; (D )x y iv u z f +=')(. 2.C 是正向圆周3=z ,如果函数=)(z f ( ),则0d )(=?C z z f . (A ) 23-z ; (B )2)1(3--z z ; (C )2)2()1(3--z z ; (D )2 ) 2(3 -z . 3.如果级数∑∞ =1 n n n z c 在2=z 点收敛,则级数在 (A )2-=z 点条件收敛 ; (B )i z 2=点绝对收敛;

(C )i z +=1点绝对收敛; (D )i z 21+=点一定发散. 4.下列结论正确的是( ) (A )如果函数)(z f 在0z 点可导,则)(z f 在0z 点一定解析; (B) 如果)(z f 在C 所围成的区域内解析,则 0)(=? C dz z f (C )如果 0)(=? C dz z f ,则函数)(z f 在C 所围成的区域内一定解析; (D )函数 ),(),()(y x iv y x u z f +=在区域内解析的充分必要条件是 ),(y x u 、),(y x v 在该区域内均为调和函数. 5.下列结论不正确的是( ). (A) 的可去奇点;为z 1 sin ∞(B) 的本性奇点;为z sin ∞ (C) ;1sin 1 的孤立奇点为 z ∞(D) .sin 1的孤立奇点为z ∞ 三.按要求完成下列各题(每小题10分,共40分) (1).设)()(2 2 2 2 y dxy cx i by axy x z f +++++=是解析函数,求 .,,,d c b a 解:因为)(z f 解析,由C-R 条件

复变函数与积分变换公式

复变函数复习提纲 (一)复数的概念 1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.2 1i =-. 注:两个复数不能比较大小. 2.复数的表示 1 )模:z = 2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于(,]ππ- 中的幅角。 3)()arg z 与arctan y x 之间的关系如下: 当0,x > arg arctan y z x =; 当0,arg arctan 0,0,arg arctan y y z x x y y z x ππ? ≥=+??

第三章-行波法与积分变换法Word版

第三章 行波法与积分变换法 分离变量法,它是求解有限区域内定解问题常用的一种方法。 行波法,是一种针对无界域的一维波动方程的求解方法。 积分变换法,一个无界域上不受方程类型限制的方法。 §3.1 一维波动方程的达朗贝尔(D ’alembert )公式 一、达朗贝尔公式 考察如下Cauchy 问题: .- ),(u ),(u 0, ,- ,0t 02 2 222+∞<<∞==>+∞<<∞??=??==x x x t x x u a t u t t ψ? (1) 作如下代换; ? ? ?-=+=at x at x ηξ, (2) 利用复合函数求导法则可得 22 2 2 2 22 2))((,ηηξξηξηξη ξηηξξ??+???+??=??+????+??=????+??=????+????=??u u u u u x u u u x u x u x u 同理可得 ),2(2 2222222ηηξξ ??+???-??=??u u u a t u 代入(1)可得 η ξ???u 2=0。 先对η求积分,再对ξ求积分,可得),(t x u d 的一般形式 )()()()(),(at x G at x F G F t x u -++=+=ηξ 这里G F ,为二阶连续可微的函数。再由初始条件可知

). ()()(),()()(' ' x x aG x aF x x G x F ψ?=-=+ (3) 由(3)第二式积分可得 C dt t a x G x F x += -?0)(1)()(ψ, 利用(3)第一式可得 .2 )(21)(21)(,2 )(21)(21)(00C dt t a x x G C dt t a x x F x x --=++=??ψ?ψ? 所以,我们有 ?+-+-++=at x at x dt t a at x at x t x u )(21)]()([21),(ψ?? (4) 此式称为无限弦长自由振动的达朗贝尔公式。 二、特征方程、特征线及其应用 考虑一般的二阶偏微分方程 02=+++++Fu Eu Du Cu Bu Au y x yy xy xx 称下常微分方程为其特征方程 0)(2)(22=+-dx C Bdxdy dy A 。 由前面讨论知道,直线常数=±at x 为波动方程对应特征方程的积分曲线,称为特征线。已知,左行波)(at x F +在特征线1C at x =+上取值为常数值)(1C F ,右行波)(at x G -在特征线2C at x =-上取值为常数值)(2C G ,且这两个值随着特征线的移动而变化,实际上,波是沿着特征线方向传播的。称变换(2)为特征变换,因此行波法又称特征线法。 注:此方法可以推广的其他类型的问题。 三、公式的物理意义 由 )()(),(at x G at x F t x u -++= 其中)(at x F +表示一个沿x 轴负方向传播的行波, )(at x G -表示一个沿x 轴正方向传播的行波。达朗贝尔公式表明:弦上的任意扰动总是以行波形式分别向两个 方向传播出去,其传播速度为a 。因此此法称为行波法。

复变函数与积分变换重点公式归纳

复变函数与积分变换 第一章 复变函数 一、复变数和复变函数 ()()()y x iv y x u z f w ,,+== 二、复变函数的极限与连续 极限 A z f z z =→)(lim 0 连续 )()(lim 00 z f z f z z =→ 第二章 解析函数 一、复变函数),(),()(y x iv y x u z f w +==可导与解析的概念。 二、柯西——黎曼方程 掌握利用C-R 方程?????-==x y y x v u v u 判别复变函数的可导性与解析性。 掌握复变函数的导数: y x y x y y x x v iv iu u v iu y f i iv u x f z f +==-=+-=??=+=??= 1)(' 三、初等函数 重点掌握初等函数的计算和复数方程的求解。 1、幂函数与根式函数 θθθθθin n n n n n e r n i n r i r z w =+=+==)sin (cos )sin (cos 单值函数 n k z i n n e r z w π2arg 1+== (k =0、1、2、…、n-1) n 多值函数 2、指数函数:)sin (cos y i y e e w x z +== 性质:(1)单值.(2)复平面上处处解析,z z e e =)'((3)以i π2为周期 3、对数函数 ππk i z k z i z Lnz w 2ln )2(arg ln +=++== (k=0、±1、±2……) 性质:(1)多值函数,(2)除原点及负实轴处外解析,(3)在单值解析分枝上:k k z z 1 )'(ln = 。 4、三角函数:2cos iz iz e e z -+= i e e z iz iz 2sin --= 性质:(1)单值 (2)复平面上处处解析 (3)周期性 (4)无界 5、反三角函数(了解) 反正弦函数 )1(1 sin 2z iz Ln i z Arc w -+== 反余弦函数 )1(1 cos 2-+= =z z Ln i z Arc w

复变函数与积分变换结课感想

工程数学的科学魅力 ------《复变函数与积分变换》结课论文《复变函数与积分变换》是继《高等数学》之后的一门工科电类专业的公共基础课程。通过对它的学习使自己进一步认识了数学世界,认识了工程数学的无穷魅力,感叹于前人灵光一闪的发现,惊讶于人类智慧的浩瀚无尽,同时也学会了学习,学会了如何运用学到的数学工具解决一些简单问题。数学之于其他自然科学的高度抽象性和基础性使之当之无愧地成为众学科之父,《复变函数与积分变换》作为数学的一个小的分支自然而然地对我们的学习产生了近乎革命性的影响。 为何学习以及学习心态。如果抛弃“学以致用”、高投资回报率与实用主义的世俗信条而单纯以科学探索的长远眼光看待数学,那么数学史便是一部大师发现创造的历史,人类社会百年以至更长时间的文明积淀凝结成书,今天这份同样饱含了前人智慧思想的《复变函数与积分变换》便是往圣先贤无数次苦思冥想无数次灵光闪现后经历时代检验的文明成果。学习它,就是回溯人类文明的足迹,与大师对话,重走发现之旅;与大师交流,以获得创造并改变世界的数学工具。千百年,大师归去,然而优秀的数学思想却薪尽火传,我们得以承接人类文明的接力棒,不亦乐乎?尽管我们可能只是庞大社会机器上的一枚螺丝钉,但仍然有必要去了解整个机器的构造,以虔诚、敬重、学习的心态对待前人的发现创造,以便更好地掌握“一角冰山”,学好《复变函数与积分变换》这门课程。 如何学习以及学习方法。将前人百年来的思想成果用有限的几十个学时全部接受甚至融会贯通似乎是不现实的。学会查阅,以较短的时间找到所需的知识的能力是大学说要传授我们的“渔”。正如老师所说,有些知识可能要等到工作实践

时才能恍然大悟,而有些知识甚至可能我们永远都理解不了。查找知识的能力适用于其他任何学科。一个人不可能掌握所有的知识,但他必须学会如何学习,正所谓学习能力比学习本身更重要。查阅之后反复使用才能转化为自己的东西,而工程数学给我们实践所学更多的机会,使之更接近一门技术。 学习数学史有助于我们理解定理定律出现的前因后果,对数学世界充满兴趣的同时有可能获得启迪,“站在巨人的肩膀上”也给后人一副“肩膀”。本课程中出现过的欧拉、柯西、Fourier、Dirichlet等数学泰斗多生于英法等欧洲国家,由此可见,大的学术环境往往成为科学家诞生的摇篮,而数学世家、数学家辈出的大学又说明了好的后天教育的重要性。当今世界的数学中心移居美国,是否说明其学术环境的某种优势,这一点姑且不论。 工程数学有着更紧密的理论与实践的联系,因此近似、条件弱化等经验能让我们洞见理论实践转化升华的契机。本课程的学习让我领会了为什么学、怎么学和学习方法心态上的诸多新思路,获益匪浅。数学史使我对“枯燥的数学”有了不枯燥的兴趣。工程数学魅力无穷,若没能接触她,岂能发现这又是一片"豁然开朗的崭新的世界"? 2011年11月

偏微分方程与图像处理.

偏微分方程与图像处理 (曲线的演化)

实验名称: 平面曲线的演化 实验内容: 1.用水平集方法对曲线进行演化; 2.用离散中值滤波方法进行演化。 理论分析: 我们已知道:曲线演化方程式(平均曲率运动方程MCM ) c k N t ?=?; 1. 曲线演化水平集方法 平面封闭曲线可以表达为一个二维函数u(x,y)的水平(线)集 (,,){(,,):(,,)}c L x y t x y t u x y t c == 这样就可将曲线演化问题嵌入到函u(x,y,t)的演化问题。即转化为水平集演化问题 曲线演化水平集方法的基本方程式如下: ||u k u t ?=?? 其中,||u ?=() 22 3/2 222xx y x y xy yy x x y u u u u u u u k u u -+= + 进而推得:22 22 2xx y x y xy yy x x y u u u u u u u u t u u -+?=?+;其中x u ,xy u ,xx u 可采用中心差分近似 () () 1,1,1,,1,2 1,11,11,11,1 2 (,)22(,)(,)4i j i j x i j i j i j xx i j i j i j i j xy u u u i j x u u u u i j x u u u u u i j x +-+-++--+--+-=?-+=?+--= ? 对于y u ,yy u 有类似的表达式。x ?表示相邻几个点。 从而完整的演化公式为: 22 1 ,,2 2 2xx y x y xy yy x n n i j i j x y u u u u u u u u u t u u +-+=+?+ (1) 其中,t ?为演化步长,在本程序中取为1。 这样就涉及到两个问题: (1).嵌入函数的选用 嵌入函数为—令u(x,y)表示平面上(x,y)点到曲线C 的带有符号的距离(见 课本)。 因此研究的曲线总对应于零水平集,这样只要检测过零点条件 ,1,.0i j i j u u +< 或 ,,1.0i j i j u u +<

相关文档
最新文档