第一章金属材料的力学性能(教案)

第一章金属材料的力学性能(教案)
第一章金属材料的力学性能(教案)

复习旧课

1、材料的发展历史

2、工程材料的分类 讲授新课

第一章 金属材料的力学性能

材料的性能有使用性能和工艺性能两类

使用性能 是保证工件的正常工作应具备的性能,主要包括力学性能、物理性能、

化学性能等。

工艺性能 是材料在被加工过程中适应各种冷热加工的性能,包括铸造性能、锻

压性能、焊接性能、热处理性能、切削加工性能等。

力学性能 是指金属在外力作用下所显示的性能能。

金属力学性能指标有:强度、刚度、塑性、硬度、韧性和疲劳强度等。

第一节 刚度、强度与塑性

一、拉伸试验及力—伸长曲线

L 0——原始标距长度;L 1——拉断后试样标距长度 d 0——原始直径。 d 1——拉断后试样断口直径

国际上常用的是L 0 =5 d 0(短试样),L 0=10 d 0(长试样)

[拉伸曲线]:拉伸试验中记录的拉伸力F与伸长量ΔL(某一拉伸力时

试样的长度与原始长度的差ΔL=Lu-L0)的F—ΔL曲线称为

拉伸曲线图。

Oe段:为纯弹性变形阶段,卸去载荷时,试样能恢复原状

Es段:屈服阶段

Sb段:强化阶段,试样产生均匀的塑性变形,并出现了强化

Bk段:局部塑性变形阶段

二、刚度

刚度:金属材料抵抗弹变的能力

指标:弹性模量 E E= ζ / ε (Gpa )

弹性范围内. 应力与应变的比值(或线形关系,正比)

E↑刚度↑一定应力作用下弹性变形↓

三、强度指标ζ= F/S o

强度:强度是指材料抵抗塑性变形和断裂的能力。

强度表示:强度一般用拉伸曲线上所对应某点的应力来表示。单位采用

N/mm2(或MPa 兆帕)ζ= F/A

o

ζ——应力(MPa);F——拉力(N);S o——截面积(mm2)。

常用的强度判据主要有屈服点、条件屈服强度(也称为规定残余伸长应力)和抗拉强度等。

1、屈服点与条件屈服强度

[屈服强度]ζs 产生屈服时的应力(屈服点),亦表示材料发生明显塑性变形时的最低应力值。

[ 规定残余伸长应力]:ζ

r0.2产生0.2%残余伸长率时的应力。ζ

r0.2

= F r0.2/A

o

2、抗拉强度

[抗拉强度]:σ

b

断裂前最大载荷时的应力(强度极限)

ζγ0.2常常难以测出,所以,脆性材料没有屈服强度指标,只有抗拉强度指标用于零件的设计计算。

强度意义:一般机械零件或工具使用时,不允许发生塑性变形,故屈服点ζ是机械设计强度计算的主要依据;抗拉强度代表材料抵抗拉断的能力,若应力s

大于抗拉强度,则会发生断裂而造成事故。

三、塑性指标

材料产生塑性变形而不破坏的能力称为塑性。常用的塑性指标是断后伸长率δ和断面收缩率。一般通过拉伸实验测定。

1、断后伸长率

断后伸长率是指试样拉断后标距的伸长量与原标距长度的百分比。用符号δ表示。

δ =(L1-L0 /L0)×100%

2、断面收缩率

断面收缩率是指试样拉断后缩颈处横截面积的最大缩减量与原始横截面积的百分比,用符号ψ表示:

ψ = (A0-A1)/A0×100%

塑性直接影响到零件的成形及使用。

第二节冲击韧性

定义:指在冲击载荷作用下,材料抵抗冲击力的作用而不被破坏的能力,是材料强度和塑性的综合表现。

衡量指标:冲击韧度a k (a k=A k/F k )

a K值测定方法:一次弯曲冲击实验法,

物理意义:试样在冲断时单位横截面积上所消耗的冲击功A K,单位为J/cm2。a K值越大,表示材料的冲击韧性越好。

第三节疲劳强度

交变载荷:载荷大小和方向随时间发生周期变化的载荷。

疲劳断裂:零件在交变载荷下经过长时间工作而发生低应力断裂的现象成为疲劳断裂。

疲劳断裂过程:裂纹萌生、疲劳裂纹扩展、最后断裂。

疲劳抗力指标:疲劳极限,又称疲劳强度,用σ-1表示。材料经过无限次应力循环不发生断裂的最大应力,即疲劳曲线上水平部分对应的应力值。

疲劳断裂的原因:一般认为是,由于材料表面与内部的缺陷(夹杂、划痕、尖角等),造成局部应力集中,形成微裂纹。随应力循环次数的增加,微裂纹逐渐扩展,使零件的有效承载面积逐渐减小,以致于最后承受不起所加载荷而突然断裂。

提高材料疲劳抗力的措施:通过合理选材,改善材料的结构形状,避免应力集中,减小材料和零件的缺陷;提高零件表面光洁度;对表面进行强化,喷丸处理等,可以提高材料的疲劳抗力。

第四节硬度

硬度是指材料抵抗局部变形,特别是塑性变形、压痕或划痕的能力,他是衡量材料软硬的指标。

一、布氏硬度

布氏硬度测量原理:采用直径为D的球形压头,以相应的试验力F压入材料的表面,经规定保持时间后卸除试验力,用读数显微镜测量残余压痕平均直径d,用球冠形压痕单位表面积上所受的压力表示硬度值。实际测量可通过测出d值后查表获得硬度值

HBS——表示用淬火钢球压头测量的布氏硬度值。适用范围:小于450 HBW——表示用硬质合金压头测量的布氏硬度值。适用范围:450~650

布氏硬度表示方法:符号HBS或HBW之前的数字表示硬度值,符号后面的数字按顺序分别表示球体直径、载荷及载荷保持时间。

布氏硬度特点:优点:测量数值稳定,准确,能较真实地反映材料的平均硬度;

缺点:压痕较大,操作慢,不适用批量生产的成品件和薄形件

布氏硬度测量范围:用于原材料与半成品硬度测量,可用于测量铸铁;非铁金属(有色金属)、硬度较低的钢(如退火、正火、调质处理的钢)

布氏硬度数值通过布氏硬度试验测定。

布氏硬度值是试验力除以压痕球形表面积所得的商。使用淬火钢球压头时用符号HBS,使用硬质合金球压头时用符号HBW。

当F、D一定时,布氏硬度值仅与压痕直径d的大小有关。

布氏硬度习惯上只写出硬度值而不必注明单位,其标注方法是,符号HBS

或HBW之前为硬度值,符号后面按顺序用数值表示试验条件。

布氏硬度值的测量误差小,数据稳定,重复性强。

二、洛氏硬度

洛氏硬度测量原理:用金刚石圆锥或淬火钢球压头,在试验压力F的作用下,将压头压入材料表面,保持规定时间后,去除主试验力,保持初始试验力,用残余压痕深度增量计算硬度值,实际测量时,可通过试验机的表盘直接读出洛氏硬度的数值。

氏硬度测量条件:洛氏硬度可以测量从软到硬较大范围的硬度值,根据被测对象硬度值大小不同,可用不同的压头和试验力,如下表。

常用洛氏硬度的试验条件和应用范围

洛氏硬度特点:优点:测量迅速、简便、压痕小、硬度测量范围大,

缺点:数据准确性、稳定性、重复性不如布氏硬度

测定结果波动较大,稳定性较差,故需测试三点,取其算术平均值,一般不适宜测试组织不均匀的材料。

三、维氏硬度

维氏硬度是将相对面夹角为136°的正四棱锥体金刚石压头以选定的试验

力(49.03~980.7N)压入被测材料或零件表面,经规定保持时间后卸除试验力,

用测量的压痕对角线长度计算硬度的一种压痕硬度试验。试验原理如课件中所示。

维氏硬度的表示符号为HV,测量范围是5~1000HV,标注方法与布氏硬度相同。值写在符号的前面,试验条件写在符号的后面。对于钢及铸铁的试验力保持时间为10~15s时,可以不标出。

课堂小结

课后作业

工程材料力学性能

《工程材料力学性能》(第二版)课后答案 第一章材料单向静拉伸载荷下的力学性能 一、解释下列名词 滞弹性:在外加载荷作用下,应变落后于应力现象。 静力韧度:材料在静拉伸时单位体积材科从变形到断裂所消耗的功。 弹性极限:试样加载后再卸裁,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最高应力。 比例极限:应力—应变曲线上符合线性关系的最高应力。 包申格效应:指原先经过少量塑性变形,卸载后同向加载,弹性极限(σP)或屈服强度(σS)增加;反向加载时弹性极限(σP)或屈服强度(σS)降低的现象。 解理断裂:沿一定的晶体学平面产生的快速穿晶断裂。晶体学平面--解理面,一般是低指数,表面能低的晶面。 解理面:在解理断裂中具有低指数,表面能低的晶体学平面。 韧脆转变:材料力学性能从韧性状态转变到脆性状态的现象(冲击吸收功明显下降,断裂机理由微孔聚集型转变微穿晶断裂,断口特征由纤维状转变为结晶状)。 静力韧度:材料在静拉伸时单位体积材料从变形到断裂所消耗的功叫做静力韧度。是一个强度与塑性的综合指标,是表示静载下材料强度与塑性的最佳配合。 二、金属的弹性模量主要取决于什么?为什么说它是一个对结构不敏感的力学性能指标? 答案:金属的弹性模量主要取决于金属键的本性和原子间的结合力,而材料的成分和组织对它的影响不大,所以说它是一个对组织不敏感的性能指标,这是弹性模量在性能上的主要特点。改变材料的成分和组织会对材料的强度(如屈服强度、抗拉强度)有显著影响,但对材料的刚度影响不大。 三、什么是包辛格效应,如何解释,它有什么实际意义? 答案:包辛格效应就是指原先经过变形,然后在反向加载时弹性极限或屈服强度降

第一章金属材料的力学性能教案)

复习旧课 1、材料的发展历史 2、工程材料的分类 讲授新课 第一章 金属材料的力学性能 材料的性能有使用性能和工艺性能两类 使用性能 是保证工件的正常工作应具备的性能,主要包括力学性能、物理性能、 化学性能等。 工艺性能 是材料在被加工过程中适应各种冷热加工的性能,包括铸造性能、锻 压性能、焊接性能、热处理性能、切削加工性能等。 力学性能 是指金属在外力作用下所显示的性能能。 金属力学性能指标有:强度、刚度、塑性、硬度、韧性和疲劳强度等。 第一节 刚度、强度与塑性 一、拉伸试验及力—伸长曲线 L 0——原始标距长度;L 1——拉断后试样标距长度 d 0——原始直径。 d 1——拉断后试样断口直径 国际上常用的是L 0 =5 d 0(短试样),L 0=10 d 0(长试样)

???? [拉伸曲线]:拉伸试验中记录的拉伸力F与伸长量ΔL(某一拉伸力时试样的长度与原始长度的差ΔL=Lu-L0)的F—ΔL曲线称为拉伸 曲线图。 Oe段:为纯弹性变形阶段,卸去载荷时,试样能恢复原状 Es段:屈服阶段 Sb段:强化阶段,试样产生均匀的塑性变形,并出现了强化 ? Bk段:局部塑性变形阶段 二、刚度 刚度:金属材料抵抗弹变的能力 指标:弹性模量 E E= σ / ε (Gpa ) 弹性范围内. 应力与应变的比值(或线形关系,正比) E↑刚度↑一定应力作用下弹性变形↓ 三、强度指标σ= F/S o 强度:强度是指材料抵抗塑性变形和断裂的能力。 强度表示:强度一般用拉伸曲线上所对应某点的应力来表示。单位采用 N/mm2(或MPa 兆帕)σ= F/A o σ——应力(MPa);F——拉力(N);S o——截面积(mm2)。 常用的强度判据主要有屈服点、条件屈服强度(也称为规定残余伸长应力)和抗拉强度等。 1、屈服点与条件屈服强度 [屈服强度]σs??产生屈服时的应力(屈服点),亦表示材料发生明显塑性变形时的最低应力值。 [ 规定残余伸长应力]:σ r0.2?产生0.2%残余伸长率时的应力。σ r0.2 = F r0.2/A o 2、抗拉强度 [抗拉强度]:σ b???? 断裂前最大载荷时的应力(强度极限) σγ0.2常常难以测出,所以,脆性材料没有屈服强度指标,只有抗拉强度指标用于零件的设计计算。

金属材料的力学性能教案修订稿

金属材料的力学性能教 案 Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】

复习旧课 1、材料的发展历史 2、工程材料的分类 讲授新课 第一章金属材料的力学性能 材料的性能有使用性能和工艺性能两类 使用性能是保证工件的正常工作应具备的性能,主要包括力学性能、物理性能、化学性能等。工艺性能是材料在被加工过程中适应各种冷热加工的性能,包括铸造性能、锻压性能、焊接性能、热处理性能、切削加工性能等。 力学性能是指金属在外力作用下所显示的性能能。 金属力学性能指标有:强度、刚度、塑性、硬度、韧性和疲劳强度等。 第一节刚度、强度与塑性 一、拉伸试验及力—伸长曲线 L 0——原始标距长度;L 1 ——拉断后试样标距长度 d 0——原始直径。d 1 ——拉断后试样断口直径 国际上常用的是L0=5 d0(短试样),L0=10 d0(长试样)

[拉伸曲线]:拉伸试验中记录的拉伸力F与伸长量ΔL(某一拉伸力时试样的长度与原始长度的差ΔL=Lu-L0)的F—ΔL曲线称为拉伸曲线图。 Oe段:为纯弹性变形阶段,卸去载荷时,试样能恢复原状 Es段:屈服阶段 Sb段:强化阶段,试样产生均匀的塑性变形,并出现了强化 Bk段:局部塑性变形阶段 二、刚度 刚度:金属材料抵抗弹变的能力 指标:弹性模量 E E= σ / ε (Gpa ) 弹性范围内. 应力与应变的比值(或线形关系,正比) E↑刚度↑一定应力作用下弹性变形↓ 三、强度指标σ= F/S o 强度:强度是指材料抵抗塑性变形和断裂的能力。 强度表示:强度一般用拉伸曲线上所对应某点的应力来表示。单位采用N/mm2(或MPa 兆帕)σ= F/A o σ——应力(MPa);F——拉力(N);S o——截面积(mm2)。 常用的强度判据主要有屈服点、条件屈服强度(也称为规定残余伸长应力)和抗拉强度等。 1、屈服点与条件屈服强度 [屈服强度]σs产生屈服时的应力(屈服点),亦表示材料发生明显塑性变形时的最低应力值。 [ 规定残余伸长应力]:σ产生%残余伸长率时的应力。σ= A o 2、抗拉强度 断裂前最大载荷时的应力(强度极限) [抗拉强度]:σ b σγ常常难以测出,所以,脆性材料没有屈服强度指标,只有抗拉强度指标用于零件的设计计算。 是机械设计强度强度意义:一般机械零件或工具使用时,不允许发生塑性变形,故屈服点σ s 计算的主要依据;抗拉强度代表材料抵抗拉断的能力,若应力大于抗拉强度,则会发生断裂而造成事故。 三、塑性指标

材料力学性能课后答案(时海芳任鑫)

第一章 1.解释下列名词①滞弹性:金属材料在弹性围快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。②弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。③循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。④包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。⑤塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。⑥韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。 脆性:指金属材料受力时没有发生塑性变形而直接断裂的能力 ⑦加工硬化:金属材料在再结晶温度以下塑性变形时,由于晶粒发生滑移, 出现位错的缠结,使晶粒拉长、破碎和纤维化,使金属的强度和硬度升高,塑性和韧性降低的现象。⑧解理断裂:解理断裂是在正应力作用产生的一种穿晶断裂,即断裂面沿一定的晶面(即解理面)分离。 2.解释下列力学性能指标的意义弹性模量);(2)ζ p(规定非比例伸长应力)、ζ e(弹性极限)、ζ s(屈服强度)、ζ 0.2(屈服强度);(3)ζ b (抗拉强度);(4)n(加工硬化指数); (5)δ (断后伸长率)、ψ (断面收缩率) 4.常用的标准试样有5 倍和10倍,其延伸率分别用δ 5 和δ 10 表示,说明为什么δ 5>δ 10。答:对于韧性金属材料,它的塑性变形量大于均匀塑性变形量,所以对于它的式样的比例,尺寸越短,它的断后伸长率越大。

5.某汽车弹簧,在未装满时已变形到最大位置,卸载后可完全恢复到原来状态;另一汽车弹簧,使用一段时间后,发现弹簧弓形越来越小,即产生了塑性变形,而且塑性变形量越来越大。试分析这两种故障的本质及改变措施。答:(1)未装满载时已变形到最大位置:弹簧弹性极限不够导致弹性比功小;(2)使用一段时间后,发现弹簧弓形越来越小,即产生了塑性变形,这是构件材料的弹性比功不足引起的故障,可以通过热处理或合金化提高材料的弹性极限(或屈服极限),或者更换屈服强度更高的材料。 6.今有45、40Cr、35CrMo 钢和灰铸铁几种材料,应选择哪种材料作为机床机身?为什么?答:应选择灰铸铁。因为灰铸铁循环韧性大,也是很好的消振材料,所以常用它做机床和动力机器的底座、支架,以达到机器稳定运转的目的。刚性好不容易变形加工工艺朱造型好易成型抗压性好耐磨损好成本低 7.什么是包申格效应?如何解释?它有什么实际意义?答:(1)金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象,称为包申格效应。(2)理论解释:首先,在原先加载变形时,位错源在滑移面上产生的位错遇到障碍,塞积后便产生了背应力,背应力反作用于位错源,当背应力足够大时,可使位错源停止开动。预变形时位错运动的方向和背应力方向相反,而当反向加载时位错运动方向和背应力方向一致,背应力帮助位错运动,塑性变形容易了,于是,经过预变形再反向加载,其屈服强度就降低了。(3)实际意义:在工程应用上,首先,材料加工成型工艺需要考虑包申格效应。例如,大型精油输气管道管线的UOE 制造工艺:U 阶段是将原始板材冲压弯曲成U 形,O 阶段是将U 形板材径向压缩成O 形,再进行周边焊接,最后将管子径进行扩展,达到给定大小,

工程材料力学性能各章节复习知识点

工程材料力学性能各个章节主要复习知识点 第一章 弹性比功:又称弹性比能,应变比能,表示金属材料吸收弹性变形功的能力。 滞弹性:对材料在弹性范围内快速加载或卸载后随时间延长附加弹性应变的现象。包申格效应:金属材料经预先加载产生少量塑性变形(残余应变为1%~4%),卸载后再同向加载,规定残余伸长应力(弹性极限或屈服极限)增加,反向加载,规定残余伸长应力降低的现象。 塑性:指金属材料断裂前发生塑性变形的能力。 脆性:材料在外力作用下(如拉伸,冲击等)仅产生很小的变形及断裂破坏的性质。 韧性:是金属材料断裂前洗手塑性变形功和断裂功的能力,也指材料抵抗裂纹扩展的能力。 应力、应变;真应力,真应变概念。 穿晶断裂和沿晶断裂:多晶体材料断裂时,裂纹扩展的路径可能不同,穿晶断裂穿过晶内;沿晶断裂沿晶界扩展。 拉伸断口形貌特征? ①韧性断裂:断裂面一般平行于最大切应力并与主应力成45度角。用肉眼或放大镜观察时,断口呈纤维状,灰暗色。纤维状是塑性变形过程中微裂纹不断扩展和相互连接造成的,而灰暗色则是纤维断口便面对光反射能力很弱所致。其断口宏观呈杯锥形,由纤维区、放射区、和剪切唇区三个区域组成。 ②脆性断裂:断裂面一般与正应力垂直,断口平齐而光亮,常呈放射状或结晶状。板状矩形拉伸试样断口呈人字形花样。人字形花样的放射方向也与裂纹扩展方向平行,但其尖端指向裂纹源。 韧、脆性断裂区别? 韧性断裂产生前会有明显的塑性变形,过程比较缓慢;脆性断裂则不会有明显的塑性变形产生,突然发生,难以发现征兆 拉伸断口三要素? 纤维区,放射区和剪切唇。 缺口试样静拉伸试验种类? 轴向拉伸、偏斜拉伸 材料失效有哪几种形式? 磨损、腐蚀和断裂是材料的三种主要失效方式。 材料的形变强化规律是什么? 层错能越低,n越大,形变强化增强效果越大 退火态金属增强效果比冷加工态是好,且随金属强度等级降低而增加。 在某些合金中,增强效果随合金元素含量的增加而下降。 材料的晶粒变粗,增强效果提高。 第二章 应力状态软性系数:材料某一应力状态,τmax和σmax的比值表示他们的相对大小,成为应力状态软性系数,比为α,α=τmax σmax 缺口敏感度:缺口试样的抗拉强度σbn与等截面尺寸光滑试样的抗拉强度σb的比

材料力学性能教学导案

材料力学性能教案

————————————————————————————————作者:————————————————————————————————日期:

XXXX 教案 2013- 2014学年第2学期 课程名称材料力学性能 授课专业班级材料科学与工程2011级授课教师 职称 教学单位 教研室材料科学

学期授课计划 课程类别专业核心总学分 3 总学时48 本学期学时教学 周次 周 学时 学时分配 48 16 4/2 讲授实验上机练习讨论考查其他(习题) 48 6 教学目的和基本要求 本课程是高等学校本科材料科学与工程类专业的一门重要的专业课程。 设置本课程的目的和教学目标是:通过学习材料力学性能使学生能够从各种机械零件或构件最常见的服役条件和失效现象出发,了解时效现象的微观机制,提出衡量材料时效抗力的力学性能指标;掌握各种指标的物理概念、实用意义和测试方法;明确它们之间的相互关系;分析各种因素对力学性能指标的影响,为机械设计与制造过程中正确选择和合理使用材料提供依据,为研制新材料、改进冷热加工新工艺,充分发挥材料性能潜力指明方向,并为机械零件和构件的时效分析提供一定基础。 教学重点和难点重点:单向静拉伸力学性能;冲击载荷下的力学性能;应力腐蚀和氢脆。难点:单向静拉伸力学性能;金属的断裂韧度;复合材料的力学性能。 选用 教材 束德林主编《工程材料力学性能》,机械工业出版社2003

主要参考资料郑修麟主编《材料的力学性能,西北工大版,2001 冯端主编《金属物理学》(第三卷,科学出版社1999 匡震邦主编《材料的力学行为》,高等教育出版社1998 张清纯主编《陶瓷的力学性能》,科学出版社1997吴人洁主编《复合材料》,天津大学出版社2000 备注 单元教案 授课主题 (或章节) 第一章金属在单向静拉伸载荷下的力学性能学时10 教学内容纲要1、掌握应力-应变曲线;2、弹性变形与弹性不完整性;3、塑性变形、屈服强度、形变硬化;4、金属断裂、断裂强度、断裂理论及其应用 教学目的和要求1、掌握应力-应变曲线; 2、理解弹性变形与弹性不完整性; 3、理解塑性变形、屈服强度、形变硬化; 4、理解金属断裂、断裂强度、断裂理论及其应用。 教学重点应力-应变曲线 教学难点塑性变形、屈服强度、形变硬化;金属断裂、断裂强度、断裂理论及其应用 授课方式 (请打√) 讲授(√ ) 讨论课( ) 实验课( ) 习题课( ) 其他( )

混凝土结构设计 第一章材料的力学性能-习题 答案要点

第一章材料的力学性能 一、填空题 1、钢筋混凝土及预应力混凝土中所用的钢筋可分为两类:有明显屈服点的钢筋和无明显屈服点的钢筋,通常分别称它们为软钢, 和硬钢。 2、对无明显屈服点的钢筋,通常取相当于残余应变为0.2%时的应力作为假定的屈服点,即条件屈服强度。 3、碳素钢可分为低碳钢、中碳钢和高碳钢。随着含碳量的增加,钢筋的强度提高、塑性降低。在低碳钢中加入少量锰、硅、钛、铬等合金元素,变成为普通低合金钢。 4、钢筋混凝土结构对钢筋性能的要求主要是强度、塑性、 焊接性能、粘结力。 5、钢筋和混凝土是不同的材料,两者能够共同工作是因为两者之间的良好粘结力、两者相近的膨胀系数、混凝土包裹钢筋避免钢筋生锈 6、光面钢筋的粘结力由胶结力、摩擦力、挤压力三个部分组成。 7、钢筋在混凝土中应有足够的锚固长度,钢筋的强度越高、直径越粗、混凝土强度越低,则钢筋的锚固长度就越长。 8、混凝土的极限压应变包括弹性应变和塑性应变两部分。塑性应变部分越大,表明变形能力越大,延性越好。 9、混凝土的延性随强度等级的提高而降低。同一强度等级的混凝土,随着加荷速度的减小,延性有所增加,最大压应力值随加荷速度的减小而减小。 10、钢筋混凝土轴心受压构件,混凝土收缩,则混凝土的应力增加,钢筋的应力减小。 11、混凝土轴心受拉构件,混凝土徐变,则混凝土的应力减小,钢筋的应力增大。 12、混凝土轴心受拉构件,混凝土收缩,则混凝土的应力增大,钢筋的应力减小。 13、混凝土轴心抗压强度的标准试件尺寸为150*150*300或150*150*150 。 14、衡量钢筋塑性性能的指标有延伸率和冷弯性能。 15、当钢筋混凝土构件采用HRB335级钢筋时,要求混凝土强度等级不宜低于C20;当采用热处理钢筋作预应力钢筋时,要求混凝土强度不宜低C40 。 二、判断题 1、混凝土强度等级是由一组立方体试块抗压后的平均强度确定的。(N) 2、采用边长为100mm的非标准立方体试块做抗压试验时,其换算系数是0.95。(Y) 3、混凝土双向受压时强度比其单向受压时强度降低。(N) 4、线性徐变是指徐变与荷载持续时间之间为线性关系。(Y) 5、对无明显屈服点的钢筋,设计时其强度标准值取值依据是条件屈服强度。 (Y) 6、强度与应力的概念完全一样。(N)

金属力学性能总结

第一章 材料的拉伸性能 1、对拉伸试件有什么基本要求?为什么? 答:1、实验条件 光滑试件 室温大气介质 单向单调拉伸载荷 2、试件的形状和尺寸 圆柱试件:l 0=5d 0或l 0=10d 0 板状试件:l 0=5.650A 或11.30A 原因:为了比较不同尺寸试样所测得的延性,要求试样的几何相似,l 0/ 0A 要为一常数。其中A 0为试件的初始横截面积。 2、为什么拉伸试验又称为静拉伸试验?拉伸试验可以测定哪些力学性能? 答:拉伸加载速率较低,s MPa dt d /10~1/=σ,故称静拉伸试验。 拉伸试验可以测定的力学性能为: 弹性模量E 屈服强度σs 抗拉强度σb 延伸率δ 断面收缩率ψ 3、试件的尺寸对测定材料的断面收缩率是否有影响?为什么?如何测定板材的断面收缩率? 答:断面收缩率是材料本身的性质,与试件的几何形状无关。 测定板材的断面收缩率的方法: 断面收缩率ψ=(a 0b 0-a 1b 1)/ a 0b 0 4、试画出示意图说明:脆性材料与塑性材料的应力—应变曲线有何区别?高塑性材料与低塑性材料的应力—应变曲线又有何区别? 答:1、左图近似为一直线,只有弹性变形阶段,没有塑性变形阶段,在弹性变形阶段断裂, 说明是脆性材料。 右图为弯钩形曲线,既有弹性变形阶段,又有塑性变形阶段,在塑性变形阶段断裂, 说明是塑性材料。 2、左图曲线有弹性变形阶段与均匀塑性变形阶段,没有颈缩现象,曲线在最高点处中断,即在均匀塑性变形阶段断裂,且塑性变形量小,说明是低塑性材料。 右图曲线有弹性变形阶段,均匀塑性变形阶段,颈缩后的局集塑性变形阶段,曲线在经过最高点后向下延伸一段再中断,即在颈缩后的局集塑性变形阶段断裂,且塑性变形量大,说明是高塑性材料。

工程材料力学性能-第 版答案 束德林

《工程材料力学性能》束德林课后答案 机械工业出版社 2008第2版 第一章单向静拉伸力学性能 1、解释下列名词。 1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。 3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。 4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。 韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。 7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。 8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。是解理台阶的一种标志。

9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。 10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。 沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。 11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变 12.弹性不完整性:理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性。弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等 2、 说明下列力学性能指标的意义。 答:E 弹性模量 G 切变模量 r σ规定残余伸长应力 2.0σ屈服强度 gt δ金属材料拉伸时最大应力下的总伸长率 n 应变硬化指 数 【P15】 3、 金属的弹性模量主要取决于什么因素?为什么说它是一个对 组织不敏感的力学性能指标? 答:主要决定于原子本性和晶格类型。合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。组织虽然改变了,原子的本性和晶格

金属力学性能

1、名词解释 (1)比例极限:比例极限σp是应力与应变成正比关系的最大应力,即在应力 -应变曲线上开始偏离直线时的应力;σp =Pp/Fo(MPa)Pp----比例极限的载荷,N;Fo ----试样的原截面积,m2或 mm2 (2)变动载荷:指载荷的大小、方向、波形、频率和应力幅,随时间发生周期性变化的一类载荷; (3)平面应力状态:如果在某种情况下,三个主应力中的一个为零。例如σ3=0那么这一点的应力状态,我们就称为平面应力状态。 (4)应力腐蚀断裂:由拉伸应力和腐蚀介质外加敏感的材料组织联合作用而引起的慢长而滞后的低应力脆性断裂称为应力腐蚀断裂(SCC)。 (5)弹性比功:又称弹性比能,应变比能,表示金属材料吸收弹性变形功的能力。一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 (6)冷脆:刚在低温冲击时其冲击功极低:这种现象称为钢的冷脆。 (7)循环硬化:指金属材料在应变保持一定的情况下,形变抗力在循环过程中不断增高的现象。 (8)循环软化:金属材料的应变保持在一定的情况下,材料的形变抗力在循环过程中下降,即产生该应变所需的应力逐渐减小,该现象称为“循环软化”。 (9)刚度:在弹性范围内,构件抵抗变形的能力:Q=P/ε=бA/ε=EA (10)固溶强化:把异类元素原子溶入基体金属得到固溶合金,可以有效地提高屈服强度,这样的强化方法称为固溶强化。 需掌握的知识要点: 冲击韧性:指材料在冲击载荷作用下吸收塑性变形功和断裂功的能力,冲击吸收功用符号Ak表示,单位为J。 2、洛氏硬度有几种,其各自的符号及适用范围。P25 布氏硬度:表示符号HB,适用范围:不适宜零件表面测量,薄壁件或表面硬化层 洛氏硬度:表示符号HR, 适用范围:适用于各种不同硬度材料的检验,不适用于具有粗大组成相火不均匀组织材料的硬度测定 维氏硬度:表示符号HN, 适用范围:常使用于测定表面硬化层仪表零件的硬度显微硬度:表示符号HK, 适用范围:适用于细,线材料的加工硬化程度。 3、断裂的基本过程的组成:裂纹形成,扩展 4、S-N曲线的测定方法,对于一般疲劳极限和有限寿命部分的测试方法分别是什么:分别是升降法和成组试验法 5、变形的种类及各自的特点。 弹性变形:a,有可逆性(外力作用下弹性变形产生,外力去除弹性变形消失)b,单值性(应力和应变保持线性)c,全程性(弹性变形在金属受力到断裂以前全程伴随)塑性变形:1,单晶金属塑变是位错运动的结果2,单晶体金属位错滑移的切应力极小3,单晶体金属切变强度由位错原开动四个阻力组成4,塑变中伴随有弹性变形和形变强化5,位错运动阻力对温度敏感 6、断裂韧度的测试方法分别是什么:三点弯曲法,紧凑拉伸法 7、静拉伸实验能够获得的强度性能指标有哪些?

第一章 工程材料的力学性能

第一章金属材料的力学性能 学习目的和要求: 学习目的在于了解工程材料力学性能的物理意义,熟悉金属主要的力学性能指标,以便在设计机械时,根据零件的技术要求选用材料,或在编制金属加工工艺时参考。 学完本章后,要求在掌握概念的基础上,熟悉有关术语、符号意义及应用场合,并了解测定方法。 学习重点: 1、掌握强度、塑性、韧性、硬度的概念、物理意义及应 用; 2、掌握布氏硬度和洛氏硬度的优缺点及应用场合。 学习难点: 1、疲劳强度和断裂韧性的概念及应用。 §1-1 材料的强度与塑性 材料的力学(机械)性能,是指材料受不同外力时所表现出来的特性,这种特性是机器安全运转的保证。所以机械性能是设计机械时强度计算和选用材料的基本依据,是评价材料质量和工艺强化水平的重要参数。常用的机械性能指标,都是在特定条件下用规定的测试方法获得的,因为与实用工作状况不尽相同,所以选用数据时应考虑安全系数。 一、弹性与刚度 1、弹性:材料在外力作用下产生变形,当外力去掉 后能恢复其原来形状的性能。

2、弹性极限(σe ):材料承受最大弹性变形时的应力。 3、刚度:材料在外力作用下抵抗弹性变形的能力。指标 为弹性模量 4、弹性模量(E ):应力与应变的比值,物理意义是产 生单位弹性变形时所需应力的大小,表征材料产生弹性变形的难易程度。弹性模量是材料最稳定的性能之一,其大小主要取决于材料的本性,随温度升高而逐渐降低,材料的强化手段(如热处理、冷热加工、合金化等)对弹性模量影响很小。提高金属制品的刚度,可以通过更换金属材料、改变截面形状、增加横截面面积。 为什么弹簧还要进行热处理?弹簧进行热 处理的目的是什么? 二、强度 韧性材料拉伸曲线 脆性材料拉伸曲线

材料力学性能复习重点汇总

第一章 包申格效应:指原先经过少量塑性变形,卸载后同向加载,弹性极限(σP)或屈服强度(σS)增加;反向加载时弹性极限(σP)或屈服强度(σS)降低的现象。 解理断裂:沿一定的晶体学平面产生的快速穿晶断裂。晶体学平面--解理面,一般是低指数,表面能低的晶面。 解理面:在解理断裂中具有低指数,表面能低的晶体学平面。 韧脆转变:材料力学性能从韧性状态转变到脆性状态的现象(冲击吸收功明显下降,断裂机理由微孔聚集型转变微穿晶断裂,断口特征由纤维状转变为结晶状)。 静力韧度:材料在静拉伸时单位体积材料从变形到断裂所消耗的功叫做静力韧度。是一个强度与塑性的综合指标,是表示静载下材料强度与塑性的最佳配合。 可以从河流花样的反“河流”方向去寻找裂纹源。 解理断裂是典型的脆性断裂的代表,微孔聚集断裂是典型的塑性断裂。 5.影响屈服强度的因素 与以下三个方面相联系的因素都会影响到屈服强度 位错增值和运动 晶粒、晶界、第二相等 外界影响位错运动的因素 主要从内因和外因两个方面考虑 (一)影响屈服强度的内因素 1.金属本性和晶格类型(结合键、晶体结构)

单晶的屈服强度从理论上说是使位错开始运动的临界切应力,其值与位错运动所受到的阻力(晶格阻力--派拉力、位错运动交互作用产生的阻力)决定。 派拉力: 位错交互作用力 (a是与晶体本性、位错结构分布相关的比例系数,L是位错间距。)2.晶粒大小和亚结构 晶粒小→晶界多(阻碍位错运动)→位错塞积→提供应力→位错开动→产生宏观塑性变形。 晶粒减小将增加位错运动阻碍的数目,减小晶粒内位错塞积群的长度,使屈服强度降低(细晶强化)。 屈服强度与晶粒大小的关系: 霍尔-派奇(Hall-Petch) σs= σi+kyd-1/2 3.溶质元素 加入溶质原子→(间隙或置换型)固溶体→(溶质原子与溶剂原子半径不一样)产生晶格畸变→产生畸变应力场→与位错应力场交互运动→使位错受阻→提高屈服强度(固溶强化)。 4.第二相(弥散强化,沉淀强化) 不可变形第二相 提高位错线张力→绕过第二相→留下位错环→两质点间距变小→流变应力增大。 不可变形第二相 位错切过(产生界面能),使之与机体一起产生变形,提高了屈服强度。 弥散强化:

材料力学性能考试答案

《工程材料力学性能》课后答案 机械工业出版社 2008第2版 第一章 单向静拉伸力学性能 1、 试述退火低碳钢、中碳钢和高碳钢的屈服现象在拉伸力-伸长曲线图上的区别?为什么? 2、 决定金属屈服强度的因素有哪些?【P12】 答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。 外在因素:温度、应变速率和应力状态。 3、 试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险?【P21】 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。 4、 剪切断裂与解理断裂都是穿晶断裂,为什么断裂性质完全不同?【P23】 答:剪切断裂是在切应力作用下沿滑移面分离而造成的滑移面分离,一般是韧性断裂,而解理断裂是在正应力作用以极快的速率沿一定晶体学平面产生的穿晶断裂,解理断裂通常是脆性断裂。 5、 何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些? 答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。 6、 论述格雷菲斯裂纹理论分析问题的思路,推导格雷菲斯方程,并指出该理论的局限性。 【P32】 答: 212?? ? ??=a E s c πγσ,只适用于脆性固体,也就是只适用于那些裂纹尖端塑性变形可以忽略的情况。 第二章 金属在其他静载荷下的力学性能 一、解释下列名词: (1)应力状态软性系数—— 材料或工件所承受的最大切应力τmax 和最大正应力σmax 比值,即: () 32131max max 5.02σσσσσστα+--== 【新书P39 旧书P46】 (2)缺口效应—— 绝大多数机件的横截面都不是均匀而无变化的光滑体,往往存在截面的急剧变化,如键槽、油孔、轴肩、螺纹、退刀槽及焊缝等,这种截面变化的部分可视为“缺口”,由于缺口的存在,在载荷作用下缺口截面上的应力状态将发生变化,产生所谓的缺口效应。【P44 P53】 (3)缺口敏感度——缺口试样的抗拉强度σbn 的与等截面尺寸光滑试样的抗拉强度σb 的比值,称为缺口敏感度,即: 【P47 P55 】 (4)布氏硬度——用钢球或硬质合金球作为压头,采用单位面积所承受的试验力计算而得的硬度。【P49 P58】 (5)洛氏硬度——采用金刚石圆锥体或小淬火钢球作压头,以测量压痕深度所表示的硬度【P51 P60】。 (6)维氏硬度——以两相对面夹角为136。的金刚石四棱锥作压头,采用单位面积所承

材料力学性能-第2版课后习题答案

第一章单向静拉伸力学性能 1、 解释下列名词。 2. 滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落 后于应力的现象。 3?循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。 4?包申格效应: 金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规 定残余伸长应力降低的 现象。 11. 韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆 性断裂,这种现象称 为韧脆转变 2、 说明下列力学性能指标的意义。 答:E 弹性模量G 切变模量 r 规定残余伸长应力 0.2屈服强度 gt 金属材料拉伸时最大应力下的总伸长率 n 应 变硬化指数 【P15】 3、 金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标? 答:主要决定于原子本性和晶格类型。合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但 是不改变金属原子的本性和晶格类型。组织虽然改变了,原子的本性和晶格类型未发生改变,故弹性模量对组织不敏 感。【P4】 4、 现有4 5、40Cr 、35 CrMo 钢和灰铸铁几种材料,你选择哪种材料作为机床起身,为什么? 选灰铸铁,因为其含碳量搞,有良好的吸震减震作用,并且机床床身一般结构简单,对精度要求不高,使用灰铸铁可 降低成本,提高生产效率。 5、 试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险? 【P21】 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程 中不断地消耗能量;而脆性断裂是突然发生的断裂, 断裂前基本上不发生塑性变形, 没有明显征兆,因而危害性很大。 6、 何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些? 答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形 态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。 7、 板材宏观脆性断口的主要特征是什么?如何寻找断裂源? 断口平齐而光亮,常呈放射状或结晶状,板状矩形拉伸试样断口中的人字纹花样的放射方向也 与裂纹扩展方向平行,其尖端指向裂纹源。 第二章 金属在其他静载荷下的力学性能 一、解释下列名词: (1 )应力状态软性系数—— 材料或工件所承受的最大切应力T max 和最大正应力(T max 比值,即: (3)缺口敏感度一一缺口试样的抗拉强度 T bn 的与等截面尺寸光滑试样的抗拉强度 T b 的比值,称为缺口敏感度,即:【P47 P55】 max 1 3 max 2 1 0.5 2 3 【新书P39旧书P46】

1材料的力学性能(答案)

第一章材料的力学性能 一、选择题 1、fsd表示( B ) A、钢筋抗压强度设计值; B、钢筋抗拉强度设计值; C、钢筋抗拉强度标准值 2、C30混凝土中的“ 30”表示(A ) A、混凝土的立方体抗压强度标准值fcu,k 30MP a . ? B、混凝土的轴心抗压强度标准值fck 30MP a . ? C、混凝土的轴心抗拉强度标准值ftk 30MP a 3、混凝土的强度等级以(A )表示 A、混凝土的立方体抗压强度标准值fcu,k; B、混凝土的轴心抗压强度标准值fck; C、混凝土的轴心抗拉强度标准值ftk 4、测定混凝土的立方体抗压强度标准值fcu ,k,采用的标准试件为( A ) A、150mm 150mm 150mm ; B、450mm 150mm 150mm ; 450mm 450mm 450mm C、 5、测定混凝土的轴心抗压强度时,试件涂油和不涂油相比,( B ) 的测定值大。 A、涂油;B不涂油;C、一样大 6、钢筋混凝土构件的混凝土的强度等级不应低于( A ) 。 A、C20; B、C25; C、C30 7、钢筋混凝土构件中的最大的粘结力出现在( A ) 。 A、离端头较近处; B、靠近钢筋尾部; C、钢筋的中间的部位 8、预应力混凝土构件所采用的混凝土的强度等级不应低于( C) 。 A、C20; B、C30; C、C40 二、问答题 1、检验钢筋的质量主要有哪几项指标?答:对软钢有 屈服强度、极限强度、伸长率、冷弯性能。对硬钢有极限 强度、伸长率、冷弯性能。 2、什么是钢筋的屈强比?它反映了什么问题?答:屈强比为钢筋的屈服强度与极

限强度的比值。它反映结构可靠性的潜力及材料的利用率。 3、如何确定混凝土的立方体抗压强度标准值?它与试块尺寸的关系如何? 答:按标准方法制作、养护的边长为150mm勺立方体在28天龄期用标准试验方法测得的具有95%保证率的抗压强度。试件尺寸越小,抗压强度值越高。 4、为什么要有混凝土棱柱体抗压强度这个力学指标?它与混凝土立方体抗压强度有什么关系? 答:钢筋混凝土受压构件中棱柱体多于立方体,所以棱柱体抗压强度比立方体抗压强度能更好地反映受压构件中混凝土的实际强度。混凝土的棱柱体抗压强度低于混凝土的立方体抗压强度。 5、什么是混凝土的极限压应变cu ?答:混凝土的极限压应变是指混凝土棱柱体受 压破坏时的最大压应变。 6、徐变和塑性变形有什么不同?答:(1)徐变主要为水泥凝胶体的黏性流动。塑 性变形主要为混凝土内 微裂缝的发展。(2)徐变可部分恢复。塑性变形不可恢复。(3)有应力(无论大小)即有徐变。塑性变形只在应力较大时发生 7、在钢筋混凝土结构中,钢筋和混凝土能够共同工作的基础是什么? 答:(1)钢筋与混凝土之间的粘结力;(2)钢筋与混凝土两种材料的温度线膨胀系数接近(钢为1.2*10-5 ;混凝土为1.0*10-5~1.5*10-5 );(3)钢筋与构件边缘之间的混凝土保护层,保护钢筋不易发生锈蚀,不致因火灾使钢筋软化。 8、影响混凝土抗压强度的因素是什么? 答:(1)组成混凝土的材料品种;(2)组成材料的配比:水灰比、空气含量、水泥含量、骨料最大尺寸;(3)混凝土的龄期;(4)试验方法:试件形状和尺寸、加载速度。 9、什么是混凝土的收缩? 答:混凝土在空气中结硬时,随时间的延长体积减小的现象。

材料力学性能---教学大纲

《材料力学性能》课程教学大纲 课程代码:050131004 课程英文名称:Mechanical properties of materials 课程总学时:32 讲课:30 实验:2 上机:0 适用专业:材料成型及控制工程 大纲编写(修订)时间:2017.7 一、大纲使用说明 (一)课程的地位及教学目标 1. 课程地位:材料力学性能是高等工业学校材料成型及控制工程专业开设的一门培养学生掌握专业基础理论的主干专业基础课。主要讲授材料力学性能的基本知识、基本理论和基本方法,它起到由基础理论课向专业课过渡的承上启下的作用。本课程在教学内容方面除基本知识、基本理论和基本方法的教学外,通过实例分析,着重培养学生分析和解决材料成型及控制工程专业工程实际问题的能力。 2. 教学目标:掌握材料力学性能的基础理论及分析方法,培养具有合理选择和使用材料、开发新材料的基本技能,初步具备分析和解决材料成型及控制工程专业工程实际问题的能力。 (二)知识、能力及技能方面的基本要求 1. 基本知识:掌握材料力学性能的一般知识、力学材料性能测试原理、实验方法,包括不同静载荷和使用条件下的力学性能及影响因素等知识。 2. 基本理论和方法:掌握材料静拉伸、扭转、弯曲与压缩性能、硬度、冲击韧性等力学性能的基本理论,断裂韧度的基本理论和计算方法,疲劳曲线及基本疲劳力学性能,疲劳裂纹扩展速率、疲劳门槛值、疲劳强度影响因素,应力腐蚀及氢脆,磨损类型及特点,高温力学性能。了解断裂类型,缺口试样静载力学性能,低温脆性,断裂韧度的测试方法,低周疲劳,防止氢脆的措施,磨损实验方法,蠕变机理,高分子、陶瓷、复合材料的力学性能等。 3. 基本技能:掌握材料力学性能的基本知识和分析方法、测试方法。培养学生根据工程要求选择材料的能力、初步分析并解决材料成型领域中与力学性能相关的工程问题等技能。 (三)实施说明 1.教学方法:课堂讲授中要重点对基本概念、基本方法和解题思路的讲解;采用启发式教学,培养学生思考问题、分析问题和解决问题的能力;引导和鼓励学生通过自学获取知识;调动学生学习的主观能动性。以各种性能的“基本概念——物理本质——工程意义——影响因素——指标测试评价方法——应用”为主线,联系实际并注重培养学生的创新能力。 2.教学手段:本课程属于专业基础课,在教学中可采用电子教案、CAI课件及多媒体教学系统等先进教学手段,处理好重点与难点。启发式教学,实现“课堂介绍+答疑”教学互动。通过教授实例、作业和实验结合,重点强化学生运用知识的能力。以求在有限的学时内,全面、高质量地完成课程教学任务。 (四)对先修课的要求 本课程的先修课程有金属工艺学、大学物理等。本课程将为机械设计、专业课的课程设计、毕业设计等实践环节的学习打下良好基础。 (五)对习题课、实践环节的要求 1.对重点、难点章节(如:断裂韧度、疲劳等)应安排习题课,例题的选择以培养学生消化和巩固所学知识,用以解决实际问题为目的。 2.课后作业要少而精,内容要多样化,作业题内容必须包括基本概念、基本理论及计算方

材料力学性能-第2版课后习题答案

第一章 单向静拉伸力学性能 1、 解释下列名词。 1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。 3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。 4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。 6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。 韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。 7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b 的台阶。 8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。是解理台阶的一种标志。 9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。 10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。 沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。 11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变 12.弹性不完整性:理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性。弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等 2、 说明下列力学性能指标的意义。 答:E 弹性模量 G 切变模量 r σ规定残余伸长应力 2.0σ屈服强度 gt δ金属材料拉伸时最大应力下的总伸长率 n 应变硬化指数 【P15】 3、 金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标? 答:主要决定于原子本性和晶格类型。合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。组织虽然改变了,原子的本性和晶格类型未发生改变,故弹性模量对组织不敏感。【P4】 4、 试述退火低碳钢、中碳钢和高碳钢的屈服现象在拉伸力-伸长曲线图上的区别?为什么? 5、 决定金属屈服强度的因素有哪些?【P12】 答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。 外在因素:温度、应变速率和应力状态。 6、 试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险?【P21】 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。 7、 剪切断裂与解理断裂都是穿晶断裂,为什么断裂性质完全不同?【P23】 答:剪切断裂是在切应力作用下沿滑移面分离而造成的滑移面分离,一般是韧性断裂,而解理断裂是在正应力作用以极快的速率沿一定晶体学平面产生的穿晶断裂,解理断裂通常是脆性断裂。 8、 何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些? 答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。 9、 论述格雷菲斯裂纹理论分析问题的思路,推导格雷菲斯方程,并指出该理论的局限性。【P32】

相关文档
最新文档