目标检测简介

00DIY一台电脑钢琴

DIY your keyboard piano

音调音色力度触后

录一段音频,把它的音高改变50次并

把每一个新的音频匹配到键盘的一个键位,

你就能把电脑变成一架钢琴!

目标检测——以YOLO为例

信科吴畔昊

CONTENTS

01

定义与应用Definition and Appliance 02

原理及实现

Principle and

Implementation

03

深度学习下的目标检测

Target detection under

deep learning

01定义与应用

Definition and Appliance

目标检测,也叫目标提取,是一种基于目标几何和统计特征的图像分割,它将目标的分割和识别合二为一,其准确性和实时性是整个系统的一项重要能力。尤其是在复杂场景中,需要对多个目标进行实时处理时,目标自动提取和识别就显得特别重要。

随着计算机技术的发展和计算机视觉原理的广泛应用,利用计算机图像处理技术对目标进行实时跟踪研究越来越热门,对目标进行动态实时跟踪定位在智能化交通系统、智能监控系统、军事目标检测及医学导航手术中手术器械定位等方面具有广泛的应用价值。

02原理及实现

Principle and Implementation

目标检测方法的发展

传统目标检测方法

基于Region

Proposal的R-

CNN 系列

基于回归方

法的YOLO、

SSD等

传统目标检测方法

区域检测

就是画一个圈(基于滑动窗口的区域选择)

SIFT :scale invariant feature transform,尺度不变特征变换HOG:histogram of oriented gradients,方向梯度直方图

SIFT与HOG的比较

分类器分类

支持向量机(Support Vector Machine, SVM)Adaboost算法

。。。

存在的问题

传统目标检测存在的两个主要问题

一个是基于滑动窗口的区域选择

策略没有针对性,时间复杂度高

,窗口冗余;

二是手工设计的特征对于多样性

的变化并没有很好的鲁棒性。

运动目标检测方法总结报告

摘要 由于计算机技术的迅猛发展,使得基于内容的视频信息的存取、操作和检索不仅成为一种可能,更成为一种需要。同时,基于内容的视频编码标准MPEG-4和基于内容的视频描述标准MPEG-7正在发展和完善。因此提取和视频中具有语义的运动目标是一个急需解决的问题。运动目标提取和检测作为视频和图像处理领域的重要研究领域,有很强的研究和应用价值。运动检测就是将运动目标从含有背景的图像中分离出来,如果仅仅依靠一种检测算法,难以从复杂的自然图像序列中完整地检测出运动的目标。较高的检测精度和效率十分重要,因此融合多种检测方法的研究越来越受到重视。本文介绍了几种国内外文献中的经典的视频运动目标的检测和提取算法,并对各种方法进行了评价和总结。首先介绍了基本的运动目标检测的基本知识和理论,然后介绍了基本的几种目标检测方法及其各种改进方法。对今后的运动目标检测提取的相关研究提供一定的参考。 关键词:运动目标检测光流法帧差法背景建模方法

ABSTRACT Because of the rapid development of computer technology, it is possible to access, operate and retrieve the video information based on the content of the video. At the same time, based on the content of the video coding standard MPEG-4 and content-based video description standard MPEG-7 is developing and improving. Therefore, it is an urgent problem to be solved in the extraction and video. Moving object extraction and detection is a very important field of video and image processing, and has a strong research and application value. Motion detection is to separate moving objects from the image containing background, if only rely on a detection algorithm, it is difficult to from a complex natural image sequences to detect moving target. Higher detection accuracy and efficiency are very important, so the study of the fusion of multiple detection methods is becoming more and more important. In this paper, the detection and extraction algorithms of the classical video moving objects in the domestic and foreign literatures are introduced, and the methods are evaluated and summarized. Firstly, the basic knowledge and theory of basic moving target detection is introduced, and then the basic method of target detection is introduced. To provide a reference for the research on the extraction of moving target detection in the future. Keywords: Visual tracking Optical flow method Frame Difference Background modeling method

目标检测综述教学内容

一、传统目标检测方法 如上图所示,传统目标检测的方法一般分为三个阶段:首先在给定的图像上选择一些候选的区域,然后对这些区域提取特征,最后使用训练的分类器进行分类。下面我们对这三个阶段分别进行介绍。 (1) 区域选择这一步是为了对目标的位置进行定位。由于目标可能出现在图像的任何位置,而且目标的大小、长宽比例也不确定,所以最初采用滑动窗口的策略对整幅图像进行遍历,而且需要设置不同的尺度,不同的长宽比。这种穷举的策略虽然包含了目标所有可能出现的位置,但是缺点也是显而易见的:时间复杂度太高,产生冗余窗口太多,这也严重影响后续特征提取和分类的速度和性能。(实际上由于受到时间复杂度的问题,滑动窗口的长宽比一般都是固定的设置几个,所以对于长宽比浮动较大的多类别目标检测,即便是滑动窗口遍历也不能得到很好的区域) (2) 特征提取由于目标的形态多样性,光照变化多样性,背景多样性等因素使得设计一个鲁棒的特征并不是那么容易。然而提取特征的好坏直接影响到分类的准确性。(这个阶段常用的特征有SIFT、HOG等) (3) 分类器主要有SVM, Adaboost等。 总结:传统目标检测存在的两个主要问题: 一是基于滑动窗口的区域选择策略没有针对性,时间复杂度高,窗口冗余; 二是手工设计的特征对于多样性的变化并没有很好的鲁棒性。 二、基于Region Proposal的深度学习目标检测算法 对于传统目标检测任务存在的两个主要问题,我们该如何解决呢? 对于滑动窗口存在的问题,region proposal提供了很好的解决方案。region

proposal(候选区域)是预先找出图中目标可能出现的位置。但由于region proposal 利用了图像中的纹理、边缘、颜色等信息,可以保证在选取较少窗口(几千个甚至几百个)的情况下保持较高的召回率。这大大降低了后续操作的时间复杂度,并且获取的候选窗口要比滑动窗口的质量更高(滑动窗口固定长宽比)。比较常用的region proposal算法有selective Search和edge Boxes,如果想具体了解region proposal可以看一下PAMI2015的“What makes for effective detection proposals?” 有了候选区域,剩下的工作实际就是对候选区域进行图像分类的工作(特征提取+分类)。对于图像分类,不得不提的是2012年ImageNet大规模视觉识别挑战赛(ILSVRC)上,机器学习泰斗Geoffrey Hinton教授带领学生Krizhevsky使用卷积神经网络将ILSVRC分类任务的Top-5 error降低到了15.3%,而使用传统方法的第二名top-5 error高达26.2%。此后,卷积神经网络占据了图像分类任务的绝对统治地位,微软最新的ResNet和谷歌的Inception V4模型的top-5 error降到了4%以内多,这已经超越人在这个特定任务上的能力。所以目标检测得到候选区域后使用CNN对其进行图像分类是一个不错的选择。 2014年,RBG(Ross B. Girshick)大神使用region proposal+CNN代替传统目标检测使用的滑动窗口+手工设计特征,设计了R-CNN框架,使得目标检测取得巨大突破,并开启了基于深度学习目标检测的热潮。 1. R-CNN (CVPR2014, TPAMI2015) (Region-based Convolution Networks for Accurate Object d etection and Segmentation)

目标检测与识别

采用视频图像的运动目标检测与识别 相关调研 目标检测是计算机视觉的一个重要组成部分,在军事及工业等领域有着重要的应用前景。运动目标的检测方法主要有光流法,差值法。光流法的计算量很大,实时性和应用性较差。而图像差值法比较简单,实时性较好,是目前应用最广泛,最成功的运动目标检测的方法。图像差值法可分为两类,一类是用序列图像的每一帧与一个固定的静止的参考帧做图像差分,但自然场景不是静止不变的,因而必须不断的更新背景。另一类是用序列图像的两帧进行差分,这种方法无法检测出两帧图像中重合的部分,只能检测出目标的一部分信息。在绝大多数视频监控图像应用中,每一个像素都可以用一个或多个高斯模型近似,因此,高斯背景模型是绝大多数目标检测方法常用的基本模型。 智能视频服务器是飞瑞斯在多年视频分析技术优势的基础上,推出的一系列具有智能视频分析功能的DVS 视频编码设备。智能视频服务器基于DSP、ARM等核心平台,完成前端标准的H.264高压缩率编码,同时完成智能分析功能。 智能视频服务器的最大的创新点在于,这一系列DVS不仅仅提供视频监控的功能,能通过飞瑞斯核心的智能视频分析技术,来感知视频场景内的环境、人和物,并挖掘其中的人(物)行为、状态、身份信息、数量、轨迹等更深层次的元数据信息。 智能视频服务器赋予了视频监控系统智慧的大脑,从此视频监控不仅仅是能看得到,而且还能自己思考,提供更为智能的应用。

https://www.360docs.net/doc/d315217960.html,/products_20_26.html?bdclkid=BztEJhpzcR34JE_Ft948PGoNuxuK0gsc zre7HPa3EhvUMBqk3J

目标检测方法简要综述

龙源期刊网 https://www.360docs.net/doc/d315217960.html, 目标检测方法简要综述 作者:栗佩康袁芳芳李航涛 来源:《科技风》2020年第18期 摘要:目标检测是计算机视觉领域中的重要问题,是人脸识别、车辆检测、路网提取等领域的理论基础。随着深度学习的快速发展,与基于滑窗以手工提取特征做分类的传统目标检测算法相比,基于深度学习的目标检测算法无论在检测精度上还是在时间复杂度上都大大超过了传统算法,本文将简单介绍目标检测算法的发展历程。 关键词:目标检测;机器学习;深度神经网络 目标检测的目的可分为检测图像中感兴趣目标的位置和对感兴趣目标进行分类。目标检测比低阶的分类任务复杂,同时也是高阶图像分割任的重要基础;目标检测也是人脸识别、车辆检测、路网检测等应用领域的理论基础。 传统的目标检测算法是基于滑窗遍历进行区域选择,然后使用HOG、SIFT等特征对滑窗内的图像块进行特征提取,最后使用SVM、AdaBoost等分类器对已提取特征进行分类。手工构建特征较为复杂,检测精度提升有限,基于滑窗的算法计算复杂度较高,此类方法的发展停滞,本文不再展开。近年来,基于深度学习的目标检测算法成为主流,分为两阶段和单阶段两类:两阶段算法先在图像中选取候选区域,然后对候选区域进行目标分类与位置精修;单阶段算法是基于全局做回归分类,直接产生目标物体的位置及类别。单阶段算法更具实时性,但检测精度有损失,下面介绍这两类目标检测算法。 1 基于候选区域的两阶段目标检测方法 率先将深度学习引入目标检测的是Girshick[1]于2014年提出的区域卷积神经网络目标检测模型(R-CNN)。首先使用区域选择性搜索算法在图像上提取约2000个候选区域,然后使用卷积神经网络对各候选区域进行特征提取,接着使用SVM对候选区域进行分类并利用NMS 回归目标位置。与传统算法相比,R-CNN的检测精度有很大提升,但缺点是:由于全连接层的限制,输入CNN的图像为固定尺寸,且每个图像块输入CNN单独处理,无特征提取共享,重复计算;选择性搜索算法仍有冗余,耗费时间等。 基于R-CNN只能接受固定尺寸图像输入和无卷积特征共享,He[2]于2014年参考金字塔匹配理论在CNN中加入SPP-Net结构。该结构复用第五卷积层的特征响应图,将任意尺寸的候选区域转为固定长度的特征向量,最后一个卷积层后接入的为SPP层。该方法只对原图做一

动态视频目标检测和跟踪技术(入门)

动态视频目标检测和跟踪技术 传统电视监控技术只能达到“千里眼”的作用,把远程的目标图像(原始数据)传送到监控中心,由监控人员根据目视到的视频图像对现场情况做出判断。智能化视频监控的目的是将视频原始数据转化为足够量的可供监控人员决策的“有用信息”,让监控人员及时全面地了解所发生的事件:“什么地方”,“什么时间”,“什么人”,“在做什么”。将“原始数据”转化为“有用信息”的技术中,目标检测与跟踪技术的目的是要解决“什么地方”和“什么时间”的问题。目标识别主要解决“什么人”或“什么东西”的问题。行为模式分析主要解决“在做什么”的问题。动态视频目标检测技术是智能化视频分析的基础。 本文将目前几种常用的动态视频目标检测方法简介如下: 背景减除背景减除(Background Subtraction)方法是目前运动检测中最常用的一种方法,它是利用当前图像与背景图像的差分来检测出运动目标的一种技术。它一般能够提供相对来说比较全面的运动目标的特征数据,但对于动态场景的变化,如光线照射情况和外来无关事件的干扰等也特别敏感。实际上,背景的建模是背景减除方法的技术关键。最简单的背景模型是时间平均图像,即利用同一场景在一个时段的平均图像作为该场景的背景模型。由于该模型是固定的,一旦建立之后,对于该场景图像所发生的任何变化都比较敏感,比如阳光照射方向,影子,树叶随风摇动等。大部分的研究人员目前都致力于开发更加实用的背景模型,以期减少动态场景变化对于运动目标检测效果的影响。 时间差分时间差分(Temporal Difference 又称相邻帧差)方法充分利用了视频图像的特征,从连续得到的视频流中提取所需要的动态目标信息。在一般情况下采集的视频图像,若仔细对比相邻两帧,可以发现其中大部分的背景像素均保持不变。只有在有前景移动目标的部分相邻帧的像素差异比较大。时间差分方法就是利用相邻帧图像的相减来提取出前景移动目标的信息的。让我们来考虑安装固定摄像头所获取的视频。我们介绍利用连续的图像序列中两个或三个相邻帧之间的时间差分,并且用阈值来提取出视频图像中的运动目标的方法。我们采用三帧差分的方法,即当某一个像素在连续三帧视频图像上均有相

(完整版)视频目标检测与跟踪算法综述

视频目标检测与跟踪算法综述 1、引言 运动目标的检测与跟踪是机器视觉领域的核心课题之一,目前被广泛应用在视频编码、智能交通、监控、图像检测等众多领域中。本文针对视频监控图像的运动目标检测与跟踪方法,分析了近些年来国内外的研究工作及最新进展。 2、视频监控图像的运动目标检测方法 运动目标检测的目的是把运动目标从背景图像中分割出来。运动目标的有效分割对于目标分类、跟踪和行为理解等后期处理非常重要。目前运动目标检测算法的难点主要体现在背景的复杂性和目标的复杂性两方面。背景的复杂性主要体现在背景中一些噪声对目标的干扰,目标的复杂性主要体现在目标的运动性、突变性以及所提取目标的非单一性等等。所有这些特点使得运动目标的检测成为一项相当困难的事情。目前常用的运动目标检测算法主要有光流法、帧差法、背景相减法,其中背景减除法是目前最常用的方法。 2.1帧差法 帧差法主要是利用视频序列中连续两帧间的变化来检测静态场景下的运动目标,假设f k(x, y)和f(k i)(x, y)分别为图像序列中的第k帧和第k+1帧中象素点(x,y)的象素值,则这两帧图像的差值图像就如公式2-1所示: Diff ki f k(x, y) f(k 1)(x, y)(2-1)2-1式中差值不为0的图像区域代表了由运动目标的运动所经过的区域(背景象素值不变),又因为相邻视频帧间时间间隔很小,目标位置变化也很小,所以运动目标的运动所经过的区域也就代表了当前帧中运动目标所在的区域。利用此原理便可以提取出目标。下图给出了帧差法的基本流程:1、首先利用2-1式得到第k帧和第k+1帧的差值图像Diff k 1;2、对所得到的差值图像Diff k 1二值化(如 式子2-2示)得到Qk+1 ;3、为消除微小噪声的干扰,使得到的运动目标更准 确,对Q k 1进行必要的滤波和去噪处理,后处理结果为M k 1。 1

在项目目标动态控制中

1、在项目目标动态控制中,属于项目目标控制准备工作的是()。 2、A.将项目的目标进行分解 3、B.收集项目目标的实际值 4、C.对项目目标进行动态跟踪 5、D.找出实际值与计划值的偏差 6、2、如以里程碑事件的进度目标值作为进度计划值,则进度的实际值应是相对于()。 7、A.总进度规划的实际进度 8、B.里程碑事件的实际进度 9、C.各子系统的|考试大|实际进度 10、 D.各分项工作的实际进度 11、3、取得建造师注册证书的人员是否担任工程项目施工的项目经理,由()决定。 12、 A.政府主管部门 13、 B.业主 14、 C.施工企业 15、 D.监理工程师 16、4、施工企业项目经理在承担工程项目施工的管理过程中,不属于其在项目管理方 面任务的是() 17、 A.施工安全管理 18、 B.施工进度控制 19、 C.工程合同管理 20、 D.工程投资控制 21、5、关于项目资源管理,下列说法正确的是()。 22、 A.项目资源管理与企业管理中的资源管理是同一概念

23、 B.确定资源的分配计划是项目资源管理的工作之一 24、 C.项目的资源管理是针对企业的生产或经营所涉及的资源的管理 25、 D.项目的资源管理主要是指人力资源的管理 26、6、组织和人力资源规划是()的过程。 27、 A.对项目承担组织内的成员进行重新分配 28、 B.明确项目管理班子成员职责 29、 C.识别、确定和分派项目角色、职责和报告关系 30、 D.进行团队建设、提高人员积极性 31、7、“自项目开始至项目完成”指的是项目的()。 32、 A.计划期 33、 B.实施期 34、 C.周期 35、 D.施工工期 36、8、建设工程项目总承包在多数条件下采用()。 37、 A.变动总价合同 38、 B.固定单价合同 39、 C.固定总价合同 40、 D.变动单价合同 41、9、控制项目目标最重要的措施是()。 42、 A.管理措施 43、 B.组织措施 44、 C.技术措施 45、 D.经济措施

实验五图像分割及目标检测

电子科技大学 实 验 报 告 学生姓名: 学号: 指导教师:彭真明 日期: 2014 年 5 月 20 日 一、实验名称:图像分割及目标检测 二、实验目的:

1、了解图像边缘检测及图像区域分割的目的、意义和手段。 2、熟悉各种经典的边缘检测算子、图像分割方法及其基本原理。 3、熟悉各种图像特征表示与描述的方法及基本原理。 4、熟练掌握利用matlab 工具实现各种边缘检测的代码实现。 5、熟练掌握利用matlab 工具实现基本阈值分割的代码实现。 6、通过编程和仿真实验,进一步理解图像边缘检测、图像分割及其在目标检测、目标识别及跟踪测量应用中的重要性。 三、实验原理及步骤: 1、利用Soble算子进行图像的边缘检测 (1)原理与步骤 数字图像的边缘一般利用一阶/二阶差分算子进行检测。常用的差分算子包括:Roberts 算子(交叉对角算子),Prewitt 算子(一阶),Sobel 算子(一阶),Laplacian 算子(二阶),LoG 算子(二阶)及Canny 边缘检测算法等。其中,Soble 算子为常见的一类梯度算子(一阶梯度算子)。 其x, y 方向的梯度算子分别为: 一幅数字图像I(如图1)与Sx 和Sy 分别做卷积运算后(可采用多种方式,如conv2,filter2 及imfilter),可以求得x,y 两个方向的梯度图像Dx,Dy,然后,可以计算得到原图像的梯度幅度,即 或:

(2)进一步执行梯度图像D 的二值化处理(建议采用Otsu 阈值,也可考虑其他阈值分割),检测图像的二值化边缘。 (3)对于与步骤同样的输入图像I,利用matlab 工具的edge(I,’soble’)函数进行处理。试比较处理结果与步骤(2)的得到的结果的差异,并分析存在差异的原因。 (4)画出原图像、原图像的Dx, Dy 图,幅度图(D)及最后的二值化边缘检测结果图。 2、数字图像中目标区域的形心计算 (1)按如下公式计算原图像(图 2)的质心。 (2)对图 2 中的黑色形状目标进行阈值分割,得到二值化的图像; 图2 原始图像(240*240) (3)计算目标形状的面积(以像素表示); (4)计算图中黑色形状目标的形心位置,并在原图上进行位置标记(可用红色小圆圈)。 其中,M,N 为图像尺寸。x,y 为像素图像平面上的坐标。 (5)画出原图像、原图上叠加质心标记图;分割后的二值化图及分割图上叠加形心标记图。 四、程序框图

(完整word版)基于图像处理的运动物体的跟踪与检测开题报告

1、课题来源 随着计算机技术的高速发展,运动物体的检测和跟踪在图像处理、计算机视觉、模式识别、人工智能、多媒体技术等领域越来越受到人们的关注。运动跟踪和检测的应用广泛,在智能监控和人机交互中,如:银行、交通、超市等场合常常使用运动跟踪分析技术,通过定位物体并对其行为进行分析,一旦发现物体有异常行为,监控系统就发出警报,提醒人们注意并即时的处理,改善了人工监督注意力分散、反应时间较慢、人力资源浪费等问题。运动目标的跟踪在虚拟现实、工业控制、军事设备、医学研究、视频监控、交通流量观测监控等很多领域也有重要的实用价值。特别在军事上,先进的武器导航、军事侦察和监控中都成功运用了自动跟踪技术。而跟踪的难点在于如何快速而准确的在每一帧图像中实现目标定位。正因如此,对运动目标的跟踪和检测的研究很有价值。 2、研究目的和意义 运动目标检测是图像处理与计算机视觉的一个分支,在理论和实践上都有重大意义,长久以来一直被国内外学者所关注。在实际中,视频监控利用摄像机对某一特定区域进行监视,是一个细致和连续的过程,它可以由人来完成,但是人执行这种长期枯燥的例行监测是不可靠,而且费用也很高,因此引入运动监测非常有必要。它可以减轻人的负担,并且提高了可靠性。概括起来运动监测主要包括三个内容:运动目标检测,方向判断和图像跟踪。运动目标检测是整个监测过程的基础,运动目标的提取准确与否,直接关系到后续高级过程的完成质量。3、国内外研究现状和发展趋势及综述 运动目标检测在国外已经取得了一些的研究成果,许多相关技术已经开始应用到实际系统中,但是国内研究相对落后,与国外还有较大差距。传统的视频目标提取大致可以分两类,一类以空间同性为准则,先用形态学滤波器或其他滤波器对图像作预处理;然后对该图像的亮度、色度或其他信息作空间上的分割以对区域作边缘检测;之后作运动估计,并合并相似的运动区域以得到最终的提取结果。如光流算法、主动轮廓模型算法。此类方法结果较为准确但是运算量相对较大。另一类算法主要以时间变化检测作为准则,这类算法主要通过帧差检测图像上的变化区域和不变区域,将运动物体与静止背景进行分割。此类方法运算量小,提取结果不如前类方法准确。此外,还有时空结合方法、时空亮度梯度信息结合的方法等等。 4、研究方法

(完整版)深度神经网络及目标检测学习笔记

深度神经网络及目标检测学习笔记 https://youtu.be/MPU2HistivI 上面是一段实时目标识别的演示,计算机在视频流上标注出物体的类别,包括人、汽车、自行车、狗、背包、领带、椅子等。 今天的计算机视觉技术已经可以在图片、视频中识别出大量类别的物体,甚至可以初步理解图片或者视频中的内容,在这方面,人工智能已经达到了3岁儿童的智力水平。这是一个很了不起的成就,毕竟人工智能用了几十年的时间,就走完了人类几十万年的进化之路,并且还在加速发展。 道路总是曲折的,也是有迹可循的。在尝试了其它方法之后,计算机视觉在仿生学里找到了正确的道路(至少目前看是正确的)。通过研究人类的视觉原理,计算机利用深度神经网络(Deep Neural Network,NN)实现了对图片的识别,包括文字识别、物体分类、图像理解等。在这个过程中,神经元和神经网络模型、大数据技术的发展,以及处理器(尤其是GPU)强大的算力,给人工智能技术的发展提供了很大的支持。 本文是一篇学习笔记,以深度优先的思路,记录了对深度学习(Deep Learning)的简单梳理,主要针对计算机视觉应用领域。 一、神经网络 1.1 神经元和神经网络 神经元是生物学概念,用数学描述就是:对多个输入进行加权求和,并经过激活函数进行非线性输出。 由多个神经元作为输入节点,则构成了简单的单层神经网络(感知器),可以进行线性分类。两层神经网络则可以完成复杂一些的工作,比如解决异或问题,而且具有非常好的非线性分类效果。而多层(两层以上)神经网络,就是所谓的深度神经网络。 神经网络的工作原理就是神经元的计算,一层一层的加权求和、激活,最终输出结果。深度神经网络中的参数太多(可达亿级),必须靠大量数据的训练来设置。训练的过程就好像是刚出生的婴儿,在父母一遍遍的重复中学习“这是苹

目标检测、跟踪与识别技术与现代战争

目标检测、跟踪与识别技术与现代战争 【摘要】本文讨论目标检测、跟踪与识别技术在现代战争各个领域中的应用,总结目标识别技术的发展方向,提出目标识别技术工程化实现方法,同时本文介绍了国外目标识别的现状及发展趋势,提出了现代战争应采用综合识别系统解决目标识别问题的建议。 关键词目标检测;目标跟踪;目标识别;雷达;人工神经网络;精确制导 1.引言 随着现代科学技术的飞速发展及其在军事领域内日益广泛的应用,传统的作战思想、作战方式已发生根本性的变化。从第一次海湾战争到科索沃战争,特别是刚刚结束的海湾战争,空中精确打击和空地一体化作战已经成为最重要的作战形式。集指挥、控制、通信、计算机、情报、监视侦察于一体的C ISR 已成为取得战场主动权,赢得最后胜利的关键因素。目标识别技术是雷达智能化、信息化的重要技术支撑手段。在现代化战争中,目标识别技术在预警探测、精确制导、战场指挥和侦察、敌我识别等军事领域都有广泛的应用前景,已受到了世界各国的关注。 现代战争中取得战场制信息权的关键之一是目标属性识别。现代战争的作战环境十分复杂,作战双方都在采用相应的伪装、隐蔽、欺骗和干扰等手段和技术,进行识别和反识别斗争。因此仅仅依靠一种或少数几种识别手段很难准确地进行目标识别,必须利用多个和多类传感器所收集到的多种目标属性信息,综合出准确的目标属性,进行目标检测,跟踪后进行识别。 2.目标检测、跟踪与识别技术在现代战争中的应用 2.1 目标检测、跟踪与识别技术在预警探测上的应用 目标检测、跟踪与识别技术对于弹道导弹的预警工作有重要的作用。弹道导弹一般携带多个弹头,其中可能包含核弹头或大规模杀伤的弹头以及常规弹头,预警雷达必须具备对目标进行分类和识别真假弹头的能力,将核弹头或大规模杀伤的弹头分离出来,为弹道导弹防御(BMD)系统进行目标攻击和火力分配提供依据。早期的BMD系统假设只有一个核弹头,多弹头分导技术的出现,使问题转化为雷达的多目标识别问题,加上电子对抗技术的广泛使用,给目标识别技术带来很大困难。另外,预警雷达还要对空中目标或低空目标进行探测,对来袭目标群进行分类识别。利用星载雷达以及远程光学望远镜等观测设备,可以对外空目标进行探测,对外空来袭目标进行分类和识别,达到早期预警的工作。

CVPR2016目标检测之识别效率篇:YOLO, G

CVPR2016目标检测之识别效率篇:YOLO, G 1.YOLO: You Only Look Once:Unified, Real-Time Object Detection YOLO是一个可以一次性预测多个Box位置和类别的卷积神经网络,能够实现端到端的目标检测和识别,其最大的优势就是速度快。事实上,目标检测的本质就是回归,因此一个实现回归功能的CNN并不需要复杂的设计过程。YOLO没 有选择滑窗或提取proposal的方式训练网络,而是直接选用整图训练模型。这样做的好处在于可以更好的区分目标和背景区域,相比之下,采用proposal训练方式的Fast-R-CNN 常常把背景区域误检为特定目标。当然,YOLO在提升检测速度的同时牺牲了一些精度。下图所示是YOLO检测系统流程:1.将图像Resize到448*448;2.运行CNN;3.非极大抑制优化检测结果。有兴趣的童鞋可以按照 https://www.360docs.net/doc/d315217960.html,/darknet/install/的说明安装测试一下YOLO的scoring流程,非常容易上手。接下来将重点介绍YOLO的原理。 1.1 一体化检测方案 YOLO的设计理念遵循端到端训练和实时检测。YOLO将输入图像划分为S*S个网络,如果一个物体的中心落在某网格

(cell)内,则相应网格负责检测该物体。在训练和测试时,每个网络预测B个bounding boxes,每个bounding box对应5个预测参数,即bounding box的中心点坐标(x,y),宽高(w,h),和置信度评分。这里的置信度评分 (Pr(Object)*IOU(pred|truth))综合反映基于当前模型bounding box内存在目标的可能性Pr(Object)和bounding box预测目标位置的准确性IOU(pred|truth)。如果bouding box内不存在物体,则Pr(Object)=0。如果存在物体,则根据预测的bounding box和真实的bounding box计算IOU,同时会预测存在物体的情况下该物体属于某一类的后验概 率Pr(Class_i|Object)。假定一共有C类物体,那么每一个网格只预测一次C类物体的条件类概率Pr(Class_i|Object), i=1,2,...,C;每一个网格预测B个bounding box的位置。即这B个bounding box共享一套条件类概率Pr(Class_i|Object), i=1,2,...,C。基于计算得到的Pr(Class_i|Object),在测试时可以计算某个bounding box类相关置信度: Pr(Class_i|Object)*Pr(Object)*IOU(pred|truth)=Pr(Class_i)* IOU(pred|truth)。如果将输入图像划分为7*7网格(S=7),每个网格预测2个bounding box (B=2),有20类待检测的目标(C=20),则相当于最终预测一个长度为 S*S*(B*5+C)=7*7*30的向量,从而完成检测+识别任务,整个流程可以通过下图理解。

交通场景中运动目标的检测文献综述

交通场景中运动目标的检测文献综述 摘要:运动目标检测是数字图像处理技术的一个主要部分,是一种基于视频监控系统的运动目标检测方法。这种算法主要包括:图像预处理、运动目标的检测、运动速度的求取。运动目标分割是实现交通场景下车辆检测的前提。常用的分割方法可以分为背景差分法、帧间差分法和基于光流的分割方法等。 关键词:数字图像处理;运动目标;检测方法 1 前言 运动目标检测是数字图像处理技术的一个主要部分,近些年来,随着多媒体技术的迅猛发展和计算机性能的不断提高,动态图像处理技术日益受到人们的青睐,并且取得了丰硕的成果,广泛英语与交通管理、军事目标跟踪、生物医学等领域。 目前,以数字图像处理技术为核心的视频监视系统越来越广泛地应用到交通监管中,它利用摄像机来获取图像,由计算机完成对运动目标的自动检测,如果车辆交通违规时,自动发出预警,记录全程违章视频,这在很大程度上减轻了监控人员的劳动强度,克服可能的人为失误,而且节省大量存储空间,使存储的数据更为有效,为交通违规的后续处理提供了客观依据。 交通场景中运动目标的检测是本文的研究对象。结合图书馆书籍、网上资料以及现有期刊杂志的相关信息,初步建立起交通场景中运动目标检测课题研究的整体思路和方法。 2 正文 2.1运动目标 运动目标是常生活中常见的.如活动的动物、行驶的运载工具等。在现实生活中,尽管人类的视觉既能看见运动又能看见静止的物体,但是在交通这样的复杂场景中大量有意义的视觉信息都包含在这些运动之中,人们往往只对运动的

物体或目标感兴趣。因此,研究运动目标的检测问题,有着很大的现实意义和应用价值。 2.2运动目标检测的基本概念 目前我们主要是通过对动态图像进行分析处理来获取运动目标信息,从而实现对运动目标的检测,它是图像处理与计算机视觉应用研究领域的一个重要课题。,所谓动态图像是由一序列图像组成的,即图像序列。图像序列是用一个传感器(如摄像机、数码相机)采集的一组随时间变化的图像,不同时刻采集的二帧图像或多帧图像中包含了存在于相机与景物之间的相对运动信息。还有景物本身发生变化的运动信息等等,这些信息表现为图像帧之间的灰度变化或诸如点、线、区域等记号的位置和运动方向速度等属性的变化。 运动目标检测的目的就是从序列图像中将变化区域从背景图像中提取出来。我们首先用摄像机获取运动目标的视频影像,经视频采集卡将视频信号传输到计算机,利用计算机对其进行相关处理,从视频图像中按一定时间间隔获取序列图像,然后通过对这些序列图像进行特定的处理,就可以检测出我们感兴趣的运动目标。 运动目标检测和分析是一种基于视频监控系统的运动目标检测方法。这种算法主要包括:图像预处理、运动目标的检测、运动速度的求取。这种算法在帧差法的基础之上,提取出运动目标,并对其求取运动速度。这种技术可以用于各类图像监控系统,用来检测运动目标,对于现实应用有重要意义。 2.3运动目标检测的基本方法 由运动目标所形成的图像序列可分为两种情况:一种是静止背景,一种是运动背景。前一种情况通常发生在摄像机相对静止状态(如监视某一路口车流量的固定摄像机),后一种情况通常发生在摄像机也在相对运动状态(如装在卫星或飞机上的监视系统)。从处理方法上看,对前一种情况可采用消除背景的方法检测运动目标,处理起来比较简单,如简单的帧间差分或自适应背景对消方法。对后一种情况.处理起来比较复杂,一般是采用突出目标或消除背景的思想检测运动目标。若采用消除背景的方法,则通常需要先进行帧间稳像及配准;若采用突出

视频中移动目标检测综述

基于视频的移动目标检测 论文研读报告 苏航00748178 智能科学系信息科学技术学院 北京大学 摘要 基于视频的移动目标检测是一个重要且有挑战性的任务,在许多应用中都起到相当关键的作用。本次论文研读围绕该主题展开,深入阅读了十余篇论文,在本文总结了视频中移动目标检测的一些主要方法及各自的优劣,并将几个重要的方法大致分为了两个不同的类别:基于像素的移动目标检测和基于区域的移动目标检测。在基于像素的方法中,图像特征完全由各个像素的坐标及灰度值(或颜色值)确定,而在基于区域的方法中,各个像素属性之间的关联成为主要特征来用以提取移动目标。另外本文还讨论了以上两类之外的一些方法。 关键词 视频移动目标检测背景差分高斯混合模型直方图 正文 1 引言 基于视频的移动目标检测在许多实际应用中都担当着核心的任务。譬如视频监视、人机交互、视频编码等广泛的领域都需要有效地进行该工作。帧差法(Frame Differencing)12是视频中检测移动目标最简单直观的方法,其在视频片段中固定间隔的两帧之间计算绝对差,该差值大于一定阈限的像素就认为是运动物体可能存在的区域: D t(x,y)=Abs.F t(x,y)?F t?k(x,y)/(1) 这种简单的方法有时十分有效,但在更多应用环境下并不能获得期望的效果。这主要是由于视频中各帧之间的差异并不仅仅来源于运动的物体,而同时可能来 1R. Jain and H. Nagel, “On the Analysis of Accumulative Difference Pictures from Image Sequences of Real World S cenes”, IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 1, no. 2, pp. 206–214, 1979. 2为了避免混淆,本文中将作为主要研读对象的文章列在报告最后的“参考文献”一栏中,而其他引用的 文献则作为脚注注明。

目标检测与跟踪

第九章图像目标探测与跟踪技术 主讲人:赵丹培 宇航学院图像处理中心 zhaodanpei@https://www.360docs.net/doc/d315217960.html, 电话:82339972

目录 9.1 概论 9.2 目标检测与跟踪技术的发展现状9.3 目标检测与跟踪技术的典型应用9.4 图像的特征与描述 9.5 目标检测方法的基本概念与原理9.6 目标跟踪方法涉及的基本问题

9.1 概论 1、课程的学习目的 学习和掌握目标探测、跟踪与识别的基本概念和术语,了解一个完整信息处理系统的工作流程,了解目标探测、跟踪与识别在武器系统、航空航天、军事领域的典型应用。了解目标检测、跟踪与识别涉及的关键技术的发展现状,为今后从事相关的研究工作奠定基础。 2、主要参考书: 《目标探测与识别》,周立伟等编著,北京理工大学出版社; 《成像自动目标识别》,张天序著,湖北科学技术出版社; 《动态图像分析》,李智勇沈振康等著,国防工业出版社;

引言:学习目标检测与跟踪技术的意义 ?现代军事理论认为,掌握高科技将成为现代战争取胜的重要因素。以侦察监视技术、通信技术、成像跟踪技术、精确制导技术等为代表的军用高科技技术是夺取胜利的重要武器。 ?成像跟踪技术是为了在战争中更精确、及时地识别敌方目标,有效地跟踪目标,是高科技武器系统中的至关重要的核心技术。 ?例如:一个完整的军事战斗任务大致包括侦察、搜索、监视以及攻击目标和毁伤目标。那么快速的信息获取和处理能力就是战争胜利的关键,因此,目标的实时探测、跟踪与识别也成为必要的前提条件。

?随着现代高新技术的不断发展及其在军事应用领域中的日益推广,传统的作战形态正在发生着深刻的变化。 1973年的第四次中东战争,1982年的英阿马岛之战,1991年的海湾战争及1999年的科索沃战争,伊拉克战争等都说明了这一点。西方各军事强国都在积极探索对抗武器,特别是美国更是投入了巨大的物力、人力和财力积极研制弹道导弹防御系统。而图像检测、跟踪和识别算法作为现代战场信息环境作战成败的关键,具备抗遮挡、抗丢失和抗机动鲁棒性的智能跟踪器,将是现代战场作战必备品,具有广泛的应用前景。

2020年二建建设工程施工管理讲义:建设工程项目目标的动态控制

2020年二建建设工程施工管理讲义:建设工程项 目目标的动态控制 2018年二建建设工程施工管理讲义:建设工程项目目标的动态控制 2Z101040建设工程项目目标的动态控制 项目目标的动态控制是项目管理的最基本的方法论。 项目目标的动态控制的工作程序: 第一步,准备工作:将项目的目标进行逐层分解,以确定用于目标控制的计划值; 第二步,实施过程中动态控制:(1)收集项目目标的实际值; (2)定期进行项目目标的计划值和实际值的比较; (3)通过项目目标的计划值和实际值的比较,如有偏差,则采取纠偏措施进行纠偏。 第三步,如有必要,则进行项目目标的调整。 项目目标的动态控制的核心:定期进行项目目标的计划值和实 际值比较,项目目标偏离时采取纠偏措施。 对于大型建设工程项目,应通过①编制施工总进度规划,②施工总进度计划、③项目各子系统和各子项目施工进度计划等进行项目施工进度目标的逐层分解。 一般的项目控制周期为一个月;对于重要的项目,控制周期一般为一旬或一周等。 施工成本目标的分解指的是通过编施工成本规划,分析和论证施工成本目标实现的可能性。 动态控制在投资控制中的应用

施工计划值和实际值的比较: 1.投标价 2.工程合同款 3.施工成本规划 4.实际施工成本 5.工程款支付 前是后的计划值,后是前实际值 质量目标不仅是各分部分项工程的施工质量,它还包括材料、半 成品、成品和有关设备等的质量。 1、下列工作中,不属于施工项目目标动态控制程序中的工作是()。 A.目标分解 B.目标计划值搜集 C.目标计划值与实际值比较 D.采取措施纠偏 2、项目管理最基本的方法论是项目目标的()。 A.静态控制 B.动态控制 C.主动控制 D.被动控制 3、下列项目目标动态控制措施中,属于管理措施的是()。 A.强化合同管理 B.调整职能分工 C.优化组织机构 D.改进施工工艺 4、在项目实施过程中,运用动态控制原理控制施工成本的步骤中,第一步应做的工作是()。 A.按照成本控制的要求收集施工成本的实际值 B.找出偏差,采取纠偏措施 C.施工成本目标的逐层分解 D.定期对施工成本的计划值和实际值进行比较 5、为了对项目目标进行动态跟踪和控制,在确定了项目目标计 划值后的施工过程中,首先应做的是()。 A.调整项目目标 B.采取纠偏措施进行纠偏 C.收集工程进度的实际值 D.比较项目目标的实际值与计划值 6、运用动态控制原理控制施工质量时,质量目标不仅包括各分 部分项工程的施工质量,还包括()。

运动目标检测

运动目标检测 跟踪各过程算法综述图像预处理数字图像中的几种典型噪声有:高斯噪声来源于电子电路噪声和低照明度或高温带来的传感器噪声椒盐噪声类似于随机分布在图像上的胡椒和盐粉微粒主要由图像切割引起或变换域引起的误差加性噪声是图像在传输中引进的信道噪声。一般来说引入的都是加性随机噪声可以采用均值滤波、中值滤波、高斯滤波等方法去除噪声提高信噪比。均值滤波在噪声分布较平均且峰值不是很高的情况下能够得到较好的应用中值滤波对尖脉冲噪声的滤除有较好的效果并且能突出图像的边缘和细节高斯滤波对滤除高斯白噪声有较好的效果。运动目标检测背景差分法:能完整、快速地分割出运动对象。不足之处易受光线变化的影响背景的更新是关键。不适用摄像头运动的情况。光流法:能检测独立运动的对象可用于摄像头运动的情况但计算复杂耗时很难实时检测。帧差法:受光线变化影响较小简单快速但不能分割出完整的运动对象需进一步运用目标分割算法。还有一些改进的算法主要致力于减少光照影响和检测慢速物体变化。图像标识图像标识的作用是确定物体是否独立图像中有几个运动目标。 1领域:常取周围的4或8个像素作为领域。 2连通域:二值图像中互相连通的0像素集或1像素集称之为连通域。被1像素包围的0像素叫做孔。1像素连通域不含孔时叫做单连通成分含有一个或多个孔的连通成为叫做多重连通成分。 3标记:差值后的一帧图像可能存在多个连通域每个非连通域对应一个目标图像区给各目标区分配相应标号的工作成为标记。标识过程大致为:按一定顺序逐个扫描像素扫描到1的像素检测其领域的像素值若一样则为连通域并标记为第一个目标然后依次寻找下一个目标。在所有可能的目标都找到了之后可以为每个目标划出一个波门将目标框起来。并建立一个多目标位置链表找到的每一个目标区域的中心位置都作为一个结点加入该链表储存起来。波门的划分有可能将同一个目标分为两个部分或者一个波门里包括了两个目标使得目标数据错误增加或减少所以还要判断当前的目标是属于同一个目标还是不同的目标这将在后面的图像分割中完成。图像分割图像分割用于分离目标和背景的组合或者分离不同目标的组合。图像分割不仅可以大量压缩数据减少储存容量而且能大大简化其后的分析和处理步骤。 1直方图阈值分割法灰度直方图即为灰度级的像素数与灰度的二维关系反映了一副图像灰度分布的统计特性。如果前景物体内部灰度值分布比较均匀背景灰度值的分布也比较均匀这个图像的直方图将有明显的双峰这时可以选择两峰之间的谷底作为阈值。由于直方图不含目标的位置信息还要结合图像的内容来确定。 2最大类间方差阈值分割法利用图像目标与背景这两类的总体灰度之间存在的差距确定阈值从而进行分割。 3区域生长法指将周围特性相似的像素再次合并到目标区域中。 4边缘检测和轮廓提取分割法 5形态学分割法主要作用是使运动目标的区域更加完整。腐蚀的作用是消除物体边界点把小于结构元素的物体去除。如果两物体之间有细小的连通那么当结构元素足够大时通过腐蚀运算可以将两个物体分开。膨胀运算的作用是把图像周围的背景点合并到物体中。如果两个物体比较接近那么膨胀运算可能会使这两个物体连通在一起。膨胀对填补图像的空洞很有用膨胀最简单的应用之一就是将裂缝接起来。形态学也可用于图像滤波、增强等方面。运动轨迹预测在分割出运动目标后应提取出目标的特征然后在下一帧图像中匹配特征从而跟踪目标。但为了减少搜索特征匹配的区域提高实时性在此加入对目标运动轨迹预测这一步骤。运动轨迹预测也有利于增强遮挡情况下跟踪的鲁棒性。 1线性预测算法2Kalman滤波算法及其扩展算法 3粒子滤波算法目标跟踪 1特征选取灰度特

相关文档
最新文档