工业锅炉控制系统设计

工业锅炉控制系统设计
工业锅炉控制系统设计

工业锅炉控制方案设计

学生学号: 40512205

学生姓名:曹新龙

专业班级:自动化12102班

指导老师:赵莹萍

目录

引言 (3)

1文献综述 (4)

1.1锅炉的基本构造 (4)

1.2锅炉的工作原理及过程 (6)

1.2.1燃料的燃烧过程 (6)

1.2.2水的汽化过程 (6)

1.2.3烟气向水的传热过程 (7)

2总体方案设计 (9)

2.1蒸汽温度控制系统 (9)

2.2蒸汽压力控制系统 (9)

2.3汽包液位控制系统 (10)

2.4炉膛负压控制系统 (10)

2.5报警系统 (10)

3具体方案实施 (12)

3.1控制系统的硬件选型 (12)

3.1.1传感器的选型 (12)

3.1.2变送器 (13)

3.1.3常规控制器的控制规律及其选择 (13)

3.1.4变频器 (13)

3.1.5测速发电机 (14)

3.1.6计算机控制模块 (14)

3.1.7控制系统具体选型 (14)

具体选型见表3.1和表3.2所示。 (14)

3.2硬件组成 (19)

3.3软件组成 (19)

3.4控制台 (19)

参考文献 (21)

引言

锅炉是国民经济中主要的供热设备之一。电力,机械,冶金,化工,纺织,造纸,食品等工业和民用采暖都需要锅炉供给大量的蒸汽。各种工业的生产性质与规模不同,工业和民用采暖的规模大小也不一样,因此所需的锅炉容量,蒸汽参数,结构,性能方面也不尽相同。锅炉是供热之源,锅炉机器设备的任务在于安全,可靠,有效地把燃料的化学能转化成热能,进而将热能传递给水,以生产热水和蒸汽。为了提高热量及效率,锅炉向着高压,高温和大容量等方向发展。供热锅炉,除了生产工艺有特殊要求外,所生产的热水不需要过高温的压力和温度,容量也无需很大。

随着生产的发展,锅炉日益广泛的应用于工业生产的各个领域,成为发展国民经济的重要热工设备之一。在现代化的建设中,能源的需求是非常大的,然而我国的能源利用率极低,所以提高锅炉的热效率,具有极为重要的实际意义。此外,锅炉是否能应地制宜地有效地燃用地方燃料,并满足环境保护的各项要求而努力解决烟尘污染问题,以提高操作管理水平,减轻劳动强度,保证锅炉额定运行及运行效率,安全可靠地供热等课题。

锅炉微机控制,是近年来开发的一项新技术,它是微型计算机软件、硬件、自动控制、锅炉节能等几项技术紧密结合的产物。工业锅炉数量大、分布广,我国现有中、小型锅炉30多万台,每年耗煤量占我国原煤产量的1/3,目前大多数工业锅炉仍处于能耗高、浪费大、环境污染严重的生产状态。因此,提高热效率,提高自动化水平及防止环境污染, 降低耗煤量与耗电量,均是设计工业锅炉需考虑的重要因素。用微机进行控制是一件具有深远意义的工作。

本课题的主要方向就是采用过程控制对工业锅炉进行控制,采用先进的控制算法,以达到优化技术指标、提高经济效益和社会效益、提高劳动生产率、节约能源、改善劳动条件、保护环境卫生、提高市场竞争能力的作用。

1文献综述

在各种工业企业的动力设备中,锅炉是重要的组成部分,所以锅炉的性能至关重要。要设计一套完整的、性能良好的工业燃烧锅炉,首先就必须了解一般燃烧锅炉的基本构造和燃烧过程。

1.1锅炉的基本构造

锅炉是一种产生蒸汽或热水的热交换设备。它通过燃料的燃烧释放大量热能,并通过热传递把能量传递给水,把水变成蒸汽或热水,蒸汽或热水直接供给工业和生活中所需要的热能。所以锅炉的中心任务是把燃料中的化学能有效的转化为蒸汽的热能。图1.1为简单锅炉的大体组成部分。

锅炉的主要设备包括气锅、炉子、炉膛、锅筒、水冷壁、过热器、省煤器、燃烧设备、引风设备、送风设备、给水设备、空气预热器、水处理设备、燃料供给设备以及除灰除尘设备等。

气锅:由上下锅筒和三簇沸水管组成。水在管内受管外烟气加热,因而管簇内发生自然的循环流动,并逐渐气化,产生的饱和蒸汽积聚在上锅筒里面。

炉子:是使燃烧从充分燃烧并释放出热量的设备。

炉膛:保证燃料的充分燃烧,并使水流受热面积达到规定的数值。

锅筒:使自然循环锅炉各受热面能适应负荷变化的设备。(须指出,直流锅炉内无锅筒。)

水冷壁:主要是辐射受热面,保护炉壁的作用。

过热器:是将气锅所产生的饱和蒸汽继续加热为过热蒸汽的换热器。过热器一般都装在炉膛出口。

省煤器:是利用余热加热锅炉给水,以降低排出烟气温度的换热器。采用省煤器后,降低了排烟温度,提高了锅炉效率,节省了燃料。同时,由于提高了进入气包的给水温度,减少了因温差而引起的汽包壁的热适应力,从而延长了汽包的使用寿命。

燃烧设备:将燃料和燃烧所需的空气送入炉膛并使燃料着火稳定,充分燃烧。

引风设备:包括引风机、烟道和烟囱等几部分。用它将锅炉中的烟气连

续排出。

送风设备:包括有鼓风机和分道组成。用它来供应燃料所需的空气。

给水设备:由水泵和给水管组成。

空气预热器:是继续利用离开省煤器后的烟气余热,加热燃料燃烧所需要的空气,是一个换热器。省煤器出口烟温度高,装上空气预热器后,可以进一步降低排烟温度,也可改善燃料着火和燃烧条件,降低不完全燃烧所造成的损失,提高锅炉机组的效率。

水处理设备:其作用是为清除水中的杂质和降低给水硬度,以防止在锅炉受热面上结水垢或腐蚀。

燃料供给设备:由运煤设备、原煤仓和储煤斗等设备组成,保证锅炉所需燃料供应。

除灰除尘设备:是收集锅炉灰渣并运往储灰场地的设备。

此外,除了保证锅炉的正常工作和安全,蒸汽锅炉还必须装设安全阀、水位表、高低水位报警器、压力表、主气阀、排污阀和止污阀等,还有用来消除受热面上积灰的吹灰器,以提高锅炉运行的经济性,本设计由于篇幅其间,则就不必考虑这些问题了。

汽包

汽水分界面

煤斗

炉排

空气

预热器

蒸汽出口

锅炉引风机

鼓风机

烟囱

给水调节阀

锅炉给水泵

省煤器

图1.1 锅炉控制系统硬件组成图

1.2锅炉的工作原理及过程

锅炉是一种生产蒸汽的换热设备。它通过煤油或燃气等燃料的燃烧释放出化学能,并通过传热过程将能量传递给水,使水转变为蒸汽,蒸汽,蒸汽直接供给工业生产中所需的热能,或通过蒸汽动力机能转变为机能,或通过汽轮发电机转变为电能。所以锅炉的中心任务是把燃料中的化学能最有效地转变为蒸汽的热能。因此,近代锅炉亦称为蒸汽发生器。

锅炉的工作过程概括起来应该包括三个同时进行的过程:燃料的燃烧过程、水的汽化过程、烟气向水的传热过程。

1.2.1燃料的燃烧过程

首先将燃料(这里用煤)加到煤斗中,借助于重力下落在炉排面上,炉排接电动机通过变速齿轮箱减速后由链轮来带动,将燃料煤带入炉内。燃料一面燃烧,一面向后移动,燃料所需要的空气是由风机送入炉排腹中风仓后,向上穿过炉排到达燃料层,进行燃料反应形成高温烟气。燃料燃烧剩下的灰渣,在炉排末端翻过除渣板后排入灰斗,(若是燃气式锅炉就没有这一部分了)这整个过程称为燃烧过程。

1.2.2水的汽化过程

水的汽化过程就是蒸汽的产生过程,主要包括水循环和水分离过程。经处理的水由泵加压,先流经省煤器而得到预热,然后进入气锅。锅炉工作时气锅的工作介质是处于饱和状态的汽水混合物。位于烟温较低区段的对流灌束,因受热较弱,汽水工质的容量较大,而位于烟温较高区段的对流管束,因受热强烈,相应的汽水工质的容量较小,从而量大的工质则向上流入下锅筒,而容量小的工质则向上流入上锅筒,形成了锅水的自然循环。

蒸汽所产生的过程是借助于上锅筒内设的汽水分离装置。以及在锅筒本身空间的重力分离力作用,使汽水混合物得到分离。蒸汽在上锅筒顶部引出后,进入蒸汽过热气,而分离下来的水仍回到上锅筒下半部的水中。锅炉中的水循环,也保证与高温烟气相接触的金属受热面的以冷却而不被烧坏,是锅炉能长期安全运行的必要条件。而汽水混合物的分离设备则是保证蒸汽品质和蒸汽过热可靠工作的必要的设备。

1.2.3烟气向水的传热过程

由于燃料的燃烧放热,炉内温度很高在炉膛的四周墙面上,都布置一排水管,俗称水冷壁。高温烟气与水冷壁进行强烈的辐射换热,将热量传给管内工质水。继而烟气受引风机和烟囱的引力而向炉膛上方流动。烟气从炉膛出口掠过防渣管后,就冲刷蒸汽过热器——一组垂直放置的蛇型管受热面,使气锅中产生的饱和蒸汽在其中受烟气加热而得到的过热。烟气流经过过热气后掠过胀接在上、下锅筒间的对流管束,在管束间设置了折烟墙使烟气呈“S”型曲折地横向冲刷,再次以对流换热的方式将热量传递给管束的工质。沿途逐渐降低温度的烟气最后进入尾部烟道,与省煤器和空气预热器内的工质进行热交换后,以经济的较低的烟温排出锅炉。省煤器实际上同给水预热器和空气预热器一样,都设置在锅炉尾部(低温)烟道,以降低排烟温度提高锅炉效率,从而节省了燃料。

以上就是一般锅炉工水的过程,一个锅炉进行工作,其主要任务是:

(1)要是锅炉出口蒸汽压力稳定。

(2)保证燃烧过程的经济性。

(3)保持锅炉负压恒定。通常我们是炉膛负压保持在微负压(-10~80Pa)。

为了完成上述三项任务,我们对三个量进行控制:燃料量,送风量,引风量。从而使锅炉能正常运行。

1.3难点分析

由于调量是汽包水位,而调节量则是给水流量,通过对给水流量的调节,使汽包内部的物料达到动态平衡,变化在允许范围之内,虽然锅炉汽包水位对蒸气流量和给水流量变化的响应呈积极特性,但是在负荷(蒸气流量)急剧增加时,表现却类似逆响应特性,即所谓的虚假水位。造成这一原因是由于负荷增加时,导致汽包压力下降,使汽包内水的沸点温度下降,水的沸腾突然加剧,形成大量汽泡,而使水位抬高。汽包水位控制系统,实质上是维持锅炉进出水量平衡的系统。它是以水位作为水量平衡与否的控制指标,通过调整进水量的多少来达到进出平衡,将汽包水位维持在汽水分离界面最大的汽包中位线附近,以提高锅炉的蒸发效率,保证生产安全。由于锅炉水位系统是一个设有自平衡能力的被控对象,运行中存在虚假水

位现象,实际应用中可根据情况采用水位单冲量、水位蒸汽量双冲量和水位、蒸汽量、给水量三冲量的控制系统。

2总体方案设计

锅炉系统是一个复杂的多变量耦合系统。根据主控变量可将锅炉系统分为蒸汽温度控制系统、蒸汽压力控制系统、汽包液位控制系统以及炉膛负压控制系统。下面分别对这几个子系统的设计进行详细的介绍。

2.1蒸汽温度控制系统

因为锅炉的运行环境不可能是理想的状态,蒸汽的温度总是会受到某些干扰的影响,所以必学对蒸汽的温度加以控制,以在一定范围内得到温度相对恒定的蒸汽。影响蒸汽温度的主要因素是给煤量以及空煤比,所以我们采用了串级比值控制系统分别控制给煤量以及给风量。另外,影响蒸汽温度的因素还有给水量、蒸发量以及引风量等,又考虑到了控制系统相应的快速性,我们又将给水量和蒸发量作为蒸汽温度控制的前馈量构成前馈控制系统。即采用前馈比值串级控制系统对蒸汽温度进行控制,其控制系统的结构框图见图2.1所示。

图2.1 蒸汽温度控制系统结构框图

2.2蒸汽压力控制系统

如果过来内压力过低,将会降低蒸汽质量;反之,如果锅炉内压力过高,有可能导致爆炸等安全事故的发生。所以必须保证锅炉的压力处于一个适中的范围内,即必须对锅炉压力加以控制。上述蒸汽温度控制系统在控制蒸汽温度的同时就直接影响了蒸汽压力,在次不详加介绍。

压力控制系统分为安全压力控制系统和超压控制系统。安全压力控制系统是锅炉压力在安全压力范围之内的控制系统,其主要完成的功能是在安全的基础上对压力进行调节,使压力维持在一定的范围内,以得到需要的蒸汽压力,保证蒸汽质量;超压控制系统是锅炉压力超压时所采用的压力控制系统,其主要完成的功能是当压力超出某以压力上限的设定值时,迅速打开安全阀,使压力迅速降低,直到降到安全范围内后又迅速关闭安全阀。其中安全压力控制系统采用串级控制,而超压控制系统采用单回路控制,所以蒸汽压力控制系统是一个综合的控制系统,从某种意义上讲,可

以将其归入分程控制系统一类,其结构框图见图2.2所示。

图2.2 蒸汽压力控制系统结构框图

2.3汽包液位控制系统

如果汽包液位过高,可能会影响蒸汽质量,甚至会导致水满溢出等安全事故;反之,如果汽包液位过低,锅炉很有可能会被烧坏,甚至导致爆炸等安全事故。

能够影响汽包液位的主要有两大变量,那就是给水量和蒸发量,在其他条件不变的情况下,蒸发量越大,液位越低,而给水量越大则液位越高,反之则反。其中蒸发量是由工业的需要所决定的,而给水的主要作用就是用以维持汽包液位的,所以我们选择给水量作为操纵量对汽包液位进行控制,又因为考虑到系统相应的平稳性和快速性,除采用串级控制外,还将蒸发量引入前馈通道,对系统进行前馈串级控制,其控制系统的结构框图见图2.3所示。

图2.3 汽包液位控制系统结构框图

2.4 炉膛负压控制系统

如果炉膛负压太小,甚至为正,则炉膛内烟气过多,甚至烟气向外冒,影响设备和操作人员的安全;反之,炉膛负压过小,会使冷空气漏进炉膛内,从而是热量损失增加,降低燃烧效率。所以必须对炉膛的压力进行控制。

影响炉膛压力的主要变量有给煤量、给风量以及抽风量等,而其中给煤量和给风量是由蒸汽温度、压力以及蒸发量等因素决定的,所以要想保持炉膛压力在一定范围内保持不变就只有改变抽风量,亦即通过调节抽风量以达到控制炉膛压力的目的。另外,又因为考虑到系统相应的快速性,同时,又因为给风量和给煤量成一定的比例关系,为了提高控制品质以及简化控制系统的结构,我们将且尽将给煤量引入前馈通道参与了炉膛压力的控制。炉膛负压控制系统采用了前馈串级控制,其结构框图见图2.4所示。

图2.4 炉膛负压控制系统结构框图

2.5 报警系统

因为系统的运行并不是100%的,所以难免某些控制变量会超出可控或

安全的范围,当出现这类情况时,随时都有可能危及到现场操作人员以及工作设备等的安全,所以必须对这类情况给出相应的报警提示,即必须安装相应的报警系统,用以提示操作人员做出相应的必要操作,在某些可能出现安全事故的情况下还有用于提示人员疏散等紧急措施。

在本次设计中,我们设计了四个报警系统,即温度报警系统、压力报警系统、液位报警系统和负压控制系统,分别对蒸汽温度、蒸汽压力、汽包液位和炉膛负压进行超限报警提示。在锅炉的控制系统中,系统分别对蒸汽温度、蒸汽压力、汽包液位和炉膛负压设置了上下限值。报警系统就是当相应的实测值低于(或高于)其相应的下限(或上限)值时给出相应的下(上)限报警,这些功能均由软件完成,与此同时,控制系统还会做出相应的反应,使相应的变量值进入相应的极限范围,然后撤销相应的报警提示。

3 具体方案实施

3.1控制系统的硬件选型

3.1.1传感器的选型

传感器是一种能将与待测量的能量形式,转化成另一种可供处理查询的能量形式的装置。信号处理电路用于处理信息,而输出器件是一种利用已处理过的信号的装置、显示或动作。

(1) 温度传感器

我们经过充分考虑决定选用镍铬—镍硅热电偶。这种热电偶分度号为“K”。它的正极是镍铬合金,负极为镍硅。温度测量范围为-200—1200℃。其特点是测温范围很宽,热电动势与温度关系近似线性,热电动势大及价格地低。缺点是热电动势的稳定性较B型或S型热电偶差,且负极有明显的导磁性。

在使用热电偶进行测温时,只有将冷端的温度恒定,热端电动势才是热端温度的单值函数。由于热电偶的分度表是以冷端温度为零时作出的,因此,在使用时要正确地反映热端温度,必须使冷端温度恒定为零。这样我们就需要进行一些补偿措施。

1) 温法。

2) 补偿导线法。

3) 计算修正法。

4) 电桥补偿法。

其中,电桥补偿法的连接电路如图3.1所示。

图3.1 电桥补偿法连接电路

(2) 流量传感器、压力传感器

我们在进行流量、压力的信号测量时,所使用的流量传感器、压力传感器都统一装在了变送器上,即信号同时在变送器中测知,并且把它变成4~20mA的电信号。

3.1.2变送器

变送器是将被测工艺参数,通过其传感元件的检测、转换部件的放大和变换,输出一个统一的相应的气压或电流信号,再传送到指示记录仪、运算器和调节器,供指示、记录和调节使用。

在本次设计中我们主要用到的差压变送器是DDZ—III 型压变送器。它的工作原理是:被测压力信号P1、P2分别引入敏感元件的两侧,敏感元件将其转换成作用与主杠杆下端的输入力F1使主杠杆以轴封膜片为支点而偏转,并以力F沿水平方向推动矢量机构。矢量机构将推力F分解成F2和F3,F2使矢量机构的推板向上偏转,并通过连接簧片带动副杠杆以支点M逆时针偏转,这使固定在副杠杆的差动变压器的衔铁靠近差动变压器,两者之间距离的变化量再通过低落频位移检测放大器转换并放大为4-20mA 直流电流又流过电磁反馈装置的反馈动圈产生的力矩M1、M2达到平衡时,变送器便达到一个新的稳定状态。此时,低频位移检测放大器的输出电流I反映了所测大小。

3.1.3常规控制器的控制规律及其选择

一套控制系统主要是由被控对象、执行机构、检测变送器等完成一定任务的元部件构成的,这些元部件各自都有本身的动态和静态特性、控制方案以及干扰的形式和幅值。一般说来,被控对象、执行机构、检测变送器等元部件一旦选定,其特性就被固定下来了,所以,设计的剩下的一项主要任务就是确定控制规律、合理地选择控制器的形式及参数,以得到最佳的控制质量。

3.1.4变频器

给电动机提供频率可变电源的设备就是变频器,变频器是变频调速系统的核心部分。变频器与电动机完美的控制构成了性能优良的变频调速系统。对变频器的选型要从容量、输出电压、输出频率、保护构造、U/F(电压/频率)模式、电网→逆变器的切换、瞬停,再启动等方面进行综合考虑,进而选择满足要求的机种、机型。

3.1.5测速发电机

测速发电机的功能是将机械转速换为相应的电压信号,输出的电压与转速成正比,在自动控制系统中作为检测转速的信号元件等。测速发电机分直流测速发电机和交流测速发电机两类。我们这次用的是交流测速发电机。

3.1.6计算机控制模块

为了使危险性更小,使烟道中的氧含量降低,满足用户的不同要求等原因,我们在锅炉燃烧控制系统的过程中,将烟道中的含氧量、炉膛温度,空气进量,燃气进量等参数信号送入计算机,在这其中,我们用到了很多的输入,输出模块,并且对它们做出了很高的要求,从而使系统的可靠性,快速性,安全性等的性能指标得到很大的提高。

3.1.7控制系统具体选型

具体选型见表3.1和表3.2所示。

表3.1 控制系统选型(一)

检测点仪表名称规格型号安装地点

温度炉膛温度

镍铬-镍硅热

电偶

插深:1=1000

量程:0~1200℃

分度号:K

WRN-120 炉体

热电偶温度

变送器

量程:0~1200℃

分度号:K

SBWR-0404P

传感器之

配电器

双回路供电:

24V-DC

DFPX-2100

控制柜后

架装

炉膛出口

烟温

镍铬-镍硅热

电偶

插深:1=1000

量程:0~1200℃

分度号:K

WRN-120 炉体

省进烟温

铂电阻温度

插深:1=1000

分度:PT100

WZP-220 省进烟管省出烟温

铂电阻温度

插深:1=1000

分度:PT100

WZP-220 省出烟管

省进水温铂电阻温度

插深:

1/L=150/300

分度号:PT100

WZP-220 省进水管

省出水温铂电阻温度

插深:

1/L=150/300

分度号:PT100

WZP-220 省出水管

热水温度铂电阻温度

插深:

1/L=300/450

分度号:PT100

WZP-220 热水管上

回水温度铂电阻温度

插深:

1/L=300/450

分度号:PT100

WZP-220 热水管上

回水温度热电阻温度

变送器

量程:0~1200℃SBWZ-0703P

与回水在

一起

配电器

双回路供电:

24V-DC

DFPX-2100

控制柜后

架装

室外温度铂电阻温度

500×500

分度号:PT100

WZPW-30 室外

室内温度铂电阻温度

500×500

分度号:PT100

WZPW-30 室内

续表3.1

检测点仪表名称规格型号安装地点

压力炉膛负压差压变送器

量程:-120~50Pa

配:1/2-14npt 引

压件C11

SBCC-13-13

12/032

炉体后侧配电器

双回路供电:

24V-DC

DFPX-2100

控制柜后

架装

省进烟压压力变送器

量程:-1000~0Pa

配:1/2-14npt 引

压件C11

SBYC-13112

/032

炉体后侧省出烟压压力变送器量程:-2000~0Pa SBYC-13112除尘间

配:1/2-14npt 引

压件C11

/032

配电器双回路供电:

24V-DC

DFPX-2100

控制柜后

架装

引风机压力压力变送器

量程:-4000~0Pa

配:1/2-14npt 引

压件C11

SBYC-13112

/032

除尘间

鼓风机压力压力变送器

量程:0~4000Pa

配:1/2-14npt 引

压件C11

SBYC-13112

/032

除尘间

配电器

双回路供电:

24V-DC

DFPX-2100

控制柜后

架装

热水压力量程:0~1Pa

配:1/2-14npt 引

压件C11

SBYC-27112

/031

炉体后侧

回水压力压力变送器量程:0~1Pa

配:1/2-14npt 引

压件C11

SBYC-27112

/031

循环泵房

配电器双回路供电:

24V-DC

DFPX-2100

控制柜后

架装

补水压力压力变送器量程:0~1Pa

配:1/2-14npt 引

压件C11

SBYC-27112

/031

水泵间

流量热水流量差压配电器

测量范围:0~

640Kpa

配:三阀组T1

SBBC-14112

/031

炉体后侧孔板

包括:环室,跟部

阀,法兰

LGBH-1501A

配电器

双回路供电:

24V-DC

DFQX-2100

控制柜后

架装

速引风机调交流变频器功率:75KW ACS-501-06低压配电

速0-3 室

Q型手操器输入输出:4~

20Ma DC

供电:24V-DC

DFQX-2100 控制柜上

鼓风机调速交流变频器功率:35KW

ACS-501-02

5-3

低压配电

Q型手操器

输入输出:4~

20Ma DC

供电:24V-DC

DFQX-2100 控制柜上

锅炉微型控

制器

包括:主控制柜

副控制柜

控制室

表3.2控制系统选型(二)

控单元MCU---ll冗

余型CPU Pentium Ⅱ以上,64M内存以上,Cache:128KB 中断级:15

显示器PC—123T∕

M型

19″高清晰度分辨率:800×600

网卡ET---100以

太网卡

速率为100Mbps

Hub ET---HUB 16端口以太网Hub

端子底座普通端子底

连接现场信号

模拟量的输入输出模块PLC—818H

(2块)

16路单端输入12位A/D,单通道12位D/A,

16位D/lO

手操模块HSFM 人工操作控制输出,保证系统的可控性

电源模块HSFM 193 交流供电:220VAC ±30%,50Hz ±1Hz输

出功率:24∨,4A

二次显示仪表CH—92 可处理八路模拟输入信号自动切换显示

操作台2P500

MACS专用键盘FB006

打印机HP1120C彩色喷墨打印机

工业配线箱PCLK—1050

执行器LKJ型(环境温度:–25~+55℃)

报警器GDAW—2000高、低限报警(由软件设置)

氧化锆OVSE—800 无热电偶,外径25mm,有效长度820mm

3.2硬件组成

工业锅炉生产过程的生产现场环境恶劣,生产车间噪声、振动都较大,温度较高、各种大功率电气控制柜与电机较多,它们对现场的计算控制设备的性能提出了严格要求,为此,选择价格适中的研华工业PC计算机,实现生产线的自动检测与控制。系统的硬件组成框图如图3.2所示。图中:温度检测共四路、压力检测共三路、电动执行阀的阀位检测共三路(图3.2未画出)。温度信号通过温度变送器变换,再经PCL-818调理板,变成标准的A/D转换器输入的电信号,由A/D采样卡(所选型号:PCL-813B,是32通道隔离型的12位A/D输入卡)把数字信号送入工控机。工控机根据这一温度信号与给定温度比较,送入PID控制算法运算后,得到控制量,将控制量送给D/A输出卡(所选型号:PCL-728,是2通道隔离型的12位D/A 输出卡),输出模拟控制信号,D/A转换器输出作为电动调节阀的输入给定,从而控制电动调节阀调节蒸汽流量的大小,实现温度的自动控制。阀位检测信号的变换和处理类同温度检测情况。

图3.2 系统的硬件组成框图

另外,操作控制台通过是32通道隔离型的数字输入卡和输出卡与工控机相连,完成系统的开关按键操作与声光指示功能。

3.3软件组成

本设计采用WinCC组态软件对系统进行组态,设计了两个任务界面,四个显示界面。任务界面负责数据的接收、处理及发送。显示界面负责现场各个参数的监测、控制及报警工作。

任务界面由一系列的控制模块组成,在锅炉任务界面:AI表示模拟量输入模块,它负责将从I/O设备模拟量输入部分所获取的数据提供给其它模块。在本任务中有一个温度输入(水温)、一个压力输入(炉膛负压)、一个阀位输入(给水流量)。

3.4控制台

由硬件组成图可以看到,中控室中设有以控制台。其具体布局见图3.3所示。

图3.3 控制台

由图3.3可以看出,控制台下方安装的是四个控制器,分别对应于蒸汽温度控制器、蒸汽压力控制汽包液位控制器以及炉膛负压控制器,在此可以方便的对各个系统变量进行调节和控制,还可以修改相应的设定值和上、下限值;紧挨其上方的是上、下限报警指示灯,当系统正常运行时,上、下限指示灯均不被点亮,但是当某以参数超限,相应的指示灯将会被点亮,用以给出相应的信号;控制台的中间部位是一个手、自动切换开关,用于对系统控制的手动操作和自动操作的切换;右上角设有开车、停车以及急停按钮,分别用于对系统的起、停和急停之用;紧挨其左面是三个指示灯,分别是电源指示灯、正常运行指示灯和非正常运行指示灯(即报警指示灯);再往左是一个报警器,其作用是当出现非正常运行状况时发出声音报警信号。

锅炉控制系统的组态设计

; 济南铁道职业技术学院 电气工程系 毕业设计指导书 课题名称: 锅炉控制系统的组态设计《 专业电气自动化 班级电气0831 姓名 cmy ~ 设计日期至 指导教师 ly ? 2010、11

济南铁道职业技术学院电气工程系 毕业设计指导书 2010、11 一、设计课题: ! 锅炉控制系统的组态设计 锅炉设备是工业生产中典型的控制对象,而组态控制技术是当今自动化系统应用广泛的技术之一。本课题采用组态王组态软件设计上位机监控画面,实时监控液位参数,并采用实时趋势曲线显示液位的实时变化。由此组成一个简单的液位控制系统。 二、设计目的: 通过本课题的设计,培养学生利用组态软件、PLC设计控制系统的能力,理解、掌握工业中最常用的PID控制算法,有利于进一步加深《自动控制原理》、《组态软件》和《过程控制》等课程的理解,为今后工作打好基础。 三、设计内容: 掌握锅炉生产工艺,实现锅炉自动控制的手段,利用“组态王”软件做出上位机监控程序,具体有主监控画面、实时曲线、历史曲线;掌握PID参数调整方法。 — 四、设计要求及方法步骤: 1.设计要求: (1)监控系统要有主监控画面和各分系统的控制画面,包括实时曲线、历史曲线和报表等。 (2)各控制画面要有手/自动切换。

(3)掌握PID控制算法。 2.运用的相关知识 (1)组态控制技术。 (2)过程控制技术。 ~ 3.设计步骤: (1)熟悉、掌握锅炉的生产工艺。 (2)设计各分系统的控制方案。 (3)构思系统主监控画面和分画面,包括实时曲线、历史曲线和报表等。 (4)编写设计论文。 五、设计时间的安排: 熟悉题目、准备资料 1周 @ 锅炉控制系统的工艺了解 1周 监控画面的设计 2周 控制算法的编制和系统调试 3周 论文的编写 2周 准备毕业设计答辩 1周 六、成绩的考核 在规定时间内,学生完成全部的设计工作,包括相关资料的整理,然后提交给指导教师,指导教师审阅学生设计的全部资料并初步通过后,学生方可进入毕业答辩环节,若不符合设计要求,指导教师有权要求学生重做。 … 答辩时,设计者首先对自己的设计进行10分钟左右的讲解,然后进行答辩,时间一般为30分钟。 成绩根据学生平时的理论基础、设计水平、论文质量和答辩的情况综合考虑而定。 成绩按优秀、良好、中、及格、不及格五个等级进行评定。

锅炉本体设计热力计算部分

一.题目SHL35-1.6-A 二、锅炉规范 锅炉额定蒸发量 35t/h 额定蒸汽压力 1.6MPa 额定蒸汽温度 204.3℃(饱和温度) 给水温度 105℃ 冷空气温度 30℃ 排污率 5% 给水压力 1.8MPa 三.燃料资料 烟煤(AⅡ) 收到基成份(%) C ar H ar O ar N ar S ar A ar M ar 48.3 3.4 5.6 0.9 3.0 28.8 10.0 干燥无灰基挥发份V daf= 40.0 % 收到基低位发热量Q net,ar= 18920 kJ/kg 收到基成份校核: C ar+H ar+O ar+N ar+S ar+A ar+M ar=48.3+3.4+5.6+0.9+3.0+28.8+10.0=100 根据门捷列夫经验公式:Q net,ar=339C ar+1031H ar-109(O ar-S ar)-25.1M ar =339×48.3+1031×3.4-109×(5.6-3.0)-25.1×10.0 =19344.7kJ/kg 与所给收到基低位发热量误差为: 19344.7-18920=424.7kJ/kg<836.32kJ/kg(在A d=32%>25%下,合理)。 四.锅炉各受热面的漏风系数和过量空气系数 序号受热面名称入口'α漏风Δɑ出口''α 1 炉膛 1.3 0.1 1.4 2 凝渣管 1.4 0 1.4 3 对流管束 1. 4 0.1 1.5 4 省煤器 1. 5 0.1 1.6 5 空气预热器 1. 6 0.1 1.7

(工业锅炉设计计算P134表B3~P135表B4)由于AⅡ是较好烧的煤,因此'' 在1.3~1.5取值1.4。 五.理论空气量及烟气理论容积计算 以下未作说明的m3均指在标准状况0℃,101.325kPa的情况下体积。 序号名称 符 号 单位计算公式结果 1 理论空气 量 V0m3/kg V0=0.0889(C ar +0.375S ar )+0.265H ar -0.0333O ar =0.0889(48.3+0.375×3)+0.265×3.4-0.0333 ×5.6 5.10 8 2 RO2容积V RO2m3/kg V RO2 =0.01866(C ar +0.375S ar ) =0.01866(48.3+0.375×3) 0.92 2 3 N2理论容 积 2 N V m3/kg V0 N2 =0.79V0+0.008N ar =0.79×5.108+0.008×0.9 4.04 3 4 H2O理论 容积 2 O H V m3/kg V0 H2O =0.111H ar +0.0124M ar +0.0161V0 =0.111×3.4+0.0124×10+0.0161×5.108 0.58 4 5 理论烟气 量 y V m3/kg V0 y =V RO2 +V0 N2 +V0 H2O =0.922+4.043+0.584 5.54 9 (工业锅炉设计计算 P187) 六.各受热面烟道中烟气特性计算 序号名称 符 号 单位计算公式炉膛 对流 管束 省煤 器 空气 预热 器 1 平均过 量空气 系数 αav-(α’+α”)/2 1.4 1.45 1.55 1.65 2 实际水 蒸气容 积 V H2O m 3/k g 2 O H V+0.0161(αav-1) V0 0.617 0.621 0.629 0.637 3 实际烟 气量 V y m 3/k g Vg=V RO2 +0 2 N V+V H2O+(αav -1)V0 7.625 7.885 8.404 8.923 4 RO2 容积份 额 r RO2- g RO V V 2 0.120 9 0.116 9 0.109 7 0.103 3 5 H2O 容积份 额 r H2O- g H V V 2 O0.080 9 0.078 8 0.074 9 0.071 4 6 三原子 气体容 积份额 r q-r RO2+r H2O0.201 8 0.195 7 0.184 6 0.174 7

工业锅炉控制系统设计

工业锅炉控制系统设计 The following text is amended on 12 November 2020.

工业锅炉控制方案设计 学生学号: 学生姓名:曹新龙 专业班级:自动化12102班指导老师:赵莹萍 目录

引言 锅炉是国民经济中主要的供热设备之一。电力,机械,冶金,化工,纺织,造纸,食品等工业和民用采暖都需要锅炉供给大量的蒸汽。各种工业的生产性质与规模不同,工业和民用采暖的规模大小也不一样,因此所需的锅炉容量,蒸汽参数,结构,性能方面也不尽相同。锅炉是供热之源,锅炉机器设备的任务在于安全,可靠,有效地把燃料的化学能转化成热能,进而将热能传递给水,以生产热水和蒸汽。为了提高热量及效率,锅炉向着高压,高温和大容量等方向发展。供热锅炉,除了生产工艺有特殊要求外,所生产的热水不需要过高温的压力和温度,容量也无需很大。 随着生产的发展,锅炉日益广泛的应用于工业生产的各个领域,成为发展国民经济的重要热工设备之一。在现代化的建设中,能源的需求是非常大的,然而我国的能源利用率极低,所以提高锅炉的热效率,具有极为重要的实际意义。此外,锅炉是否能应地制宜地有效地燃用地方燃料,并满足环境保护的各项要求而努力解决烟尘污染问题,以提高操作管理水平,减轻劳动强度,保证锅炉额定运行及运行效率,安全可靠地供热等课题。 锅炉微机控制,是近年来开发的一项新技术,它是微型机软件、硬件、自动控制、锅炉节能等几项技术紧密结合的产物。工业锅炉数量大、分布广,我国现有中、小型锅炉30多万台,每年耗煤量占我国原煤产量的1/3,大多数工业锅炉仍处于能耗高、浪费大、环境污染严重的生产状态。因此,提高热效率,提高自动化水平及防止环境污染, 降低耗煤量与耗电量,均是设计工业锅炉需考虑的重要因素。用微机进行控制是一件具有深远意义的工作。 本课题的主要方向就是采用过程控制对工业锅炉进行控制,采用先进的控制算法,以达到优化技术指标、提高经济效益和社会效益、提高劳动生产率、节约能源、改善劳动条件、保护环境卫生、提高市场竞争能力的作用。

铣床的液压系统课程设计

二、设计依据: 设计一台专用铣床的液压系统,铣头驱动电机的功率N=7.5KW,铣刀 直径为D=100mm,转速为n=300rpm,若工作台重量400kg,工件及夹 具最大重量为150kg,工作台总行程L=400mm,工进为100mm,快退, 快进速度为5m/min,工进速度为50~1000mm/min,加速、减速时间 t=0.05s,工作台用平导轨,静摩擦系数fj=0.2,动摩擦系数fd=0.1。 设计此专用铣床液压系统。 沈阳理工大学

三、工况分析 液压系统的工况分析是指对液压执行元件进行运动分析和负载分 析,目的是查明每个执行元件在各自工作过程中的流量、压力、功率 的变化规律,作为拟定液压系统方案,确定系统主要参数(压力和流 量)的依据。 负载分析 (一)外负载 Fw=1000P/V=60000·1000P/ 3.14Dn=4774.65N (二)阻力负载 静摩擦力:Ffj=(G1+G2)·fj 其中 Ffj—静摩擦力N G1、G2—工作台及工件的重量N fj—静 摩擦系数 由设计依据可得: Ffj=(G1+G2)·fj=(4500+1500)X0.2=1200N 动摩擦力Ffd=(G1+G2)·fd 其中 Ffd—动摩擦力N fd—动摩擦系数 同理可得: Ffd=(G1+G2)·fd=(4500+1500)X0.1=600N (三)惯性负载 机床工作部件的总质量m=(G1+G2)/g=6000/9.81=611.6kg 沈阳理工大学

沈阳理工大学 惯性力Fm=m ·a= =1019.37N 其中:a —执行元件加速度 m/s 2 0 t u u a t -= ut —执行元件末速度 m/s 2 u0—执行元件初速度m/s 2 t —执行元件加速时间s 因此,执行元件在各动作阶段中负载计算如下表所示: (查液压缸的机械效率为0.96,可计算液压缸各段负载,如下表) 工况 油缸负载(N ) 液压缸负载(N ) 液压缸推力(N ) 启动 F=Ffj 1200 1250 加速 F=Ffd+Fm 1619.37 1686.84 快进 F=Ffd 600 625 工进 F=Ffd+ Fw 5374.65 5598.60 快退 F=Ffd 600 625 按上表的数值绘制负载如图所示。 对于速度而言,设计依据中已经有了明确的说明,所以按照设计依据绘制如

基于DCS的锅炉控制系统设计

DCS控制系统设计 一.被控对象: 图1 锅炉设备工艺 二.工艺要求 燃料和热空气按一定比例送入燃烧室燃烧,生成热量传递给蒸汽发生系统,产生饱和蒸汽Ds,然后经过热器,形成一定气温的过热蒸汽D,汇集至蒸汽母管。压力为Ph的过热蒸汽经负荷设备调节阀供给生产设备负荷用。与此同时,燃烧过程中产生的烟气,除将饱和蒸汽变成过热蒸汽外,还经省煤器预热锅炉给水和空气预热器预热空气,最后经引风机送往烟囱,排入大气。 三.DCS选型 本控制系统选择浙大中控Webfield JX-300XP系统。 四.硬件 ①控制站硬件 1.机柜:SP202 结构:拼装 尺寸:2100*800*600 ESD:防静电手腕 散热:两风扇散热 接地:工作接地,安全接地 2.机笼 电源机笼:四个电源模块,型号:XP521 I/O机笼:20个槽位,用于固定卡件 3.接线端子板 冗余端子板:XP520R 4.端子转接板 5.主控卡:XP243X 地址范围:2到127。 后备锂电池模块:JP2,保持参数不丢失。 6.数据转发卡:XP233

地址范围:0到15 7.I/O卡件 (a)I/O点数计算 Ⅰ.锅炉控制系统中数字量输入点数: 启动;停止;点火;手动关闭蒸汽阀 以上共计四个数字量输入。 Ⅱ.锅炉控制系统中数字量输出点数: 给风;1号风机;给燃料;2号风机;蒸汽阀 以上共计五个数字量输出。 Ⅲ.锅炉控制系统中模拟量输入点数: 汽包液位、温度、压力。 以上共有三个模拟量输入(为了使模拟信号可以远传,变送器均选择电压式)。 (b)卡件选择 Ⅰ.XP363:触点型开关量输入卡。8路输入,统一隔离。 Ⅱ.XP362:触点型开关量输出卡。8路输出,统一隔离。 Ⅲ.SP314X:电压信号输入卡。4 路输入,点点隔离,可冗余 Ⅳ.XP221:电源指示灯。 ②操作员站硬件 1.PC机: 显示器;主机;操作员键盘,鼠标;操作员站狗; 2.Windows XP操作系统 3.安装Advan Trol-Pro实时监控软件。 ③工程师站硬件 1.PC机 显示器;主机;工程师键盘,鼠标;工程师站狗 2.工程师站硬件可以取代操作员站硬件 3.Windows XP操作系统 4.安装Advan Trol-Pro实时监控软件 5.安装组态软件包 ④通信网络 (a)信息管理网 通讯介质:双绞线(星形连接),50Ω细同轴电缆、50Ω粗同轴电缆(总线形连接,带终端匹配器),光纤等; 通讯距离:最大 10km; 传输方式:曼彻斯特编码方式; (b)过程控制网络(SCnet Ⅱ网) 传输方式:曼彻斯特编码方式; 通讯控制:符合 TCP/IP 和 IEEE802.3 标准协议; 通讯速率:10Mbps; 节点容量:最多 15个控制站,32个操作站、工程师站或多功能站; 通讯介质:双绞线,50Ω细同轴电缆、50Ω粗同轴电缆、光缆;

DZL1.4-0.7锅炉产品设计说明书

目录 一、锅炉简介 二、设计规范及技术依据 三、锅炉主要技术经济指标和有关数据 四、锅炉结构 五、炉烘与燃烧设备设计 六、锅炉辅机及其参数 七、锅炉所配安全附件 八、锅炉水质要求 九、其他

产品设计说明书 一、锅炉简介: DZL1.4-0.7/95/70-AⅡ锅炉是在老式DZL型锅炉的基础上,经过优化设计的卧式快装单锅筒纵置式三回程水火管锅炉,封头采用椭圆形封头,烟管采用螺纹烟管,烟气经炉膛从锅炉筒后部两侧经翼形烟道进入前部烟箱,后经螺纹烟管进入后烟箱,经除尘器、引风机尽进入烟囱。采用炉篦以小块炉排片为主,中间由滚轮支承,密闭风室与具有调风、放灰相匹配的轻型链条炉排,由上煤机、无级调速箱,实现机械进煤,配有鼓引风机和出渣机,实现机械通风和出渣机械化。 二、设计规范及技术依据: 1、《热水锅炉安全技术监察规程》 2、JB/T10094-2002《工业锅炉通用技术条件》 3、TSG G0002-2010《锅炉节能技术监督管理规程》 4、GB/T1576-2008《工业锅炉水质》 5、GB13271-2001《锅炉大气污染排放标准》 6、GB50273-2009《锅炉安装工程施工及验收规范》 7、GB50211-2004《工业炉砌筑工程施工及验收规范》 8、GB/T16508-96《锅壳锅炉受压元件强度计算》

9、《层状燃烧及流化床燃烧工业锅炉热力计算方法》 中国标准出版社.2005 10、《工业锅炉设计计算标准方法——烟风阻力计算》,2003. 11、JB/T4730-2005《承压设备无损检测》 12、GB/T18342-2001《链条炉排锅炉用煤技术条件》 13、JB/T1609-1993《锅炉锅筒制造技术条件》 14、JB/T1610-1993《锅炉集箱制造技术条件》 15、JB/T1611-1993《锅炉管子制造技术条件》 16、JB/T1619-2002《锅壳锅炉本体制造技术条件》 17、JB/T1613-1993《锅炉受压元件焊接技术条件》 18、JB/T1612-1994《锅炉水压试验技术条件》 19、JB/T1615-1991《锅炉油漆和包装技术条件》 20、GB/T18342-2001《链条炉排锅炉用煤技术条件》 三、锅炉主要技术经济指标和有关数据 1、锅炉参数 锅炉供热量 1.4MW 额定工作压力0.7MPa 出水温度95℃ 回水温度70℃ 2、设计燃料Ⅱ类烟煤Q net. ar=17694kJ/kg

组态王课程设计锅炉温度控制系统

锅炉温度控制系统上位机设计 1.设计背景 锅炉是化工、炼油、发电等工业生产过程中必不可少的重要的动力设备。它所产生的高压蒸汽,既可以作为风机、压缩机、大型泵类的驱动透平的动力源,又可作为蒸馏、化学反应、干燥和蒸发等过程的热源。随着工业生产规模的不断扩大,生产设备的不断创新,作为全厂动力和热源的锅炉,办向着大容量、高参数、高效率发展。为了确保安全,稳定生产,锅炉设备的控制系统就显得愈加重要。随着经济的迅猛发展,自动化控制水平越来越高,用户对锅炉控制系统的工作效率要求也越来越高,为了提高锅炉的工作效率,较少对环境的污染问题,所以利用计算机与组态软件技术对锅炉生产过程进行自动控制有着重要的意义。 2.任务要求 (1) 按照题目设计监控画面及动态模拟; (2) 在数据字典中定义需要的内存变量和I/O变量; (3) 实现监控系统的实时、历史曲线及报警界面显示; (4) 实现保存数据和参数报表打印功能; (5) 实现登陆界面和帮助界面。 3. 界面功能 3.1 系统说明 本系统的目的是实现锅炉的温度控制,所以在监控界面设置了加热部分和降温部分,同时通过观察相应仪表,操作者手动的实现对锅炉温度的控制,而且在加热过程和降温过程中有信号灯可以清楚地显示系统工作在什么阶段。此外,在监控界面加入了液位控制部分,通过对进水量和出水量的控制实现液位平衡。实时曲线和历史曲线可以让操作者清楚地观察到锅炉内液体的液位高度和温度,从而更加准确的操作系统,达到控制要求。实时报警界面可以随时进行提醒,防止发生意外情况。帮助界面可以让初次登陆该系统的用户快速学会如何操作系统。登陆界面中加入用户登陆部分,只有有相应权限的操作者也可以控制系统。该系统还加入历史曲线打印功能和对系统相关变量的保存功能,用户可以随时查看历史记录。 3.2主监控界面 主控界面实现的是操作者观察仪表,得到锅炉内液体温度和液位的实时信息,通过调节电磁阀1、2,使得锅炉内液体液位保持在要求范围内,通过加热按钮和降温按钮对

《 液压与气压传动》课程设计任务书

《液压与气压传动》课程设计任务书 1.课程设计题目3 一台专用铣床,铣头驱动电机的功率为7.5KW,铣刀直径为150mm,转速为300r/min,工作台重量为4*103N,工件和夹具最大重量为1.8*103N,试设计此专用铣床液压系统。 2.课程设计的目的和要求 通过设计液压传动系统,使学生获得独立设计能力,分析思考能力,全面了解液压系统的组成原理。 明确系统设计要求;分析工况确定主要参数;拟订液压系统草图;选择液压元件;验算系统性能。 3.课程设计内容和教师参数(各人所取参数应有不同) 工作台行程为500mm(快进300mm,工进150mm),快进速度为5m/min,工进速度为50~800mm/min,往返加速、减速时间为0.1s,工作台用平导轨,静摩擦系数f j=0.2,动摩擦系数f d=0.1。 4. 设计参考资料(包括课程设计指导书、设计手册、应用软件等) ●章宏甲《液压传动》机械工业出版社 2006.1 ●章宏甲《液压与气压传动》机械工业出版社 2005.4 ●黎启柏《液压元件手册》冶金工业出版社 2002.8 ●榆次液压有限公司《榆次液压产品》 2002.3 课程设计任务 明确系统设计要求;分析工况确定主要参数;拟订液压系统草图;选择液压元件;验算系统性能。 5.1设计说明书(或报告) 分析工况确定主要参数;拟订液压系统草图;选择液压元件;验算系统性能。

5.2技术附件(图纸、源程序、测量记录、硬件制作) 5.3图样、字数要求 系统图一张(3号图),设计说明书一份(2000~3000字)。 6. 工作进度计划设计方式 手工 9.备注 一、设计任务书 二、负载工况分析 1.工作负载

锅炉温度控制系统设计方案

锅炉温度控制系统设计方案 第1章绪论 1.1课题背景及研究的意义 锅炉是工业生产中最常用的能量转换设备之一,它通过转化燃料中的化学能或利用电能转化为能,成为人们广为依赖的采暖工具。在电锅炉中,利用电阻在通电流状态下发热的原理,通过对电流的大小的控制对温度的控制。由于电流易控制的特点,电锅炉在小型锅炉和精密控温的到使用者的青睐。但是,在大部分城市中,由于国家实行“西气东输”计划,燃气价格为普通人家所接受,经数据统计和计算,燃气锅炉更便宜,比电锅炉应用更受欢迎。 锅炉温度的稳定是锅炉性能的一项重要指标,温度过高和温度过低都会给锅炉的稳定运行和生产造成重大的的影响,甚至发生安全事故。温度过高,导致锅炉金属材料和相关部件的超温过热,加速管材金属氧化,降低锅炉和相关部件的使用寿命;温度过低,假定在保持锅炉蒸发量不变的情况下,锅炉的损耗将大幅上升,能源利用率因此下降,而且负荷也将受到限制。所以,限定锅炉在安全温度成为每一个温度控制系统的核心部分。 随着科技发展,人们对采暖方式和热水方式渐渐发生变化,家用燃气锅炉进入寻常百姓家,但是国燃气锅炉的开发与应用还处于较落后的阶段,市场上的大多数此类商品还是以国外为主,所以燃气锅炉依然有广大市场与研究价值。 本设计以家用燃气锅炉为研究目标,使用AT89C51单片机为控制核心组成温度控制系统,采用热电阻感应温度的变化,单片机实现收集数据、处理数据、发送控制命令的功能,从各方面详细的说明单片机在温度控制的应用。 1.2 温度传感技术 自工业时代以来,随着大型机械的出现和广泛应用,温度对机械工作性能的影响越来越被人们所重视,对温度的未知可能造成机械损坏或发生重大事故。于是温度传感器便应运而生。温度传感器用在生活的方方面面,从冶金行业到每一个人身边中的一部分,它已经随着时代的步伐在进步。 目前使用的较为先进的温度传感器是数字传感器。数字传感器的优点是不需要像传统方式一样加入转换部分,利用当今成熟的集成技术,在其部已经集成了感应温度系统和温度转换系统,尤其是它单端数据输出的功能,极大减少对主控

火力发电厂锅炉自动控制系统

火力发电厂锅炉给水自动控制系统 工业锅炉的汽包水位是运行中的一个重要参数,维持汽包水位是保持汽轮机和锅炉安全运行的重要条件,锅炉汽包水位过高会造成汽包出口蒸汽中水分过多,使过热器受热面结垢而导致过热器烧坏,同时还会使过热汽温急剧变化,直接影响机组运行的经济性和安全性;汽包水位过低则可能导致锅炉水循环工况破坏,造成水冷壁管供水不足而烧坏。 1.串级三冲量给水控制 如今的汽包水位自动控制基本上都是通过分散控制系统(DCS)来实现的,而控制策略基本上已串级三冲量给水控制为主,单回路调节已不能适应大型锅炉汽包水位的控制,如今已很少采用,串级三冲量给水控制由于引入了蒸汽流量和给水流量信号,对快速消除,平衡水位有着明显的效果,因此被广泛采用。 1.1 串级三冲量给水控制系统工作原理 如图 4.1 所示,串级三冲量给水控制系统由主调节器PI1(控制器1)和副调节器PI2(控制器2)串联构成。主调节器接受水位信号H f为主控信号,其输出去控制副调节器。副调节器接受主调节器信号I H外,还接受给水量信号I W和蒸汽流量信号I D。副调节器的作用主要是通过内回路进行蒸汽流量D 和给水流量W 的比值调节,并快速消除水侧和汽侧的扰动。主调节器主要是通过副调节器对水位进行校正,使水位保持在给定值。 串级三冲量给水控制系统有以下特点:两个调节器任务不同,参数整定相对独立。主调节器的任务是校正水位,副调节器的任务是迅速消除给水和蒸汽流量扰动,保持给水和蒸汽量平衡。给各整定值的整定带来很大的便利条件。在负荷变化时,可根据对象在内外扰动下虚假水位的严重程度来适当调整给水流量和蒸汽流量的作用强度,更好的消除虚假水位的影响,改善蒸汽负荷扰动下水位控制的品质。给水流量和蒸汽流量的作用强度之间是相互独立的,这也使整定工作更加方便自由。

PLC在工业锅炉自动控制系统中的应用

1 引言 锅炉是发电厂及其它工业企业中最普遍的动力设备之一,它的功能是把燃料中的贮能,通过燃烧转化成热能,以蒸汽或热水的形式输向各种设备。目前,国内大多数工业锅炉都是人工控制的,或简单的仪表单回路调节系统,燃料浪费很大。工业锅炉作为一个设备总体,有许多被控制量与控制量,扰动因数也很多,许多参数之间明显地存在着复杂的耦合关系。对于工业锅炉这个复杂的系统,由于其内部能量转换机理过于复杂,采用常规的方式进行控制,难以达到理想的控制效果,因此,必须采用智能控制方式控制,才能获得最佳控制效果。 2 系统的组成 系统运行的示意图如图1所示。 图1 系统运行示意图 由图1可知,燃料和空气按一定比例进入燃烧室燃烧,产生的热量传递给蒸汽发生系统,产生饱和蒸汽,经负荷设备调节阀供给负荷设备使用。与此同时,燃烧过程中产生的烟气,除将饱和蒸汽变成过热蒸汽外,还经省煤器预热锅炉给水和空气预热器预热空气,最后经引风机送往烟囱排入大气。 锅炉是个较复杂的调节对象,为保证提供合格的蒸汽以适应负荷的需要,生产过程各主要工艺参数必须加以严格控制。主要调节项目有;负荷、锅炉给水、燃烧量、减温水、送风等。主要输出量是:汽包水位、蒸汽压力、过热蒸汽温度、炉膛负压、过剩空气等。这些输入量与输出量之间是互相制约的,例如,蒸汽负荷变化时,必然会引起汽包水位、蒸汽压力和过热蒸汽温度的变化;燃料量的变化不仅影响蒸汽压力,同时还会影响汽包水位、过热蒸汽温度、空气量和炉膛负压等。对于这样复杂的对象,工程处理上作了一些简化,将锅炉控制系统划分为若干个调节系统。主要的调节系统有: (1) 汽包水位调节系统 被调量是汽包水位,调节量是给水流量,它主要考虑汽包内部物料平衡,使给水量适应锅炉的蒸发量,维持汽包水位在工艺允许范围内。 (2) 过热蒸汽温度调节系统 维持过热器出口温度在允许范围之内,并保证管壁温度不超过允许工作温度。 (3) 燃烧调节系统

液压传动课程设计题目2

1.汽车板簧分选实验压力机(立式),液压缸对工件(汽车板簧)施加的最大压 力为3万N,动作为:快进→工进→加载→保压→慢退→快退,快进速度14mm/s,工进速度0.4mm/s,要求液压缸上位停止、下行时、保压后慢退不能失控。最大行程600mm。试完成: (1)系统工况分析; (2)液压缸主要参数确定; (3)拟定液压系统原理图; (4)选取液压元件; (5)油箱设计(零件图);* (6)油箱盖板装配图、零件图;* (7)集成块零件图; 2.钻孔动力部件质量m=2000kg,液压缸的机械效率ηw=0.9,钻削力Fc=16000N 工作循环为:快进→工进→死挡铁停留→快退→原位停止。行程长度为150mm ,其中工进长度为50mm。快进、快退速度为75mm/s,工进速度为1.67 mm/s。导轨为矩形,启动、制动时间为0.5s。要求快进转工进平稳可靠,工作台能在任意位置停止。 3.单面多轴钻孔组合机床动力滑台液压系统,要求设计的动力滑台实现的工作 循环是:快进——工进——快退——停止。主要性能参数与性能要求如下:切削阻力FL=30468N;运动部件所受重力G=9800N;快进、快退速度1=

3=0.1m/s,工进速度2=0.88×10-3m/s;快进行程L1=100mm,工进行程 L2=50mm;往复运动的加速时间Δt=0.2s;动力滑台采用平导轨,静摩擦系数μs=0.2,动摩擦系数μd=0.1。液压系统执行元件选为液压缸。 4.卧式钻孔组合机床液压系统设计:设计一台卧式钻孔组合机床的液压系统, 要求完成如下工作循环:快进→工进→快退→停止。机床的切削力为25×103 N,工作部件的重量为9.8×103 N,快进与快退速度均为7 m/min,工进速度为0.05 m/min,快进行程为150 mm,工进行程为40 mm,加速、减速时间要求不大于0.2 s,动力平台采用平导轨,静摩擦系数为0.2,动摩擦系数为 0.1。要求活塞杆固定,油缸与工作台连接。设计该组合机床的液压传动系统。 5.某厂需要一台加工齿轮内孔键槽的简易插床,插头刀架的上下往复运动采用 液压传动。工件安装在工作台上,采用手动进给。 其主要技术规格如下: 1)加工碳钢齿轮键槽,插槽槽宽t=12mm,走刀量S=0.3mm/行程; 2)插头重量500N; 3)插头工作行程(下行)的速度为13m/min。 试设计该插床的液压系统及其液压装置。 6.设计一台钻镗专用机床,要求孔的加工精度为二级,精镗的光洁度为▽6。加 工的工作循环是工件定位、夹紧——动力头快进——工进——快退——工件松开、拔销。加工时最大切削力(轴向)为20000N,动力头自重30000N,工作进给要求能在20-120mm/min内进行无级调速,快进、快退的速度均为6m/min,动力头最大行程为400mm,为使工作方便希望动力头可以手动调整进退并且能中途停止,动力滑台采用平导轨。 要求:1)按机床工作条件设计油路系统,绘系统原理图。 2)列出电磁铁动作顺序图。

锅炉过热蒸汽温度控制系统设计

课程设计任务书 题目: 锅炉过热蒸汽温度控制系统设计 摘要 本文是针对锅炉过热蒸汽温度控制系统进行的分析和设计。控制系统采用串级控制以提高系统的控制性能,在系统中采用了主控-串级控制的切换装置,使系统可以适用于不同的工作环境。通过使用该系统,可以使得锅炉过热器出口蒸汽温度在允许的范围内变化,并保护过热器营壁温度不超过允许的工作温度。 关键字:过热蒸汽控制串级控制系统自动控制主控-串级切换 目录 1 生产工艺介绍 .................................................. 错误!未定义书签。 1.1 锅炉设备介绍............................................................................ 3 1.2 蒸汽过热系统的控制................................................................ 52控制原理简介 ..................................................................................... 6 2.1控制方案选择............................................................................. 6 2.1.1单回路控制方案................................................................. 6

液压传动课程设计参考题目

液压传动课程设计题目 (各班按点名册顺序确定) 1、设计一台专用铣床的液压系统,工作台要求完成快进——工作进给——快退——停止的自动工作循环。铣床工作台重量4000N,工件夹具重量为1500N,铣削阻力最大为9000N,工作台快进、快退速度为 4.5m/min,工作进给速度为0.06~1m/min,往复运动加、减速时间为0.05s。工作采用平导轨,静、动摩擦分别为fs=0.2,fd=0.1, 工作台快进行程为0.3m,工进行程为0.1m。 2、设计一台校正压装液压机的液压系统。要求工作循环是快速下行——慢速加压——快速返回——停止。压装工作速度不超过5mm/s,快速下行速度应为工作速度的8~10倍,工件压力不小于10×10+3N。 3、设计液压绞车液压系统,绞车能实现正反向牵引与制动,最大牵引力14吨,最大牵引速度10m/min,牵引速度与牵引力均可无级调节,制动力矩不小于2倍的牵引力矩。 4、设计一饲草打包机液压控制系统,液压缸最大行程为800mm,可输出推力100t,实现四个工作程序:饲草压实、打包、回程、卸荷。 5、设计一液压牵引采煤机的液压系统,实现容积调速、高压保护、补油及热交换。采煤机的最大牵引力50吨,最大牵引速度15m/min。 6、设计一台卧式单面多轴钻孔组合机床液压系统,要求完成工件的定位与夹紧,所需夹紧力不得超过6000N。该系统工作循环为:快进——工进——快退——停止。机床快进快退速度约为6m/min,工进速度可在30~120mm/min范围内无级调速,快进行程为200mm,工进行程为50mm,最大切削力为25kN,运动部件总重量为15kN,加速(减速)时间为0.1s,采用平导轨,静摩擦系数为0.2,动摩擦系数为0.1。 7、设计一台小型液压机的液压系统,要求实现快速空程下行——慢速加压——保压——快速回程——停止的工作循环。快速往返速度为3m/min,加压速度为40~250mm/min,压制力为200kN,运动部件总重量为20kN。 8、设计EBZ200掘进机的工作机构水平与上下摆动驱动装置的液压系统。 9、设计掩护式液压支架液压系统,实现升降、推移、侧护,工作阻力4600kN,支撑高度1.5-2.6m。

生物质直燃锅炉设计计算

生物质直燃锅炉设计计算 生物质直燃锅炉设计计算 3.1锅炉设计时主要的结构尺寸 1)炉膛净空尺寸:250×250×1400 2)炉排有效面积250×600,共做3块,炉排小孔4mm,开孔率40%,炉排下两侧装导轨,机械传动 3)前拱高200,长50; 4)后拱高180,长300 3)炉顶出口:天圆地方结构,出口60mm 4)点火炉门80×80,装在侧强 5)看火孔42mm 6)炉前装料斗 7)料层厚度60mm 6)炉顶装省煤器,管子18mm,前后各布置测点一个。 8)每隔300mm一个测点,测点预留孔14mm,烟囱上布置一个测点 9)支架高度800mm 10)炉膛内衬80mm厚,布置抓钉 11)整体用不锈钢外包装 12)支架高度800mm 13)整体外形长宽高:760×410×2200

3.2试验原料 本试验是采用生物质颗粒燃料(玉米秸秆颗粒燃料),是由生物质燃料成型机压制而成的。其尺寸是圆柱形,直径是8mm,燃料颗粒自然堆积密度为554.7kg/m3,其颗粒密度为1200kg/m3。 实验前用氧弹式量热仪测定玉米颗粒燃料的收到基净发热量qnet,ar , qnet,ar=15132kJ/kg。 由燃料元素分析仪分别测定其收到基中C,H,N,S,O的含量,得到: Car=44.92%,Har=5.77%,Nar=0.98%,Sar=0.21%,Oar=31.26%。 用燃料工业分析仪分别测定其收到基水分含量(Mar),收到基挥发分含量(Var),收到基固定炭含量(Far),收到基灰分含量(Aar)。如下: Mar= 9.15%,Var= 75.58%,Far= 7.56%,Aar= 7.71%。 3.3直燃锅炉设计的相关参数 1)锅炉功率要求:10 kW; 2)温度:查阅暖通空调设计指南(P63)可以得到室内空气温度在16-24℃范围内[2],在试验期间实际测得当时温度为16℃,室外环境温度t0=10℃,排烟温度tpy低于烟气露点,150℃左右 [20],tpy =165℃; 3)热负荷:查相关锅炉设计手册得炉排单位面积热负荷经验值700~1050kW/m2 [3-8],由于低温及燃料易燃尽时取上限,所以取qF= 1050 kW/m2;炉膛单位容积热负荷经验值235~350kW/m3 [3-8],

液压传动课程设计

液压与气压传动课程设计 班级机制1211 姓名 学号2012116102 指导老师邬国秀

目录 一.设计要求及工况分析 (3) 1.负载与运动分析 2.负载循环图.速度循环图 二.确定液压系统主要参数 (4) 1.初选液压缸工作压力 2.计算液压缸主要尺寸 三.拟定液压系统原理图 (7) 1.选择基本回路 2.组成液压系统 四.计算和选择液压件 (9) 确定液压泵的规格和电动机功率 五.附表与附图 (11) 六.参考文献 (13)

(一)、设计要求及工况分析 设计要求 1、设计一台专用铣床,工作台要求完成快进--工作进给--快退--停止的自动工作循环。铣床工作台重量4000N ,工件夹具重量为1500N ,铣削阻力最大为9000N ,工作台快进、快退速度为4.5m /min ,工作进给速度为0.06~1m /min ,往复运动加、减速时间为0.05s 工作采用平导轨,静、动摩擦分别为fs =0.2,fd =0.1,?工作台快进行程为0.3m 。工进行程为0.1m ,试设计该机床的液压系统 1、负载与运动分析 (1) 工作负载 工作负载即为切削阻力F L =30000N 。 (2) 摩擦负载 摩擦负载即为导轨的摩擦阻力: 静摩擦阻力 N G F S FS 110055002.0=?==μ 动摩擦阻力 N G F d fd 55055001.0=?==μ (3) 惯性负载 N 842 N 05×60 . 0 8 . 9 5500 i ? = ? ? = t g G F υ 4.5 =

(4) 运动时间 快进 s v L t 3.360 /5.4102503 111=?==- 工进 s v L t 9060/1.0101503 222=?==- 快退 s v L L t 3.560 /5.4104003 3213=?=+=- 设液压缸的机械效率ηcm =0.9,得出液压缸在各工作阶段的负载和推力,如表1所列。 表1液压缸各阶段的负载和推力 2、 根据液压缸在上述各阶段内的负载和运动时间,即可绘制出负载循环图F -t 和速度循环图υ-t ,见附图 (二) 确定液压系统主要参数 1.初选液压缸工作压力 所设计的动力滑台在工进时负载最大,在其它工况负载都不太高,参考表2和表3,初选液压缸的工作压力p 1=4MPa 。

锅炉燃烧系统的控制系统设计

目录 1锅炉工艺简介 (1) 1.1锅炉的基本结构 (1) 1.2工艺流程 (2) 1.2煤粉制备常用系统 (3) 2 锅炉燃烧控制 (4) 2.1燃烧控制系统简介 (4) 2.2燃料控制 (4) 2.2.1燃料燃烧的调整 (4) 2.2.2燃烧调节的目的 (5) 2.2.3直吹式制粉系统锅炉的燃料量的调节 (5) 2.2.4影响炉内燃烧的因素 (6) 2.3锅炉燃烧的控制要求 (11) 2.3.1 锅炉汽压的调整 (11) 3锅炉燃烧控制系统设计 (14) 3.1锅炉燃烧系统蒸汽压力控制 (14) 3.1.1该方案采用串级控制来完成对锅炉蒸汽压力的控制 (14) 3.2燃烧过程中烟气氧含量闭环控制 (17) 3.2.1 锅炉的热效率 (18) 3.2.2反作用及控制阀的开闭形式选择 (20) 3.2.3 控制系统参数整定 (20) 3.3炉膛的负压控制与有关安全保护保护系统 (21) 3.3.1炉膛负压控制系统 (22) 3.3.2防止回火的连锁控制系统 (23) 3.3.3防止脱火的选择控制系统 (24) 3.4控制系统单元元件的选择(选型) (24) 3.4.1蒸汽压力变送器选择 (24) 3.4.2 燃料流量变送器的选用 (24) 4 DCS控制系统控制锅炉燃烧 (26) 4.1DCS集散控制系统 (26) 4.2基本构成 (27)

锅炉燃烧系统的控制 4.3锅炉自动燃烧控制系统 (31) 总结 (33) 致谢 (34) 参考文献 (35)

1锅炉工艺简介 1.1锅炉的基本结构 锅炉整体的结构包括锅炉本体和辅助设备两大部分。 1、锅炉本体 锅炉中的炉膛、锅筒、燃烧器、水冷壁、过热器、省煤器、空气预热器、构架和炉墙等主要部件构成生产蒸汽的核心部分,称为锅炉本体。锅炉本体中两个最主要的部件是炉膛和锅筒。 炉膛又称燃烧室,是供燃料燃烧的空间。将固体燃料放在炉排上进行火床燃烧的炉膛称为层燃炉,又称火床炉;将液体、气体或磨成粉状的固体燃料喷入火室燃烧的炉膛称为室燃炉,又称火室炉;空气将煤粒托起使其呈沸腾状态燃烧、适于燃烧劣质燃料的炉膛称为沸腾炉,又称流化床炉;利用空气流使煤粒高速旋转并强烈火烧的圆筒形炉膛称为旋风炉。炉膛的横截面一般为正方形或矩形。燃料在炉膛内燃烧形成火焰和高温烟气,所以炉膛四周的炉墙由耐高温材料和保温材料构成。在炉墙的内表面上常敷设水冷壁管,它既保护炉墙不致烧坏,又吸收火焰和高温烟气的大量辐射热。炉膛的结构、形状、容积和高度都要保证燃料充分燃烧,并使炉膛出口的烟气温度降低到熔渣开始凝结的温度以下。当炉内的温度超过灰熔点时,灰便呈熔融状态。熔融的灰渣颗粒在触及炉内水冷壁管或其他构件时会粘在上面。粘结的灰粒逐渐增多,遂形成渣块,称为结渣。结渣会降低锅炉受热面的传热效果。严重时会堵塞烟气流动的通道,影响锅炉的安全和经济运行。一般用炉膛容积热负荷和炉膛截面热负荷或炉排热负荷表示其燃烧强烈程度。炉膛容积热负荷是单位炉膛容积中每单位时间内释放的热量。在锅炉技术中常用炉膛容积热负荷来衡量炉膛大小是否恰当。容积热负荷过大,则表示炉膛容积过小,燃料在炉内的停留时间过短,不能保证燃料完全燃烧,使燃烧效率下降;同时这还表示炉墙面积过小,难以敷设足够的水冷壁管,结果炉内和炉膛出口处烟气温度过高,受热面容易发生结渣。室燃炉的炉膛截面热负荷是单位时间内单位炉膛横截面上燃料燃烧所释放的热量。在炉膛容积确定以后,炉膛截面热负荷过大会使局部区域的壁面温度过高而引起结渣。层燃炉的炉排热负荷是单位时间内燃料燃烧所释放的热量与炉排面积的比值。炉排热负荷过高会使飞灰大大增加。炉膛设计需要充分考虑使用燃料的特性。每台锅炉应尽量燃用原设计的燃料。燃用特性差别较大的燃料时,锅炉运行的经济性和可靠性都可能降低。 锅筒它是自然循环和多次强制循环锅炉中接受省煤器来的给水、联接循环回路,并向过热器输送饱和蒸汽的圆筒形容器。锅筒筒体由优质厚钢板制成,是锅炉中最重的部件之一。锅筒的主要功能是储水,进行汽水分离,在运行中排除锅水中的盐水和泥渣,

工业炉温自动控制系统

1 设计题目 要求: 1.查阅相关资料,分析系统的工作原理,指出被控对象、被控量和给定量,画出系统方框图。 2.分析系统每个环节的输入输出关系,代入相关参数求取系统传递函数。 3.分析系统时域性能和频域性能。 4.运用根轨迹法或频率法校正系统,使之满足给定性能指标要求。(已知条件和性能要求待定)

摘要 炉温控制系统---是指根据炉温对给定温度的偏差,自动接通或断开供给炉子的热源能量,或连续改变热源能量的大小,使炉温稳定有给定温度范围,以满足热处理工艺的需要。炉温自动控制用热电偶测量温度,与给定温度进行比较,将偏差信号放大后作为驱动信号,通过电机、减速器调节加热器上的电压来实现准确的温度控制。本文经过正确分析系统工作过程,建立系统数学模型,画出系统结构图后,设计与校正前系统性能分析和可采取的解决方案、方法及分析。运用matlab软件进行复杂的系统时域验证和计算机仿真,通过具体设计校正步骤、思路、计算分析过程和结果,对于炉温控制系统的研究与改进具有现实意义。 关键字炉温控制系统系统校正 matlab软件

1 工业炉温自动控制系统的工作原理 加热炉采用电加热方式运行,加热器所产生的热量与调压器电压c u 的平方成正比,c u 增高,炉温就上升,c u 的高低由调压器滑动触点的位置所控制,该触 点由可逆转的直流电动机驱动。炉子的实际温度用热电偶测量,输出电压f u 。 f u 作为系统的反馈电压与给定电压r u 进行比较,得出偏差电压e u ,经电压放大器、功率放大器放大成a u 后,作为控制电动机的电枢电压。 在正常情况下,炉温等于某个期望值T °C ,热电偶的输出电压f u 正好等于给定电压r u 。此时,0e r f u u u =-=,故1a u u =,可逆电动机不转动,调压器的滑动触点停留在某个合适的位置上,使c u 保持一定的数值。这时,炉子散失的热量正好等于从加热器吸取的热量,形成稳定的热平衡状态,温度保持恒定。 当炉膛温度T °C 由于某种原因突然下降(例如炉门打开造成的热量流失),则出现以下的控制过程: 控制的结果是使炉膛温度回升,直至T °C 的实际值等于期望值为止。 ?→T C ?→↑→↑→↑→↑→↑→↓→↓T u u u u u c a e f θ1C ↑ 系统中,加热炉是被控对象,炉温是被控量,给定量是由给定电位器设定的电压r u (表征炉温的希望值)。系统方框图见下图:

相关文档
最新文档