第14章-2 组合变形(斜弯)

《材料力学》第8章 组合变形及连接部分的计算 习题解

第八章 组合变形及连接部分的计算 习题解 [习题8-1] 14号工字钢悬臂梁受力情况如图所示。已知m l 8.0=,kN F 5.21=, kN F 0.12=,试求危险截面上的最大正应力。 解:危险截面在固定端,拉断的危险点在前上角点,压断的危险点在后下角,因钢材的拉压 性能相同,故只计算最大拉应力: 式中,z W ,y W 由14号工字钢,查型钢表得到3 102cm W z =,3 1.16cm W y =。故 MPa Pa m m N m m N 1.79101.79101.168.0100.11010228.0105.2363 63363max =?=???+?????=--σ [习题8-2] 受集度为 q 的均布荷载作用的矩形截面简支梁,其荷载作用面与梁的纵向对称面间的夹角为 030=α,如图所示。已知该梁材料的弹性模量 GPa E 10=;梁的尺寸为 m l 4=,mm h 160=,mm b 120=;许用应力MPa 12][=σ;许用挠度150/][l w =。试校核梁的强度和刚度。

解:(1)强度校核 )/(732.1866.0230cos 0m kN q q y =?== (正y 方向↓) )/(15.0230sin 0m kN q q z =?== (负z 方向←) )(464.34732.181 8122m kN l q M y zmaz ?=??== 出现在跨中截面 )(24181 8122m kN l q M z ymaz ?=??== 出现在跨中截面 )(51200016012061 61322mm bh W z =??== )(3840001201606 1 61322mm hb W y =??== 最大拉应力出现在左下角点上: y y z z W M W M max max max + = σ MPa mm mm N mm mm N 974.1138400010251200010464.33 636max =??+??=σ 因为 MPa 974.11max =σ,MPa 12][=σ,即:][max σσ< 所以 满足正应力强度条件,即不会拉断或压断,亦即强度上是安全的。 (2)刚度校核 =

工程力学(天津大学)第14章答案教学提纲

第十四章 组合变形 习 题 14?1 截面为20a 工字钢的简支梁,受力如图所示,外力F 通过截面的形心,且与y 轴成φ角。已知:F =10kN ,l =4m ,φ=15°,[σ]=160MPa ,试校核该梁的强度。 解:kN.m 104104 1 41=??== Fl M kN.m;58821510kN.m;65991510.sin φsin M M .cos φcos M M y z =?===?==οο 查附表得:3 3 cm 531cm 237.W ;W y z == 122.9MPa Pa 10912210 5311058821023710569966 3 63=?=??+??=+=--....W M W M σy y z z max []σσmax <,强度满足要求。 14?2 矩形截面木檩条,受力如图所示。已知:l =4m ,q =2kN/m ,E =9GPa ,[σ]=12MPa , 4326'=οα,b =110mm ,h =200mm ,200 1][=l f 。试验算檩条的强度和刚度。 z

解:kN.m 4428 1 8122=??== ql M kN.m;789143264kN.m;578343264.sin φsin M M .cos φcos M M y z ='?==='?==οοm ...W ;m ...W y z 424210033411022061 10333722011061--?=??=?=??= MPa 329Pa 1032910 033410789110333710578364 343......W M W M σy y z z max =?=??+??=+=-- []σσmax <,强度满足要求。 m ...sin EI φsin ql f m ...cos EI φcos ql f y y z z 33 943433 943410931411022012 1 1093844326410253845100349220110121 1093844326410253845--?=?????'????==?=?????' ????= =οο mm ..f f f y z 4517104517322=?=+= - 200 1 2291< =l f ,所以挠度满足要求。 14?3 一矩形截面悬臂梁,如图所示,在自由端有一集中力F 作用,作用点通过截面的形心,与y 轴成φ角。已知:F =2kN ,l =2m ,φ=15°,[σ]=10MPa ,E =9GPa ,h/b =1.5,容许挠度为l /125,试选择梁的截面尺寸,并作刚度校核。 解: =M kN.m;0351154kN.m;8643154.sin φsin M M .cos φcos M M y z =?===?==οο []62 3 2310106 110035*********?=≤?+?=+=σhb .bh .W M W M σy y z z max 将h/b=1.5代入上式得:mm b 113≥;则mm h 170≥。 取b=110mm;h=170mm z

第八章-组合变形及连接部分的计算-习题选解

习 题 [8-1] 14号工字钢悬臂梁受力情况如图所示。已知m l 8.0=,kN F 5.21=, kN F 0.12=,试求危险截面上的最大正应力。 解:危险截面在固定端,拉断的危险点在前上角点,压断的危险点在后下角,因 钢材的拉压性能相同,故只计算最大拉应力: y z y y z z W l F W l F l F W M W M 211max 2++? =+= σ 式中,z W ,y W 由14号工字钢,查型钢表得到3102cm W z =,31.16cm W y =。故 MPa Pa m m N m m N 1.79101.79101.168.0100.11010228.0105.2363 63363max =?=???+?????=--σ [8-2] 矩形截面木檩条的跨度m l 4=,荷载及截面尺寸如图所示,木材为杉木,弯曲许用正应力MPa 12][=σ,GPa E 9=,许可挠度200/][l w =。试校核檩条的强度和刚度。

图 习题?-2 8 解:(1)受力分析 )/(431.13426cos 6.1cos '0m kN q q y ===α )/(716.03426sin 6.1sin '0m kN q q z ===α (2)内力分析 )(432.14716.081 8122max ,m kN l q M z y ?=??=== )(864.24432.18 1 8122max ,m kN l q M y z ?=??=== (3)应力分析 最大的拉应力出现在跨中截面的右上角点,最大压应力出现在左下角点。 z z y y W M W M max ,max ,max + = + σ 式中,32 232266*********mm hb W y ≈?== 32 24693336 1601106mm bh W z ≈?== MPa mm mm N mm mm N 54.1046933310864.232266710432.13 636max =??+??=+ σ (4)强度分析 因为MPa 54.10max =+σ,MPa 12][=σ,即][max σσ<+,所以杉木的强度足够。 (5)变形分析 最大挠度出现在跨中,查表得: z y cy EI l q w 38454 = ,y z cz EI l q w 38454 =

工程力学-组合变形

10 组合变形 1、斜弯曲,弯扭,拉(压)弯,偏心拉伸(压缩)等组合变形的概念; 2、危险截面和危险点的确定,中性轴的确定; 如双向偏心拉伸, 中性轴方程为 p p o o 22 y z z y 1z y0 i i ++?= 3、危险点的应力计算,强度计算,变形计算、。 4、截面核心。 10.1、定性分析图10.1 示结构中各构件将发生哪些基本变形? 图10.1 解题范例

[解](a)AD杆时压缩、弯曲组合变形,BC杆是压缩、弯曲组合变形;AC杆不发生变形。 (b)AB杆是压弯组合变形,BC杆是弯曲变形。 (c)AB是压缩弯曲组合变形,BC是压弯组合变形。 (d)CD是弯曲变形,BD发生压缩变形,AB发生弯伸变形,BC发生拉弯组合变形。 10.2分析图10.2中各杆的受力和变形情况。 图10.2 [解] (a)力可分解成水平和竖直方向的分力,为压弯变形。 (b)所受外力偶矩作用,产生弯曲变形。 (c)该杆受竖向集中荷载,产生弯曲变形.

(d)该杆受水平集中荷载,偏心受压,产生压缩和弯曲变形。 (e)AB段:受弯,弯曲变形,BC段:弯曲。 (f)AB段:受弯,弯曲变形,BC段:压弯组合。 (g)AB段:斜弯曲,BC段:弯纽扭合。 10.3分析图10.3 示构件中(AB、BC和CD) 各段将发生哪些变形? 图10.3 [解] AB段发生弯曲变形,BC段发生弯曲、扭转变形;CD段发生拉伸、双向弯曲变形。 10.4一悬臂滑车架如图10.4 所示,杆AB为18号工字钢(截面面积30.6cm2,Wz=185cm3),其长度为l=2.6m。试求当荷载F=25kN作用在AB的中点处时,杆内的最大正应力。设工字钢的自重可略去不计。 B l/2 F 20kN 300 C D A l 图10.4 [解]取AB为研究对象,对A点取矩可得 NBCY F12.5kN = 则3 2 25 = = NBCX NAB F F

ch10组合变形

第十章 组合变形 10-2 图a 所示板件,b =20mm , =5mm ,载荷F = 12 kN ,许用应力[] = 100 MPa , 试求板边切口的允许深度x 。 题10-2图 解:在切口处切取左半段为研究对象(图b ),该处横截面上的轴力与弯矩分别为 F F =N )(a b F M -= (a) 显然, 2 22x b x b a -=-= (b) 将式(b)代入式(a),得 2 Fx M = 切口段处于弯拉组合受力状态,该处横截面上的最大拉应力为 2 2N max 432(2a)6 22a Fx a F Fx a F W M A F δδδδσ+ =+=+= 根据强度要求,在极限情况下, ][4322 σδδ=+a Fx a F 将式(b)与相关数据代入上式,得 01039.61277.042=?+--x x 由此得切口的允许深度为 m m 20.5=x

10-3 图示矩形截面钢杆,用应变片测得上、下表面的纵向正应变分别为a ε=×10 -3 与b ε=×10-3 ,材料的弹性模量E =210GPa 。试绘横截面上的正应力分布图,并求拉力F 及其偏心距e 的数值。 题10-3图 解:1.求a σ和b σ 截面的上、下边缘处均处于单向受力状态,故有 MPa 84Pa 104.010210 MPa 210Pa 100.1102103 9 39=???===???==--b b a a E εσE εσ 偏心拉伸问题,正应力沿截面高度线性变化,据此即可绘出横截面上的正应力分布图,如图10-3所示。 图10-3 2.求F 和e 将F 平移至杆轴线,得 Fe M F F ==,N 于是有 a z a E εW Fe A F σ=+= E εW Fe A F σz b =-= 代入相关数据后,上述方程分别成为 26250240=+Fe F 10500240=-Fe F

组合变形 习题及答案

组合变形 一、判断题 1.斜弯曲区别与平面弯曲的基本特征是斜弯曲问题中荷载是沿斜向作用的。( ) 2.斜弯曲时,横截面的中性轴是通过截面形心的一条直线。( ) 3.梁发生斜弯曲变形时,挠曲线不在外力作用面内。( ) 4.正方形杆受力如图1所示,A点的正应力为拉应力。( ) 图 1 5. 上图中,梁的最大拉应力发生在B点。( ) 6. 图2所示简支斜梁,在C处承受铅垂力F的作用,该梁的AC段发生压弯组合变形,CB段发生弯曲变形。( ) 图 2 7.拉(压)与弯曲组合变形中,若不计横截面上的剪力则各点的应力状态为单轴应力。( ) 8.工字形截面梁在图3所示荷载作用下,截面m--m上的正应力如图3(C)所示。( )

图 3 9. 矩形截面的截面核心形状是矩形。( ) 10.截面核心与截面的形状与尺寸及外力的大小有关。( ) 11.杆件受偏心压缩时,外力作用点离横截面的形心越近,其中性轴离横截面的形心越远。( ) 12.计算组合变形的基本原理是叠加原理。() 二、选择题 1.截面核心的形状与()有关。 A、外力的大小 B、构件的受力情况 C、构件的截面形状 D、截面的形心 2.圆截面梁受力如图4所示,此梁发生弯曲是() 图 4 A、斜弯曲 B、纯弯曲 C、弯扭组合 D、平面弯曲 三、计算题 1.矩形截面悬臂梁受力F1=F,F2=2F,截面宽为b,高h=2b,试计算梁内的最大拉应力,并在图中指明它的位置。

图 5 2.图6所示简支梁AB上受力F=20KN,跨度L=2.5m,横截面为矩形,其高h=100mm,宽b=60mm,若已知α=30°,材料的许用应力[σ]=80Mpa,试校核梁的强度。 3.如图7所示挡土墙,承受土压力F=30KN,墙高H=3m,厚0.75m,许用压应力[σ]ˉ=1 Mpa,许用拉应力[σ]﹢=0.1 Mpa,墙的单位体积重量为 ,试校核挡土墙的强度。 图 6 图 7 4.一圆直杆受偏心压力作用,其偏心矩e=20mm,杆的直径d=70mm,许用应力[σ]=120Mpa,试求此杆容许承受的偏心压力F之值。 5.如图8所示,短柱横截面为2a×2a的正方形,若在短柱中间开一槽,槽深为a,问最大应力将比不开槽时增大几倍?

(整理)题9组合变形

组合变形 1. 偏心压缩杆,截面的中性轴与外力作用点位于截面形心的两侧,则外力作用点到形心的距离e 和中性轴到形心的距离d 之间的关系有四种答案: (A) d e =; (B) d e >; (C) e 越小,d 越大; (D) e 越大,d 越大。 答:C 2. 三种受压杆件如图所示,杆1、杆2与杆3中的最大压应力(绝对值)分别为 1m ax σ、2m ax σ和3m ax σ,现有下列四种答案: (A)3max 2max 1max σσσ==; (B)3max 2max 1max σσσ=>; (C)3max 1max 2max σσσ=>; (D)3max 1max σσσ=

6. 三种受压杆件如图所示,杆1、杆2与杆3中的最大压应力(绝对值)分别为 1m ax σ、2m ax σ和3m ax σ (A)max3 2max 1max σσσ<<; (B)3max 2max max1σσσ=<; (C)2max max3max1σσσ<<; (D)2max 3max 1max σσσ<=。 答:C 7. 正方形等截面立柱,受纵向压力F 作用。当力F 作用点由A 移至B 时,柱内最大压应力的比值max max B A σσ有四种答案: (A) 1:2; (B) 2:5; (C) 4:7; (D) 5:2。 答:C 8. 图示矩形截面偏心受压杆,其变形有下列四种答案: (A) 轴向压缩和平面弯曲的组合; (B)轴向压缩、平面弯曲和扭转的组合; (C)缩和斜弯曲的组合; (D)轴向压缩、斜弯曲和扭转的组合。 答:C 9. 矩形截面梁的高度mm 100=h ,跨度m 1=l 。梁中点承受集中力F ,两端受力 kN 301=F ,三力均作用在纵向对称面内,mm 40=a 。若跨中横截面的最大正 应力与最小正应力之比为3 5 。试求F 解:偏心距 mm 102 =-=a h e 跨中截面轴力 1N F F =

第十四章组合变形杆件强度计算

第十四章 14-4试分别求出图示不等截面杆的绝对值最大的正应力,并作比较。 解题思路: (1)图(a )下部属偏心压缩,按式(14-2)计算其绝对值最大的正应力,要正确计算式中 的弯曲截面系数; (2)图(b )是轴向压缩,按式(7-1)计算其最大正应力值; (3)图(a )中部属偏心压缩,按式(14-2)计算其绝对值最大的正应力,要正确计算式中 的弯曲截面系数。 答案:2a 34)(a F =σ,2 b )(a F =σ,2 c 8)(a F =σ 14-6某厂房一矩形截面的柱子受轴向压力1F 和偏心荷载2F 作用。已知kN 1001=F , kN 452=F ,偏心距mm 200=e ,截面尺寸mm 300,mm 180==h b 。 (1)求柱内的最大拉、压应力;(2)如要求截面内不出现拉应力,且截面尺寸b 保持不变,此时h 应为多少?柱内的最大压应力为多大? 解题思路: (1)立柱发生偏心压缩变形(压弯组合变形); (2)计算立柱I-I 截面上的内力(轴力和弯矩); (3)按式(14-2)计算立柱截面上的最大拉应力和最大压应力,要正确计算式中的弯曲截 面系数;

(4)将b 视为未知数,令立柱截面上的最大拉应力等于零,求解b 并计算此时的最大压应 力。 答案:(1)MPa 648.0m ax t =σ,MPa 018.6m ax c =σ (2)cm 2.37=h ,MPa 33.4m ax c =σ 14-9旋转式起重机由工字钢梁AB 及拉杆BC 组成,A 、B 、C 三处均可简化为铰链约束。起 重荷载kN 22P =F ,m 2=l 。已知MPa 100][=σ,试选择AB 梁的工字钢型号。 解题思路: (1)起重荷载移动到AB 跨中时是最不利情况; (2)研究AB 梁,求BC 杆的受力和A 支座的约束力。AB 梁发生压弯组合变形; (3)分析内力(轴力和弯矩),确定危险截面; (4)先按弯曲正应力强度条件(12-27)设计截面,选择AB 梁的工字钢型号; (5)再按式(14-2)计算危险截面的最大应力值,作强度校核。 答案:选16.No 工字钢 14-11图示圆截面悬臂梁中,集中力P1F 和P2F 分别作用在铅垂对称面和水平对称面内,并且 垂直于梁的轴线。已知N 800P1=F ,kN 6.1P2=F ,m 1=l ,许用应力MPa 160][=σ,试确定截面直径d 。 解题思路: (1)圆截面悬臂梁发生在两个互相垂直平面上的平面弯曲的组合变形; (2)分析弯矩y M 和z M ,确定危险截面及计算危险截面上的y M 和z M 值; (3)由式(14-15)计算危险截面的总弯矩值; (4)按弯曲正应力强度条件(12-27)设计截面,确定悬臂梁截面直径d 。 答案:mm 5.59≥d 14-13功率kW 8.8=P 的电动机轴以转速min /r 800=n 转动,胶带传动轮的直径

第八章组合变形及连接部分的计算习题测验选解

习题 [8-1] 14号工字钢悬臂梁受力情况如图所示。已知m l8.0 =,kN F5.2 1 =,kN F0.1 2 =,试求危险截面上的最大正应力。 解:危险截面在固定端,拉断的危险点在前上角点,压断的危险点在后下角,因钢材的拉压性能相同,故只计算最大拉应力: y z y y z z W l F W l F l F W M W M 2 1 1 max 2+ + ? = + = σ 式中, z W, y W由14号工字钢,查型钢表得到3 102cm W z =,3 1. 16cm W y =。故 MPa Pa m m N m m N 1. 79 10 1. 79 10 1. 16 8.0 10 0.1 10 102 2 8.0 10 5.2 3 6 3 6 3 3 6 3 max = ? = ? ? ? + ? ? ? ? ? = - - σ [8-2]矩形截面木檩条的跨度m l4 =,荷载及截面尺寸如图所示,木材为杉木,弯曲许用正应力MPa 12 ] [= σ,GPa E9 =,许可挠度200 / ] [l w=。试校核檩条的强度和刚度。

图 习题?-2 8 解:(1)受力分析 )/(431.13426cos 6.1cos '0m kN q q y ===α )/(716.03426sin 6.1sin '0m kN q q z ===α (2)内力分析 )(432.14716.081 8122max ,m kN l q M z y ?=??=== )(864.24432.18 1 8122max ,m kN l q M y z ?=??=== (3)应力分析 最大的拉应力出现在跨中截面的右上角点,最大压应力出现在左下角点。 z z y y W M W M max ,max ,max + = + σ 式中,32 232266*********mm hb W y ≈?== 32 24693336 1601106mm bh W z ≈?== MPa mm mm N mm mm N 54.1046933310864.232266710432.13 636max =??+??=+ σ (4)强度分析 因为MPa 54.10max =+σ,MPa 12][=σ,即][max σσ<+,所以杉木的强度足够。 (5)变形分析 最大挠度出现在跨中,查表得: z y cy EI l q w 38454 = ,y z cz EI l q w 38454 =

工程力学-组合变形

10 组合变形 1、 斜弯曲,弯扭,拉(压)弯,偏心拉伸(压缩)等组合变形的概念; 2、危险截面和危险点的确定,中性轴的确定; 如双向偏心拉伸, 中性轴方程为 p p o o 22y z z y 1z y 0i i + + ?= 3、危险点的应力计算,强度计算,变形计算、。 4、截面核心。 10.1、定性分析图10.1 示结构中各构件将发生哪些基本变形? 图 10.1 [解](a )AD 杆时压缩、弯曲组合变形,BC 杆是压缩、弯曲组合变形;AC 杆不发生变形。 (b )AB 杆是压弯组合变形,BC 杆是弯曲变形。 (c )AB 是压缩弯曲组合变形,BC 是压弯组合变形。 (d )CD 是弯曲变形,BD 发生压缩变形,AB 发生弯伸变形,BC 发生拉弯组合变形。 10.2 分析图10.2中各杆的受力和变形情况。 解题范例

图 10.2 [解] (a)力可分解成水平和竖直方向的分力,为压弯变形。 (b)所受外力偶矩作用,产生弯曲变形。 (c)该杆受竖向集中荷载,产生弯曲变形. (d)该杆受水平集中荷载,偏心受压,产生压缩和弯曲变形。 (e)AB段:受弯,弯曲变形,BC段:弯曲。 (f)AB段:受弯,弯曲变形,BC段:压弯组合。 (g)AB段:斜弯曲,BC段:弯纽扭合。 10.3分析图10.3 示构件中 (AB、BC和CD) 各段将发生哪些变形?

图10.3 [解] AB 段发生弯曲变形,BC 段发生弯曲、扭转变形;CD 段发生拉伸、双向弯曲变形。 10.4一悬臂滑车架如图 10.4 所示,杆AB 为18号工字钢(截面面积30.6cm 2 ,Wz=185cm 3 ),其长度为l =2.6m 。试求当荷载F=25kN 作用在AB 的中点处时,杆的最大正应力。 设工字钢的自重可略去不计。 l /2 F 20kN 300C D A l 图 10.4 [解] 取AB 为研究对象,对A 点取矩可得NBCY F 12.5kN = 则 32 25 = =NBCX NAB F F 分别作出AB 的轴力图和弯矩图: kN l l /2 32 25 Fl kN.m l B l /2 F 20kN 300 C D A F NBC F NBCY NBCX

第09章组合变形题解

第 9 章 组 合 变 形 9-1 试分析下列构件在指定截面A 的内力分量(判断基本变形) 解:(a )拉伸与弯曲; (b )压缩、扭转与两个方向的弯曲; (c )压缩、扭转与两个方向的弯曲。 9-2 木制矩形截面悬臂梁受力如图,已知 F 1 = 0.8 kN ,F 2 = 1.65 kN ,木材的许用应力 [ σ ] =10 MPa ,若矩形 h /b = 2 ,试确定其截面尺寸。 解:显然固定端是危险截面。 kNm 6.128.01=?==l F M y kNm 65.1165.12 2 =?==l F M z =+=+=2 2max 66bh M hb M W M W M z y z z y y σ ][)2 3 3(1 3 σ≤+ = z y M M b 代入数据得到 363mm 7275001010 65 .15.16.13=??+?≥ b , mm 180h ,mm 90≥≥b 。 9-3 工字钢简支梁受力如图,已知 F = 7 kN ,[ σ ] =160 MPa ,试选择工字钢型号。(提示:先假定 W z /W y 的比值进行试选,然后校核。) 解:显然中间截面是危险截面。 kNm 74 1 max == l F M kNm 394.220sin max == M M y , kNm 578.620cos max == M M z (b )车刀 (a )机械 构件

][max σσ≤+ = z z y y W M W M 选 6=y z W W 试算 33cm 8.2110160 6394 .26578.6] [66=???+= +≥ σy z y M M W 查表取 16 号工字钢 W y = 21.2 cm 3 ,W z = 141 cm 3 校核强度 ][M Pa 15910)2 .21394 .2141578.6(3max σσ≤=?+=+ = z z y y W M W M 强度刚好够,所以选定 16 号工字钢。 9-4 证明斜弯曲时横截面仍然绕中性轴转动(提示:证明截面形心位移垂直于中性轴)。 证明:假设在任意相距很近 dx 的截面之间作用两个M y ,M z ,其中下标 y ,z 为截面 形心主惯性轴,中性轴方程由 0=- = y I M z I M z z y y σ 确定为 ?tan ==y z z y I M I M z y 两截面之间由M z 和M y 产生的相对位移分别为 2)(dx EI M dx d Y z z z =?=θ,2)(dx EI M dx d Z y y y -=?=θ, tan =-=z y y z I M I M Z Y 显然 tan α tan ? = -1 ,α = ?±90° 即截面形心位移与中性轴互相垂直。 [反证法] 假设斜弯曲时横截面绕非中性轴转动,则中性轴上的纵向纤维将有伸长或缩短,这与斜弯曲时横截面存在有中性轴的结论是相矛盾的。故斜弯曲时横截面绕中性轴转动。 9-5 证明对正多边形截面梁,横向力无论作用方向如何偏斜,只要力的作用线通过截面形心,都只产生平面弯曲。 证明:只要证明任意正多边形的形心坐标轴为形心主惯轴即可。现以正三角形为例,图中y 、z 轴为一对正交形心主轴,y 和y 1轴为对称轴,显然,I y = I y 1,I yz = 0;由式(A-13)有 β2cos 221y z y z y y I I I I I I -++== 即 z y y z y z I I I I I I =?=-?=--00)2cos 1(2β 设Y 、Z 为一对任意正交形心轴,由式(A-15)有 02cos 2sin 2 =+-=ααyz y z YZ I I I I 即任意形心轴都是主惯性轴,其惯性矩都相等,只可能发生平面弯曲,不会发生斜弯曲。 z

第二章组合变形

第十一章组合变形 2.5 组合变形 一、教学目标 1、掌握组合变形的概念。 2、掌握斜弯曲、弯扭、拉(压)弯、偏心拉伸(压缩)等组合变形形式的概念和区分、危险截面和危险点的确定、应力计算、强度计算、变形计算、中性轴的确定等。 3、正确区分斜弯曲和平面弯曲。 4、了解截面核心的概念、常见截面的截面核心计算。 二、教学内容 1、讲解组合变形的概念及组合变形的一般计算方法:叠加法。 2、举例介绍斜弯曲和平面弯曲的区别。 3、讲解斜弯曲的应力计算、中性轴位置的确定、危险点的确立、强度计算、变形计算。 4、讲解弯曲和扭转组合变形内力计算,确定危险截面和危险点,强度计算。 5、讲解拉伸(压缩)和弯曲组合变形的危险截面和危险点分析、强度计算。 6、讲解偏心拉伸(压缩)组合变形的危险截面和危险点分析、应力计算、强度计算。 7、简单介绍截面核心的概念和计算。 三、重点难点 重点:斜弯曲、弯扭、拉(压)弯、偏心拉伸(压缩)等组合变形形式的应力和强度计算。 难点: 1、解决组合变形问题最关键的一步是将组合变形分解为两种或两种以上的基本变形: 斜弯曲——分解为两个形心主惯性平面内的平面弯曲; 弯曲和扭转组合变形——分解为平面弯曲和扭转;

拉伸(压缩)和弯曲组合变形——分解为轴向拉伸(压缩)和平面弯曲(因剪力较小通常忽略不计); 偏心拉伸(压缩)组合变形——单向偏心拉伸(压缩)时,分解为轴向拉伸(压缩)和一个平面弯曲,双向偏心拉伸(压缩)时,分解为轴向拉伸(压缩)和两个形心主惯性平面内的平面弯曲。 2、组合变形的强度计算,可归纳为两类: ⑴危险点为单向应力状态:斜弯曲、拉(压)弯、偏心拉伸(压缩)组合变形的强度计算时只需求出危险点的最大正应力并与材料的许用正应力比较即可; ⑵危险点为复杂应力状态:弯扭组合变形的强度计算时,危险点处于复杂应力状态,必须考虑强度理论。 四、教学方式 采用启发式教学,通过提问,引导学生思考,让学生回答问题。 五、学时:2学时 六、讲课提纲 (一)斜弯曲 斜弯曲梁的变形计算 仍以矩形截面的悬臂梁为例:

第八章组合变形习题集

8-2 人字架及承受的荷载如图所示。试求m-m 截面上的最大正应力和A 点的正应力。 m 解:(1)外力分析,判变形。由对称性可知,A 、C 两处的约束反力为P/2 ,主动力、约束反力均在在纵向对称面内,简支折将发生压弯组合变形。引起弯曲的分力沿y 轴,中性轴z 过形心与对称轴y 轴垂直。 截面关于y 轴对称,形心及惯性矩 1122123 122 32 8444 A A 20010050200100(100100) 125A +A 200100+200100 200100200100(12550)12100200100200(300125100)12 3.0810 3.0810C z z z y y y I I I -+??+??+= ==???=+=+??-?++??--=?=?mm mm m (2)内力分析,判危险面:沿距B 端300毫米的m-m 横截面将人字架切开,取由左边部分为研究对象,受力如图所示。梁上各横截面上轴力为常数: ,m-m 250(1.80.3sin )(1.80.3202.5(k 22250cos =100(k ) 22y N P M P F ??= ?-=?-=?=?=N m) N (3)应力分析,判危险点,如右所示图 ①m-m 截面上边缘既有比下边缘较大的弯曲压应力,还有轴力应力的压应力,故该面上边缘是出现最大压应力。

m m max 33410010202.510(0.30.125)(Pa) 2.5115.06MPa 117.56MPa 2(0.20.1) 3.0810 N z F M y A I σ ---= +?-??=-?-=--=-???上② A 点是压缩区的点,故 m m 334 10010202.510(0.30.1250.1)(Pa) 2.549.31MPa 51.83MPa 2(0.20.1) 3.0810N a a z F M y A I σ--= +?-??=-?--=--=-???注意:最大拉应力出现在下边缘 m m max 3 3 4 10010202.510 0.125(Pa) 2.582.18MPa 79.68MPa 2(0.20.1) 3.0810N z F M y A I σ ---=+?-??= +?=-+=???下 8-3 图示起重机的最大起吊重量为W=35kN ,横梁AC 由两根NO.18槽钢组成。 材料为Q235,许用应力[σ]=120MPa 。试校核横梁的强度。 (a ) Ay (b) 解:〈1〉外力分析:外力在纵向对称面内与轴斜交,故梁AC 发生压弯组合变形。对C 取矩BA 杆所受拉力为: 70(3.5) ()0sin 30 3.535(3.5)070203.5 C AB AB x m F F x F x ?-=→?-?-=→= -∑=kN 2〉内力分析: 轴力、弯矩均是x 的函数

第八章 组合变形汇总

第八章 组合变形 内容提要 一、组合变形综述 组合变形:拉伸、压缩、弯曲、剪切、扭转称为基本变形。构件同时产生两种或两种以上的基本变形时称为组合变形。 组合变形的计算方法:在小变形且材料在线弹性范围内工作时,将组合变形分解成几种基本变形,分别计算各基本变形时的应力和位移,将其各自叠加,可得到组合变形时的应力和位移。 二、斜弯曲 斜弯曲的概念:在横力弯曲时,设梁上的横向力通过横截面的弯曲中心(梁不产生扭转变形)。当横向力的方向和横截面的形心主轴平行时,梁产生平面弯曲,即外力作用面和挠曲面平行;当横向力方向和横截面的形心主轴不平行时,梁产生斜弯曲,即外力作用面和挠曲面不平行。斜弯曲时,外力和中性轴不垂直,挠度仍垂直于中性轴。 斜弯曲的计算方法:将横向力向两个形心主轴方向分解,在两个形心主轴方向的横向力作用下,梁在两个形心主惯性平面内分别发生平面弯曲。分别计算两个平面弯曲时的应力和位移,将其各自叠加,就得到斜弯曲时的应力和位移。 ▲正多边截面梁,不会产生斜弯曲。 ▲横截面具有外棱角(例如工字形、矩形、角形等)时,危险点位于危险截面的角点处,该处为单向应力状态,其强度条件为 []max σσ≤ (8-1) ▲圆截面梁,不会产生斜弯曲,且圆截面对任一形心轴的弯曲截面系数均为3 32 d W π= (d 为圆截面的直径)。于是 max M M W σ? =? ?=? ? (8-2) 式中,y M 、z M 分别为绕y 、z 轴的弯矩,M 为总弯矩,M 的矢量方向为中性轴,max σ发生在图中的a 和b 点处。 三、拉伸(压缩)与弯曲 Ⅰ、构件发生拉伸(压缩)与弯曲组合变形时,分别计算其中拉伸(压缩)与弯曲时的应力,并将其叠加就得到组合变形的应力。 II 、构件受偏心拉伸(压缩)荷载作用时,将偏心力向横截面的形心简化,得到一轴向荷载以及绕横截面的形心主轴弯曲的弯矩y M 和z M 。偏心拉伸(压缩)仍然是拉伸(压缩)与弯曲的组合变形问题。 1、横截面具有外棱角(例如工字形、矩形等)时,危险点在横截面的外角点处,该点处于单向应力状态,只需计算出最大正应力,便可建立强度条件。

组合变形

第九章 组合变形 授课学时:8学时 主要内容:拉弯、斜弯曲和弯扭组合变形的强度和变形的校核和计算。 §9–1 概 述 1.定义 在复杂外载荷作用下,构件的变形会包含几种简单变形,当几种变形所对应的应力属同一量级时,不能忽略之,这类构件的变形称为组合变形。 2.组合变形形式 两个平面弯曲的组合;拉伸或压缩与弯曲的组合;扭转与弯曲。 3.组合变形的研究方法 —— 叠加原理 对于线弹性状态的构件,将其组合变形分解为基本变形,考虑在每一种基本变形下的应力和变形,然后进行叠加。 4.解题步骤 外力分析:外力向形心简化并沿主惯性轴分解 内力分析:求出每个外力分量对应的内力方程和内力图,确定危险面。 应力分析:画危险面应力分布图,叠加,建立危险点的强度条件。 §9–2拉(压)弯组合 例 起重机的最大吊重kN P 12=,[]2/100m kN =σ。试为横梁AB 选择适用的工字钢。 解: (1)受力分析 由 0=∑A M 得 kN T y 18=,kN T T y x 245 .12 == (2)作AB 的弯矩图和剪力图,确定C (3)确定工字钢型号 按弯曲强度确定工字钢的抗弯截面系数 []36 3 12010 1001012cm M W =??=≥σ 查表取3 141cm W =的16号工字钢,其横截面积为21.26cm 。 在C 左侧的下边缘压应力最大,需要进行校核。 + =

MPa MPa W M A N 1003.94101411012104.26102463 4 3max max <=??+??=+=--σ 固所选工字钢为合适。 §9–3斜弯曲 1.斜弯曲概念:梁的横向力不与横截面对称轴或形心主惯性轴重合,这时杆件将在形心主惯性平面内发生弯曲,变形后的轴线与外力不在同一纵向平面内, 2.解题方法 1)分解:将外载沿横截面的两个形心主轴分解,于是得到两个正交的平面弯曲。 2)叠加:对两个平面弯曲进行研究;然后将计算结果叠加起来。 例 矩形截面悬臂梁,求根部的最大应力和梁端部的位移。 解: (1)将外载荷沿横截面的形心主轴分解 ?cos P P y =,?sin P P z = (2)外载荷在固定端两平面内的弯矩 ?cos Pl l P M y z -=-=?sin Pl l P M z y -=-= (3)应力 由弯矩z M 引起任意点C 处应力 y I Pl I y M z z z ?-== ? σcos ' 由弯矩y M 任意点C 处应力 z I Pl I y M y y y ?- == ? σsin ' ' (4)最大正应力—在C 处的应力叠加为 ??? ? ???+?-=+=z I Pl y I Pl y z ??σσσsin cos ' '' (5)变形计算 由y P 引起的垂直位移 z z y y EI Pl EI l P f 3cos 333 ? = =

第9章组合变形作业参考解答.

7-14 图示圆截面杆,受荷载 F1,F2 和 T 作用,试按第三强度理论校核杆的强度。已知: F1=0.7kN,F2=150kN,T=1.2kN·m,[σ]=170MPa,d=50mm, l=900mm。解:由内力分析,该杆发生拉弯扭组合变形,固定端为危险截面其内力为 FN = F2 , M Z = F1l , M x = T 该截面上顶点为危险点,上顶点应力状态如图,大小为τ σ s= FN M z F Fl + = 2 2 + 1 3 = 76.39MPa + 51.34MPa=127.73MPa pd A Wz p d 4 32 Mx T = = 48.89MPa WP p d 3 / 16 t= 由第三强度理论强度条件 s r 3 = s 2 + 4t 2 = 160.86MPa<[s ] ,杆安全 9-2 3 圆轴受力如图所示。直径d=100mm,容许应力[σ]=170MPa。 (1绘出A、B、C、D 四点处单元体上的应力; (2用第三强度理论对危险点进行强度校核。解:(1)A、B、C、D 四点处所在截面内力(不考虑剪力: FN = 110kN M x = F y1 × d = 90kN ′ 0.05m = 4.5kN × m 2 M z = ( Fy1 - Fy 2 × l = 10kN ′ 1m = 10kN × m M y = Fx × d = 110kN ′ 0.05m = 5.5kN × m 2 A 、B、 C、D 四点应力分别为: sA = FN M z 110kN 10kN × m + = + = 14.01MPa + 101.91MPa = 115.92MPa A Wz p × 0.12 p × 0.13 4 32 M x 4.5kN × m = = 22.93MPa = t B = t C = t D Wp p × 0.13 16 tA = 6

14年第二学期工程力学复习题

1.凡是受二力作用的杆件就是二力杆件。 2.力在某坐标轴上的投影为零,则该力一定为零。 3.作用力与反作用力是一对大小相等、方向相反的力,所以可以构成力偶。 4.当平面一般力系向某点简化的最后结果为一个力偶时,如果向另一点简化,则其结果是一样的。 5.若平面汇交力系的各力在任意两个互不平行的轴上投影之代数和均为零,则该力系一定平衡。 6.如物体相对于地面保持静止或匀速直线运动状态,则物体处于平衡。 7.若两个力在同一轴上的投影相等,则这两个力的大小必定相等。 8.力偶中二力对其作用面内任意一点的力矩之和等于此力偶的力偶矩。 9.材料相同的二拉杆,受力一样,若两杆的绝对变形相同,则其相对变形也一定相同。 10.对于产生轴向拉(压)变形的等直杆,轴力最大的截面就是危险截面,该截面的任一点都是危险点。 11.在低碳钢拉伸实验时,试样的强度极限就是试样被拉断时的应力。 12.在强度计算时,如果构件的工作和工作应力值大于许用应力很少,而且没有超过5%。则仍可以认为构件的强度是足够的。 13.若两个相互挤压构件的材料不同,应分别校核两构件的挤压强度。 14.构件产生挤压变形的受力特点和产生轴向压缩变形的受力特点相同。 15.传递一定功率的传动轴的转速越高,其横截面上所受的扭矩也就越大。 16.受剪构件的剪切面总是平面。 17.一空心圆轴在产生扭转变形时,其危险截面外缘处具有最大切应力,而危险截面内缘处的切应力为零。 18.空心圆轴壁厚越薄,材料的利用率越高。但空心圆轴壁太薄容易产生局部皱折,使承载能力显著降低。 19.调整跨长或增加支座是提高梁强度的主要措施。 20.对脆性材料制成的T字形截面梁进行强度校核,只要校核了危险点的压应力即可。

材料力学习题组合变形

组合变形 基 本 概 念 题 一、选择题 1. 偏心压缩时,截面的中性轴与外力作用点位于截面形心的两侧,则外力作用点到 形心的距离e 和中性轴到形心距离d 之间的关系是( )。 A .e = d B .e >d C .e 越小,d 越大 D .e 越大,d 越小 2.三种受压杆件如图所示,设 杆1、杆2和杆3中的最大压应力(绝 对值)分别用1max σ、2max σ、 3max σ表示,则( )。 A .1max σ=2max σ=3max σ B .1max σ>2max σ=3max σ C .2max σ>1max σ=3max σ D .2max σ<1max σ=3max σ 题2图 3.在图示杆件中,最大压应力发生在截面上的( )。 A .A 点 B .B 点 C .C 点 D .D 点 题3图 题4图 4. 铸铁杆件受力如图4所示,危险点的位置是( )。 A .①点 B .②点 C .⑧点 D .④点 5. 图示正方形截面直柱,受纵向力P 的压缩作用。则当P 力作用点由A 点移至B 点时柱内最大压应力的比值()max A σ﹕()max B σ为( )。 A .1﹕2 B .2﹕5 C .4﹕7 D .5﹕2 6. 图示矩形截面偏心受压杆件发生的变形为( )。 A .轴向压缩和平面弯曲组合 B .轴向压缩,平面弯曲和扭转组合 C .轴向压缩,斜弯曲和扭转组合 D .轴向压缩和斜弯曲组合 -41-

题5图 题6图 7. 图所示悬臂梁的横截面为等边角钢,外力P 垂直于梁轴,其作用线与形心轴 y 垂直,那么该梁所发生的变形是( )。 A .平面弯曲 B .扭转和斜弯曲 C .斜弯曲 D .两个相互垂直平面(xoy 平面和xoz 平面)内的平面弯曲 题7图 8. 图示正方形截面杆受弯扭组合变形,在进行强度计算时,其任一截面的危 险点位置有四种答案,正确的是( )。 A .截面形心 B .竖边中点A 点 C .横边中点B 点 D .横截面的角点D 点 题8图 题9图 9. 图示正方形截面钢杆,受弯扭组合作用,若已知危险截面上弯矩为M ,扭 矩为T ,截面上A 点具有最大弯曲正应力σ和最大剪应力τ,其抗弯截面模量为W 。关于A 点的强度条件是( )。 A .σ≤[σ],τ≤[τ] B .W T M 2122)(+≤[σ] C .W T M 2122)75.0(+≤[σ] D .122)3(τσ+≤[σ] 10. 折杆危险截面上危险点的应力状态是图中的( )。 -42-

相关文档
最新文档