齿轮绘制步骤

齿轮绘制步骤
齿轮绘制步骤

Inventor中齿轮的绘制步骤

1、新建文件

运行Inventor,新建文件,选择【Standard.ipt】,确定后进入草图界面。

2、建立旋转草图

通过【直线】工具绘制截面轮廓,并用【通用尺寸】工具进行尺寸标注(其中“216.25”为齿根圆半径,数据以测量数据为准),得到如下草图:

Tips:标注前可以先通过【固定】工具,将草图最左端的边固定住,再

以从左至右的顺序标注。

图:【固定】工具的位置

3、旋转生成齿轮主体

点击工具栏的,退出草图。点击左上角的,在弹出列表中选择“零件特征”,再点击其下面板中的【旋转】工具,选择草图最下端的边为“旋

转轴”,确定,得到如下实体:

4、建立减重孔草图

选中减重孔所在平面,点击工具栏上的,进入草图绘制环境,绘制如下草图:

5、拉伸创建一个减重孔

退出草图环境,选择“零件特征”下的【拉伸】工具,选择刚绘制的圆草图,

布尔方式设置为【切削】,终止方式设置为【贯通】,注意选择合适的拉伸方向。确认后生成如下实体:

6、环形阵列创建多个减重孔

点击零件特征下的,选中减重孔特征。旋转轴选择:点击任意圆柱面。输入减重孔个数,确认后生成多个减重孔,如下图:

7、建立拉伸键槽草图

选择齿轮中心凸台的端面为草图平面,进入草图环境,绘制如下草图:

8、拉伸键槽

退出草图环境,选择“零件特征”下的【拉伸】工具,选择刚绘制的圆草图,

布尔方式设置为【切削】,终止方式设置为【贯通】,注意选择合适的拉伸方向。确认后生成如下实体:

9、建立草图绘制轮齿轮廓

点击“零件特征”下的,“添加”以下三个参数:模数M、齿数Z、压力角a (本例中的参数与测量数据有出入,以小组数据为准)。

选择未倒角一面的齿轮外缘的端面,创建草图。

绘制6条过圆心的直线,将竖直线“固定”,再将两直线间的角度标注为10度。

过直线与齿根圆的交点作圆的切线,从右至左的切线长度分别为:

2ul*PI*M*(Z-2.5ul)/2ul*10deg/(360deg)

2ul*PI*M*(Z-2.5ul)/2ul*2*10deg/(360deg)

2ul*PI*M*(Z-2.5ul)/2ul*3*10deg/(360deg)

2ul*PI*M*(Z-2.5ul)/2ul*4*10deg/(360deg)

Tips:标注时选用,点击切线的两端点,应用后生成与直线平行的尺寸,再将尺寸修改为如上公式的值,值不需计算,直接拷贝公式即可。

点击【直线】工具下的【样条曲线】工具,将各切线端点链接,回车确定,得到如下草图:

图中红色曲线即我们所需的根轨迹曲线。

绘制齿顶圆和分度圆,其直径分别为M*(Z+2ul)及M*Z。

计算齿厚,公式为PI*M/2,齿廓在分度圆上的点到对称线的距离应为齿厚的一半。

过圆心任意作一直线,再过渐开线与分度圆的交点作该直线的垂线(可利用),

将垂线的尺寸标注为PI*M/4。

以刚才的过圆心直线为对称轴,对渐开线进行镜像操作,再利用修剪工具

具,补全两渐开线之间的圆弧。

10、拉伸生成轮齿

退出草图,点击,选择渐开线轮廓,如下图:

拉伸深度为齿轮的厚度(注意拉伸方向),拉伸后如下图:

11、环形阵列创建多个轮齿

点击零件特征下的,选中轮齿特征。

旋转轴选择:点击任意圆柱面。输入齿数,确认后生成多个轮齿,如下图:

12、创建倒角与圆角

分别选择“零件特征”下的【倒角】工具和【圆角】工具

为下图所示的各处添加倒角特征和圆角特性。倒角距离为2mm,圆角半径为4mm。(注意:齿轮两面均要倒角和圆角)

二级减速器毕业设计论文

兰州工业学院学院 毕业设计 题目二级直齿圆柱齿轮减速器系别机电工程学院 专业机械设计与制造 班级机设 姓名***** 学号****** 指导教师**** 日期2013年12月

设计任务书 题目: 带式运输机传动系统中的二级直齿圆柱齿轮减速器设计要求: 1:运输带的有效拉力为F=2500N。 2:运输带的工作速度为V=1.7m/s。 3:卷筒直径为D=300mm。 5:两班制连续单向运转(每班8小时计算),载荷变化不大,室内有粉尘。6:工作年限十年(每年300天计算),小批量生产。 设计进度要求: 第一周拟定分析传动装置的设计方案: 第二周选择电动机,计算传动装置的运动和动力参数: 第三周进行传动件的设计计算,校核轴,轴承,联轴器,键等: 第四周绘制减速器的装配图: 第五周准备答辩 指导教师(签名):

摘要 齿轮传动是现代机械中应用最广的一种传动形式。它由齿轮、轴、轴承及箱体组成的齿轮减速器,用于原动机和工作机或执行机构之间,起匹配转速和传递转矩的作用。齿轮减速器的特点是效率高、寿命长、维护简便,因而应用极为广泛。 本设计讲述了带式运输机的传动装置——二级圆柱齿轮减速器的设计过程。首先进行了传动方案的评述,选择齿轮减速器作为传动装置,然后进行减速器的设计计算(包括选择电动机、设计齿轮传动、轴的结构设计、选择并验算滚动轴承、选择并验算联轴器、校核平键联接、选择齿轮传动和轴承的润滑方式九部分内容)。运用AutoCAD软件进行齿轮减速器的二维平面设计,完成齿轮减速器的二维平面零件图和装配图的绘制。 关键词:齿轮啮合轴传动传动比传动效率

目录 1、引言 (1) 2、电动机的选择 (2) 2.1. 电动机类型的选择 (2) 2.2.电动机功率的选择 (2) 2.3.确定电动机的转速 (2) 3、计算总传动比及分配各级的传动比 (4) 3.1. 总传动比 (4) 3.2.分配各级传动比 (4) 4、计算传动装置的传动和动力参数 (5) 4.1.电动机轴的计算 (5) 4.2.Ⅰ轴的计算(减速器高速轴) (5) 4.3.Ⅱ轴的计算(减速器中间轴) (5) 4.4.Ⅲ轴的计算(减速器低速轴) (6) 4.5.Ⅳ轴的计算(卷筒轴) (6) 5、传动零件V带的设计计算 (7) 5.1.确定计算功率 (7) 5.2.选择V带的型号 (7) 5.3.确定带轮的基准直径d d1 d d2 (7) 5.4.验算V带的速度 (7) 5.5.确定V带的基准长度L d 和实际中心距a (7) 5.6.校验小带轮包角ɑ 1 (8)

注塑齿轮三维分析及模具设计

SHANDONG UNIVERSITY OF TECHNOLOGY 课程设计说明书 脚套注塑模 学院 机械工程学院 专业 材料成型及控制工程 班级 材料0902班 姓名及学号 许文然 0911012106 2012年1月

摘要 (3) 第一章齿轮的设计 (4) 1.1注塑材料的选择 1.2齿轮的设计 第二章模具设计 (7) 2.1模架与注塑机的选择 第三章成型零件设计 (10) 第四章浇注系统设计 (14) 第五章顶杆设计 (16) 第六章冷却系统设计 (16) 第七章模具装配图 (19)

摘要 本文运用三维绘图软件UG NX进行塑料齿轮的模具设计,实现计算机辅助设计(CAD)。 首先,根据零件大小确定排样、模架类型,确定初步的成型工艺;然后运用使用UG NX 来生成模具的型腔,并装配模架,实现由计算机来辅助设计模具。 这样的设计方法可以保证产品质量和性能,同时也验证模具制造时的注意和工艺,缩短了模具制造周期和成本。 关键词:UG NX,注塑,齿轮 随着人类社会的进步,材料的使用也发生着变化。从石器时代开始,人类就在寻找更新、更好的材料,制作不同的器物和工具。到目前为止,人类所使用的材料可以分为四大类:木材、水泥、钢铁和塑料[1]。 塑料,作为高分子聚合物,它的性能和应用可以说是无穷无尽,同时,塑料的生产成本比金属要低,使得塑料制品在一些领域逐渐代替金属材料,在农业、包装、运输、电气、化工、建筑、航空航天、仪表以及日用品都离不开塑料。 塑料制品的获得方法有很多,与金属材料相比,塑料制品不仅可以通过机械加工获得,还可以通过成型加工直接获得,而不同的材料就需要用不同的成型工艺和加工方法。部分塑料产品必须依靠模具来成型,例如手机、电脑的外壳,饮料瓶等等。因此,模具的设计直接与塑料制品的复杂程度、美观程度、结构工艺性相关。同时,制品的设计必须考虑模具设计的问题,从而避免制品出现缺陷。 本文所要分析的塑料齿轮就是塑料制品代替金属制品的一个例子。

齿轮齿形画法

齿轮齿形画法 一、总述 我们在齿轮加工进行齿形的检验时,常会用到齿形模板,以前每遇到这种情况都需要技术人员照手册按坐标点一点一点的画出,十分麻烦,且每用到模数不同的齿轮,都要重新画,工作量可想而知。现在计算机普及了,我们依据淅开线的形成原理和齿轮的切削原理并结合实际经验研究出了一种利用计算机来进行齿形图绘制的方法,绘制一些不同齿数(模数是1)的齿轮齿形图作为样板,对于不同的模数,只要进行相应倍数的放大即可得出相应的齿形图,这样绘出的齿形图不仅比手工画出的精确,且能做到一劳永逸,方便了很多。 二、直齿轮齿形图的详细画法 下面我们以齿数为18的齿轮为例,详细介绍一下这种齿形图的绘制方法.我们将齿形图的绘制据齿形的组成不同分为渐开线齿形部分的绘制与基圆和齿根圆部分齿形的绘制. 1.取齿轮齿数为18,模数为1,则分度圆半径为8.457mm.首先画出基圆,然后在基圆上取一角度为3的圆弧,测其值为0.44mm.(如图一) 2.画一长度为0.44mm的水平轴线垂线与基圆相切,然后绕基圆圆心阵列该直线和与其垂直的水平线,角度取3度(如图二) 3.将阵列所得的基圆切线延长:3°处的切线保持不变,6°处的切线延长一倍,9°处

的切线延长2倍,12°处的切线延长3倍……依此类推,45°处的切线延长15倍.将各切线延长线的端点依次连接起来得一圆滑曲线.(如图三) 4.画出齿轮的分度圆(半径为9mm)和齿顶圆(半径为10mm),过分度圆与渐开线 交点与圆心连线,将该连线旋转成水平(第三步得到的曲线随其一同旋转),其它辅助线清除,然后过圆心画一角度为5度的射线即为该齿轮一个齿的对称线,将所得曲线关天该对称线镜相,齿顶圆与基圆中间的曲线部分即为该齿轮一个轮 齿的渐开线部分.(如图四) 5.将得出的一个轮齿的渐开线部分阵列,得出模数为1,齿数为18的齿轮的渐开线齿廓部分,并将齿轮转至如图五位置。 以上五步为齿轮轮齿渐开线部分的绘制。从第六步开始为基圆与齿根圆部分齿形图的绘制。 6.先画出模数是1的齿条图形,比标准齿条齿顶高高出0.25mm(如图六) 7.如图七所示将齿条与齿轮啮合. 8.在齿轮的实际加工过程中,齿轮每转动1°,齿条水平移动0.157mm。据此原理,

机械毕业设计625二级圆柱直齿齿轮减速器

1引言 齿轮传动是现代机械中应用最广的一种传动形式。它的主要优点是:①瞬时传动比恒定、工作平稳、传动准确可靠,可传递空间任意两轴之间的运动和动力;②适用的功率和速度范围广;③传动效率高,η=0.92-0.98;④工作可靠、使用寿命长;⑤外轮廓尺寸小、结构紧凑。由齿轮、轴、轴承及箱体组成的齿轮减速器,用于原动机和工作机或执行机构之间,起匹配转速和传递转矩的作用,在现代机械中应用极为广泛。 国内的减速器多以齿轮传动、蜗杆传动为主,但普遍存在着功率与重量比小,或者传动比大而机械效率过低的问题。另外,材料品质和工艺水平上还有许多弱点,特别是大型的减速器问题更突出,使用寿命不长。国外的减速器,以德国、丹麦和日本处于领先地位,特别在材料和制造工艺方面占据优势,减速器工作可靠性好,使用寿命长。但其传动形式仍以定轴齿轮传动为主,体积和重量问题,也未解决好。 当今的减速器是向着大功率、大传动比、小体积、高机械效率以及使用寿命长的方向发展。减速器与电动机的连体结构,也是大力开拓的形式,并已生产多种结构形式和多种功率型号的产品。近十几年来,由于近代计算机技术与数控技术的发展,使得机械加工精度,加工效率大大提高,从而推动了机械传动产品的多样化,整机配套的模块化,标准化,以及造型设计艺术化,使产品更加精致,美观化。 在21世纪成套机械装备中,齿轮仍然是机械传动的基本部件。CNC机床和工艺技术的发展,推动了机械传动结构的飞速发展。在传动系统设计中的电子控制、液压传动、齿轮、带链的混合传动,将成为变速箱设计中优化传动组合的方向。在传动设计中的学科交叉,将成为新型传动产品发展的重要趋势。

2 传动装置总体设计 2.0设计任务书 1设计任务 设计带式输送机的传动系统,采用两级圆柱直齿齿轮减速器传动。 2 设计要求 (1)外形美观,结构合理,性能可靠,工艺性好; (2)多有图纸符合国家标准要求; (3)按毕业设计(论文)要求完成相关资料整理装订工作。 3 原始数据 (1)运输带工作拉力 F=4KN (2)运输带工作速度V=2.0m/s (3)输送带滚筒直径 D=450mm η (4)传动效率96 = .0 4工作条件 两班制工作,空载起动,载荷平稳,常温下连续(单向)运转,工作环境多尘,中小批量生产,使用期限10年,年工作300天。 2.1 确定传动方案

一年级直齿减速器装配图画图顺序详解

一年级直齿减速器装配图 画图顺序详解 Last revision on 21 December 2020

一级直齿减速器装配图画图步骤详解 (参考图:P198、p25、p15) 第一步首先估算箱体结构的大概尺寸,(箱体长>大齿轮分度圆直径+小齿轮分度圆直径;箱体宽>输出轴全长),然后考虑采用图纸的幅面和绘制的比例,规划画图的布局空间。 第二步根据前期绘制的零件图尺寸,先在图纸区域合适位置放置输入轴,输出轴和大、小齿轮的位置,两齿轮须在分度圆处啮合。 第三步,根据轴的结构设计,画与各自轴相配合的轴承。 第四步,绘制机体内壁线,外壁线,轴承座外端面线 机体内壁线距离小齿轮的端面距离为△2≥δ,根据计算取△2=8mm,(计算见设计说明书);大齿轮齿顶圆与箱体内壁距离为△1≥δ,取△1=9.6mm, 外壁线距离内壁线距离等于壁厚δ=8mm, 轴承座外端面线距离箱体内壁的距离l2=δ+C1+C2+(8~12)mm C1、C2根据轴承端盖连接螺栓直径查表,(8~12)为区分加工面和非加工面的尺寸余量,取8mm, 轴承盖外端面距离轴承座外端面的距离为盖厚e,可查指导书P37页根据结构设计确定。 凸台的外壁线距离内壁线l1=δ+C1+C2, 第五步,画轴承端盖和密封装置,轴承端盖画法参见P37表,密封装置由于轴承采用油脂润滑,需要设计档油板,结构设计可参见P56图和,也可自由设计结构。

轴承透盖与轴颈之间的配合采用毡圈式密封,结构可参考P58图以及P146页附表设计。 第六步,按照各构件的计算尺寸和俯视图的映射关系,向上做出正视图部分。机盖、机座肋厚m1=δ1,m=δ,见表,轴承端盖螺钉直径d3,轴承端盖外径D2,机座、机盖壁厚均可按表计算求得,大齿轮外轮廓半径按P73箱体结构设计要求确定。 第七步,按照指导书P73凸台结构设计投影方法画出凸台结构,并画出轴承旁连接螺栓(间距100-150mm)和机盖与机座连接螺栓(留出扳手空间),按P74机座底凸缘结构设计机座。按P73绘制小齿轮一端的外轮廓半径,使得外轮廓圆弧超过轴承旁凸台,便于形状的设计。至此,箱体整体外观轮廓设计基本完成。 第八步,补画细部结构,如窥视孔盖板,通气器,油标、油塞、定位销、启盖螺钉、吊环、吊钩,结构尺寸见P133介绍。绘制减速器油沟(p19)结构。 第九步,按投影关系画左视图,标注尺寸,完成整图设计.

一级直齿圆柱齿轮减速器课程设计

机械设计课程设计 帆姓名:袁 2011040191011学号:专业:机械设计制造及其自动化一班 一、电动机的选择

1.确定电动机类型 (1)工作时输出功率P w P = F/1000 =7650x0.5/1000 =3.825kw vw (2)电动机所需的输出功率 η=0.94x0.98x0.99x0.99x0.99x0.96=0.858 总 P=P /η=3.825/0.858=4.458kw总0w P=(1~1.3)P0=4.458~5.795kw 查手册知可选择Y132M2-6型号的电动机,该电动机的 转速为960r/min. 2.各级传动比的分配 (1)分配传动装置各级传动比 n=60x1000V/(πD)=79.62 w n=ixn=ixix79.62齿总带0w =(2-4)x(3-5)x79.62=477.9-1593r/min n=1000r/min,nm=n0=960r/min d(2)总传动比 i=n/n=960/79.62=12.057 w总0 i=3;i=i/i=4.02 带带总齿3.运动及动力参数计算 (1)各轴转速计算 n=n/i=960/3=320r/min 带0I. n=n/i=320/4.02=79.6r/min=n IIIII齿I(2)各轴功率计算 P=4.458kw 0 P=Px0.94=4.458x0.94=4.19kw 0I

P=Px0.98x0.99=4.065kw III P=Px0.99x0.99=3.984kw IIIII (3)各轴转矩计算 m =44.35N*=9.55x1000000xP T/n000m =125.045N*/n T=9.55x1000000xP III m =487.698N* T=9.55x1000000xP/n IIIIII m =477.98N*=9.55x1000000xP/n T IIIIIIIII 二.传送带的选择 1.P=kP=1.1x4.458=4.9038kw Aca 2.由P和n查表可知选A型带ca 3.d=112cm,d为小带轮的基准直径d1d1m/s

螺纹模具设计要点

螺纹模具设计要点 塑胶产品螺纹分外螺纹与内螺纹两种,精度不高的外螺纹一般用哈夫块成型,而内螺纹则大多需要卸螺纹装置。 今天简单介绍内螺纹脱模方法,重点介绍齿轮的计算与选择。 一、卸螺纹装置分类 1、按动作方式分 ①螺纹型芯转动,推板推动产品脱离; ②螺纹型芯转动同时后退,产品自然脱离。 2、按驱动方式分 ①油缸+齿条 ②油马达/电机+链条

③齿条+锥度齿轮 ④来福线螺母

二、设计步骤 必须掌握产品的以下数据(见下图) ①“D”——螺纹外 ②“P”——螺纹牙距 ③“L”——螺纹牙长 ④螺纹规格/方向/头数 ⑤型腔数量

2、确定螺纹型芯转动圈数: U=L/P + Us U 螺纹型芯转动圈数 Us 安全系数,为保证完全旋出螺纹所加余量,一般取0、25~1 3、确定齿轮模数、齿数与传动比: 模数决定齿轮的齿厚,齿数决定齿轮的外径,传动比决定啮合齿轮的转速。 在此之前有必要讲一下齿轮的参数与啮合条件。 三、齿轮的参数与啮合条件 模具的卸螺纹机构中大多应用的就是直齿圆柱齿轮,而且一般都就是渐开线直齿圆柱齿轮,因此下面就以渐开线直齿圆柱齿轮为研究对象。 1 齿轮传动的基本要求 ①要求瞬时传动比恒定不变 ②要求有足够的承载能力与较长的使用寿命 2、直齿圆柱齿轮啮合基本定律 两齿轮廓不论在何处接触,过接触点所作的两啮合齿轮的公法线,必须与两轮连心线相交于一点“C”,这样才能保证齿轮的瞬时传动比不变。将所有“C”点连起来就成了2个外切圆,称之为分度圆,分度圆圆心距即齿轮圆心距。详见下图 3、渐开线直齿圆柱齿轮参数 分度圆直径------“d”表示 分度圆周长--------“S”表示 齿轮齿距--------“p”表示 齿轮齿厚--------“sk”表示 齿轮齿槽宽--------“ek”表示 齿轮齿数--------“z”表示 齿轮模数--------“m”表示 齿轮压力角--------“ɑ”表示 齿轮传动比--------“i”表示 齿轮中心距--------“l”表示

一级圆柱齿轮减速器毕业设计

一级圆柱齿轮减速器毕业设计 目录 第一章减速器的慨述 (3) 第二章传动方案拟定............................................................................. (7) 第三章电动机的选择 (8) 第四章确定传动装置总传动比及分配各级的传动比 (10) 第五章传动装置的运动和动力设计 (11) 第六章普通V带的设计 (13) 第七章齿轮传动的设计 (16) 第八章传动轴的设计 (19) 第九章箱体的设计 (24)

第十章键连接的设计 (26) 第十一章滚动轴承的设计 (27) 第十二章润滑和密封的设计 (28) 第十三章联轴器的设计 (29) 第十四章设计小结 (30) 第十五章减速器装配图................................................................ .. (31) 第十六章参考文献 (32) 一、减速器概述 1、减速器的主要型式及其特性

减速器是一种由封闭在刚性壳体的齿轮传动、蜗杆传动或齿轮—蜗杆传动所组成的独立部件,常用在动力机与工作机之间作为减速的传动装置;在少数场合下也用作增速的传动装置,这时就称为增速器。减速器由于结构紧凑、效率较高、传递运动准确可靠、使用维护简单,并可成批生产,故在现代机械中应用很广。 减速器类型很多,按传动级数主要分为:单级、二级、多级;按传动件类型又可分为:齿轮、蜗杆、齿轮-蜗杆、蜗杆-齿轮等。 以下对几种减速器进行对比: (1)圆柱齿轮减速器 当传动比在8以下时,可采用单级圆柱齿轮减速器。大于8时,最好选用二级(i=8—40)和二级以上(i>40)的减速器。单级减速器的传动比如果过大,则其外廓尺寸将很大。二级和二级以上圆柱齿轮减速器的传动布置形式有展开式、分流式和同轴式等数种。展开式最简单,但由于齿轮两侧的轴承不是对称布置,因而将使载荷沿齿宽分布不均匀,且使两边的轴承受力不等。为此,在设计这种减速器时应注意:1)轴的刚度宜取大些;2)转矩应从离齿轮远的轴端输入,以减轻载荷沿齿宽分布的不均匀;3)采用斜齿轮布置,而且受载大的低速级又正好位于两轴承中间,所以载荷沿齿宽的分布情况显然比展开好。这种减速器的高速级齿轮常采用斜齿,一侧为左旋,另一侧为右旋,轴向力能互相抵消。为了使左右两对斜齿轮能自动调整以便传递相等的载荷,其中较轻的龆轮轴在轴向应能作小量游动。同轴式减速器输入轴和输出轴位于同一轴线上,故箱体长度较短。但这种减速器的轴向尺寸较大。 圆柱齿轮减速器在所有减速器中应用最广。它传递功率的围可从很小至40 000kW,圆周速度也可从很低至60m/s一70m/s,甚至高达150m/s。传动功率很大的减速器最好采用双驱动式或中心驱动式。这两种布置方式可由两对齿轮副分担载荷,有利于改善受力状况和降低传动尺寸。设计双驱动式或中心驱动式齿轮传动时,应设法采取自动平衡装置使各对齿轮副的载荷能得到均匀分配,例如采用滑动轴承和弹性支承。 圆柱齿轮减速器有渐开线齿形和圆弧齿形两大类。除齿形不同外,减速器结构基本相同。传动功率和传动比相同时,圆弧齿轮减速器在长度方向的尺寸要比渐开线齿轮减速器约30%。 (2)圆锥齿轮减速器 它用于输入轴和输出轴位置布置成相交的场合。二级和二级以上的圆锥齿轮减速器常

一级直齿减速器装配图画图顺序详解

一级直齿减速器装配图画图步骤详解 (参考图:P198、p25、p15) 第一步首先估算箱体结构的大概尺寸,(箱体长>大齿轮分度圆直径+小齿轮分度圆直径;箱体宽>输出轴全长),然后考虑采用图纸的幅面和绘制的比例,规划画图的布局空间。 第二步根据前期绘制的零件图尺寸,先在图纸区域合适位置放置输入轴,输出轴和大、小齿轮的位置,两齿轮须在分度圆处啮合。 第三步,根据轴的结构设计,画与各自轴相配合的轴承。 第四步,绘制机体内壁线,外壁线,轴承座外端面线 机体内壁线距离小齿轮的端面距离为△2≥δ,根据计算取△2=8mm,(计算见设计说明书);大齿轮齿顶圆与箱体内壁距离为△1≥δ,取△1=9.6mm, 外壁线距离内壁线距离等于壁厚δ=8mm, 轴承座外端面线距离箱体内壁的距离l2=δ+C1+C2+(8~12)mm C1、C2根据轴承端盖连接螺栓直径查表,(8~12)为区分加工面和非加工面的尺寸余量,取8mm, 轴承盖外端面距离轴承座外端面的距离为盖厚e,可查指导书P37页根据结构设计确定。 凸台的外壁线距离内壁线l1=δ+C1+C2, 第五步,画轴承端盖和密封装置,轴承端盖画法参见P37表,密封装置由于轴承采用油脂润滑,需要设计档油板,结构设计可参见P56图和,也可自由设计结构。

轴承透盖与轴颈之间的配合采用毡圈式密封,结构可参考P58图以及P146页附表设计。 第六步,按照各构件的计算尺寸和俯视图的映射关系,向上做出正视图部分。机盖、机座肋厚m1=δ1,m=δ,见表,轴承端盖螺钉直径d3,轴承端盖外径D2,机座、机盖壁厚均可按表计算求得,大齿轮外轮廓半径按P73箱体结构设计要求确定。 第七步,按照指导书P73凸台结构设计投影方法画出凸台结构,并画出轴承旁连接螺栓(间距100-150mm)和机盖与机座连接螺栓(留出扳手空间),按P74机座底凸缘结构设计机座。按P73绘制小齿轮一端的外轮廓半径,使得外轮廓圆弧超过轴承旁凸台,便于形状的设计。至此,箱体整体外观轮廓设计基本完成。 第八步,补画细部结构,如窥视孔盖板,通气器,油标、油塞、定位销、启盖螺钉、吊环、吊钩,结构尺寸见P133介绍。绘制减速器油沟(p19)结构。 第九步,按投影关系画左视图,标注尺寸,完成整图设计.

带式运输机传动系统中的展开式二级圆柱齿轮减速器课程设计说明书

机 械 设 计 课 程 设 计 说 明 书 设计题目:带式运输机传动系统中的 展开式二级圆柱齿轮减速器

目录 1 设计任务 (1) 1.1设计题目 (1) 1.2工作条件 (1) 1.3原始数据 (1) 1.4设计工作量 (1) 2 电机的选择 (1) 2.1 选择电动机的类型 (1) 2.2 选择电动机的功率 (1) 2.3 方案确定 (2) 3 确定传动装置的总传动比和分配传动比 (3) 3.1 总传动比 (3) 3.2分配传动装置传动比 (3) 4 计算传动装置的运动和动力参数 (3) 4.1各轴输入功率 (3) 4.2各轴输出功率 (4) 4.3各轴转速 (4) 4.4各轴输入转矩 (4) 4.5各轴输出转矩 (5)

4. 6运动和动力参数计算结果整理于下表 (5) 5 减速器的结构 (6) 6 传动零件的设计计算 (7) 6.1第一对齿轮(高速齿轮) (7) 6.2第二对齿轮(低速齿轮) (9) 7轴的计算(以低速轴为例) (11) 7.1第III轴的计算 (11) 7.2求作用在齿轮上的力 (12) 7.3初步确定轴的最小直径 (12) 7.4轴的结构计 (12) 7.5轴的强度校核 (13) 8 轴承的的选择与寿命校核 (16) 8.1以低速轴上的轴承为例 (16) 8.2 轴承的校核 (16)

9 键的选择与校核(以高速轴为例) (18) 9.1键联接的类型和尺寸选择 (18) 9.2键联接强度的校核 (18) 10 联轴器的选择 (18) 10.1类型选择 (18) 10.2载荷计算 (18) 10.3型号选择(弹性套柱销联轴 器) (19) 11 润滑方法、润滑油牌号 (19) 12 减速器附件的选择 (19) 12.1视孔盖和窥视孔 (19) 12.2放油孔与螺塞 (19) 12.3油标 (19) 12.4通气孔 (20)

齿轮模具设计步骤

齿轮模具设计 专业班级: 姓名: 学号: 指导教师: 设计时间:

物理与电气工程学院 2015 年6 月20日 下面一图1-1所示的齿轮为例,介绍CREO2.0模具设计的一般过程。 图1-1齿轮模型 1.1.1参照零件的布局 (1)启动CREO2.0,执行“文件”中的“设置工作目录”命令,选择一个合适的工作目录。 (2)选择下拉菜单“文件”,“新建”命令对话框。在“新建”对话框中的

“类型”选项中选择“制造”,“子类型”中选择“模具型腔”,在名称文本框中输入模具型腔的文件名为“chuitou,同时取消选择“使用默认模板”复选框,如图1-2所示。单击“确定”按钮,在弹出的“新文件选项”对话框,选择“mmns_mfg_mold”模板,如图1-3所示。单击“新文件选项”对话框中的“确定”按钮,进入模具设计模块。 图1-2“新建“对话框 图1-3“新文件选项“对话框

(3)单击“模具制造“工具栏上的“模具型腔布局”按钮,弹出“打开”对话框,同时弹出“布局”对话框,如图1-4所示。 (4)在“打开”对话框中选择“chuitou.prt”零件后,单击“打开”按钮,弹出“创建参照模型”对话框,如图1-5所示。在“创建参照模型”对话框中选择“按参照合并”单选框,单击“确定”按钮接受默认的参照模型名称。 图1-4“布局”对话框图1-5“创建参考模型”对话框 (5)单击“布局”对话框中的“参照模型起点与定向”选项区域中的拾取箭头,出现浮动参照模型窗口,同时出现“坐标系类型”菜单管理器,如图1-6所示。

1.1.2设置收缩率 (1)单击“模具制造”工具栏上的“按比例收缩”按钮,弹出“选取”对话框,按照提示单击任何一个参照模型,选中的模型变成红色。 (2)在弹出的“按比例收缩”对话框中选择“1+S”收缩率公式,选中参照模型中的坐标系PRT_CSYS_DEF,在“收缩率”文本框中输入0.005,如图1-8所示。 (3)单击“按比例收缩”对话框中的“确定”按钮,即可完成全部零件的收缩率设置。 图1-8 设置按比例收缩参数 1.1.3创建工件 创建工件步骤如下: (1)选择“模具”菜单管理器中的“模具模型”,“创建”,“工件”,“自动”

一级直齿圆柱齿轮减速器 课程设计

第一章绪论 本论文主要内容是进行一级圆柱直齿轮的设计计算,在设计计算中运用到了《机械设计基础》、《机械制图》、《工程力学》、《公差与互换性》等多门课程知识,并运用《AUTOCAD》软件进行绘图,因此是一个非常重要的综合实践环节,也是一次全面的、规范的实践训练。通过这次训练,使我们在众多方面得到了锻炼和培养。主要体现在如下几个方面: (1)培养了我们理论联系实际的设计思想,训练了综合运用机械设计课程和其他相关课程的基础理论并结合生产实际进行分析和解决工程实际问题的能力,巩固、深化和扩展了相关机械设计方面的知识。 (2)通过对通用机械零件、常用机械传动或简单机械的设计,使我们掌握了一般机械设计的程序和方法,树立正确的工程设计思想,培养独立、全面、科学的工程设计能力和创新能力。 (3)另外培养了我们查阅和使用标准、规范、手册、图册及相关技术资料的能力以及计算、绘图数据处理、计算机辅助设计方面的能力。 (4)加强了我们对Office软件中Word功能的认识和运用。

第二章课题题目及主要参数说明 2.1 课题题目:单级圆柱齿轮减速器 2.2 传动方案分析及原始数据 设计要求: 带式运输机连续单向运转,载荷较平稳,空载启动,两班制工作(每班工作8小时),室内环境。减速器设计寿命为8年,大修期为3年,小批量生产,生产条件为中等规模机械厂,可加工7-8级精度的齿轮;动力来源为三相交流电源的电压为380/220V;运输带速允许误差为+5%。 原始数据:A11 运输带工作拉力F(N):2500; 运输带卷筒工作转速n (r/min):89; 卷筒直径D (mm):280; 设计任务: 1)减速器装配图1张(A0或A1图纸); 2)零件工作图2~3张(传动零件、轴、箱体等,A3图纸); 3)设计计算说明书1份,6000~8000字。说明书内容应包括:拟定机械 系统方案,进行机构运动和动力分析,选择电动机,进行传动装置运 动动力学参数计算,传动零件设计,轴承寿命计算、轴(许用应力法 和安全系数法)、键的强度校核,联轴器的选择、设计总结、参考文献、 设计小结等内容。

单级圆柱齿轮减速器课程设计

机械课程设计 说明书 课程设计题目:带式输送机传动装置 姓名: 学号: 专业: 完成日期: 中国石油大学(北京)远程教育学院

目录 一、前言 (2) (一) 设计任务 (2) (二) 设计目的 (2) (三) 传动方案的分析 (3) 二、传动系统的参数设计 (3) (一) 电动机选择 (3) (二) 计算传动装置的总传动比及分配各级传动比 (4) (三) 运动参数及动力参数计算 (4) 三、传动零件的设计计算 (4) (一)V带传动的设计 (4) (二)齿轮传动的设计计算 (5) (三)轴的设计计算 (8) 1、Ⅰ轴的设计计算 (8) 四、滚动轴承的选择及验算 (12) (一) 计算Ⅰ轴承 (12) (二) 计算Ⅱ轴承 (12) 五、键联接的选择及校核 (13) 六、联轴器的选择 (14) 七、箱体、箱盖主要尺寸计算 (14) 参考文献 (16)

一、前言 (一) 设计任务 设计一带式输送机用单级圆柱齿轮减速器。已知运输带输送拉力F=2.6KN,带速V=1.45m/s,传动滚筒直径D=420mm(滚筒效率为0.96)。电动机驱动,预定使用寿命8年(每年工作300天),工作为二班工作制,载荷轻,带式输送机工作平稳。工作环境:室内灰尘较大,环境最高温度35°。动力来源:电力,三相交流380/220伏。 图1 带式输送机的传动装置简图 1、电动机; 2、三角带传动; 3、减速器; 4、联轴器; 5、传动滚筒; 6、皮带运输机 (二) 设计目的 通过本课程设计将学过的基础理论知识进行综合应用,培养结构设计,计算能力,熟悉

一般的机械装置设计过程。 (三) 传动方案的分析 机器一般是由原动机、传动装置和工作装置组成。传动装置是用来传递原动机的运动和动力、变换其运动形式以满足工作装置的需要,是机器的重要组成部分。传动装置是否合理将直接影响机器的工作性能、重量和成本。合理的传动方案除满足工作装置的功能外,还要求结构简单、制造方便、成本低廉、传动效率高和使用维护方便。 本设计中原动机为电动机,工作机为皮带输送机。传动方案采用了两级传动,第一级传动为带传动,第二级传动为单级直齿圆柱齿轮减速器。 带传动承载能力较低,在传递相同转矩时,结构尺寸较其他形式大,但有过载保护的优点,还可缓和冲击和振动,故布置在传动的高速级,以降低传递的转矩,减小带传动的结构尺寸。 齿轮传动的传动效率高,适用的功率和速度范围广,使用寿命较长,是现代机器中应用最为广泛的机构之一。本设计采用的是单级直齿轮传动。 减速器的箱体采用水平剖分式结构,用HT200灰铸铁铸造而成。 二、传动系统的参数设计 (一) 电动机选择 1、电动机类型的选择:Y系列三相异步电动机 2、电动机功率选择: ①传动装置的总效率η: 查表1取皮带传动效率0.96,轴承传动效率0.99,齿轮传动效率0.97,联轴器效率0.99。η=0.96×0.993×0.97×0.99=0.8945 ②工作机所需的输入功率P w: P w=(F w V w)/(1000ηw) 式中,F w=2.6 KN=2600N,V w=1.45m/s,ηw=0.96,代入上式得 P w=(2600×1.45)/(1000×0.96)=3.93 KW ③电动机的输出功率: P O= P w /η=3.93/0.8945=4.39KW 选取电动机额定功率P m,使电动机的额定功率P m=(1~1.3)P O,由查表得电动机的额定功率P=5.5KW。 3、确定电动机转速: 计算滚筒工作转速: n w=60×1000V/(πD)=60×1000×1.45/(π×420)=65.97r/min 由推荐的传动比合理范围,取圆柱齿轮传动一级减速器传动比范围i1=3~6。取V带传动比i2=2~4,则总传动比理时范围为i=6~24。 故电动机转速的可选范围为n=(6~24)×65.97=395.81~1583.28r/min。 4、确定电动机型号 根据以上计算,符合这一转速范围的电动机的同步转速有750r/min 、1000r/min和1500r/min,综合考虑电动机和传动装置的尺寸、结构和带传动及减速机的传动比,最终确定同步转速为1500r/min ,根据所需的额定功率及同步转速确定电动机的型号为Y132S-4 ,满载转速1140r/min 。

齿轮模具设计步骤

齿轮模具设计 专业班级: ______________________ 姓名: _______________________________ 学号: _____________________________ 指导教师: ______________________________ 设计时间: _______________________________ 物理与电气工程学院 2015年6月20日

F面一图1-1所示的齿轮为例,介绍CREO2.0模具设计的一般过程。 图1-1齿轮模型 1.1.1参照零件的布局 (1)启动CREO2.0,执行“文件”中的“设置工作目录”命令,选择一个合适的工作目录。 (2)选择下拉菜单“文件”,“新建”命令对话框。在“新建”对话框中的“类型”选项中选择“制造”,“子类型”中选择“模具型腔”,在名称文本框中输入模具型腔的文件名为“ chuitou,同时取消选择“使用默认模板”复选框,如图1-2所示。单击“确定”按钮,在弹出的“新文件选项”对话框,选择 “ mmn s_mfg_mold ”模板,如图1-3所示。单击“新文件选项”对话框中的“确定”按钮,进入模具设计模块。

图 本 石二 4 m 3 一匡览亠亠一蚁宰 和总 零 渎 制红 格 捉 布 记 标 Fxa p% 虫 C1B 卡 冋 鱼 SOOOOOO 阪宝件 ?掘貝型腔 Ejcpizt :?L "1 皿皿 了臭里

(3)单击“模具制造“工具栏上的“模具型腔布局”按钮总,弹出“打开” 对话框,同时弹出“布局”对话框,如图1-4所示。 (4)在“打开”对话框中选择“ chuitou.prt”零件后,单击“打开”按钮,弹出“创建参照模型”对话框,如图1-5所示。在“创建参照模型”对话框中选择“按参照合并”单选框,单击“确定”按钮接受默认的参照模型名称。

最新单级圆柱齿轮减速器课程设计

单级圆柱齿轮减速器课程设计 =85.5~94.5 r/min 根据《机械设计课程设计》P10表2-3推荐的合理传动比范围,采用圆柱齿轮传动一级减速器的传动比范围I’ = 3 ~ 6。 对于开式锥齿轮传动,取传动比I1’ = 2 ~ 3。那么总传动比的理论范围是ia’= I’×i1’= 6 ~ 18。 因此,电机速度的可选范围为nd’ = ia’ × NW = (6 ~ 18) × 90 = 540 ~ 1620转/分,在此范围内的同步速度为750、1000转/分和1500转/分 根据容量和转速,从相关手册中找出三种适用的电机型号:(如下表所示)方案电机型号额定功率电机转速(r/min)电机重量(n)参考价格传动比同步速度满载速度总传动比V带传动减速器Y132S-45 .5 1500 1440 650 1200 18.6 3.5 5.32 2 Y132M2-6 5.5 1000 960 800 1500 12.42 2.8

4.44 3 Y160M2-8 5.5 750 720 1240 2100 9.31 2.5 3.72 考虑到电机和传动装置的尺寸、重量、价格 nw=85.5~94.5 r/min ND’ = 530 ~ 1620 r/min,计算表明第二种方案更适合计算锥齿轮带传动的传动比、减速器。 所选电机型号为Y132M2-6,主要性能为:中心高h外形尺寸l×(交流/2+交流)*高清底角安装尺寸A×B地脚螺栓孔直径k轴延伸英寸D×E键安装位置尺寸f×GD 132 520×345×315 216×178 12 28×80 10×41电机外形尺寸和安装尺寸3 、 计算传动装置的运动和功率参数(1)确定传动装置的总传动比和分配级传动比。传动装置的总传动比可从所选的电机满载转速nm和工作机械驱动轴的转速n 1、获得: ia= nm/ nW =960/90 =10.67 ia=10.67 米

二级齿轮减速器的完整课程设计

机械设计减速器设计说明书 系别: 专业: 学生姓名: 学号: 指导教师: 职称:

目录 第一部分设计任务书 (4) 第二部分传动装置总体设计方案 (5) 第三部分电动机的选择 (5) 3.1 电动机的选择 (5) 3.2 确定传动装置的总传动比和分配传动比 (6) 第四部分计算传动装置的运动和动力参数 (7) 第五部分齿轮传动的设计 (8) 5.1 高速级齿轮传动的设计计算 (8) 5.2 低速级齿轮传动的设计计算 (15) 第六部分传动轴和传动轴承及联轴器的设计 (23) 6.1 输入轴的设计 (23) 6.2 中间轴的设计 (27) 6.3 输出轴的设计 (33) 第七部分键联接的选择及校核计算 (40) 7.1 输入轴键选择与校核 (40) 7.2 中间轴键选择与校核 (40) 7.3 输出轴键选择与校核 (40) 第八部分轴承的选择及校核计算 (41) 8.1 输入轴的轴承计算与校核 (41) 8.2 中间轴的轴承计算与校核 (42)

8.3 输出轴的轴承计算与校核 (42) 第九部分联轴器的选择 (43) 9.1 输入轴处联轴器 (43) 9.2 输出轴处联轴器 (44) 第十部分减速器的润滑和密封 (44) 10.1 减速器的润滑 (44) 10.2 减速器的密封 (45) 第十一部分减速器附件及箱体主要结构尺寸 (46) 设计小结 (48) 参考文献 (49)

第一部分设计任务书 一、初始数据 设计展开式二级斜齿圆柱齿轮减速器,初始数据F = 2700N,V = 1.95m/s,D = 380mm,设计年限(寿命):5年,每天工作班制(8小时/班):1班制,每年工作天数:300天,三相交流电源,电压380/220V。 二. 设计步骤 1. 传动装置总体设计方案 2. 电动机的选择 3. 确定传动装置的总传动比和分配传动比 4. 计算传动装置的运动和动力参数 5. 齿轮的设计 6. 滚动轴承和传动轴的设计 7. 键联接设计 8. 箱体结构设计 9. 润滑密封设计 10. 联轴器设计

齿轮模具设计步骤

齿轮模具设计专业班级: 姓名: 学号: 指导教师: 设计时间: 物理与电气工程学院 2015 年6 月20日 下面一图11所示得齿轮为例,介绍CREO2、0模具设计得一般过程。

图11齿轮模型 1.1.1参照零件得布局 (1)启动CREO2、0,执行“文件”中得“设置工作目录”命令,选择一个合适得工作目录。 (2)选择下拉菜单“文件”,“新建”命令对话框。在“新建”对话框中得“类型”选项中选择“制造”,“子类型”中选择“模具型腔”,在名称文本框中输入模具型腔得文件名为“chuitou,同时取消选择“使用默认模板”复选框,如图12所示。单击“确定”按钮,在弹出得“新文件选项”对话框,选择“mmns_mfg_mold”模板,如图13所示。单击“新文件选项”对话框中得“确定”按钮,进入模具设计模块。

图12“新建“对话框 图13“新文件选项“对话框 (3)单击“模具制造“工具栏上得“模具型腔布局”按钮,弹出“打开”对话框,同时弹出“布局”对话框,如图14所示。 (4)在“打开”对话框中选择“chuitou、prt”零件后,单击“打开”按钮,弹出“创建参照模型”对话框,如图15所示。在“创建参照模型”对话框中选择“按参照合并”单选框,单击“确定”按钮接受默认得参照模型名称。

图14“布局”对话框图15“创建参考模型”对话框 (5)单击“布局”对话框中得“参照模型起点与定向”选项区域中得拾取箭头,出现浮动参照模型窗口,同时出现“坐标系类型”菜单管理器,如图16所示。 1.1.2设置收缩率 (1)单击“模具制造”工具栏上得“按比例收缩”按钮,弹出“选取” 对话框,按照提示单击任何一个参照模型,选中得模型变成红色。 (2) 在弹出得“按比例收缩”对话框中选择“1+S”收缩率公式,选中参照模型中得坐标系PRT_CSYS_DEF,在“收缩率”文本框中输入0、005,如图18所示。 (3) 单击“按比例收缩”对话框中得“确定”按钮,即可完成全部零件得收缩率设置。

一年级直齿减速器装配图画图顺序详解

一年级直齿减速器装配图画图顺序详解 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

一级直齿减速器装配图画图步骤详解 (参考图:P198、p25、p15) 第一步首先估算箱体结构的大概尺寸,(箱体长>大齿轮分度圆直径+小齿轮分度圆直径;箱体宽>输出轴全长),然后考虑采用图纸的幅面和绘制的比例,规划画图的布局空间。 第二步根据前期绘制的零件图尺寸,先在图纸区域合适位置放置输入轴,输出轴和大、小齿轮的位置,两齿轮须在分度圆处啮合。 第三步,根据轴的结构设计,画与各自轴相配合的轴承。 第四步,绘制机体内壁线,外壁线,轴承座外端面线 机体内壁线距离小齿轮的端面距离为△2≥δ,根据计算取△2=8mm,(计算见设计说明书);大齿轮齿顶圆与箱体内壁距离为△1≥δ,取△1=9.6mm, 外壁线距离内壁线距离等于壁厚δ=8mm, 轴承座外端面线距离箱体内壁的距离l2=δ+C1+C2+(8~12)mm C1、C2根据轴承端盖连接螺栓直径查表,(8~12)为区分加工面和非加工面的尺寸余量,取8mm, 轴承盖外端面距离轴承座外端面的距离为盖厚e,可查指导书P37页根据结构设计确定。 凸台的外壁线距离内壁线l1=δ+C1+C2, 第五步,画轴承端盖和密封装置,轴承端盖画法参见P37表,密封装置由于轴承采用油脂润滑,需要设计档油板,结构设计可参见P56图和,也可自由设计结构。

轴承透盖与轴颈之间的配合采用毡圈式密封,结构可参考P58图以及P146页附表设计。 第六步,按照各构件的计算尺寸和俯视图的映射关系,向上做出正视图部分。机盖、机座肋厚m1=δ1,m=δ,见表,轴承端盖螺钉直径d3,轴承端盖外径D2,机座、机盖壁厚均可按表计算求得,大齿轮外轮廓半径按P73箱体结构设计要求确定。 第七步,按照指导书P73凸台结构设计投影方法画出凸台结构,并画出轴承旁连接螺栓(间距100-150mm)和机盖与机座连接螺栓(留出扳手空间),按P74机座底凸缘结构设计机座。按P73绘制小齿轮一端的外轮廓半径,使得外轮廓圆弧超过轴承旁凸台,便于形状的设计。至此,箱体整体外观轮廓设计基本完成。 第八步,补画细部结构,如窥视孔盖板,通气器,油标、油塞、定位销、启盖螺钉、吊环、吊钩,结构尺寸见P133介绍。绘制减速器油沟(p19)结构。 第九步,按投影关系画左视图,标注尺寸,完成整图设计.

齿轮模具设计

湖南信息职业技术学院 塑料成型工艺与模具设计 课程设计 设计课题:注射模具设计——罩 说 明 书 系部机电工程 专业模具设计与制造 班级模具0804 学生姓名谭玉亮 指导教师王宗华 2009年12月2日

目录 1、设计任务书 2、塑件的分析 2.1塑件原材料的分析 2.2 塑件的工艺性分析 2.2.1塑件的结构分析 2.2.2 塑件的尺寸精度分析 2.2.3 塑件的表面质量分析 3、计算塑件的体积和重量 4、塑件注射工艺参数的确定 5、对注塑机主要工艺参数的校核 5.1 最大注射量的校核 5.2 最大注射压力的校核 5.3 锁模力的校核 5.4 安装尺寸的校核 5.5 开模行程的校核 6、注射模的结构设计 6.1 分型面的选择 6.2 型腔的排列方式 6.3 浇注系统的设计 6.3.1 主流道的设计 6.3.2 分流道的设计 6.3.3 浇口的设计 7、成型零件的结构设计 7.1 型腔的结构设计 7.2 型芯的结构设计 8、成型零件的尺寸计算 9、推出机构的设计 10、冷却水道的设计 11、标准模架的选择 12、参考文献 附:模具总装配图

1、设计任务书 罩零件的设计任务书如下图所示:

2、塑件的分析 2.1塑件原材料的分析 PP料是一种热塑性塑料,原料易得,价格便宜,产量很大,仅次于PE、PVC 和PS。聚丙烯无味、无色、无毒,是结晶性的线性结构高聚物。外观似聚乙烯,但比聚乙烯更透明更轻。密度为0.90~0.91g/cm3,硬度为R80--110 ,吸水率为0.01%,收缩率为1.0%~2.5%,成型温度为160~220℃。聚丙烯不吸水、光泽好、易着色。具有特别高的抗弯曲疲劳强度。聚丙烯的熔点为164℃~170℃,其耐热性好,能在100℃以上的温度下进行消毒灭菌,聚丙烯在低温下使用温度可达-15℃,在-35℃时会脆裂。聚丙烯的高频绝缘性能好,而且由于其不吸水,绝缘性能不受湿度的影响。聚丙烯的严重缺点是在氧、热、光的作用下极易降解、老化,所以必须加入稳定剂。 聚丙烯不吸水,所以成型前不需干燥。PP料的成型收缩范围大,易发生缩孔、凹痕及变形等缺陷。聚丙烯的热容量大,注射成型模具必须设计能充分进行冷却的冷却回路,应注意控制模具温度,模温太低(<50℃),塑件无光泽,易产生熔接痕;模温太高(>90℃),易产生翘曲、变形。 聚丙烯的成型特性为: (1)成型性好,可采用注射、吹塑、真空热成型、涂覆、旋转成型、电镀和发泡,还可以在金属表面喷涂。 (2)结晶料,吸湿性小,成型前不需要干燥。 (3)易发生融体破裂,长期与热金属接触易分解,成型时需加入稳定剂。(4)流动性好,溢边值为0.03mm左右,收缩范围及收缩值大,易发生缩孔,凹痕,变形。 (5)冷却速度慢,模具应设计能充分进行冷却的冷却回路,并注意控制成型温度,模具温度低于50度时,塑件不光滑,易产生熔接不良,留痕,填充不足,90度以上易发生翘曲变形。 (6)塑料壁厚须均匀,避免缺胶,尖角,以防应力集中。塑件成型后应采用火焰处理或类似技术。脱模斜度宜取1°~3°。 (7)质软易脱模,当塑件有浅侧凹(凸)时,可强制脱模。 2.2塑件的工艺性分析 综合看来,该塑件结构简单,无特殊的结构要求,可采用注射成型加工。在注射成型生产时,只要工艺参数控制得当,该塑件是比较容易成型的。 2.2.1塑件的结构分析 ○1从图纸上分析,该塑件的外形为回转体,壁厚均匀,且符合最小壁厚要求。○2塑件端面有6个φ17的孔,应注意孔的位置。 ○3塑件的转角处都采用圆弧过渡,以防止应力集中,提高塑件的强度。

相关文档
最新文档