常用ep设计软件

常用ep设计软件
常用ep设计软件

Inventor:

整车组车架部分建模一般采用Inventor,任何零部件的设计都需要先用3D软件精细建模,充分考虑到零部件需要实现的功能、是否满足强度和刚度的要求、是否达到轻量化的要求、安装细节、现有的工艺是否能实现等方面。因为Inventor的操作简便,方便易学,是初步设计或者一些要求不高的设计重点依赖的3D基础建模软件。

基于上述情况,我们重点掌握草图、零件、装配、应力分析就够用了。在转向设计中的草图拼凑法是比较方便的设计方案。一些要求精度不高的应力分析,或者仅仅做一些横向对比,用Inventor应力分析还是相当方便的。

对于Inventor想要强调以下几点:

1.建模规范。新的设计开始,首先建立项目。在该项目下新建零件和装配。

2.整车总装时要把每个部分分别建立文件夹,每个部分先建立装配,最后总装配再把每个

部分的装配导入,装配成最终的版本。最后的整车总装是整车组负责的,传动和发动机组会把各自的建模发给我们,所以一定要有序整理,方便找到问题,及时修改。比如,

3.装配结束后要仔细检查各个零部件是否有干涉的情况,不仅仅要检查静态情况下,运动

状态是否干涉在设计阶段也要避免!

4.导出的时候把装配打包,这样把该项目中所有相关的零件打包出来,没有用的零件就自

动过滤掉,千万不要直接拷出来!

5.应力分析的时候要注意模型的简化,固定方式正确,受力加载准确。同时,应力分析的

时候因为Inventor是自动生成的网格,一定要注意网格质量,可以进行手动的加密。计算结束后可以看一下生成的网格,理论上说网格越密,计算越精准。加密就是在一些曲率很大或者重点关注的部分细分网格。

Catia:

整车组车壳设计有运用Catia设计的传统,主要用到的是创成式曲面设计和自由曲面设计的命令。Catia曲面构造过程中很大一部分工作都是在构造线框,并用之构造出高质量的曲面。线框构造有相当多的技巧可以提升线的质量,使之能够达到自己的需求。在画原型车车壳的时候使用最多的命令就是样条线,曲线光顺等命令。具体构造方式在catia培训中会

讲到,在此不多做介绍。

Gambit:

这是一款可以手动进行结构画网格和非结构化网格划分的工具。在整车组中主要用来进行二维的空气动力学分析。但其实它的功能相当强大,在ansys集成cfd等优秀的网格划分工具前它占据了网格划分界很重要的部分。随着ansys的普遍应用,使用gambit就越来越少了,并且gambit的操作不太人性化,不好上手。之后在培训中会根据时间选择是否给大家培训。大家有兴趣的可以自己去研究一下。

Hyperworks:

Altair HyperWorks是一个创新、开放的企业级CAE(计算机辅助工程),它集成设计与分析所需各种工具,具有无比的性能以及高度的开放性、灵活性和友好的用户界面。Altair 公司推出的HyperWorks系列软件囊括了很多模块:Altair HyperMesh、Altair MotionView、

Altair HyperGraph、Altair HyperForm、Altair HyperOpt、Altair OptiStruct、Altair OptiStruct/FEA。

在CAE工程技术领域, Hypermesh最著名的特点是它所具有的强大的有限元网格划分前处理功能和后处理功能。一般来说,CAE分析工程师80%的时间都花费在了有限元模型的建立,修改和网格划分上,而真正的分析求解时间是消耗在计算机工组站上,所以采用一个功能强大,使用方便灵活,并能够与众多CAD系统和有限元求解器进行方便的数据交换的有限元前后处理工具,对于提高有限元分析工作的质量和效率具有十分重要的意义。

我们主要研究出用到的几个方面分别是:

1.Hypermesh非结构化网格划分,划分网格质量更好的面网格,导入ICEM CFD,用于流场

的建立。

2. Hypermesh optistruct优化,在概念设计阶段应用优化,为减少结构质量及其相关费用

提供强有力工具,以最少的输入产生优化的初始设计结构。

3.复合材料分析,由于碳纤维复合材料是各项异性的材料,用普通的有限元分析方法无法

实现正确的分析,所以要探寻专门用于符合材料分析的软件。

(关于网格的相关概念我们会在后期的培训中给大家详细介绍)

Ansys:

ANSYS软件是融结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件。整车组现在主要运用Ansys进行流体动力学分析。ANSYS也包括了不同的模块,主要分为三个部分:前处理、分析计算模块和后处理模块。

前处理模块提供了一个强大的实体建模及网格划分工具,前处理模块主要进行实体建模(也可以把CATIA、Inventor等3D建模导成stp或者igs格式直接导入),网格划分,施加载荷。我们用到的前处理模块就是ICEM CFD。CFD和之前介绍的Hypermesh都可以进行网格的划分。为了进行车壳空气动力学分析,我们在CFD中划分体网格,结合Hypermesh中导入的面网格,创建由非结构网格构成的流场。

分析计算模块Fluent,用来模拟从不可压缩到高度可压缩范围内的复杂流动。由于采用了多种求解方法和多重网格加速收敛技术,因而FLUENT能达到最佳的收敛速度和求解精度。灵活的非结构化网格和基于解的自适应网格技术及成熟的物理模型,使FLUENT在转换与湍流、传热与相变、化学反应与燃烧、多相流、旋转机械、动/变形网格、噪声、材料加工、燃料电池等方面有广泛应用。我们主要利用Fluent对于在ICEM CFD中创建的流场进行分析计算,最终得出我们设计的车壳在设定的情况下阻力和阻力系数(Cd值)。

后处理模块:ANSYS快捷前后处理系统WorkbechEnviroment、专业CAE分析前后处理系统AI Environment、ANSYS统一的前后处理器ANSYSPrepPost等。我们就利用Fluent中自带的后处理查看经过分析计算后设定流体流过流场的状况,从而对于车壳设计提出指导性的意见,改善车壳空气动力性能。

(这部分的知识,等到大家大三上学了流体力学后会有更深刻的认识,当然,我们在进行到这部分的培训时,也会给大家介绍到的)

除此之外,Ansys还可以帮助发动机进排气管的优化,FLUENT软件的动网格技术处于绝对领先地位,并且包含了专门针对多体分离问题的六自由度模型,以及针对发动机的两维半动网格模型。对于动网格的相关软件技能还在学习阶段,如果在培训结束之前我们研究出一定的成果,会和大家分享。在这里鼓励大家对于此项技术进行研究~

Star-ccm+:

STAR-CCM+是CD-adapco公司采用最先进的连续介质力学数值技术开发的新一代CFD求解器,它搭载了CD-adapco独创的最新网格生成技术,可以完成复杂形状数据输入、表面准备——如包面(保持形状、简化几何、自动补洞、防止部件接触、检查泄露等功能)、表面网格重构、自动体网格生成(包括多面体网格、六面体核心网格、十二面体核心网格、四面体网格)等生成网格所需的一系列作业。STAR-CCM+使用CD-adapco倡导的多面体网格,相比于原来的四面体网格,在保持相同计算精度的情况下,可以实现计算性能约3~10倍的提高。比如,Fluent中处理在ICEM CFD中创建的四面体体网格流场,计算100次要大约20min 的时间,而STAR-CCM+创建的六面体网格把这个时间大大的缩短。

室内设计CAD常用快捷键

室内设计CAD常用快捷键 CAD快捷键大全 L, *LINE 直线 ML, *MLINE 多线(创建多条平行线) PL, *PLINE 多段线 PE, *PEDIT 编辑多段线 SPL, *SPLINE 样条曲线 SPE, *SPLINEDIT 编辑样条曲线 XL, *XLINE 构造线(创建无限长的线) A, *ARC 圆弧 C, *CIRCLE 圆 DO, *DONUT 圆环 EL, *ELLIPSE 椭圆 PO, *POINT 点 DCE, *DIMCENTER 中心标记 POL, *POLYGON 正多边形 REC, *RECTANG 矩形 REG, *REGION 面域 H, *BHATCH 图案填充 BH, *BHATCH 图案填充 -H, *HATCH HE, *HATCHEDIT 图案填充...(修改一个图案或渐变填充)SO, *SOLID 二维填充(创建实体填充的三角形和四边形)*revcloud 修订云线 *ellipse 椭圆弧 DI, *DIST 距离 ME, *MEASURE 定距等分 DIV, *DIVIDE 定数等分 DT, *TEXT 单行文字 T, *MTEXT 多行文字 -T, *-MTEXT 多行文字(命令行输入) MT, *MTEXT 多行文字 ED, *DDEDIT 编辑文字、标注文字、属性定义和特征控制框ST, *STYLE 文字样式 B, *BLOCK 创建块... -B, *-BLOCK 创建块...(命令行输入) I, *INSERT 插入块 -I, *-INSERT 插入块(命令行输入) W, *WBLOCK “写块”对话框(将对象或块写入新图形文件)-W, *-WBLOCK 写块(命令行输入)

(整理)各种光学设计软件介绍-学习光学必备-peter.

光学设计软件介绍 ZEMAX是美国焦点软件公司所发展出的光学设计软件,可做光学组件设计与照明系统的照度分析,也可建立反射,折射,绕射等光学模型,并结合优化,公差等分析功能,是套可以运算Sequential及Non-Sequential的软件。版本等级有SE:标准版,XE:完整版,EE:专业版(可运算Non-Sequential),是将实际光学系统的设计概念、优化、分析、公差以及报表集成在一起的一套综合性的光学设计仿真软件。ZEMAX的主要特色:分析:提供多功能的分析图形,对话窗式的参数选择,方便分析,且可将分析图形存成图文件,例如:*.BMP, *.JPG...等,也可存成文字文件*.txt;优化:表栏式merit function参数输入,对话窗式预设merit function参数,方便使用者定义,且多种优化方式供使用者使用;公差分析:表栏式Tolerance参数输入和对话窗式预设Tolerance参数,方便使用者定义;报表输出:多种图形报表输出,可将结果存成图文件及文字文件。 CODE V是Optical Research Associates推出的大型光学设计软件,功能非常强大,价格相当昂贵CODE V提供了用户可能用到的各种像质分析手段。除了常用的三级像差、垂轴像差、波像差、点列图、点扩展函数、光学传递函数外,软件中还包括了五级像差系数、高斯光束追迹、衍射光束传播、能量分布曲线、部分相干照明、偏振影响分析、透过率计算、一维物体成像模拟等多种独有的分析计算功能。是世界上应用的最广泛的光学设计和分析软件,近三十多年来,Code V进行了一系列的改进和创新,包括:变焦结构优化和分析;环境热量分析;MTF和RMS波阵面基础公差分析;用户自定义优化;干涉和光学校正、准直;非连续建模;矢量衍射计算包括了偏振;全球综合优化光学设计方法。 CODE V是美国著名的Optical Research Associates(ORA?)公司研制的具有国际领先水平的大型光学工程软件。自1963年起,该公司属下数十名工程技术人员已在CODE V程序的研制中投入了40余年的心血,使其成为世界上分析功能最全、优化功能最强的光学软件,为各国政府及军方研究部门、著名大学和各大光学公司广泛采用1994年,ORA公司聘请北京理工大学光电工程系为其中国服务中心。与国际上其它商业性光学软件相比,CODE V的优越性突出地表现在以下几个方面: 1.CODE V可以分析优化各种非对称非常规复杂光学系统。这类系统可带有三维偏心或倾斜的元件;各类特殊光学面如衍射光栅、全息或二元光学面、复杂非球面、以及用户自己定义的面型;梯度折射率材料和阵列透镜等等。程序的非顺序面光线追迹功能可以方便地

常用光学设计软件介绍

ZEMAX ZEMAX是美国焦点软件公司所发展出的光学设计软件,可做光学组件设计与照明系统的照度分析,也可建立反射,折射,绕射等光学模型,并结合优化,公差等分析功能,是套可以运算Sequential及Non-Sequential的软件。版本等级有SE:标准版,XE:完整版,EE:专业版(可运算Non-Sequential)。 ZEMAX的主要特色:分析:提供多功能的分析图形,对话窗式的参数选择,方便分析,且可将分析图形存成图文件,例如:*.BMP, *.JPG...等,也可存成文字文件*.txt;优化:表栏式merit function参数输入,对话窗式预设merit function参数,方便使用者定义,且多种优化方式供使用者使用;公差分析:表栏式Tolerance参数输入和对话窗式预设Tolerance 参数,方便使用者定义;报表输出:多种图形报表输出,可将结果存成图文件及文字文件。 CODE V CODE V是世界上应用的最广泛的光学设计和分析软件,近三十多年来,Code V进行了一系列的改进和创新,包括:变焦结构优化和分析;环境热量分析;MTF和RMS波阵面基础公差分析;用户自定义优化;干涉和光学校正、准直;非连续建模;矢量衍射计算包括了偏振;全球综合优化光学设计方法。 OSLO oslo是一套标准建构系统及最佳化的光学软件。最主要地,他是用来决定光学系统中最佳组件的大小和外型,如照相机、客户产品、通讯系统、军事/外层空间应用以及科学仪器等。除此之外、他也常用于仿真光学系统性能以及发展出一套对光学设计、测试和制造的专门软件工具。 LENSVIEW LensVIEW为搜集在美国以及日本专利局申请有案的光学设计的数据库,囊括超过18,000个多样化的光学设计实例,并且每一实例都显示它的空间位置。它搜集从1800年起至目前的光学设计数据,这个广博的LensVIEW数据库不仅囊括光学描述数据,而且拥有设计者完整的信息,摘要,专利权状样本,参考文件,美国和国际分类数据,和许多其它的功能。LensVIEW 并能产生各式各样像差图,做透镜的快速诊断,和绘出这个设计的剖面图。 ASAP ASAP是功能强大的光学分析软件,是专为仿真成像或光照明的应用而设计,让您的光学工程工作更加正确且迅速。ASAP让您在制作原型系统或大量生产前可以预先做光学系统的仿真以便加快产品上市的时间。 传统描光程序的速度是非常烦琐秏时的。ASAP对于整个非序列性描光工具都经过速度的优化处理,让您可以在短时间内就可做数百万条几何描光的计算。光线可不计顺序及次数的经过表面,还可向前,向后追踪。此外ASAP具有强大的指令集可以让您进行特性光线以及物体的

matlab光学仿真

MATLAB光学仿真实验报告

目录 一、实验目的 (3) 二、实验内容 (3) 三、实验原理 (3) 四.实验结果(各种干涉图样,) (4) 1.平面波与球面波之间的相互干涉 (4) (1)平面波与平面波方向相对的干涉 (4) (2)球面波与球面波 (5) (3)球面波与平面波 (6) 2.双缝干涉 (7) (1)经典杨氏双缝干涉 (7) (2)接收屏在侧面,且二者连线与干涉面垂直 (7) 3.多孔干涉 (8) (1)三孔干涉 (8) (2)四个孔干涉 (9) 4.多个不同方向的平面波 (10) 5.牛顿环与电磁波传播 (10) (1)牛顿环 (10) (2)模拟电磁波动画 (11) 五,实验总结与感想 (11)

一、实验目的 通过对光学现象的仿真,加深对各种光学现象本质的理解,同时,学会利用MATLAB,这种有效工具研究物理光学。 二、实验内容 这次由于时间关系,只研究了光的干涉现象,不过干涉内容很多,按照老师给的实验的提示内容,我每个都做了。并且自己还加了一些内容。按先后顺序非别如下: 1.平面波与球面波之间的相互干涉 (1)平面波与平面波方向相对的干涉,并且调整角度,方向相对干涉。 (2)球面波与球面波,这个研究的比较多,我分别研究了两个光源,三个,四个以及六个光源在与之共面的平面上的干涉,得到许多精美的图案。 (3)球面波与平面波 2.经典的杨氏双缝干涉 由于杨氏干涉比较重要,所以研究的时间相对较长,这个我为了更好的调整参数,采用了先输入数据的方法,之后才运行得到结果,我还增加了研究非单色光的研究。 另外,我还研究了与两个点光源连线相垂直的屏上的干涉,虽然这个不属于杨氏干涉,但是原理其实差不多。 3.多孔干涉 这部分其实原理差不多,只需要设置对参数。这部分分别研究了三孔和四孔的干涉,并且干涉屏的位置也不一样,分为与孔面平行和与孔面平行,总共四中情况,从中自己也找到了规律。 4.多个不同方向的平面波 这部分研究了三个不同方向的片面波与四个方向的平面波,从中得到一些图案,找到了规律。 5.模拟电磁波传播动画(代码借鉴一本参考书的)与牛顿环 为了加深对电磁波传播的理解,做了个模拟电磁波传播的动画,另外,还做了个牛顿环干涉。 三、实验原理 MATLAB是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括

光学系统设计

光学系统设计(五) 一、单项选择题(本大题共 20小题。每小题 1 分,共 20 分) 在每小题列出的四个备选项中只有一个是正确的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.对于密接双薄透镜系统,要消除二级光谱,两透镜介质应满足 ( )。 A.相对色散相同,阿贝常数相差较小 B.相对色散相同,阿贝常数相差较大 C.相对色散相差较大,阿贝常数相同 D.相对色散相差较小,阿贝常数相同 2.对于球面反射镜,其初级球差表达公式为 ( )。 A.?δ2h 81L =' B. ?δ2h 81L -=' C. ?δ2h 41 L =' D. ?δ2 h 41 L -=' 3.下列光学系统中属于大视场大孔径的光学系统是 ( )。 A.显微物镜 B.望远物镜 C.目镜 D. 照相物镜 4.场曲之差称为 ( )。 A.球差 B. 彗差 C. 像散 D. 色差 5.初级球差与视场无关,与孔径的平方成 ( )。 A.正比关系 B.反比关系 C.倒数关系 D.相反数关系 6.下面各像差中能在像面上产生彩色弥散斑的像差有( )。 A.球差 B.场曲 C.畸变 D.倍率色差 7.不会影响成像清晰度的像差是 ( )。 A.二级光谱 B.彗差 C.畸变 D.像散 8.下列光学系统中属于大视场小孔径的光学系统是 ( )。 A.显微物镜 B.望远物镜 C.目镜 D. 照相物镜 9.正弦差属于小视场的 ( )。 A.球差 B. 彗差 C. 畸变 D. 色差 10.初级子午彗差和初级弧矢彗差之间的比值为 ( )。 :1 :1 C.5:1 :1 11.光阑与相接触的薄透镜重合时,能够自动校正 ( )。 A.畸变 B.场曲 C.球差 D.二级光谱 12.在子午像差特性曲线中,坐标中心为z B ',如0B '位于该点左侧,则畸变值为 ( )。 A.正值 B.负值 C.零 D.无法判断 13.厚透镜之所以在校正场曲方面有着较为重要的应用,是因为 ( )。 A.通过改变厚度保持场曲为零 B.通过两面曲率调节保持光焦度不变 C.通过改变厚度保持光焦度不变 D.通过两面曲率调节保持场曲为0 14.正畸变又称 ( )。 A.桶形畸变 B.锥形畸变 C.枕形畸变 D.梯形畸变 15.按照瑞利判断,显微镜的分辨率公式为 ( )。 A.NA 5.0λσ= B. NA 61 .0λ σ= C.D 014' '=? D. D 012' '=? 16.与弧矢平面相互垂直的平面叫作 ( )。 A.子午平面 B.高斯像面 C.离焦平面 D.主平面 17.下列软件中,如今较为常用的光学设计软件是 ( )。 软件 软件 软件 软件 18.光学传递函数的横坐标是 ( )。 A.波长数 B.线对数/毫米 C.传递函数值 D.长度单位 19.星点法检验光学系统成像质量的缺陷是 ( )。

最新PCB设计常用快捷键

1 2 常用快捷键 3 P/P 画元件引脚 4 P/A 画弧线 5 P/L 画直线 6 P/R 画矩形 7 T/C 创建一个新的元器件 8 T/R 删除原理图元件库浏览器窗口中选中的元器件9 T/E 为原理图元件库中选中的元器件重命名 10 T/W 为原理图元件库中选中的元器件创建一个子件11 T/T 删除原理图元件库中选中的元器件子件 12 二、原理图绘制常用快捷键 13 Ctrl + 空格键重复上一次操作 14 Alt + 空格键取消上一次操作 15 PageUP 以光标当前位置为中心进行放大 16 Ctrl + PageDown 显示所有图件 17 PageDown 以光标当前位置为中心进行缩小 18 End 或 V/R 刷新工作区 19 Shift + ← 光标以十倍锁定栅格的尺寸为单位左移20 Shift + ↑ 光标以十倍锁定栅格的尺寸为单位上移21

Shift + ↓ 光标以十倍锁定栅格的尺寸为单位下移23 Shift + Insert 粘贴 24 Ctrl + Insert 复制 25 Shift + Delete 剪切 26 Ctrl + Delete 删除 27 Ctrl + F 查找元件 28 P/P 放置元件 29 P/W 画连线 30 P/B 画总线 31 P/U 画总线分支线 32 P/J 放置电路接点 33 P/O 放置电源或地 34 P/N 放置网络标号 35 三、 PCB 库元件制作常用快捷键 36 PageUP 以光标当前位置为中心进行放大 37 Ctrl + PageDown 显示所有图件 38 PageDown 以光标当前位置为中心进行缩小 39 End 或 V/R 刷新工作区 40 Shift + ← 光标以十倍锁定栅格的尺寸为单位左移41 Shift + ↑ 光标以十倍锁定栅格的尺寸为单位上移42 Shift + → 光标以十倍锁定栅格的尺寸为单位右移43

Light Tools软件介绍

LightTools 简介 LightTools 是一个全新的具有光学精度的交互式三维实体建模软件体系,提供最现代化的手段直接描述光学系统中的光源、透镜、反射镜、分束器、衍射光学元件、棱镜、扫描转鼓、机械结构以及光路。由于LightTools 把光学和机械元件集合在统一的体系下处理,并配有“放置”光源、发射光线的非顺序面光线追迹的强大功能,使它在系统初步设计、复杂系统设计规划、光机一体设计、杂光分析、照明系统设计分析、单位各部门间学术交流和数据交换、课题论证或产品推广等各环节中均可发挥重要的作用,成为人们理想的工具。 LightTools 简介 美国Optical Research Associates (ORA?) 公司以研制国际领先的CODE V? 光学工程软件而著称于世。1995年,该公司根据用户需求和计算机技术的发展,隆重推出最新产品—光学系统建模软件LightTools,马上得到各国用户的欢迎和好评,并获得国际大奖。1997年,ORA 又研制成功与LightTools 主体程序配套使用的Illumination 模块,圆满地解决了照明系统的计算机辅助设计问题。 其中的主要功能简单介绍如下: 系统建模 提供多种展现系统光机模型的方式和人机交互的手段。使用者可直接在系统的二维、三维线框图或三维实体模型图上进行各种操作。方便易用的图形交互式建模和修改功能包括元件或元件组的放置、移动、旋转、复制和缩放。操作时既可用鼠标以实时观察修改造成的效果,也可用键盘以输入准确的数据。透镜、反射镜和棱镜等光学元件及各种机械件可以极快地以图形方式“画入”系统。系统数据可以用表格和元件详情对话框的形式列出和修改。所有上述各种输入方式同时并存,可交替使用。 光机一体化设计 光学和机械元件的形状的描述是通过对软件提供的一组尺寸可变的基本实体模型做布尔运算(与、或、异等等)实现的。这些光学或机械部件的形状虽然可能非常复杂,但均可以在软件中得到精确的展现和描绘,并以光学精度进行光线追迹。遮光罩、镜筒和产品结构的设计均将大大得益于这种光机一体的考虑方法和非顺序光线追迹提供的大量信息。 复杂光路设置 在光学设计中,LightTools 可以和ORA 公司研制的CODE V 软件配合使用。特别是在多光路或折迭光路系统、带有棱镜或复杂曲面的系统的光路设置和视觉建模型验证中,LightTools 将发挥重要作用。有了LightTools,设计人员完全可以摒弃过去为了简化问题而采用的一些传统技巧,如符号规则、用多通道定义模拟变焦功能、把反射镜和棱镜展开成平板、略去非光学面和机械结构的影响、人为简化光瞳形状,等等。

【推荐下载】新一代光学设计仿真软件FRED Optimum

新一代光学设计仿真软件FRED Optimum 设计光学元件,用于通过Luxeon® III Lambertian LED 光源在目标区域提供所需要的均匀性和高透过率分布. ?问题: 设计光学元件,用于通过Luxeon® III Lambertian LED 光源在目标区域提供所需要的均匀性和高透过率分布. 解决: 利用FRED Optimum的混合优化定义两个优化函数,包含多个变量(在这里例子中为10个)来创建两个不同的光学元件,第一个为高透过率而第二个为高透过率并且均匀. ?谁应该用我们的FRED Optimum版本呢?任何人在他们的光学工程工作中都需要优化。这包括照明工程师,需要优化拥有10万条光线的LED系统、导光管的耦合效率,背光系统:并且光学设计师需要进行非序列性优化,特别在他们系统模型中还需要形状不常见的光学元件时。 ?FRED Optimum是FRED最新版本.它包含了内置的混合优化模块,并且拥有利用当今高性能多CPU系统来加速光线追迹的能力。 ?为什么FRED Optimum的混合优化不同于透镜设计软件的优化?FRED的新混合全面优化运算是非序列性的。允许多重目标,拥有fractional weighting性能以连接变量和利用多种内置优化函数,加上用户自定义scripted优化函数可以应对非常任务。混合运算拥有对在FRED中直接建的(如上图)或者从CAD软件中导入的NURBS表面进行全面优化的能力。优化方案给了用户完全控制变量,优化函数和优化运算(1D or Downhill Simplex)以解决艰苦的照明设计问题。 ?FRED Optimum的菜单用看起来非常简单:用于优化时定义参数的内置标签电子数

办公设计软件快捷键大全+笔记本电脑快捷键

笔记本电脑快捷键大全 熟记以下快捷键,你就就能脱离鼠标,光用键盘操作电脑了! 一、常见用法: F1 显示当前程序或者windows的帮助内容。 F2 当你选中一个文件的话,这意味着“重命名” F3 当你在桌面上的时候是打开“查找:所有文件” 对话框 F10或ALT 激活当前程序的菜单栏 windows键或CTRL+ESC 打开开始菜单 CTRL+ALT+DELETE 在win9x中打开关闭程序对话框 DELETE 删除被选择的选择项目,如果是文件,将被放入回收站 SHIFT+DELETE 删除被选择的选择项目,如果是文件,将被直接删除而不是放入回收站 CTRL+N 新建一个新的文件 CTRL+O 打开“打开文件”对话框 CTRL+P 打开“打印”对话框 CTRL+S 保存当前操作的文件 CTRL+X 剪切被选择的项目到剪贴板 CTRL+INSERT 或 CTRL+C 复制被选择的项目到剪贴板 SHIFT+INSERT 或 CTRL+V 粘贴剪贴板中的内容到当前位置 ALT+BACKSPACE 或 CTRL+Z 撤销上一步的操作 ALT+SHIFT+BACKSPACE 重做上一步被撤销的操作 Windows键+M或windows+D 最小化所有被打开的窗口。 Windows键+shift+M或windows+D 重新将恢复上一项操作前窗口的大小和位置 Windows键+E 打开资源管理器 Windows键+F 打开“查找:所有文件”对话框 Windows键+R 打开“运行”对话框 Windows键+BREAK 打开“系统属性”对话框 Windows键+CTRL+F 打开“查找:计算机”对话框 SHIFT+F10或鼠标右击打开当前活动项目的快捷菜单 SHIFT 在放入CD的时候按下不放,可以跳过自动播放CD。在打开word 的时候按下不放,可以跳过自启动的宏

选择最佳的光学设计软件

用于设计攸关产品成败的光学系统的软件 选择最佳的光学设计软件 作为公司决策人,需要为解决公司的盈亏问题做出明智选择时,您会选择哪一种光学设计软件呢?如果光学系统的性能攸关产品成败,那么答案将是 CODE V ?。CODE V 能够增进设计团队的设计效率,提高首次设计和制造的成功率,加快产品上市时间,让您的产品具有所向披靡的竞争优势。 CODE V 软件由 Optical Research Associates (ORA ?) 开发而成。四十多年来,ORA 帮助许多客户走上成功之路: ? ORA 拥有世界上规模最大的商业光学工程软件开发 队伍。 ? ORA 利用最先进的软件配置管理方法,将软件开发流 程形式化,确保在这样的开发环境下能够产生创新算法,以提供高质量、高可靠性、高度精确的结果。 ? ORA 的客户支持员工具有 50 多人年的工程经 验,专门致力于帮助客户成功应用我们的产品。这是他们的全职工作,而不是额外承担的责任。 ? ORA 拥有专业软件测试员工。我们的测试人员 每天会构造和评估成百上千的测试案例,对开发中的代码进行测试。 ? ORA 的内部工程服务小组会在最尖端的真实工 程应用中验证 CODE V 的每个版本。 ? ORA 的员工中包括三名 OSA 研究员和四名 SPIE 研究员。ORA 的工程师们已发表 300 多篇学术论文,有些人还是与光学系统有关的近 100 项专利的发明人或共同发明人。 ORA 以开发世界一流的光学工程软件产品为己任。在这种力创一流的精神指引下,我们的产品使客户受益颇多,下面是其中的几个方面。 增进设计团队的设计效率 CODE V 的开发宗旨是帮助光学工程师完成从概念到制造的整个设计周期。Windows 标准图形用户界面有助于新用户快速掌握 CODE V 的强大功能。CODE V 还支持命令行输入、易于学习的宏编辑功能以及 COM 应用编程接口 (API)。所有这些将能让您的工程师们以最有效的方式使用程序,并且允许将 CODE V 与支持 COM 的其它工程软件工具整合使用。 CODE V 图形用户界面 (GUI) CODE V 有能力让工程师们为极其复杂的系统建模并进行分析。CODE V 支持多种不同的用户可编程子程序(例如: 用户编程的表面形状和用户编程的表面属性等),以充分运用系统建模的灵活性。任何基本表面形状均可应用衍射属性,以便进行光栅、kinoform 、二元光学系统等的建模。通过焦点分析、真实无焦建模(非常适合于设计目视系统)及其它功能,CODE V 支持像散光源、偏振器件、单轴晶体双折射材料、应力双折射建模。

光学设计软件zemax study

光学系统设计(Zemax初学手册)蔡长青 ISUAL 计划团队 国立成功大学物理系 (第一版,1999年7月29日) 内容纲目: 前言 习作一:单镜片(Singlet) 习作二:双镜片 习作三:牛顿望远镜 习作四:Schmidt-Cassegrain和aspheric corrector 习作五:multi-configuration laser beam expander 习作六:fold mirrors和coordinate breaks 习作七:使用Extra Date Editor, Optimization with Binary Surfaces 前言 整个福尔摩沙卫星二号「红色精灵」科学酬载计划,其量测仪器基本上是个光学仪器。所以光学系统的分析乃至于设计与测试是整个酬载发展重要一环。 这份初学手册提供初学者使用软件作光学系统设计练习,整个需要Zemax光学系统设计软件。它基本上是Zemax使用手册中tutorial的中文翻译, 由蔡长青同学完成,并在Zemax E. E. 7.0上测试过。由于蔡长青同学不在参与「红色精灵」计划,所以改由黄晓龙同学接手进行校稿与独立检验,整个内容已在Zemax E. E. 8.0版上测试过。我们希望藉此初学手册(共有七个习作)与后续更 多的习作与文件,使团队成员对光学系统设计有进一步的掌握。(陈志隆注)(回内容纲目) 习作一:单镜片(Singlet) 你将学到:启用Zemax,如何键入wavelength,lens data,产生ray fan,OPD,spot diagrams,定义thickness solve以及variables,执行简单光学设计优化。 设想你要设计一个F/4单镜片在光轴上使用,其focal length 为100mm,在可见光谱下,用BK7镜片来作。

广告设计软件快捷键

将选取物件向上对齐【T】 将选取物件向下对齐【B】 将选取物件向右对齐【R】 将选取物件向左对齐【L】 垂直对齐选取物件的中心【C】水平对齐选取物件的中心【E】重复上一个动作【Ctrl】+【R】 将选取图块或文字发送到最上层【Shift】+【PageUp】 将选取图块或文字发送到最上层【Shift】+【PageDown】

按"D"恢复到原来默认的前景色和背景色 按“X"切换前景色和背景色 一、工具箱(多种工具共用一个快捷键的可同时按【Shift】加此快捷键选取) 矩形、椭圆选框工具【M】 移动工具【V】 套索、多边形套索、磁性套索【L】 魔棒工具【W】 裁剪工具【C】 切片工具、切片选择工具【K】 喷枪工具【J】 画笔工具、铅笔工具【B】 像皮图章、图案图章【S】 历史画笔工具、艺术历史画笔【Y】 像皮擦、背景擦除、魔术像皮擦【E】 渐变工具、油漆桶工具【G】 模糊、锐化、涂抹工具【R】 减淡、加深、海棉工具【O】 路径选择工具、直接选取工具【A】 文字工具【T】 钢笔、自由钢笔【P】 矩形、圆边矩形、椭圆、多边形、直线【U】 写字板、声音注释【N】 吸管、颜色取样器、度量工具【I】 抓手工具【H】 缩放工具【Z】 默认前景色和背景色【D】 切换前景色和背景色【X】 切换标准模式和快速蒙板模式【Q】 标准屏幕模式、带有菜单栏的全屏模式、全屏模式【F】 跳到ImageReady3.0中【Ctrl】+【Shift】+【M】 临时使用移动工具【Ctrl】 临时使用吸色工具【Alt】 临时使用抓手工具【空格】 快速输入工具选项(当前工具选项面板中至少有一个可调节数字) 【0】至【9】循环选择画笔【[】或【]】 建立新渐变(在”渐变编辑器”中) 【Ctrl】+【N】

CODE V光学设计软件简介

CODE V光学设计软件简介! ??CODE V是一个光学系统设计和分析优化软件,广泛使用于照相设备、摄影机和医疗器具等,功能强大使用简单灵活。??[attachment=136] ? CODE V是美国著名的OpticalResearch Associates(ORA?)公司研制的具有国际领先水平的大型光学工程软件。自1963年起,该公司属下数十名工程技术人员已在CODEV程序的研制中投入了40余年的心血,使其成为世界上分析功能最全、优化功能最强的光学软件,为各国政府及军方研究部门、著名大学和各大光学公司广泛采用。??一. 包罗万象的适用范围 ?CODEV可以分析优化各种非对称非常规复杂光学系统。这类系统可带有三维偏心和/或倾斜的元件;各类特殊光学面如衍射光栅、全息或二元光学面、复杂非球面、以及用户自己定义的面型;梯度折射率材料和阵列透镜等等。程序的非顺序面光线追迹功能可以方便地处理屋脊棱镜、角反射镜、导光管、光纤、谐振腔等具有特殊光路的元件;而其多重结构的概念则包括了常规变焦镜头,带有可换元件、可逆元件的系统,扫描系统和多个物像共轭的系统。40多年来,世界各地的用户已成功地利用CODE V设计研制了大量照相镜头、显微物镜、光谱仪器、空间光学系统、激光扫描系统、全息平显系统、红外成像系统、紫外光刻系统等等,举不胜举。近几年内,CODE V软件又被广泛地应用于光电子和光通讯系统的设计和分析。[attachment=137] ???图1.带有非顺序面的系统及梯度折射率元件示例??二.空前强大的自动设计能力??光学设计的第一步是要为系统确定合理的初始结构。为此CODEV提供了独有的“镜头魔棒”功能,用户只需输入所要设计的系统的使用波段、相对孔径、视场、变倍比等参数,软件即可从自带的专利库中找出对应的结构以供选择。?CODEV软件中优化计算的评价函数可以是系统的垂轴像差、波像差或是用户定义的其它指标,也可以直接对指定空间频率上的传递函数值进行优化。经过改进的阻尼最小二乘优化算法用拉格朗日乘子法提供既方便又精确的边界条件控制。除了程序本身带有大量不同的优化约束量供选用外,用户还可以根据需要灵活地定义各种新的约束量。此外,以往的优化算法无法克服存在于光学系统结构参量的高度非线性解空间中的大量局部极小,故此自动设计的结果是一个与初始参数接近的像质相对较好的结构,而不一定是全局最优设计。为解决这一问题,ORA公司在CODE V软件中加入了强大的全局优化功能(Global Synthesis?)。这种被该公司严格保密的算法不仅可以跳出局部极小继续在解空间中寻找更佳设计,而且可以在优化结束时将找到的满足设计要求的各种完全不同的结构形式一一列出供使用 者根据实际需要选择。这是目前世界上唯一证实可行并已实用化的全局优化程序,其优化能力在国际上遥遥领先。四年一届的国际光学设计会议是本领域影响最大的专业技术研讨会,在90年代以来的近几届会议中,组织者每次都向世界上各有关单位和专家发出一个设计竞赛题目,而每届收到的参赛结果的前几名都是用CODEV软件优化设计出来的,充分说明CODE V的优化功能已经成为世界各地光学设计专家

常见光学仿真设计软件

1.APSS.v 2.1.Winall.Cracked 光子学设计软件,可用于光材料、器件、波导和光路等的设计 2.ASAP.v7.14/7.5/8.0.Winall.cracked/Full 世界各地的光学工程师都公认ASAPTM(Advanced Systems Analysis Program,高级系统分析程序)为光学系统定量分析的业界标准。 注:另附9张光源库 3.Pics3d.v200 4.1.28.winall.cracked 电子.光学激光2D/3D有限元分析及模形化装置软件 https://www.360docs.net/doc/d35118767.html,stip.v2004.1.28.winall.cracked 半导体激光装置2D模拟软件 5.Apsys.2D/3D.v2004.1.28.winall.cracked 激光二极管3D模拟器 6.PROCOM.v2004.1.2.winall.cracked 化合物半导体模拟软件 7.Zemax.v2003.winall.cracked/EE ZEMAX 是一套综合性的光学设计仿真软件,它将实际光学系统的设计概念、优化、分析、公差以及报表集成在一起。 8.ZEBASE Zemax镜头数据库 9.OSLO.v6.24.winall.licensed/Premium OSLO 是一套处理光学系统的布局和优化的代表性光学设计软件。最主要的,它是用来决定光学系统中最佳的组件大小和外型,例如照相机、客户产品、通讯系统、军事 /外太空应用以及科学仪器等。除此之外,它也常用于仿真光学系统性能以及发展出一套对光学设计、测试和制造的专门软件工具。 10.TracePro.v324.winall.licensed/Expert TracePro 是一套能进行常规光学分析、设计照明系统、分析辐射度和亮度的软件。它是第一套以符合工业标准的ACIS(固体模型绘图软件)为核心所发展出来的光学软件,是一个结合真实固体模型、强大光学分析功能、信息转换能力强及易上手的使用界面的仿真软件,它可将真实立体模型及光学分析紧紧结合起来,其绘图界面非常地简单易学。 11.Lensview.UPS.winall.cracked LensVIEW 为搜集在美国以及日本专利局申请有案的光学设计的数据库,囊括超过 18,000个多样化的光学设计实例,支持Zemax,OSLO,Code V等光学设计软件。 12.Code V.v940.winall.licensed CODE V是美国著名的Optical Research Associates公司研制的具有国际领先水平的大型光学工程软件。 13.LightTools.v4.0/sr1.winall.cracked LightTools是一个全新的具有光学精度的交互式三维实体建模软件体系,提供最现代化的手段直接描述光学系统中

ZEMAX光学设计软件操作说明详解

【ZEMAX光学设计软件操作说明详解】 介绍 这一章对本手册的习惯用法和术语进行说明。ZEMAX使用的大部分习惯用法和术语与光学行业都是一致的,但是还是有一些重要的不同点。 活动结构 活动结构是指当前在镜头数据编辑器中显示的结构。详见“多重结构”这一章。 角放大率 像空间近轴主光线与物空间近轴主光线角度之比,角度的测量是以近轴入瞳和出瞳的位置为基准。 切迹 切迹指系统入瞳处照明的均匀性。默认情况下,入瞳处是照明均匀的。然而,有时入瞳需要不均匀的照明。为此,ZEMAX支持入瞳切迹,也就是入瞳振幅的变化。 有三种类型的切迹:均匀分布,高斯型分布和切线分布。对每一种分布(均匀分布除外),切迹因素取决于入瞳处的振幅变化率。在“系统菜单”这一章中有关于切迹类型和因子的讨论。ZEMAX也支持用户定义切迹类型。这可以用于任意表面。表面的切迹不同于入瞳切迹,因为表面不需要放置在入瞳处。对于表面切迹的更多信息,请参看“表面类型”这一章的“用户定义表面”这节。 后焦距 ZEMAX对后焦距的定义是沿着Z轴的方向从最后一个玻璃面计算到与无限远物体共轭的近轴像面的距离。如果没有玻璃面,后焦距就是从第一面到无限远物体共轭的近轴像面的距离。 基面 基面(又称叫基点)指一些特殊的共轭位置,这些位置对应的物像平面具有特定的放大率。基面包括主面,对应的物像面垂轴放大率为+1;负主面,垂轴放大率为-1;节平面,对应于角放大率为+1;负节平面,角放大率为-1;焦平面,象空间焦平面放大率为0,物空间焦平面放大率为无穷大。 除焦平面外,所有的基面都对应一对共轭面。比如,像空间主面与物空间主面相共轭,等等。如果透镜系统物空间和像空间介质的折射率相同,那么节面与主面重合。 ZEMAX列出了从象平面到不同象方位置的距离,同时也列出了从第一面到不同物方平面的距离。 主光线 如果没有渐晕,也没有像差,主光线指以一定视场角入射的一束光线中,通过入瞳中央射到象平面的那一条。注意,没有渐晕和像差时,任何穿过入瞳中央的光线也一定会通过光阑和出瞳的中心。 如果使用了渐晕系数,主光线被认为是通过有渐晕入瞳中心的光线,这意味着主光线不一定穿过光阑的中央。 如果有瞳面像差(这是客观存在的),主光线可能会通过近轴入 瞳中心(如果没有使用光线瞄准)或光阑中央(如果使用光线瞄准),但一般说来,不会同时通过二者中心。 如果渐晕系数使入瞳减小,主光线会通过渐晕入瞳中心(如果不使用光线瞄准)或者渐晕光阑中心(如果使用光线瞄准)。 常用的是主光线通过渐晕入瞳的中心,基本光线通过无渐晕的光阑中心。ZEMAX不使用基本光线。大部分计算都是以主光线或者中心光线作为参考。优先使用中心光线,因为它是基于所有照射到象面的光线聚合效应,而不是基于选择某一条特殊光线。

CAD制作的常用快捷键

CAD制作的常用快捷键 在CAD软件操作中,为方便使用者,利用快捷键代替鼠标。可以利用键盘快捷键发出命令,完成绘图,修改,保存等操作。这些命令键就是CAD快捷键。

cad快捷键文字版 一、常用功能键

F1: 获取帮助 F2: 实现作图窗和文本窗口的切换 F3: 控制是否实现对象自动捕捉F4: 数字化仪控制 F5: 等轴测平面切换 F6: 控制状态行上坐标的显示方式 F7: 栅格显示模式控制 F8: 正交模式控制 F9: 栅格捕捉模式控制 F10: 极轴模式控制 F11: 对象追踪模式控制 (用ALT+字母可快速选择命令,这种方法可快捷操作大多数软件。) 二、常用CTRL,ALT快捷键 ALT+TK 如快速选择 ALT+NL 线性标注 ALT+VV4 快速创建四个视口 ALT+MUP提取轮廓 Ctrl+B: 栅格捕捉模式控制(F9) Ctrl+C: 将选择的对象复制到剪切板上 Ctrl+F: 控制是否实现对象自动捕捉(F3) Ctrl+G: 栅格显示模式控制(F7) Ctrl+J: 重复执行上一步命令 Ctrl+K: 超级链接 Ctrl+N: 新建图形文件 Ctrl+M: 打开选项对话框 Ctrl+O:打开图象文件 Ctrl+P:打开打印对说框 Ctrl+S:保存文件 Ctrl+U:极轴模式控制(F10) Ctrl+v:粘贴剪贴板上的内容 Ctrl+W:对象追踪式控制(F11) Ctrl+X:剪切所选择的内容 Ctrl+Y:重做 Ctrl+Z:取消前一步的操作 Ctrl+1:打开特性对话框 Ctrl+2:打开图象资源管理器 Ctrl+3:打开工具选项板 Ctrl+6:打开图象数据原子 Ctrl+8或QC:快速计算器 三、尺寸标注 DRA:半径标注 DDI:直径标注 DAL:对齐标注 DAN:角度标注END:捕捉到端点 MID:捕捉到中点 INT:捕捉到交点CEN:捕捉到圆心QUA:捕捉到象限点TAN:捕捉到切点PER:捕捉到垂足 NOD:捕捉到节点NEA:捕捉到最近点AA:测量区域和周长(area) ID:指定坐标LI:指定集体(个体)的坐标AL:对齐(align) AR:阵列(array) AP:加载*lsp程系AV:打开视图对话框(dsviewer) SE:打开对象自动捕捉对话框ST:打开字体设置对话框(style) SO:绘制二围面( 2d solid) SP:拼音的校核(spell) SC:缩放比例 (scale) SN:栅格捕捉模式设置(snap)

平面设计快捷键大全

平面设计高手进阶快捷键 左手键盘+右手鼠标,你将提高200%的速度 :电子竞技游戏中的每分种操作数,一分钟内左手键盘+右手鼠标的操作数总和。 有一些快键从买了电脑就没用过,实际用起来之后你会发现,原来时间真的可以挤出来。 ●一级快键(实用的话50就足够了) ·系统与通用快键· 复制 粘贴 剪切 全选 新建 打开 保存 打印 后退 当前查找 打开的程序中切换 4关闭程序或窗口 直接删除不存入回收站 键截屏 返回上级文件夹 F5刷新 F2改文件名 F10激活菜单栏 ●·窗口组合快键· 窗口键开始菜单 窗口显示桌面可以来回切换 窗口显示桌面不能再转到先前打开的窗口 窗口运行窗口 窗口查找文件 窗口资原管理器 ●·实用快键· 回车快速发送,可以设为回车 快速回复(作用同上) 关闭当前窗口 快速提取消息 捕捉屏幕

打开聊天记录 全选当前对话框里的内容 对输入框里当前行的文字左对齐 对输入框里当前行的文字右对齐 对输入框里当前行的文字居中 ●一级快键(平面设计·最常用) F7显示或关闭图层选项板 F8显示或关闭信息选项板 +全选 ++反选 +D 取消选择区 +单击工作图层将图层转换为选择区 +“+”放大视窗 +“-”缩小视窗 +空格键+鼠标单击放大局部 +空格键+鼠标单击缩小局部 【】+【H】显示/隐藏选择区域 【】+【R】显示/隐藏标尺 【】+【;】显示/隐藏参考线 【】+【】+【;】贴紧参考线 【】+【】+【;】锁定参考线 【】+【】+【”】贴紧网格 【】+【】显隐工具箱外所有调板 【】+【Z】还原 ●=工具箱类【】加选快键填充为前景色:+;填充为背景色:+; 调整色阶工具:+L; 调整色彩平衡:+B; 调节色调/饱和度:+U; 自由变形:+T; 增大笔头大小:“左中括号”; 减小笔头大小:“右中括号”; 重复使用滤镜:+F; 矩形、椭圆选框工具【M】 裁剪工具【C】 移动工具【V】 套索、多边形套索、磁性套索【L】 魔棒工具【W】 画笔工具【B】 像皮图章、图案图章【S】 像皮擦工具【E】

光学设计软件介绍

光学设计 ZEMAX是美国焦点软件公司所发展出的光学设计软件,可做光学组件设计与照明系统的照度分析,也可建立反射,折射,绕射等光学模型,并结合优化,公差等分析功能,是套可以运算Sequential及Non-Sequential的软件。版本等级有SE:标准版,XE:完整版,EE:专业版(可运算Non-Sequential),是将实际光学系统的设计概念、优化、分析、公差以及报表集成在一起的一套综合性的光学设计仿真软件。 ZEMAX的主要特色:分析:提供多功能的分析图形,对话窗式的参数选择,方便分析,且可将分析图形存成图文件,例如:*.BMP, *.JPG...等,也可存成文字文件*.txt;优化:表栏式merit function参数输入,对话窗式预设merit function参数,方便使用者定义,且多种优化方式供使用者使用;公差分析:表栏式Tolerance参数输入和对话窗式预设Tolerance参数,方便使用者定义;报表输出:多种图形报表输出,可将结果存成图文件及文字文件。 CODE V是Optical Research Associates推出的大型光学设计软件,功能非常强大,价格相当昂贵CODE V提供了用户可能用到的各种像质分析手段。除了常用的三级像差、垂轴像差、波像差、点列图、点扩展函数、光学传递函数外,软件中还包括了五级像差系数、高斯光束追迹、衍射光束传播、能量分布曲线、部分相干照明、偏振影响分析、透过率计算、一维物体成像模拟等多种独有的分析计算功能。是世界上应用的最广泛的光学设计和分析软件,近三十多年来,Code V进行了一系列的改进和创新,包括:变焦结构优化和分析;环境热量分析;MTF和RMS波阵面基础公差分析;用户自定义优化;干涉和光学校正、准直;非连续建模;矢量衍射计算包括了偏振;全球综合优化光学设计方法。 CODE V是美国著名的Optical Research Associates(ORA?)公司研制的具有国际领先水平的大型光学工程软件。自1963年起,该公司属下数十名工程技术人员已在CODE V程序的研制中投入了40余年的心血,使其成为世界上分析功能最全、优化功能最强的光学软件,为各国政府及军方研究部门、著名大学和各大光学公司广泛采用1994年,ORA公司聘请北京理工大学光电工程系为其中国服务中心。与国际上其它商业性光学软件相比,CODE V的优越性突出地表现在以下几个方面 CODE V可以分析优化各种非对称非常规复杂光学系统。这类系统可带有三维偏心或倾斜的元件;各类特殊光学面如衍射光栅、全息或二元光学面、复杂非球面、以及用户自己定义的面型;梯度折射率材料和阵列透镜等等。程序的非顺序面光线追迹功能可以方便地处理屋脊棱镜、角反射镜、导光管、光纤、谐振腔等具有特殊光路的元件;而其多重结构的概念则包括了常规变焦镜头,带有可换元件、可逆元件的系统,扫描系统和多个物像共轭的系统。40多年来,世界各地的用户已成功地利用CODE V设计研制了大量照相镜头、显微物镜、光谱仪器、空间光学系统、激光扫描系统、全息平显系统、红外成像系统、紫外光刻系统等等,举不胜举。近几年内,CODE V软件又被广泛地应用于光电子和光通讯系统的设计和分析。光学设计的第一步是要为系统确定合理的初始结构。为此CODE V提供了独有的“镜头魔棒”功能,用户只需输入所要设计的系统的使用波段、相对孔径、视场、变倍比等参数,软件即可从自带的专利库中找出对应的结构以供选择。 CODE V软件中优化计算的评价函数可以是系统的垂轴像差、波像差或是用户定义的其它指标,也可以直接对指定空间频率上的传递函数值进行优化。经过改进的阻尼最小二乘优化算法用拉格朗日乘子法提供既方便又精确的边界条件控制。除了程序本身带有大量不同的优化约束量供选用外,用户还可以根据需要灵活地定义各种新的约束量。此外,以往的优化算法无法克服存在于光学系统结构参量的高度非线性解空间中的大量局部极小,故此自动设计的结果是一个与初始参数接近的像质相对较好的结构,而不一定是全局最优设计。为解决这一问题,ORA公司在CODE V软件中加入了强大的全局优化功能(Global Synthesis)。这种被该公司

相关文档
最新文档