管道平面热损失计算

管道平面热损失计算
管道平面热损失计算

A 简易热工设计

1 设计需要确定的工艺参数

1) 管道要求的维持温度,TV ;

2) 当地最低环境温度CC), TA ;

3) 管道的外径,D;

4) 容器的表面积, S;

5) 管道的保温材料品种及厚度;

6) 管道是在室内或室外。

2 管道、平面热损失计算

2.1 管道保温管道的热损失(加30%安全系数)按公式(1)计算:Qt={[2 n (TWA) ]/〔( LnD0/D1 ) 1/ 入+2/( DO a )]} X 1.3

2.2 平面保温平面的热损失(加30%安全系数)按公式(2)计算:

QP=[(TV- TA)/( S / 入+1/ a )] X 1.3 .....................................

式(1)和式(2)中:

Qt —单位长度管道的热损失, W/m ;

Qp —单位平面的热损失,W/ m2;

TV —系统要求的维持温度,C;

TA —当地的最低环境温度C;

入T呆温材料的导热系数,W/(m C),见表3;

D1—呆温层内

径,

(管道外径) m;

D0—呆温层外

径,

m;

D0=D1+2S;

S—呆温层厚

度,m;

Ln —自然对数;

a T呆温层外表面向大气的散热系数,W/(mc)与风速co, a值按公式(3)计算:

a =1.163(6+ 3 1/2) W/(mC ) (3)

表 3 常用呆温材料导热系数

呆温材料导热系数W/ (m. C )…(1) (2)

(m/s)有关,

玻璃纤维0.036 矿渣棉0.038

硅酸钙0.054 膨胀珍珠岩0.054

蛭石0.084岩棉0.043

聚氨脂0.024 聚苯乙烯0.031

泡沫塑料0.042 石棉0.093

表4 管道材质修正系数

碳钢1不锈钢1. 25

a铜0. 9塑料1.5

B电伴热设计

首先应知道管道的口径、保温层材料及厚度和所需维持温度之差△ T, 查管道散热量表,(乘以适当的保温系数),就能得到单位长管道的散热量,如果管子在室内则再乘以0.9。如果伴热的是塑料管道,因为塑料的导热性远低于碳钢

(0.12:25 ),故可用0.6-0.7的系数对正常散热量加以修正。

例1:某厂有一管线,管径为1/2",保温材料是硅酸钙,厚度10mm,管道中流体为水,水温需保持10 C,冬季最低气温是-25 C,环境无腐蚀性,周围供电条件

380V、220V均有,求管道每米热损失?

步骤一:△ T = TA - TB =10 °C - (-25 C) =35 C

步骤二:查管道散热量表,管径1/2"。10mm保温层。

当厶T =30 C热损失为11.0w/m,当△ T =40 C热损失为14.9w/m,△ T =35 C时,每米损失可采用中间插入法求得(因表中无QB值)。

QB=11.0w/m+ (14.9w/m - 11.0w/m ) [ (35-30)宁

(40-30) ]=12.95w/m

步骤三:保温层采用硅酸钙,查保温材料修正数表乘以保温系数f及综合系数1.4

Qr=1.4QB X f=1.4 X2.95w/m X1.50=27.195w

答案:管道每米损失热量27.195W

保温材料修正数表

容器罐体耗散热量的计算

首先应计算容器罐体的表面积,并根据保温层材料厚度和介质所需维持的温度,查罐体容器热耗表,可知每平方米热耗散量,再通过计算,京戏有得到容器罐体所需的总热耗散量QT 。

其公式:QT = 1.8QB?S

式中:1.8为保险系数,QB :为每平方米热耗散量(W/m2 ) ——查罐体

容器耗表可知,

S :为容器罐体的表面积(m2)――计算公式如下:

例2:某厂有一直径 3 米,高 4 米的园柱形工艺罐体,当地最低环境温度

-10 C,最高风速15m/S,现采用厚度50mm的玻璃纤维作保温层,罐体的维持温度80 C,求该罐体热耗散量。

步骤一:查罐体容器热耗表可知在风速15mm/S ,环境-10 C,维持温度80C时, QB=77.39W/m2

步骤二:QT=1.8QB?S=1.8QB n D (R+h)

=1.8 X 77.39W/m2X 3.14?3m X (1.5m+4m)=7217.235(W) 答案:我们可知该罐体热耗散量为7217.235W 。

蒸汽管道温度损失计算及分析

蒸汽管道温度损失计算 及分析 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

bw k p g f C G t t k l t ?-=?)(热水供热管道的温降 1.计算基本公式 温损计算公式为: 式中: g k —管道单位长度传热系数C m w ο?/ p t —管内热媒的平均温度 C ? k t —环境温度C ? G —热媒质量流量s Kg / C —热水质量比热容 C Kg J ??/ l ——管道长度 m 由于计算结果为每米温降,所以L 取1m .管道传热系数为 式中: n a ,w a —分别为管道内外表面的换了系数C m w ο?2/ n d ,w d —分别为管道(含保温层)内外径m i λ—管道各层材料的导热系数 C m w ο?/(金属的导热系数很高,自身热阻很小,可以忽略不计)。 i d —管道各层材料到管道中心的距离m 内表面换热系数的计算 根据的研究结果,管内受迫流动的努谢尔特数可由下式计算: Pr 为普朗特常数查表可得,本文主要针对供水网温度和回水网温度进行查找得: 90摄氏度时Pr=;在75摄氏度时Pr=; 外表面换热系数的计算 由于采用为直埋方式,管道对土壤的换热系数有: 式中: t λ—管道埋设处的导热系数。

t h —管道中心到地面的距离。 3.假设条件: A. 管道材料为碳钢(%5.1≈w ) B. 查表得:碳钢在75和90摄氏度时的导热系数λ都趋近于 C m w ο?/ C.土壤的导热系数t λ= C m w ο?/ D. 由于本文涉及到的最大管径为,所以取t h = E.保温材料为:聚氨酯,取λ= C m w ο?/ F. 保温层外包皮材料是:PVC ,取λ= C m w ο?/ G.在75到90摄氏度之间水的比热容随温度的变化很小,可以忽略不计。 4.电厂实测数据为: 管径为300mm 时,保温层厚度为:50mm ,保温外包皮厚度为:7mm ; 管径为400mm 时,保温层厚度为:51mm ,保温外包皮厚度为:; 管径为500mm 时,保温层厚度为:52mm ,保温外包皮厚度为:9mm ; 管径为600mm 时,保温层厚度为:54mm ,保温外包皮厚度为:12mm ; 蒸汽管道损失理论计算及分析 1、蒸汽管道热损失公式推导 稳态条件下,通过单位长度的蒸汽管道管壁的热流量q 1是相同的。 根据稳态导热的原理,可得出蒸汽保温管道的导热热流量式为: 2、总传热系数及其影响因素分析 总传热系数k 式中:h 1—蒸汽对工作钢管内壁的换热系数 λ1—蒸汽管道各层材料的导热系数 1 1 1 1 1 1 ln 2 1 1 1 ? ? ? ? ? ? ? n i i n i i d d d d h k ?? ?? ?

蒸汽管道损失理论计算及分析

1.计算基本公式 温损计算公式为: 式中:—管道单位长度传热系数 —管内热媒的平均温度 —环境温度 —热媒质量流量 —热水质量比热容 ——管道长度由于计算结果为每米温降,所以L取1m .管道传热系数为 式中: ,—分别为管道内外表面的换了系数 ,—分别为管道(含保温层)内外径 —管道各层材料的导热系数(金属的导热系数很高,自身热阻很 i 小,可以忽略不计)。 —管道各层材料到管道中心的距离m 内表面换热系数的计算 根据的研究结果,管内受迫流动的努谢尔特数可由下式计算:

Pr为普朗特常数查表可得,本文主要针对供水网温度和回水网温度进行查找得: 90摄氏度时Pr=;在75摄氏度时Pr=; 外表面换热系数的计算 由于采用为直埋方式,管道对土壤的换热系数有: 式中: —管道埋设处的导热系数。 —管道中心到地面的距离。 3.假设条件: A. 管道材料为碳钢() B. 查表得:碳钢在75和90摄氏度时的导热系数都趋近于 C.土壤的导热系数= D. 由于本文涉及到的最大管径为,所以取= E.保温材料为:聚氨酯,取= F. 保温层外包皮材料是:PVC,取= G.在75到90摄氏度之间水的比热容随温度的变化很小,可以忽略不计。 4.电厂实测数据为:

管径为300mm时,保温层厚度为:50mm,保温外包皮厚度为:7mm; 管径为400mm时,保温层厚度为:51mm,保温外包皮厚度为:; 管径为500mm时,保温层厚度为:52mm,保温外包皮厚度为:9mm; 管径为600mm时,保温层厚度为:54mm,保温外包皮厚度为:12mm; 蒸汽管道损失理论计算及分析 1、蒸汽管道热损失公式推导 稳态条件下,通过单位长度的蒸汽管道管壁的热流量是相同的。 根据稳态导热的原理,可得出蒸汽保温管道的导热热流量式为: 2、总传热系数及其影响因素分析

管道、平面热损失计算

A 简易热工设计 1 设计需要确定的工艺参数 1) 管道要求的维持温度,TV; 2) 当地最低环境温度(℃),TA; 3) 管道的外径,D; 4) 容器的表面积,S; 5) 管道的保温材料品种及厚度; 6) 管道就是在室内或室外。 2 管道、平面热损失计算 2、1 管道 保温管道的热损失(加30%安全系数)按公式(1)计算: Qt={[2π(TV-TA) ]/〔( LnD0/D1)1/λ+2/( D0α)]}×1、3 (1) 2、2 平面 保温平面的热损失(加30%安全系数)按公式(2)计算: QP=[(TV-TA)/(δ/λ+1/α)] ×1、3 (2) 式(1)与式(2)中: Qt —单位长度管道的热损失,W/m; Qp —单位平面的热损失,W/㎡; TV —系统要求的维持温度,℃; TA —当地的最低环境温度℃; λ —保温材料的导热系数,W/(m℃),见表3; D1 —保温层内径,(管道外径) m; D0 —保温层外径,m; D0=D1+2δ; δ —保温层厚度,m; Ln —自然对数; α —保温层外表面向大气的散热系数,W/(㎡℃)与风速ω,(m/s)有关, α值按公式(3)计算: α=1、163(6+ω1/2) W/( ㎡℃) (3) 表3 常用保温材料导热系数 保温材料导热系数W/ (m、℃)

玻璃纤维0、036 矿渣棉0、038 硅酸钙0、054 膨胀珍珠岩0、054 蛭石0、084 岩棉0、043 聚氨脂0、024 聚苯乙烯0、031 泡沫塑料0、042 石棉0、093 表4 管道材质修正系数 碳钢1 不锈钢1.25 a铜0.9 塑料1、5 B 电伴热设计 首先应知道管道的口径、保温层材料及厚度与所需维持温度之差△T,查管道散热量表,(乘以适当的保温系数),就能得到单位长管道的散热量,如果管子在室内则再乘以0、9。如果伴热的就是塑料管道,因为塑料的导热性远低于碳钢(0、12:25),故可用0、6-0、7的系数对正常散热量加以修正。 例1:某厂有一管线,管径为1/2",保温材料就是硅酸钙,厚度10mm,管道中流体为水,水温需保持10℃,冬季最低气温就是-25℃,环境无腐蚀性,周围供电条件 380V、220V均有,求管道每米热损失? 步骤一:△T = TA - TB =10℃-(-25℃)=35℃ 步骤二:查管道散热量表,管径1/2"。10mm保温层。 当△T =30℃热损失为11、0w/m,当△T =40℃热损失为14、9w/m,△T =35℃时,每米损失可采用中间插入法求得(因表中无QB值)。 QB=11、0w/m+(14、9w/m - 11、0w/m)[(35-30)÷(40-30)]=12、95w/m 步骤三:保温层采用硅酸钙,查保温材料修正数表乘以保温系数f及综合系数1、4 Qr=1、4QB×f=1、4×12、95w/m×1、50=27、195w 答案:管道每米损失热量27、195W 保温材料修正数表 容器罐体耗散热量的计算

管道总阻力与热损失计算

按甲方要求比较φ426X8以及φ377X7两种蒸汽管道阻力损失以及管道热损失,计算结果如下: 原始数据:蒸气流量30t/h,管径φ426X8/φ377X7 压力0.49mpa,温度202C ?,管道长度360m,弯头数6个 一 阻力损失计算 蒸汽管道阻力损失为沿程阻力y p ?和局部阻力j p ?之和,沿程阻力包括360米长直管段,局部阻力计算包含6个90度弯头。 查《动力管道手册》可知 202 C ?蒸汽密度为32.23/kg m ρ=,比体积为30.45/m kg φ426X8钢管摩擦阻力系数10.0144λ= φ377X7钢管摩擦阻力系数10.0148λ= 根据蒸汽管道管径计算公式n D = 其中:n D —管道内径,G —介质的质量流量t/h, v —介质比体积3/m kg , w —介质流速m/s 计算得到 φ426X8 的管道内蒸汽流速为410= 128m /s w = φ377X7 的管道内蒸汽流速为363= 136m /s w = 比摩阻 Rm 为22 m r w R d ρ=

22 10.0144 2.232829.5220.426m r v R d ρ??===? 222 0.0148 2.233656.7220.377 m r v R d ρ??===? 计算结果示意如下: 二 热损失 设计人员确定本次管道保温材料采用岩棉制品。 查保温材料特性可知岩棉制品热导率m 0.033+0.00018T λ=(其中m T 为绝热层内外表面温度的算术平均值取m 20220 T 1112 C ?+= =)所以 0.033+0.00018111=0.05298λ=? 选取保温厚度130mm. 由《动力管道手册》得保温层表面散热损失公式为 000 () 11ln 2i t t q D D D πλα-= + 其中:t —管道外壁温度,0t —保温结构周围环境温度,λ—保温材料导热系数,0D —管道保温层外径,i D —管道保温层内径,α—保温层外表面向大气的散热系数,取11.63α= 管径为φ426X8 的蒸汽管道单位长度热损失为

蒸汽管道损失理论计算及分析

bw k p g f C G t t k l t ?-=?)(热水供热管道的温降 1.计算基本公式 温损计算公式为: 式中: g k —管道单位长度传热系数C m w ο ?/ p t —管内热媒的平均温度C ? k t —环境温度 C ? G —热媒质量流量 s Kg / C —热水质量比热容 C Kg J ? ?/ l ——管道长度 m 由于计算结果为每米温降,所以L 取1m .管道传热系数为 ∑=++ += n i w w i i i n n g d a d d d a k 111 ln 2111 ππ λπ 式中: n a ,w a —分别为管道内外表面的换了系数C m w ο ?2/ n d , w d —分别为管道(含保温层)内外径 m i λ—管道各层材料的导热系数C m w ο ?/(金属的导热系数很高,自身 热阻很小,可以忽略不计)。 i d —管道各层材料到管道中心的距离m

内表面换热系数的计算 根据的研究结果,管内受迫流动的努谢尔特数可由下式计算: 42 .075 .0Pr )180(Re 037.0-≈= λ n n n d a N Pr 为普朗特常数查表可得,本文主要针对供水网温度和回水网温度进行查找得: 90摄氏度时Pr=;在75摄氏度时Pr=; 外表面换热系数的计算 由于采用为直埋方式,管道对土壤的换热系数有: ]1)2(2ln[22-+ = w t w t w t w d h d h d a λ 式中: t λ—管道埋设处的导热系数。 t h —管道中心到地面的距离。 3.假设条件: A. 管道材料为碳钢(%5.1≈w ) B. 查表得:碳钢在75和90摄氏度时的导热系数λ都趋近于 C m w ο?/ C.土壤的导热系数t λ= C m w ο?/ D. 由于本文涉及到的最大管径为,所以取 t h = E.保温材料为:聚氨酯,取λ= C m w ο?/

保温管道的热损失(精)

保温管道的热损失(加30%安全系数计算: Qt={[2π(TV-TA ]/〔( LnD0/D1)1/λ+2/( D0α]}×1.3 式中: Qt —单位长度管道的热损失,W/m; Qp —单位平面的热损失,W/㎡; TV —系统要求的维持温度,℃; TA —当地的最低环境温度℃; λ —保温材料的导热系数,W/(m℃,见表3; D1 —保温层内径,(管道外径 m; D0 —保温层外径,m; D0=D1+2δ; δ —保温层厚度,m ; Ln —自然对数; α —保温层外表面向大气的散热系数,W/(㎡℃与风速ω,(m/s有关,α=1.163(6+ω1/2 W/( ㎡℃ 蒸汽: QT=((2*3.14*170°)/(ln (0.113/0.108)/0.043+2/(0.113*1.163*(6+0.2/2))) =1067.6/(0.0392/0.043+2/0.802) =1067.6/3.42 =312.12瓦/米

312.12*360米*60秒*60分/4.184/1000=96679.6大卡/小时 由此6吨蒸汽锅炉每小时360万大卡将损耗2.7个百分点 热水 QT=((2.*3.14*70/(ln(0.227/0.219/0.024+2/(0.219*1.163*6.1 =439.6/(0.0296/0.024+2/1.554) =439.6/2.52 =174.44瓦/米 174.44*360*2*3600/4.184/1000=108066.08大卡/小时 由此6吨热水锅炉每小时360万大卡将损耗3个百分点热量常用保温材料导热系数 保温材料导热系数W/ (m. ℃ 玻璃纤维 0.036 矿渣棉 0.038 硅酸钙 0.054 膨胀珍珠岩 0.054 蛭石 0.084 岩棉 0.043 聚氨脂 0.024 聚苯乙烯 0.031

蒸汽管线热损失测试报告

蒸汽管道热损失测试报告 1 测试背景 郴州钻石钨制品有限责任公司蒸汽在输送过程中蒸汽热损失和压力 损失明显,导致因为蒸汽末端蒸汽品质严重下降,通过与现场工作人员交流和了解,厂区蒸汽管道管线保温层破损处较多,由于长期使用而未曾更换保温材料,因此,导致岩棉材料下沉,上薄下厚;局部管线有裸露在外的现象,从而导致其热损失比较大,此外有个别阀门未采取保温,也不同程度加大了散热损失。保温材料和保温结构单一,缺少防水,防渗透措施,长期遭受雨雪侵蚀,保温效果变差。因此有必要对其进行热损失测试,找出具体的热损失原因,从而为做好能源利用工作提供方向和科学依据。 2测试方法 热流计法 测试原理 用热阻式热流传感器(热流测头)和测量指示仪表直接测量保温结构的散热热流密度。热流传感器的输出电势(E)与通过传感器的热流密度(q)成正比,q=cE值为测头系数。 热流传感器的标定按GB/T10295中的方法进行,必要时绘制q/E系数c与被测表面温度(视作热流传感器的温度)的标定曲线,该曲线还应表示出工作温度和热流密度的范围。 现场测定应满足下列条件 应满足一维稳态传热条件减少外部环境因素的影响读取测定数据应在达到准稳态条件时进行。

(1)现场风速不应超过s,不能满足时应设挡风装置。 (2)应避免传感器受阳光直接辐射的影响宜选择阴天或夜间进行测定或加装遮阳装置。 (3)应避免在雨雪天气时进行测定。 (4)环境温度湿度的测点应在距热流密度测定位置1m远处,避免有其他热源的影响;地温的测点应在距热流密度测定位置10m远处相同埋深的自然土壤中。 表面温度法 测试原理 对于地上地沟敷设的热力管道测定保温结构外表面温度环境温度风向和风速表面热发射率及保温结构外形尺寸按下面公式计算其散热热流密度 q=α(t W-t F) 式中: q:散热热流密度,W/m2; α:总放热系数,W/(m2·k); t W:保温结构外表面温度,K; t F:环境温度,K。 温差法 测试原理 通过测定保温结构各层厚度、各层分界面上的温度以及各层材料在使用温度下的导热系数,计算保温结构的散热热流密度。 供热管道单层保温结构的热流密度和单位长度线热流密度按下面公式求

105排空气、散热损失和管道标准总结

本文由snnanf贡献 pdf文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 第10章蒸汽分配 排空气、散热损失和管道标准总结 章节10.5 10.5 排空气、散热损失和管道标准总结 蒸汽和冷凝水系统手册 10.5.1 第10章蒸汽分配 排空气、散热损失和管道标准总结 章节10.5 排空气、散热损失和管道标准总结 排空气 管道关闭一段时间后,在蒸汽进入管道前,管道中充满了空气。空气和其它不凝性气体也会随蒸汽一起进入管道。和蒸汽相比,这些不凝性气体所占的比例很小。除非我们采取措施排除它们,否则当蒸汽冷凝后,这些不凝性气体会在蒸汽管道和换热空间中积聚。不排除空气的后果就是延长起机时间,降低设备效率和工艺制程的性能。蒸汽系统中存在空气也会影响系统的温度。空气在整个系统中有自己的压力,再加上蒸汽的压力就是系统的总压力。因此实际的蒸汽压力和温度要小于压力表读数显示的蒸汽/空气混合气体的压力和对应温度。更重要的是空气对传热效果的影响。仅有1μm厚的空气膜,其热阻与25μm的水膜相同,与2mm厚的铁板和15mm厚的铜墙相同。因此任何蒸汽系统的排空气都是很重要的。蒸汽系统的排空气阀(同热静力蒸汽疏水阀的工作原理)应布置在冷凝水液面之上,这样只有蒸汽/空气的混合气体到达排空气阀。最佳的安装位置是在蒸汽主管的末端,如图10.5.1所示。压力平衡式排空气阀 空气排至安全位置 蒸汽主管 排至安全位置 图10.5.1 蒸汽主管的末端疏水和排空气 冷凝水 排空气阀的排放气体口应连接至安全的地方。实际应用中,如果冷凝水水管能靠重力流向开口箱,则可以考虑将排气管接入冷凝水水管。除了在主管末端安装排空气阀,还应安装在以下地方:与倒吊桶疏水阀平行安装,或者在有些实例中,与热动力疏水阀并行安装。这些疏水阀在起机阶段的排空气性能较差。在很苛刻的蒸汽空间(例如蒸汽进入夹套锅的对面)。蒸汽/空气混合气体影响工艺制程品质的大型蒸汽空间(如高压杀菌锅)。 降低热损失 即使蒸汽主管的暖管过程结束,蒸汽也会由于辐射散热损失而继续冷凝。冷凝率取决于蒸汽温度、环境温度以及管道保温效率。要使蒸汽分配系统高效,应当采取适当的措施来确保热损失减小到最低程度。最经济的保温厚度根据以下几个因素:安装成本蒸汽携带的能量 10.5.2 蒸汽和冷凝水系统手册 第10章蒸汽分配 排空气、散热损失和管道标准总结

相关文档
最新文档