概率论与数理统计课程设计 一元线性回归分析

概率论与数理统计课程设计 一元线性回归分析
概率论与数理统计课程设计 一元线性回归分析

数理统计是具有广泛应用的数学分支,而区间估计和假设检验问题在其中占有很重要的地位。对于正态总体期望和方差的区间估计和假设检验问题已有完备的结论;对于非正态总体期望和方差的区间估计和假设检验问题,在大样本的情况下,可利用中心极限定理转化为正态总体来解决。但实际问题中常常碰到非正态总体,而且是小样本的情况,因此对它的区间估计和假设检验是一个值得研究的问题

本文利用概率纶与数理统计中的所学的回归分析知识,对用切削机房进行金属品加工时为了适当地调整机床,测量刀具的磨损速度与测量刀具的厚度间的关系建立数学模型,利用这些数据做出刀具厚度x关于时间y的线性回归方程,并MATLAB 与EXCEL软件对验数据进行分析处理,得出线性回归系数与拟合系数等数据,并用F检验法检验了方法的可行性,同时用分布参数置信区间和假设检验问题,得出了刀具厚度x关于时间y的线性关系显著,并进行了深入研究,提出了小样本常用分布参数的置信区间与假设检验的解决方法。

关键词:统计量法;置信区间;假设检验;线性关系;回归分析

一.设计目的 (2)

二.设计问题 (2)

三.设计原理 (2)

四.方法实现 (6)

五.设计总结 (16)

参考文献 (16)

致谢 (17)

一.设计目的

了解一元回归方程,回归系数的检验方法及应用一元回归方程进行预测的方法;学会应用MATLAB软件进行一元回归实验的分析方法。同时更好的了解概率论与数理统计的知识,熟练掌握概率论与数理统计在实际问题上的应用,并将所学的知识结合Excel对数据的处理解决实际问题。本设计是利用一元线性回归理论对用切削机房进行金属品加工时为了适当地调整机床,测量刀具的磨损速度与测量刀具的厚度间的关系建立数学模型,并用Excel分析工具库中的回归分析软件进行解算。

二.设计问题

用切削机床进行金属加工时,为了适当地调节机床,需要测定刀具的磨损速

由此,我们利用这些数据做出刀具厚度x关于时间y的线性回归方程。三.设计原理

在实际问题中,经常会出现两个变量之间的相关关系不是线性的(即直线

型),而是非线性的(即曲线型)。设其中有两个变量x 与y ,我们可以用一个

确定函数关系式:)(x y x

=

大致的描述y 与x 之间的相关关系,函数)(x u 称为y 关于x

的回归函数,

方程)(x u y =

成为

y 关于x

的回归方程。

一元线性回归处理的是两个变量

x 与y 之间的线性关系,可以设想y 的值由两部分构成:一部分由自变量x 的线性影响所致,表示x 的线性函数

bx

a +;另一部分则由众多其他因素,包括随机因素的影响所致,这一部

分可以视为随机误差项,记为

ε。可得一元线性回归模型

ε++=bx a y (1)

式中,自变量x 是可以控制的随机变量,成为回归变量;固定的未知参数a,b 成为回归系数;y 称为响应变量或因变量。由于ε是随机误差,根据中心极限

定理,通常假定

),0(~2

σεN ,2

σ是未知参数。 确定y 与x 之间的关系前,可根据专业知识或散点图,选择适当的曲线

回归方程,而这些方程往往可以化为线性方程或者就是线性方程,因此我们可以用线性方程:bx

a y +=

大致描述变量

y 与x

之间的关系;

1)模型回归系数的估计

为了估计回归系数,假定试验得到两个变量

x 与y 的n 个数据对

(),3,2,1,,n i

y x i i =我们将这n 对观测值代入式(1)

,得

n i bx a y n i i ,3,2,1, =++=ε

这里n εεε,,,21 互独立的随机变量,军服从正态分布,即

n ,1,2,3i ),~N(0,2 =σε

回归系数估计的方法有多种,其中使用最广泛的是最小二乘法,即要求选取的

a ,b

, 的值使得述随机误差ε 的平方和达到最小,即求使得函数

()()∑∑==--=

=

n

i i i

n

i i

bx a y b a Q 1

2

2

1

取得最小值的

a ,b

由于()b a Q

,是a ,b 的二元函数,利用微积分中的函数存在极值的必要

条件,分别对()b a Q ,求a ,b 偏导数,并令其为0,构成二元一次方程组

∑==--n

i

i i bx a y 0

0)(,

∑===--0

1

0)(i i

i i i x bx a y ,

化简后得到如下正规方程组 ,)(11∑∑===

+n

i n

i

i i y b x na a .)()(1

1

1

2

∑∑∑====

+n

i

i i n i n

i i i y x b x a x 解方程组得到总体参数

b a ,估计量

∑∑-=

i i

x n

b

n

a y 1?1

?,∑∑∑∑∑--=

2

2

)

(?i i i i i i x x n y x y x n b

这里, )2,1(和n i y x i i =均已有的观测数据。 由此得到回归方程

x b

a y ??+= 带入观测i x ,得到值i y 称为回归预测值。方程的直线称为回归直线。

2)回归方程显著性检验

建立一元线性回归方程当且仅当变量之间存在线性相关关系时才是有意义的,因此必须对变量之间的线性相关的显著性进行检验,即对建立的回归模型进行显著性检验。

我们首先引入几个概念:

(1) ∑=-=

n

i

T y y SS 1

i 2)(,称为T SS 总偏差平方和,它表示观测值i y 总的

分散程度;

(2) ∑=-=

n

i

R y y SS 1

i 2)?(,称R SS 为回归平方和,它是由回归变量x 的变

化引起的,放映了回归变量x 对变量y 线性关系的密切程度;

(3) ∑=-=

n

i i

E y y SS 1

i 2)?(,称E SS 为残差(剩余)平方和,它是由观测误

差等其他因素起误差,它的值越小说明回归方程与原数据拟合越好。

可以证明下列关系成立 E R T

SS SS SS +=

∑=-n

i

y y 1

i 2

)(=∑=-n

i y y 1

i 2

)?(+ ∑=-n

i i y y 1

i 2)?(

我们主要考虑回归平方和在总偏差和中所占的比重,记T

R

SS SS R =

2。(0<=R<=1 ),称R 为复相关系数,用R 的大小来评价模型的有效性,R 越大,则反映回归变量与相应变量之间的线性函数关系越密切。引入F 统计量。

定义)

2(-=

n SS SS F E

R ,可知F~F (1,n-2).对于给定的显著水平a(一般这里

取0.05或0.01),查表可得临界值F a (1,n-2)

如果F> F α(1,n-2),则认为y 与x 之间的线性关系显著;如果F<= F α(1,n-2),则认为y 与x 之间的线性关系不显著,或者不存在线性关系,在实际应用中也可以通过F 对应的概率P<α来说明y 与x 之间的线性相关性显著。 3)回归系数的置信区间

回归方程(1)的回归系统^

a ,^

b 是一个点估计值,给定置信水平1-α后,可得到他们对应的置信区间,并且回归区间越短越好,如果摸个回归系数的置信区间包含0点,则说明该回归变量的影响不显著,需要进一步地修改回归方程,尽量是每个回归系数的置信区间都不包含0点。 4)利用模型预测

在对所建立的回归模型进行相关程度检验与分析之后,如果预测变量y 与相关变量x 的每一个给定值x 0,带入回归模型,就可以求得一个相对应的回归预测值0^

y ,0^

y 称为模型的点估计值。

四.方法实现

(1)输入数据,并输入作散点图命令:

>> y=[30 29.1 28.4 28.1 28.0 27.7 27.5 27.2 27.0 26.8 26.5 26.3 26.1 25.7 25.3 24.8 24.0 23.7 23.1 22.9 22.6 22.3 22.1 21.7 21.5 21.3 21.0 20.6 20.3 20.1];

>> x=[0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29];

>> plot(x,y,'*')

生成图(1),可以看出x 和y 大体成线性关系。

图 1 散点图(横轴:X 纵轴Y)(2)作一元回归分析,输入:

>> n=length(y);

>> X=[ones(n,1),x'];

>> [b,bint,r,rint,s]=regress(y',X);

>> b,bint,s

b =

29.5501

-0.3329

bint =

29.3326 29.7676

-0.3458 -0.3200

s =

1.0e+003 *

0.0010 2.8019 0 0.0001

一元回归方程为:

x y 3329.05501.29-=

从几个方面都可以检验模型是有效的:F 检验-P -接近于0;1β的置信区间不含零点;α

()F F <=1960.428,195.0,F 为统计量观测值,所以X 与Y 的相关性显著。

残差及其置信区间作图代码输入: rcoplot(r,rint)

结果如图2所示:

5

10

15

20

25

30

-1

-0.8-0.6-0.4-0.200.20.40.60.8

1Residual Case Order Plot

R e s i d u a l s

Case Number

图 2 残差图(横轴:削磨时间 纵轴:残差分析值)

所谓残差是指实际观察值与回归估计值的差,残差分析就是通过残差所提供的信息,分析出数据的可靠性、周期性或其它干扰。从残差图可以

看出,数据的残差离零点较近,且残差的置信区间均包含零点,这说明回归模型

x y 3329.05501.29-=能很好的符合原始数据。

(3)讲上面的回归系数估计值5501.29?0=β,3329.0-?1=β带入回归方程,刀具磨损速度的测试中,对时间间隔为30/h 的刀具厚度进行预测,得到

19.5631?0=y 。

在05.0=α,刀具的厚度预测区间简化为??????+---s u y u y 210210?,?αα,输入计

算指令:

>> t1=19.5631-norminv(0.0975,0,1)*sqrt(sum(r.^2)/16) t1 =

20.0742

>> t2=19.5631+norminv(0.0975,0,1)*sqrt(sum(r.^2)/16) t2 =

19.0520

即时间间隔为30/h 的刀具磨损速度测试中,刀具厚度的置信度为0.95的预测区间为[]

0742.20,0520.19。

也可以用命令:

>> y=[30 29.1 28.4 28.1 28.0 27.7 27.5 27.2 27.0 26.8 26.5 26.3 26.1 25.7 25.3 24.8 24.0 23.7 23.1 22.9 22.6 22.3 22.1 21.7 21.5 21.3 21.0 20.6 20.3 20.1];

>> x=[0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29];

>> polytool(x,y,1,0.05)

作出散点图及拟合曲线,并对30=x 时的y 进行预报,结果如图 3 所示。

图 3 散点图及拟合曲线

如图3所示,红线表示为数据离合区间,蓝色“+”表示为数据散点分布,绿色表示为拟合曲线。

(4)下面用Excel“分析工具库”提供的“回归”工具,找出线性回归方程,并检验其显著性。

1、具体步骤如下:

1>在【工具】菜单中选中【数据分析】,则会弹出【数据分析】对话框,然后“分析工具”中选择“回归”选项,如图二所示。单击【确定】后,则弹出【回归】对话框,如图<5>所示。

2>填写【回归】对话框。如图<6>所示,该对话框的内容较多,可以根据需要,选择相关项目。

在“X值输入区域”内输入队因变量数据区域的引用,该区域必须有单列数据组成,如本题中组分B;在“Y只输入区域”输入对自变量数据区域的引用,如本题中组分C。

“标志”:如果输入区域的第一行中包含标志项,则选中此复选框,本题中的输入区域包含标志项;如果在输入区域中没有标志项,则应清楚此复选框,Excel 将在输出表中生成合适的数据标志。

“置信度”:如果需要在汇总输出表中包含附件的置信度信息,则选中此复选框,然后在右侧的编辑框中,输入所要使用的置信度。Excel默认的置信度为95%,相当于显著性水平a=0.05。

“常数为零”:如果要强制回归线通过原点,则选中此复选框。

“输出选项”:选择“输出区域”,在此输出对输出表左上角单元格的引用。

3>“残差”:如果需要以残差输出表形式查看残差,则选中此复选框。“标准残差”:如果需要在残差输出表中包含标准残差,则选中此复选框。“残差图”:如果需要生成一张图表,绘制每个自变量及其残差,则选中此复选框。

“线性拟合图”:如果需要为预测值和观察值生成和观测值生车一个图表,则选中此复选框。

“正态概率图”:如果需要绘制正态概率图,则选中此复选框。

图 4 散点图

图 5 Excel数据分析工具

图<5>Excel数据分析工具

图 6 回归分析工具界面

回归分析工具运行结果:

Multiple R 0.995041

R Square 0.990106

Adjusted R

Square 0.989752

标准误差0.298135

观测值30

表 2 回归统计

表2中,“Multiple R”是线性回归的系数“R Square”是拟合系数“Adjusted R Square”调整后的拟合系数。

df SS MS F Significance

F

回归分

析 1 249.0449 249.0449 2801.898 1.29E-29 残差28 2.488762 0.088884

总计29 251.5337

表 3 方差分析

Coefficients 标准误差t Stat P-value Lower

95%

Upper

95%

下限

95.0%

Intercept 29.55011 0.106197 278.2575 9.73E-50 29.33257 29.76764 29.33257 X Variable 1 -0.33288 0.006289 -52.933 1.29E-29 -0.34576 -0.32 -0.34576

表4 回归分析结果1

RESIDUAL OUTPUT PROBABILITY OUTPUT

观测

值预测Y残差标准残

差百分比排位Y

129.550110.449892 1.535734 1.66666720.1 229.21723-0.11723-0.40016520.3 328.88435-0.48435-1.653348.33333320.6 428.55146-0.45146-1.541111.6666721 528.21858-0.21858-0.746151521.3 627.8857-0.1857-0.6339118.3333321.5 727.55282-0.05282-0.1803121.6666721.7 827.21994-0.01994-0.068072522.1 926.887060.112940.38552828.3333322.3 1026.554180.2458210.83912531.6666722.6 1126.22130.2787020.9513663522.9 1225.888420.411583 1.40496338.3333323.1 1325.555540.544464 1.8585641.6666723.7 1425.222650.477345 1.6294464524 1524.889770.410226 1.40033148.3333324.8 1624.556890.2431070.8298651.6666725.3 1724.22401-0.22401-0.764685525.7 1823.89113-0.19113-0.6524458.3333326.1 1923.55825-0.45825-1.5642661.6666726.3 2023.22537-0.32537-1.110676526.5 2122.89249-0.29249-0.9984268.3333326.8 2222.55961-0.25961-0.8861871.6666727 2322.22673-0.12673-0.432597527.2 2421.89385-0.19385-0.661778.3333327.5 2521.56096-0.06096-0.208181.6666727.7

2621.228080.0719170.2454938528 2720.89520.1047980.35773488.3333328.1 2820.562320.0376790.12861991.6666728.4 2920.229440.070560.240869529.1 3019.896560.2034410.69445798.3333330

表 5 回归分析结果残差与标准残差

观测值预测 Y 残差

1 29.55011 0.449892

2 29.2172

3 -0.11723

3 28.88435 -0.48435

4 28.55146 -0.45146

5 28.21858 -0.21858

6 27.885

7 -0.1857

7 27.55282 -0.05282

8 27.21994 -0.01994

9 26.88706 0.11294

10 26.55418 0.245821

11 26.2213 0.278702

12 25.88842 0.411583

13 25.55554 0.544464

14 25.22265 0.477345

15 24.88977 0.410226

16 24.55689 0.243107

17 24.22401 -0.22401

18 23.89113 -0.19113

19 23.55825 -0.45825

20 23.22537 -0.32537

21 22.89249 -0.29249

22 22.55961 -0.25961

23 22.22673 -0.12673

24 21.89385 -0.19385

25 21.56096 -0.06096

26 21.22808 0.071917

27 20.8952 0.104798

28 20.56232 0.037679

29 20.22944 0.07056

30 19.89656 0.203441

表6 回归分析结果3

图 7 EXCEL 处理数据得出的散点图

图 8 用EXCEL 处理数据得出的残差分布图

由表3所知,若保留四位有效数字,该回归方程的截距是29.5501,斜率为-0.3329,所以回归方程的表达式为:x y 3329.05501.29-=;根据回归统计结果,知决定系数2

R =0.9898,即相关系数r=0.9231,说明自变量与因变量之间有较高的相关性;根据方差分析的结果,F=2801.9,有效的F<0.01,所以建立的回归方程非常显著。

在表五中,除了列出了回归系数,还有标准误差等项目。其中“标准误差”表示的事对应回归系数的标准误差,其中偏回归系数的标准误差。“t Stat ”就是t 检验时的统计量t ;如果多元线性回归,则可直接根据“t Stat ”的大小,判断因素的主次顺序。“P-value ”表示t 检验偏回归系数不显著的概率,如果P-value<0.01,则可认为该系数对应的变量对试验结果影响非常显著(* *),如果0.01< P-value <0.05,则可认为该系数对应的变量对试验结果影响显著(*);对于常数项,P-value 则表示常数项为零的几率。

由表3所知,若保留四位有效数字,该回归方程的截距是29.5501,斜率为-0.3329,所以所回归方程的表达式为:x y 3329.05501.29-=;根据回归统计结果,知决定系数9898.0=x 即相关系数9231.0=r ,说明自变量与因变量之间有有着

五.设计总结

通过对概率论与数理统计的这道实际问题的解决,不仅使我更加深刻的理解了概率论与数理统计的基础知识,而且使我对这些知识在实际中的应用产生了浓厚的兴趣,同时对我学习好概率论与数理统计这门课有很大帮助。在实现这道题的过程中我应用了Excel软件,学会了该软件的一些新的应用,更加熟练的操作该软件进行一些数据上的处理。

参考文献

[1]沈恒范.概率论与数理统计教程[M].第四版.北京:高等教育出版社,2003.4:140-196

[2]朱燕堂、赵选民、徐伟.应用概率统计方法[M].第2版.西北工业大学出版社,2000年元月.西安

[3]章栋恩、马玉兰、李双、徐元平.MATLAB高等数学数据分析[M].西北工业大学出版社,2002.北京

致谢

本论文是张玉春老师指导下完成的。她严肃的科学态度,严谨的治学精神,精益求精的工作作风,深深地感染和激励着我。在此,我向张老师致以诚挚的谢意和崇高的敬意。

同时我还要感谢我的同学们,在论文设计中,他们给了我很多的建议和帮助。我还要感谢我的论文中被我引用或参考的文献的作者。

(1)用Excel作一元线性回归分析

实验四(1)用Excel作一元线性回归分析 实验名称:回归分析 实验目的:学会应用软件实验一元线性回归,多元线性回归和非线性回归模型的求解及应用模型解决相应地理问题。 1 利用Excel进行一元线性回归分析 第一步,录入数据 以连续10年最大积雪深度和灌溉面积关系数据为例予以说明。录入结果见下图(图1)。 图1 第二步,作散点图 如图2所示,选中数据(包括自变量和因变量),点击“图表向导”图标;或者在 “插入”菜单中打开“图表(H)”。图表向导的图标为。选中数据后,数据变为蓝色(图2)(office2003)。插入-图表(office2007)

图2 点击“图表向导”以后,弹出如下对话框(图3): 图3 在左边一栏中选中“XY散点图”,点击“完成”按钮,立即出现散点图的原始形式(图4):

图4 第三步,回归 观察散点图,判断点列分布是否具有线性趋势。只有当数据具有线性分布特征时,才能采用线性回归分析方法。从图中可以看出,本例数据具有线性分布趋势,可以进行线性回归。回归的步骤如下: ⑴ 首先,打开“工具”下拉菜单,可见数 据分析选项(见图5) (office2003)。数据-数据分析(office2007) : 图5 用鼠标双击“数据分析”选项,弹出“数据分析”对话框(图6):

图6 ⑵然后,选择“回归”,确定,弹出如下选项表(图7): 图7 进行如下选择:X、Y值的输入区域(B1:B11,C1:C11),标志,置信度(95%),新工作表组,残差,线性拟合图(图8-1)。 或者:X、Y值的输入区域(B2:B11,C2:C11),置信度(95%),新工作表组,残差,线性拟合图(图8-2)。 注意:选中数据“标志”和不选“标志”,X、Y值的输入区域是不一样的:前者包括数据标志: 最大积雪深度x(米)灌溉面积y(千亩) 后者不包括。这一点务请注意(图8)。

一元线性回归分析实验报告

一元线性回归在公司加班 制度中的应用 院(系): 专业班级: 学号姓名: 指导老师: 成 绩: 完成时间 :

一元线性回归在公司加班制度中的应用 一、实验目的 掌握一元线性回归分析的基本思想与操作,可以读懂分析结果,并写出回归方程,对回归方程进行方差分析、显著性检验等的各种统计检验 二、实验环境 SPSS21、0 windows10、0 三、实验题目 一家保险公司十分关心其总公司营业部加班的程度,决定认真调查一下现状。经10周时间,收集了每周加班数据与签发的新保单数目,x 为每周签发的新保单数目,y 为每周加班时间(小时),数据如表所示 y 3、5 1、0 4、0 2、0 1、0 3、0 4、5 1、5 3、0 5、0 1. 画散点图。 2. x 与y 之间大致呈线性关系? 3. 用最小二乘法估计求出回归方程。 4. 求出回归标准误差σ∧ 。 5. 给出0 β∧ 与1 β∧ 的置信度95%的区间估计。 6. 计算x 与y 的决定系数。 7. 对回归方程作方差分析。 8. 作回归系数1 β∧ 的显著性检验。 9. 作回归系数的显著性检验。 10. 对回归方程做残差图并作相应的分析。 11. 该公司预测下一周签发新保单01000x =张,需要的加班时间就是多少?

12.给出0y的置信度为95%的精确预测区间。 13.给出 () E y的置信度为95%的区间估计。 四、实验过程及分析 1、画散点图 如图就是以每周加班时间为纵坐标,每周签发的新保单为横坐标绘制的散点图,从图中可以瞧出,数据均匀分布在对角线的两侧,说明x与y之间线性关系良好。 2、最小二乘估计求回归方程 系数a 模型非标准化系数标准系数t Sig、 B 的 95、0% 置信区间 B 标准误差试用版下限上限

excel一元及多元线性回归实例

野外实习资料的数理统计分析 一元线性回归分析 一元回归处理的是两个变量之间的关系,即两个变量X和Y之间如果存在一定的关系,则通过观测所得数据,找出两者之间的关系式。如果两个变量的关系大致是线性的,那就是一元线性回归问题。 对两个现象X和Y进行观察或实验,得到两组数值:X1,X2,…,Xn和Y1,Y2,…,Yn,假如要找出一个函数Y=f(X),使它在 X=X1,X2, …,Xn时的数值f(X1),f(X2), …,f(Xn)与观察值Y1,Y2,…,Yn趋于接近。 在一个平面直角坐标XOY中找出(X1,Y1),(X2,Y2),…,(Xn,Yn)各点,将其各点分布状况进行察看,即可以清楚地看出其各点分布状况接近一条直线。对于这种线性关系,可以用数学公式表示: Y = a + bX 这条直线所表示的关系,叫做变量Y对X的回归直线,也叫Y对X 的回归方程。其中a为常数,b为Y对于X的回归系数。 对于任何具有线性关系的两组变量Y与X,只要求解出a与b的值,即可以写出回归方程。计算a与b值的公式为:

式中:为变量X的均值,Xi为第i个自变量的样本值,为因变量的均值,Yi为第i个因变量Y的样本值。n为样本数。 当前一般计算机的Microsoft Excel中都有现成的回归程序,只要将所获得的数据录入就可自动得到回归方程。 得到的回归方程是否有意义,其相关的程度有多大,可以根据相关系数的大小来决定。通常用r来表示两个变量X和Y之间的直线相关程度,r为X和Y的相关系数。r值的绝对值越大,两个变量之间的相关程度就越高。当r为正值时,叫做正相关,r为负值时叫做负相关。r 的计算公式如下: 式中各符号的意义同上。 在求得了回归方程与两个变量之间的相关系数后,可以利用F检验法、t检验法或r检验法来检验两个变量是否显著相关。具体的检验方法在后面介绍。

一元线性回归案例spss

下图为25个职业人群的肺癌死亡指数(100=平均水平)和抽烟指数(100=平均水平)。 职业抽烟指数肺癌死亡指数 农业、林业工人77.0 84.0 挖掘、采石工人110.0 118.0 玻璃陶器制造者94.0 120.0 天然气、化工生产者117.0 123.0 锻造锻压工人116.0 135.0 电气及电子工人102.0 101.0 工程及相关行业人员111.0 118.0 木工业工人93.0 113.0 建筑工人113.0 141.0 皮革业工人92.0 104.0 服装业工人91.0 102.0 造纸印刷业工人107.0 102.0 纺织业工人102.0 93.0 其他产品制造者112.0 96.0 油漆工、装潢工110.0 137.0 发动机、起重机等操作员115.0 113.0 食品行业工人104.0 112.0 交通运输业工人115.0 128.0 库管员等105.0 114.0 服务业场所工人105.0 111.0 文书办事员87.0 81.0 销售员91.0 88.0 行政、经理人员76.0 61.0 艺术家、科学家66.0 55.0 其他劳动力113.0 123.0

散点图呈线性关系 令Y=肺癌死亡指数,X=抽烟指数,做线性回归分析如下: 表2中R=0.839 表示两变量高度相关 R方=0.703 表示拟合较好,散点相对集中于回归线 表3中sig.<0.05 则自变量与因变量具有显著的线性关系,即可以用回归模型表 示 表4中自变量sig.<0.05 则自变量对因变量的线性影响是显著的 由此得到抽烟指数及肺癌死亡指数的一元回归方程: Y=-24.421+1.301X 即抽烟指数每变动一个单位则肺癌死亡指数平均变动1.301个单位

一元线性回归模型案例分析

一元线性回归模型案例分析 一、研究的目的要求 居民消费在社会经济的持续发展中有着重要的作用。居民合理的消费模式和居民适度的消费规模有利于经济持续健康的增长,而且这也是人民生活水平的具体体现。改革开放以来随着中国经济的快速发展,人民生活水平不断提高,居民的消费水平也不断增长。但是在看到这个整体趋势的同时,还应看到全国各地区经济发展速度不同,居民消费水平也有明显差异。例如,2002年全国城市居民家庭平均每人每年消费支出为6029.88元, 最低的黑龙江省仅为人均4462.08元,最高的上海市达人均10464元,上海是黑龙江的2.35倍。为了研究全国居民消费水平及其变动的原因,需要作具体的分析。影响各地区居民消费支出有明显差异的因素可能很多,例如,居民的收入水平、就业状况、零售物价指数、利率、居民财产、购物环境等等都可能对居民消费有影响。为了分析什么是影响各地区居民消费支出有明显差异的最主要因素,并分析影响因素与消费水平的数量关系,可以建立相应的计量经济模型去研究。 二、模型设定 我们研究的对象是各地区居民消费的差异。居民消费可分为城市居民消费和农村居民消费,由于各地区的城市与农村人口比例及经济结构有较大差异,最具有直接对比可比性的是城市居民消费。而且,由于各地区人口和经济总量不同,只能用“城市居民每人每年的平均消费支出”来比较,而这正是可从统计年鉴中获得数据的变量。所以模型的被解释变量Y 选定为“城市居民每人每年的平均消费支出”。 因为研究的目的是各地区城市居民消费的差异,并不是城市居民消费在不同时间的变动,所以应选择同一时期各地区城市居民的消费支出来建立模型。因此建立的是2002年截面数据模型。 影响各地区城市居民人均消费支出有明显差异的因素有多种,但从理论和经验分析,最主要的影响因素应是居民收入,其他因素虽然对居民消费也有影响,但有的不易取得数据,如“居民财产”和“购物环境”;有的与居民收入可能高度相关,如“就业状况”、“居民财产”;还有的因素在运用截面数据时在地区间的差异并不大,如“零售物价指数”、“利率”。因此这些其他因素可以不列入模型,即便它们对居民消费有某些影响也可归入随即扰动项中。为了与“城市居民人均消费支出”相对应,选择在统计年鉴中可以获得的“城市居民每人每年可支配收入”作为解释变量X。 从2002年《中国统计年鉴》中得到表2.5的数据: 表2.52002年中国各地区城市居民人均年消费支出和可支配收入

案例分析 一元线性回归模型

案例分析报告 (2014——2015学年第一学期) 课程名称:预测与决策 专业班级:电子商务1202 学号: 2204120202 学生姓名:陈维维 2014 年 11月 案例分析(一元线性回归模型) 我国城镇居民家庭人均消费支出预测 一、研究目的与要求 居民消费在社会经济的持续发展中有着重要的作用,居民合理的消费模式和居民适度的消费规模有利于经济持续健康的增长,而且这也是人民生活水平的具体体现。从理论角度讲,消费需求的具体内容主要体现在消费结构上,要增加居民消费,就要从研究居民消费结构入手,只有了解居民消费结构变化的趋势和规律,掌握消费需求的热点和发展方向,才能为消费者提供良好的政策环境,引导消费者合理扩大消费,才能促进产业结构调整与消费结构优化升级相协调,才能推动国民经济平稳、健康发展。例如,2008年全国城镇居民家庭平均每人每年消费支出为11242.85元,?最低的青海省仅为人均8192.56元,最高的上海市达人均19397.89元,上海是黑龙江的2.37倍。为了研究全国居民消费水平及其变动的原因,需要作具体的分析。影响各地区居民消费支出有明显差异的因素可能很多,例如,零售物价指数、利率、居民财产、购物环境等等都可能对居民消费有影响。为了分析什么是影响各地区居民消费支出有明显差异的最主要因素,并分析影响因素与消费水平的数量关系,可以建立相应的计量经济模型去研究。 二、模型设定?

我研究的对象是各地区居民消费的差异。居民消费可分为城镇居民消费和农村居民消费,由于各地区的城镇与农村人口比例及经济结构有较大差异,最具有直接对比可比性的是城市居民消费。而且,由于各地区人口和经济总量不同,只能用“城镇居民每人每年的平均消费支出”来比较,而这正是可从统计年鉴中获得数据的变量。 所以模型的被解释变量Y选定为“城镇居民每人每年的平均消费支出”。 因为研究的目的是各地区城镇居民消费的差异,并不是城镇居民消费在不同时间的变动,所以应选择同一时期各地区城镇居民的消费支出来建立模型。因此建立的是2008年截面数据模型。影响各地区城镇居民人均消费支出有明显差异的因素有多种,但从理论和经验分析,最主要的影响因素应是居民收入,其他因素虽然对居民消费也有影响,但有的不易取得数据,如“居民财产”和“购物环境”;有的与居民收入可能高度相关,如“就业状况”、“居民财产”;还有的因素在运用截面数据时在地区间的差异并不大,如“零售物价指数”、“利率”。因此这些其他因素可以不列入模型,即便它们对居民消费有某些影响也可归入随即扰动项中。 为了与“城镇居民人均消费支出”相对应,选择在统计年鉴中可以获得的“城市居民每人每年可支配收入”作为解释变量X。 以下是2008年各地区城镇居民人均年消费支出和可支配收入表

用Excel做线性回归分析报告

用Excel进行一元线性回归分析 Excel功能强大,利用它的分析工具和函数,可以进行各种试验数据的多元线性回归分析。本文就从最简单的一元线性回归入手. 在数据分析中,对于成对成组数据的拟合是经常遇到的,涉及到的任务有线性描述,趋势预测和残差分析等等。很多专业读者遇见此类问题时往往寻求专业软件,比如在化工中经常用到的Origin和数学中常见的MATLAB等等。它们虽很专业,但其实使用Excel就完全够用了。我们已经知道在Excel自带的数据库中已有线性拟合工具,但是它还稍显单薄,今天我们来尝试使用较为专业的拟合工具来对此类数据进行处理。 文章使用的是2000版的软件,我在其中的一些步骤也添加了2007版的注解. 1 利用Excel2000进行一元线性回归分析 首先录入数据. 以连续10年最大积雪深度和灌溉面积关系数据为例予以说明。录入结果见下图(图1)。 图1 第二步,作散点图 如图2所示,选中数据(包括自变量和因变量),点击“图表向导”图标;或者在“插入”菜单中打开“图表(H)(excel2007)”。图表向导的图标为。选中数据后,数据变为蓝色(图2)。

图2 点击“图表向导”以后,弹出如下对话框(图3): 图3 在左边一栏中选中“XY散点图”,点击“完成”按钮,立即出现散点图的原始形式(图4):

灌溉面积y(千亩) 01020304050600 10 20 30 灌溉面积y(千亩) 图4 第三步,回归 观察散点图,判断点列分布是否具有线性趋势。只有当数据具有线性分布特征时,才能采用线性回归分析方法。从图中可以看出,本例数据具有线性分布趋势,可以进行线性回归。回归的步骤如下: ⑴ 首先,打开“工具”下拉菜单,可见数据分析选项(见图5)(2007为”数据”右端的”数据分析”): 图5 用鼠标双击“数据分析”选项,弹出“数据分析”对话框(图6):

多元线性回归模型案例分析

多元线性回归模型案例分析 ——中国人口自然增长分析一·研究目的要求 中国从1971年开始全面开展了计划生育,使中国总和生育率很快从1970年的降到1980年,接近世代更替水平。此后,人口自然增长率(即人口的生育率)很大程度上与经济的发展等各方面的因素相联系,与经济生活息息相关,为了研究此后影响中国人口自然增长的主要原因,分析全国人口增长规律,与猜测中国未来的增长趋势,需要建立计量经济学模型。 影响中国人口自然增长率的因素有很多,但据分析主要因素可能有:(1)从宏观经济上看,经济整体增长是人口自然增长的基本源泉;(2)居民消费水平,它的高低可能会间接影响人口增长率。(3)文化程度,由于教育年限的高低,相应会转变人的传统观念,可能会间接影响人口自然增长率(4)人口分布,非农业与农业人口的比率也会对人口增长率有相应的影响。 二·模型设定 为了全面反映中国“人口自然增长率”的全貌,选择人口增长率作为被解释变量,以反映中国人口的增长;选择“国名收入”及“人均GDP”作为经济整体增长的代表;选择“居民消费价格指数增长率”作为居民消费水平的代表。暂不考虑文化程度及人口分布的影响。 从《中国统计年鉴》收集到以下数据(见表1): 表1 中国人口增长率及相关数据

, 设定的线性回归模型为: 1222334t t t t t Y X X X u ββββ=++++ 三、估计参数 利用EViews 估计模型的参数,方法是: 1、建立工作文件:启动EViews ,点击File\New\Workfile ,在对 话框“Workfile Range ”。在“Workfile frequency ”中选择“Annual ” (年 年份 @ 人口自然增长率 (%。) 国民总收入 (亿元) 居民消费价格指数增长 率(CPI )% 人均GDP (元) 1988 15037 1366 1989 … 17001 18 1519 1990 18718 1644 1991 【 21826 1893 1992 26937 2311 1993 . 35260 2998 1994 48108 4044 1995 — 59811 5046 1996 70142 5846 1997 ~ 78061 6420 1998 83024 6796 1999 【 88479 7159 2000 98000 7858 2001 [ 108068 8622 2002 119096 9398 2003 : 135174 10542 2004 159587 12336 2005 、 184089 14040 2006 213132 16024

一元线性回归分析的结果解释

一元线性回归分析的结果解释 1.基本描述性统计量 分析:上表是描述性统计量的结果,显示了变量y和x的均数(Mean)、标准差(Std. Deviation)和例数(N)。 2.相关系数 分析:上表是相关系数的结果。从表中可以看出,Pearson相关系数为0.749,单尾显著性检验的概率p值为0.003,小于0.05,所以体重和肺活量之间具有较强的相关性。 3.引入或剔除变量表

分析:上表显示回归分析的方法以及变量被剔除或引入的信息。表中显示回归方法是用强迫引入法引入变量x的。对于一元线性回归问题,由于只有一个自变量,所以此表意义不大。 4.模型摘要 分析:上表是模型摘要。表中显示两变量的相关系数(R)为0.749,判定系数(R Square)为0.562,调整判定系数(Adjusted R Square)为0.518,估计值的标准误差(Std. Error of the Estimate)为0.28775。 5.方差分析表 分析:上表是回归分析的方差分析表(ANOVA)。从表中可以看出,回归的均方(Regression Mean Square)为1.061,剩余的均方(Residual Mean Square)为0.083,F检验统计量的观察值为12.817,相应的概率p 值为0.005,小于0.05,可以认为变量x和y之间存在线性关系。

6.回归系数 分析:上表给出线性回归方程中的参数(Coefficients)和常数项(Constant)的估计值,其中常数项系数为0(注:若精确到小数点后6位,那么应该是0.000413),回归系数为0.059,线性回归参数的标准误差(Std. Error)为0.016,标准化回归系数(Beta)为0.749,回归系数T检验的t统计量观察值为3.580,T检验的概率p值为0.005,小于0.05,所以可以认为回归系数有显著意义。由此可得线性回归方程为: y=0.000413+0.059x 7.回归诊断 分析:上表是对全部观察单位进行回归诊断(Casewise Diagnostics-all cases)的结果显示。从表中可以看出每一例的标准

案例分析报告(一元线性回归模型)

案例分析报告(2014——2015学年第一学期) 课程名称:预测与决策 专业班级:电子商务1202 学号: 2204120202 学生姓名:陈维维 2014 年 11月

案例分析(一元线性回归模型) 我国城镇居民家庭人均消费支出预测 一、研究目的与要求 居民消费在社会经济的持续发展中有着重要的作用,居民合理的消费模式和居民适度的消费规模有利于经济持续健康的增长,而且这也是人民生活水平的具体体现。从理论角度讲,消费需求的具体内容主要体现在消费结构上,要增加居民消费,就要从研究居民消费结构入手,只有了解居民消费结构变化的趋势和规律,掌握消费需求的热点和发展方向,才能为消费者提供良好的政策环境,引导消费者合理扩大消费,才能促进产业结构调整与消费结构优化升级相协调,才能推动国民经济平稳、健康发展。例如,2008年全国城镇居民家庭平均每人每年消费支出为11242.85元,最低的青海省仅为人均8192.56元,最高的上海市达人均19397.89元,上海是黑龙江的2.37倍。为了研究全国居民消费水平及其变动的原因,需要作具体的分析。影响各地区居民消费支出有明显差异的因素可能很多,例如,零售物价指数、利率、居民财产、购物环境等等都可能对居民消费有影响。为了分析什么是影响各地区居民消费支出有明显差异的最主要因素,并分析影响因素与消费水平的数量关系,可以建立相应的计量经济模型去研究。 二、模型设定 我研究的对象是各地区居民消费的差异。居民消费可分为城镇居民消费和农村居民消费,由于各地区的城镇与农村人口比例及经济结构有较大差异,最具有直接对比可比性的是城市居民消费。而且,由于各地区人口和经济总量不同,只能用“城镇居民每人每年的平均消费支出”来比较,而这正是可从统计年鉴中获得数据的变量。 所以模型的被解释变量Y选定为“城镇居民每人每年的平均消费支出”。 因为研究的目的是各地区城镇居民消费的差异,并不是城镇居民消费在不同时间的变动,所以应选择同一时期各地区城镇居民的消费支出来建立模

一元线性回归分析实验报告

一元线性回归在公司加班制度中的应用 院(系): 专业班级: 学号姓名: 指导老师: 成绩: 完成时间:

一元线性回归在公司加班制度中的应用 一、实验目的 掌握一元线性回归分析的基本思想和操作,可以读懂分析结果,并写出回归方程,对回归方程进行方差分析、显著性检验等的各种统计检验 二、实验环境 SPSS21.0 windows10.0 三、实验题目 一家保险公司十分关心其总公司营业部加班的程度,决定认真调查一下现状。经10周时间,收集了每周加班数据和签发的新保单数目,x 为每周签发的新保单数目,y 为每周加班时间(小时),数据如表所示 y 3.5 1.0 4.0 2.0 1.0 3.0 4.5 1.5 3.0 5.0 2. x 与y 之间大致呈线性关系? 3. 用最小二乘法估计求出回归方程。 4. 求出回归标准误差σ∧ 。 5. 给出0 β∧与1 β∧ 的置信度95%的区间估计。 6. 计算x 与y 的决定系数。 7. 对回归方程作方差分析。 8. 作回归系数1 β∧ 的显著性检验。 9. 作回归系数的显著性检验。 10.对回归方程做残差图并作相应的分析。

11.该公司预测下一周签发新保单01000 x=张,需要的加班时间是多少? 12.给出0y的置信度为95%的精确预测区间。 13.给出 () E y的置信度为95%的区间估计。 四、实验过程及分析 1.画散点图 如图是以每周加班时间为纵坐标,每周签发的新保单为横坐标绘制的散点图,从图中可以看出,数据均匀分布在对角线的两侧,说明x和y之间线性关系良好。 2.最小二乘估计求回归方程

用SPSS 求得回归方程的系数01,ββ分别为0.118,0.004,故我们可以写出其回归方程如下: 0.1180.004y x =+ 3.求回归标准误差σ∧ 由方差分析表可以得到回归标准误差:SSE=1.843 故回归标准误差: 2= 2SSE n σ∧-,2σ∧=0.48。 4.给出回归系数的置信度为95%的置信区间估计。 由回归系数显著性检验表可以看出,当置信度为95%时:

一元线性回归分析实验报告

. . . 一元线性回归在公司加班制度中的应用 院(系): 专业班级: 学号姓名: 指导老师: 成绩: 完成时间:

一元线性回归在公司加班制度中的应用 一、实验目的 掌握一元线性回归分析的基本思想和操作,可以读懂分析结果,并写出回归方程,对回归方程进行方差分析、显著性检验等的各种统计检验 二、实验环境 SPSS21.0 windows10.0 三、实验题目 一家保险公司十分关心其总公司营业部加班的程度,决定认真调查一下现状。经10周时间,收集了每周加班数据和签发的新保单数目,x为每周签发的新保单数目,y为每周加班时间(小时),数据如表所示 2.x与y之间大致呈线性关系? 3.用最小二乘法估计求出回归方程。 4.求出回归标准误差σ∧。 5.给出0β∧与1β∧的置信度95%的区间估计。 6.计算x与y的决定系数。 7.对回归方程作方差分析。 8.作回归系数1β∧的显著性检验。 9.作回归系数的显著性检验。 10.对回归方程做残差图并作相应的分析。 x=,需要的加班时间是多少? 11.该公司预测下一周签发新保单01000

12.给出0y的置信度为95%的精确预测区间。 E y的置信度为95%的区间估计。 13.给出()0 四、实验过程及分析 1.画散点图 如图是以每周加班时间为纵坐标,每周签发的新保单为横坐标绘制的散点图,从图中可以看出,数据均匀分布在对角线的两侧,说明x和y之间线性关系良好。 2.最小二乘估计求回归方程

用SPSS 求得回归方程的系数01,ββ分别为0.118,0.004,故我们可以写出其回归方程如下: 0.1180.004y x =+ 3.求回归标准误差σ∧ ANOVA a 模型 平方和 自由度 均方 F 显著性 1 回归 16.682 1 16.682 72.396 .000b 残差 1.843 8 .230 总计 18.525 9 a. 因变量:y b. 预测变量:(常量), x 由方差分析表可以得到回归标准误差:SSE=1.843 故回归标准误差: 2= 2SSE n σ∧-,2σ∧=0.48。 4.给出回归系数的置信度为95%的置信区间估计。

一元线性回归分析法

一元线性回归分析法 一元线性回归分析法是根据过去若干时期的产量和成本资料,利用最小二乘法“偏差平方和最小”的原理确定回归直线方程,从而推算出a(截距)和b(斜率),再通过y =a+bx 这个数学模型来预测计划产量下的产品总成本及单位成本的方法。 方程y =a+bx 中,参数a 与b 的计算如下: y b x a y bx n -==-∑∑ 222 n xy x y xy x y b n x (x)x x x --==--∑∑∑∑∑∑∑∑∑ 上式中,x 与y 分别是i x 与i y 的算术平均值,即 x =n x ∑ y =n y ∑ 为了保证预测模型的可靠性,必须对所建立的模型进行统计检验,以检查自变量与因变量之间线性关系的强弱程度。检验是通过计算方程的相关系数r 进行的。计算公式为: 22xy-x y r= (x x x)(y y y) --∑∑∑∑∑∑ 当r 的绝对值越接近于1时,表明自变量与因变量之间的线性关系越强,所建立的预测模型越可靠;当r =l 时,说明自变量与因变量成正相关,二者之间存在正比例关系;当r =—1时,说明白变量与因变量成负相关,二者之间存在反比例关系。反之,如果r 的绝对值越接近于0,情况刚好相反。 [例]以表1中的数据为例来具体说明一元线性回归分析法的运用。 表1: 根据表1计算出有关数据,如表2所示: 表2:

将表2中的有关数据代入公式计算可得: 1256750x == (件) 2256 1350y ==(元) 1750 9500613507501705006b 2=-??-?=(元/件) 100675011350a =?-=(元/件) 所建立的预测模型为: y =100+X 相关系数为: 9.011638 10500])1350(3059006[])750(955006[1350 750-1705006r 22==-??-???= 计算表明,相关系数r 接近于l ,说明产量与成本有较显著的线性关系,所建立的回归预测方程较为可靠。如果计划期预计产量为200件,则预计产品总成本为: y =100+1×200=300(元)

相关分析和一元线性回归分析SPSS报告

相关分析和一元线性回归分析SPSS报告

用下面的数据做相关分析和一元线性回归分析: 选用普通高等学校毕业生数和高等学校发表科技论文数量做相关分析和一元线性回归分析。 一、相关分析 1.作散点图

普通高等学校毕业生数和高等学校发表科技论文数量的相关图 从散点图可以看出:普通高等学校毕业生数和高等学校发表科技论文数量的相关性很大。 2.求普通高等学校毕业生数和高等学校发表科技论文数量的相关系 数

把要求的两个相关变量移至变量中,因为都是定距数据,选择相关系数中的Pearson,点击确定,可以得到下面的结果:

Correlations 普通高等学校毕业生数(万人) 高等学校发表科技论文数量(篇) 普通高等学校毕业生数(万人) Pearson Correlation 1 .998** Sig. (2-tailed) .000 N 14 14 高等学校发表科技论文数量(篇) Pearson Correlation .998** 1 Sig. (2-tailed) .000 N 14 14 **. Correlation is significant at the 0.01 level (2-tailed). 两相关变量的Pearson相关系数=0.0998,表示呈高度正相关;相关系数检验对应的概率P值=0.000,小于显著性水平0.05,应拒绝原假设(两变量之间不具有相关性),即毕业生人数好发表科技论文数之间的相关性显著。 3.求两变量之间的相关性

选择相关系数中的全部,点击确定: Correlations (万人) (篇) Kendall's tau_b (万人) Correlation Coefficient 1.000 1.000** Sig. (2-tailed) . . N 14 14 (篇) Correlation Coefficient 1.000** 1.000 Sig. (2-tailed) . . N 14 14 Spearman's rho (万人) Correlation Coefficient 1.000 1.000** Sig. (2-tailed) . . N 14 14 (篇) Correlation Coefficient 1.000** 1.000 Sig. (2-tailed) . . N 14 14 **. Correlation is significant at the 0.01 level (2-tailed). 注解:两相关变量(毕业生数和发表论文数)的Kendall相关系数=1.000,呈正相关;无相关系数检验对应的概率P值,应接受原假设(两变量之间不具有相关性),即毕业生数与发表论文数之间相关性不显著。 两相关变量(毕业生数和发表论文数)的Spearman相关系数=1.000,呈正相关;无相关系数检验对应的概率P值,应接受原假设(两变量之间不具有相关性),即毕业生数与发表论文数之间相关性不显著。 4.普通高等学校毕业生数和高等学校发表科技论文数量的相关系数

多元线性回归模型的案例讲解

多元线性回归模型的案 例讲解 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

1. 表1列出了某地区家庭人均鸡肉年消费量Y 与家庭月平均收入X ,鸡肉价格P 1,猪肉价格P 2与牛肉价格P 3的相关数据。 年份 Y/ 千克 X/元 P 1/(元/千克) P 2/(元/千克) P 3/(元/千克) 年份 Y/ 千克 X/元 P 1/(元/千克) P 2/(元/千克) P 3/(元/ 千克) 1980 397 1992 911 1981 413 1993 931 1982 439 1994 1021 1983 459 1995 1165 1984 492 1996 1349 1985 528 1997 1449 1986 560 1998 1575 1987 624 1999 1759 1988 666 2000 1994 1989 717 2001 2258 1990 768 2002 2478 1991 843 (1) 求出该地区关于家庭鸡肉消费需求的如下模型: 01213243ln ln ln ln ln Y X P P P u βββββ=+++++ (2) 请分析,鸡肉的家庭消费需求是否受猪肉及牛肉价格的影响。 先做回归分析,过程如下: 输出结果如下:

所以,回归方程为: 123ln 0.73150.3463ln 0.5021ln 0.1469ln 0.0872ln Y X P P P =-+-++ 由上述回归结果可以知道,鸡肉消费需求受家庭收入水平和鸡肉价格的影响,而牛肉价格和猪肉价格对鸡肉消费需求的影响并不显着。 验证猪肉价格和鸡肉价格是否有影响,可以通过赤池准则(AIC )和施瓦茨准则(SC )。若AIC 值或SC 值增加了,就应该去掉该解释变量。 去掉猪肉价格P 2与牛肉价格P 3重新进行回归分析,结果如下: Variable Coefficient Std. Error t-Statistic Prob.?? C LOG(X) LOG(P1) R-squared ????Mean dependent var Adjusted R-squared ????. dependent var . of regression ????Akaike info criterion Sum squared resid ????Schwarz criterion Log likelihood ????F-statistic Durbin-Watson stat ????Prob(F-statistic)

多元线性回归实验报告

实验题目:多元线性回归、异方差、多重共线性 实验目的:掌握多元线性回归的最小二乘法,熟练运用Eviews软件的多元线性回归、异方差、多重共线性的操作,并能够对结果进行相应的分析。 实验内容:习题3.2,分析1994-2011年中国的出口货物总额(Y)、工业增加值(X2)、人民币汇率(X3),之间的相关性和差异性,并修正。 实验步骤: 1.建立出口货物总额计量经济模型: 错误!未找到引用源。(3.1) 1.1建立工作文件并录入数据,得到图1 图1 在“workfile"中按住”ctrl"键,点击“Y、X2、X3”,在双击菜单中点“open group”,出现数据 表。点”view/graph/line/ok”,形成线性图2。 图2 1.2对(3.1)采用OLS估计参数 在主界面命令框栏中输入ls y c x2 x3,然后回车,即可得到参数的估计结果,如图3所示。

图 3 根据图3中的数据,得到模型(3.1)的估计结果为 (8638.216)(0.012799)(9.776181) t=(-2.110573) (10.58454) (1.928512) 错误!未找到引用源。错误!未找到引用源。F=522.0976 从上回归结果可以看出,拟合优度很高,整体效果的F检验通过。但当错误!未找到引用源。=0.05时,错误!未找到引用源。=错误!未找到引用源。2.131.有重要变量X3的t检验不显著,可能存在严重的多重共线性。 2.多重共线性模型的识别 2.1计算解释变量x2、x3的简单相关系数矩阵。 点击Eviews主画面的顶部的Quick/Group Statistics/Correlatios弹出对话框在对话框中输入解释变量x2、x3,点击OK,即可得出相关系数矩阵(同图4)。 相关系数矩阵 图4 由图4相关系数矩阵可以看出,各解释变量相互之间的相关系数较高,证实解释变量之间存在多重共线性。 2.2多重共线性模型的修正

案例分析一元线性回归模型

案例分析一元线性回归 模型 Revised as of 23 November 2020

案例分析报告 (2014——2015学年第一学期) 课程名称:预测与决策 专业班级:电子商务1202 学号: 02 学生姓名:陈维维 2014 年 11月 案例分析(一元线性回归模型) 我国城镇居民家庭人均消费支出预测 一、研究目的与要求 居民消费在社会经济的持续发展中有着重要的作用,居民合理的消费模式和居民适度的消费规模有利于经济持续健康的增长,而且这也是人民生活水平的具体体现。从理论角度讲,消费需求的具体内容主要体现在消费结构上,要增加居民消费,就要从研究居民消费结构入手,只有了解居民消费结构变化的趋势和规律,掌握消费需求的热点和发展方向,才能为消费者提供良好的政策环境,引导消费者合理扩大消费,才能促进产业结构调整与消费结构优化升级相协调,才能推动国民经济平稳、健康发展。例如,2008年全国城镇居民家庭平均每人每年消费支出为元,最低的青海省仅为人均元,最高的上海市达人均元,上海是黑龙江的倍。为了研究全国居民消费水平及其变动的原因,需要作具体的分析。影响各地区居民消费支出有明显差异的因素可能很多,例如,零售物价指数、利率、居民财产、购物环境等等都可能对居民消费有影响。为了分析什么是影响各地区居民消费支出有明显差异的最主要因素,并分析影响因素与消费水平的数量关系,可以建立相应的计量经济模型去研究。 二、模型设定

我研究的对象是各地区居民消费的差异。居民消费可分为城镇居民消费和农村居民消费,由于各地区的城镇与农村人口比例及经济结构有较大差异,最具有直接对比可比性的是城市居民消费。而且,由于各地区人口和经济总量不同,只能用“城镇居民每人每年的平均消费支出”来比较,而这正是可从统计年鉴中获得数据的变量。 所以模型的被解释变量Y选定为“城镇居民每人每年的平均消费支出”。 因为研究的目的是各地区城镇居民消费的差异,并不是城镇居民消费在不同时间的变动,所以应选择同一时期各地区城镇居民的消费支出来建立模型。因此建立的是2008年截面数据模型。影响各地区城镇居民人均消费支出有明显差异的因素有多种,但从理论和经验分析,最主要的影响因素应是居民收入,其他因素虽然对居民消费也有影响,但有的不易取得数据,如“居民财产”和“购物环境”;有的与居民收入可能高度相关,如“就业状况”、“居民财产”;还有的因素在运用截面数据时在地区间的差异并不大,如“零售物价指数”、“利率”。因此这些其他因素可以不列入模型,即便它们对居民消费有某些影响也可归入随即扰动项中。 为了与“城镇居民人均消费支出”相对应,选择在统计年鉴中可以获得的“城市居民每人每年可支配收入”作为解释变量X。 以下是2008年各地区城镇居民人均年消费支出和可支配收入表

多元线性回归实例分析报告

SPSS--回归-多元线性回归模型案例解析!(一) 多元线性回归,主要就是研究一个因变量与多个自变量之间的相关关系,跟一元回归原理差不多,区别在于影响因素(自变量)更多些而已,例如:一元线性回归方程 为: 毫无疑问,多元线性回归方程应该 为: 上图中的 x1, x2, xp分别代表“自变量”Xp截止,代表有P个自变量,如果有“N组样本,那么这个多元线性回归,将会组成一个矩阵,如下图所示: 那么,多元线性回归方程矩阵形式为: 其中:代表随机误差, 其中随机误差分为:可解释的误差与不可解释的误差,随机误差必须满足以下四个条件,多元线性方程才有意义(一元线性方程也一样) 1:服成正太分布,即指:随机误差必须就是服成正太分别的随机变量。 2:无偏性假设,即指:期望值为0 3:同共方差性假设,即指,所有的随机误差变量方差都相等 4:独立性假设,即指:所有的随机误差变量都相互独立,可以用协方差解释。 今天跟大家一起讨论一下,SPSS---多元线性回归的具体操作过程,下面以教程教程数据为例,分析汽车特征与汽车销售量之间的关系。通过分析汽车特征跟汽车销售量的关系,建立拟合多元线性回归模型。数据如下图所示:

点击“分析”——回归——线性——进入如下图所示的界面:

将“销售量”作为“因变量”拖入因变量框内, 将“车长,车宽,耗油率,车净重等10个自变量拖入自变量框内,如上图所示,在“方法”旁边,选择“逐步”,当然,您也可以选择其它的方式,如果您选择“进入”默认的方式,在分析结果中,将会得到如下图所示的结果:(所有的自变量,都会强行进入) 如果您选择“逐步”这个方法,将会得到如下图所示的结果:(将会根据预先设定的“F统计量的概率值进行筛选,最先进入回归方程的“自变量”应该就是跟“因变量”关系最为密切,

相关分析和一元线性回归分析SPSS报告

相关分析和一元线性回归分析S P S S报告 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

用下面的数据做相关分析和一元线性回归分析: 选用普通高等学校毕业生数和高等学校发表科技论文数量做相关分析和一元线性回归分析。 一、相关分析 1.作散点图 普通高等学校毕业生数和高等学校发表科技论文数量的相关图 从散点图可以看出:普通高等学校毕业生数和高等学校发表科技论文数量的相关性很大。 2.求普通高等学校毕业生数和高等学校发表科技论文数量的相关系数 把要求的两个相关变量移至变量中,因为都是定距数据,选择相关系数中的Pearson,点击确定,可以得到下面的结果: Correlations 普通高等学校毕业生数(万人) 高等学校发表科技论文数量(篇) 普通高等学校毕业生数(万人) Pearson Correlation 1 .998** Sig. (2-tailed) .000 N 14 14 高等学校发表科技论文数量(篇) Pearson Correlation .998** 1 Sig. (2-tailed) .000 N 14 14 **. Correlation is significant at the level (2-tailed). 两相关变量的Pearson相关系数=,表示呈高度正相关;相关系数检验对应的概率P值=,小于显着性水平,应拒绝原假设(两变量之间不具有相关性),即毕业生人数好发表科技论文数之间的相关性显着。 3.求两变量之间的相关性 选择相关系数中的全部,点击确定:

Correlations (万人) (篇) Kendall's tau_b (万人) Correlation Coefficient ** Sig. (2-tailed) . . N 14 14 (篇) Correlation Coefficient ** Sig. (2-tailed) . . N 14 14 Spearman's rho (万人) Correlation Coefficient ** Sig. (2-tailed) . . N 14 14 (篇) Correlation Coefficient ** Sig. (2-tailed) . . N 14 14 **. Correlation is significant at the level (2-tailed). 注解:两相关变量(毕业生数和发表论文数)的Kendall相关系数=,呈正相关;无相关系数检验对应的概率P值,应接受原假设(两变量之间不具有相关性),即毕业生数与发表论文数之间相关性不显着。 两相关变量(毕业生数和发表论文数)的Spearman相关系数=,呈正相关;无相关系数检验对应的概率P值,应接受原假设(两变量之间不具有相关性),即毕业生数与发表论文数之间相关性不显着。 4.普通高等学校毕业生数和高等学校发表科技论文数量的相关系数 将所求变量移至变量,将控制变量移至控制中,选中显示实际显着性水平,点击确定: Correlations 普通高等学校毕业生数(万人) 高等学校发表科技论文数量(篇) 普通高等学校毕业生数(万人) Pearson Correlation 1 .998** Sig. (2-tailed) .000 N 14 14 高等学校发表科技论文数量Pearson Correlation .998** 1

相关文档
最新文档