信息论第五讲

信息论第五讲
信息论第五讲

2.2.4 费诺(Fano )不等式

我们曾借助于前已给出的通信模型,问从收到的Y 可以得到关于X 多少信息,从而定义了平均互信息的概念。这实际上是一个在给定条件下对关心的随机变量进行估值的问题。在现实问题中常会遇到这种现象,例如,我们想知道某种产品的长度X ,就用尺子去测量,得到读数Y 。不同产品的长度是在一定范围内的随机变量,由于测量误差我们也测不出被测产品的真实长度,所以,这也是根据Y 来估计X 的问题。

我们做过的一个习题说,当且仅当X 是Y 的单值函数时,随机变量X 的条件熵H(X|Y)=0,推而广之,我们希望条件熵H(X|Y) 较小时,能以较低的误差概率估计出X 。费诺不等式量化了这个想法。

设待估计的随机变量X :n x x x ,,,21 具有分布)(x p ,我们观察与X 相关联的随机变量Y ,它关于X 的条件分布是)|(x y p 。由Y 计算函数)(Y g 作为X 的估值)(Y g X =∧

,现在要对X X ≠∧

的概率做出限定。 定义误差概率为

}{X X P P e ≠=∧

(2-49) 注意∧

→→X Y X 构成马尔可夫链。费诺不等式表述如下。

定理2.11

)|()1log()(Y X H n P P H e e ≥-+ (2-50) 其中n 是随机变量个数。式(2-50)可以减弱为

)|(log 1Y X H n P e ≥+ (2-51)

证明 首先定义一个误差随机变量

??

???

=≠=∧

∧X X X E X 如果如果01 然后根据熵的链式法则将)|,(Y X E H 以两种方式展开

),|()|()|,(Y X E H Y X H Y X E H += (2-52)

),|()|()|,(Y E X H Y E H Y X E H += (2-53)

因为E 是X 和g(Y ) 的函数,所以(2-52)中第二项0),|(=Y X E H ;因为条件作用使熵减少,所以(2-53)中第一项)()|(E H Y E H ≤,又因为E 是一个二值随机变量,所以)()(e P H E H =,于是得到:

(|)

()(|,e H X Y H P

H X E Y ≤+ (2-54)

而根据熵是统计平均的概念:

)1,|()1()0,|()0(),|(==+===E Y X H E P E Y X H E P Y E X H r r E=0意味着没有估计误差,知道Y 就完全确定了X ,所以H(X|Y,E=0)=0。当E=1

时,估值)(Y g X =∧

能取X 中其它n-1个值,根据定理 2.11,

)1log()1,|(-≤=n E Y X H ,将这些结果代入式(2-54),得到

(|)()(0)0(|,1) ()log(1)

e r e e e H X Y H P P E P H X Y E H P P n ≤+=?+=≤+-

费诺不等式得证。

如果没有任何关于Y 的知识,只能在毫无信息的情况下估计X ,对X 的最

佳估计是 ,

i x X =∧

其中n i j x p x p j i ,,2,1,()( =≥ ),此时的误差概率为)(1i e x p P -=,而费诺不等式变为)()1log(

)(X H n P P H e e ≥-+。

2.2.5 渐近均分性

在通信过程中,信源往往要发出很长的消息,例如发出一份中文稿件,相当于一个汉字的序列,如果把单个汉字看成是一个随机变量的实现,整个稿件就是对随机变量序列的一次观测。

我们注意到,上例中每个字都来源于同一个字库,而且一般地认为前后两个字互相独立,也就是说,这个随机变量序列是独立同分布的(i.i.d.)。概率论中的大数定律指出,对于独立同分布的随机变量序列,当n 很大时,∑

=n

i i X n

1

1近似

等于期望值EX 。渐近均分性与此类似,其正式描述是:

定理2.12 (AEP )如果n X X X ,,,21 为i.i.d.序列,而且服从)(x p ,则依概率有

(2-55) 所谓依概率趋近)(X H ,即对任意0>ε,有

1|)(),,,(log 1|lim 21=??

?

??<--∞→εX H X X X p n P n n (2-56) 证明 因为i X 是独立同分布的,所以

)(),,,(1

21i n

i n X p X X X P ∏

==

,∑=-

=-n

i i

n X p n

X X X p n 1

21)(log 1

),,,(log 1 。

当∞→n 时,依概率有)(log )(log 11

X p E X p n

n

i i -→-

=)(X H =

这意味着),,,(21n X X X p 会以很高的概率接近于)(2X nH -。

例2.13 设随机变量)1,0{∈X ,其概率密度为P(1)=P(0)=1/2,现信源发出随机序列,问序列(1,0,1,1,0,1)出现的可能性有多大?

解 =)(X H 1,所以,依概率1)1,0,1,1,0,1(log 6

1→-p ,64

12)1,0,1,1,0,1(6=

=-p 6位二进制序列共有64个,如果0\1等概出现,则序列(1,0,1,1,0,1)出现的可能性是1/64当然是合理的。如果q P p P ==)0(,)1( ,则q q p p X H log log )(--=,

序列出现的概率就成为)

(62)1,0,1,1,0,1(X H p -=。

渐近均分定理又叫序列分组定理,因为利用它可以把随机变量序列的集合分为两个子集:典型集和非典型集。根据对数的意义把式(2-55)稍加变换,就得到典型集的的定义:

定义2.11 满足如下性质的序列Ω∈),,,(21n x x x 的集合叫做p(x)的典型集)

(n E A :

))((21)

)((2),,,(2

εε--+-≤≤X H n n X H n x x x p (2-57) 典型集具有如下性质: (1) 如果)

(21),,,(n E n A x x x ∈ ,则

εε+≤-≤-)(),,,(log 1

)(21X H x x x p n

X H n

(2) 当n 充分大时,有ε->1}{)

(n E A P

(3) )

)(()(2||ε+≤X H n n E A ,其中|A|表示集合A 中的元素个数 (4) 当n 充分大时,有))(()

(2)1(||εε--≥X H n n E A

我们略去这些性质的证明,重点说明它们的意义(证明并不困难,有兴趣的读者可以作为练习)。

性质(1) 、(2)说明,对任意小的ε,只要n 足够大,随机变量序列都属于典型集。性质(3)、(4)说明了典型集包含的随机变量序列的个数,由于 ε非常小,所以

)

()

(2||X nH n E A → (2-58)

这就是说,从平均意义上讲,用nH(X)比特就可以表示序列n X 。

2.2.6 随机过程的熵率

渐近均分性表明,在平均意义下使用nH(X) 比特足以描述n 个独立同分布的随机变量序列,如果随机变量不独立,尤其是平稳随机过程,情况将会怎样?我们在下面引出随机过程熵率的概念。

定义2.12 随机过程的熵率定义为

),,,(1

l i m (21n n X X X H n

H ∞→=)X (2-59) 熵率反映随机变量序列的熵随n 值增长的变化情况。 例2.14 假定一台打字机可输出m 个等可能的字母。由此打字机可产生长度为n 的序列n m 个,且等可能出现。因此),,,(21n X X X H n m l o g =,熵率为

m H log )(=X 比特/每字符。

例2.15 对独立同分布随机变量序列,

)()

(lim ),,,(lim

)(1121X H n

X nH n X X X H H n === X

这个结果正是我们期望的每个字符的熵率。对于独立但非同分布随机变量序

列,情况变得复杂起来,因为在求熵率过程中,我们遇到

∑==

n

i i n X H X X H 1

1)(),,( ,和式中的)(i X H 不全相等。有可能出现∑)(1

i

X H n

极限不存在的情况,这样式(2.59)就失去意义。因此,重新定义一个与(2-59)相关的量:

),,,|(lim )(121X X X X H H n n n n --∞

→='X (2-60)

这个极限一定存在吗?

定理2.13 对于平稳随机过程,),,|(11X X X H n -随n 递减且存在极限。 证明 ),,,|(),,,|(211111X X X X H X X X X H n n n n n n -+-+≤ ),,|(11X X X H n n -=

其中不等号是由条件作用使熵减少,等号由平稳性得到。上式说明

),,|(11X X X H n n -是随

n 递减的,再由它的非负性,证明极限)(X H '必存在。

那么(2-59)和(2-60)两个极限有什么关系呢?

定理2.14 对于平稳随机过程,有 )()(X X H H '= (2-61)

证明 简记n n b X X X H n

=),,,(1

21 ,i i i a X X X H =-),|(11

由链式法则:

=-=

n

i i i n X X X H X X X H 1

1121),,|(),,,(

用简记符号改写为

==

n

i i

n a n

b 11

两边取极限

=∞

→∞

→=

n

i i

n n n a n b 1lim 1lim

根据定理2.13,等号右边趋向于)(X H ',而等号左边等于)(X H ,定理得证。

上述定理的证明不是十分严密,并不影响所得结论。注意)(X H '与)(X H 的物理意义已经不同,前者表示在已知过去情况下最新出现随机变量的条件熵,后者是n 个随机变量的每字符的熵。但是它们的单位都是(熵 / 每字符)。考虑到随机过程含有时间跨度的概念,每个字符的出现将占有一个时间段τ,如果把上述熵率除以τ,我们就得到了单位时间的熵(也叫时间熵),这就是所以叫做熵率的原因。平稳马尔可夫链的熵率简单地等于条件熵,使得计算起来十分方便,下面的定理就叙述这个结果。

定理2.15 设{X }为平稳马尔可夫链,其分布为μ,转移矩阵为P ,则熵率为

∑-

=j

i j i j

i i P P

H ,,,log )(μX (2-62)

证明 对于平稳马尔可夫链,熵率的计算十分简单,这时有

)|(lim ),,|(lim )()(111--=='=n n n n X X H X X X H H H X X

∑-

==j

i i j i j

i P P X X H ,12)|(log )|()|(μμμμ

μ

∑∑

?

??

?

??-=

i

j

j i j i i P P ,,l o g μ∑

-=j i j i j i i P P ,,,l o g μ

例2.16 有两状态的马尔可夫链,其转移概率为 1-α

α 1-β

??

????--=ββαα11 P ,求其熵率。

解 此一阶马尔可夫链有两种状态,四个 转移概率。可绘香农线图如图。设两个状态的 β

概率密度函数为μ,则有:121=+μμ由线图 图2-5 例题2.16附图

得到βμαμμ211)1(+-=,即21βμαμ= 将上两个方程联立,解得

,1β

αβμ+=

β

ααμ+=

2

仿照定理 2.15的证明, 2

3

)|()(12X X H H =X 1

)]1log()1(log []log )1log()1[(21ββββμααααμ--+-+---=? )()(ββ

αααβ

αβH H ?++

+=

5

4

例 2.17 设一个粒子可以在右图上由一个节 图2-6 例题2.17附图

点到另一个节点作随机游动,表示为}{n X ,},,2,1{m X n ∈是图中的顶点序列。

设连接节点i 的各边权重之和为∑=j j i i W W ,,从i X n =移到j X n =+1的转移

概率应该是连接i 和j 的边的权重占与i 相连的所有边权重的比例,即

i

j i k

k

i j

i j i W W W

W P ,,,,=

=

∑。记W W i j j i j i =∑>:,,,则图中所有边权重之和W W i

i 2=∑,所以

每个节点的概率为W

W W

W i i

i

i

i 2=

=

∑μ。容易证明,j i

j i i P μμ=∑,,因此,本例可以

看作平稳马尔可夫链。

现在计算它的熵率。

∑∑

-

==i

j

j i j i i

P P X X H H ,,12log )|()(μX ∑

∑-

=i

j

i

j i i

j

i i W W W

W W

W ,,log

2

∑-

=j

i i

j i j

i W W W

W ,,,log

2∑∑+

-

=j

i j

i i

j

i j i j

i W W W W W

W W

W ,,,,,2log 22log 2

),2,

(),2,

(, W

W H W

W H i

j i -= 现假设所有边的权重相同,连接节点i 的边数是Ei ,图中总边数是E ,则节点i 的权重就是E E i 2/,随机游动的熵率为

??? ??-=E E E

E

E E H E H m 2,,2,2)2log()(21 X

例 2.18 假定国际象棋中的“王”在88?棋盘上作随机游动。“王”子若在

棋盘内部周围有8个可移位置,在边上有5个可移位置,若在角上则只有3个位置可以移动。将上述结果代入例3.9,可得熵率为0.92log8。

信息论的应用

学号:201122010835 姓名:李毅 信息论在图像处理中的应用 摘要:把信息论的基本原理应用到图像处理中具有十分重要的价值。本文主要从评估图像捕捉部分性能的评估、图像分割算法这两个个方面阐述信息论在图像处理中的应用。 通过理论分析来说明使用信息论的基本理论对图像处理的价值。 关键字:信息论;图像捕捉;图像分割 第1章 引言 随着科学技术的不断发展,人们对图形图像认识越来越广泛,图形图像处理的应用领域也将随之不断扩大。为了寻找快速有效的图像处理方法,信息理论越来越多地渗透到图像处理技术中。文章介绍了信息论基本理论在图像处理中的应用,并通过理论分析说明其价值。把通信系统的基本理论信息论应用于采样成像系统,对系统作端到端的系统性能评价,从而优化采样成像系统的设计,是当前采样成像系统研究的分支之一。有些图像很繁杂,而我们只需要其中有意义的一部分,图像分割就是将图像分为一些有意义的区域,然后对这些区域进行描述,就相当于提取出某些目标区域图像的特征,随后判断这些图像中是否有感兴趣的目标。 第2章 图像捕捉部分性能评估 2.1 图像捕捉的数学模型 图像捕捉过程如图1所示。G 为系统的稳态增益,),(y x p 是图像捕捉设备的空间响应函数,),(y x n p 是光电探索的噪声。),(y x comb 代表采样网格函数,),(),,(y x s y x o 分别为输入、输出信号。 在这种模型下的输出信号 ),(),()],(),([),(y x n y x comb y x p y x Go y x s p +*= 其中,∑--= n m n y m x y x comb ,),(),(δ,代表在直角坐标系下,具有单位采样间隔的采样设备的采样函数。

信息论与编码习题与答案第二章

第一章 信息、消息、信号的定义?三者的关系? 通信系统的模型?各个主要功能模块及作用? 第二章 信源的分类? 自信息量、条件自信息量、平均自信息量、信源熵、不确定度、条件熵、疑义度、噪声熵、联合熵、互信息量、条件互信息量、平均互信息量以及相对熵的概念?计算方法? 冗余度? 具有概率为)(x i p 的符号x i 自信息量:)(log )(x x i i p I -= 条件自信息量:)(log )( y x y x i i i i p I -= 平均自信息量、平均不确定度、信源熵:∑-=i i i x x p p X H )(log )()( 条件熵:)(log ),()(),()(y x y x y x y x j i j ij i j i j ij i p p I p Y X H ∑∑-== 联合熵:),(log ),(),(),()(y x y x y x y x j i j ij i j i j ij i p p I p Y X H ∑∑-== 互信息:) ()(log )()() ()(log ),();(y x y x y x y x y y x j i j i j ij i j i j j ij i p p p p p p p Y X I ∑∑= = 熵的基本性质:非负性、对称性、确定性 2.3 同时掷出两个正常的骰子,也就是各面呈现的概率都为1/6,求: (1) “3和5同时出现”这事件的自信息; (2) “两个1同时出现”这事件的自信息; (3) 两个点数的各种组合(无序)对的熵和平均信息量; (4) 两个点数之和(即2, 3, … , 12构成的子集)的熵; (5) 两个点数中至少有一个是1的自信息量。 解:(1) bit x p x I x p i i i 170.418 1 log )(log )(18 1 61616161)(=-=-== ?+?= (2) bit x p x I x p i i i 170.536 1 log )(log )(361 6161)(=-=-== ?=

信息的内涵与信息论发展简史

信息的内涵与信息论发展简史学院:数学与统计学院专业:信息与计算科学学生:卢富毓学号:20101910072 内容摘要:信息论经过六十多年的发展,现在已经成为现代信息科学的一个重要组成部分,信息论是现代通信和信息技术的理论基础。本文详细从来阐述信息论的内涵以及发展史。 信息是什么?什么叫信息论? 信息泛指人类社会传播的一切内容。人通过获得、识别自然界和社会的不同信息来区别不同事物,得以认识和改造世界。在一切通讯和控制系统中,信息是一种普遍联系的形式。1948年,数学家香农在题为“通讯的数学理论”的论文中指出:“信息是用来消除随机不定性的东西”。美国数学家、控制论的奠基人诺伯特·维纳在他的《控制论——动物和机器中的通讯与控制问题》中认为,信息是“我们在适应外部世界,控制外部世界的过程中同外部世界交换的内容的名称”。英国学者阿希贝认为,信息的本性在于事物本身具有变异度。 由此可见在不同的领域,有着对信息的不同定义。 而如今比较首肯的是数学家香农给出的解释——信息是用来消除随机不定性的东西。 信息论是运用概率论与数理统计的方法研究信息、信息熵、通信系统、数据传输、密码学、数据压缩等问题的应用数学学科。 信息论将信息的传递作为一种统计现象来考虑,给出了估算通信信道容量的方法。信息传输和信息压缩是信息论研究中的两大领域。这两个方面又由信息传输定理、信源-信道隔离定理相互联系。 1948~1949年,香农(Shannon)在《贝尔系统技术杂志》上发表了论文《通信的数学理论》以及《噪声下的通信》。在这两篇论文中,他经典地阐明了通信的基本问题,提出了通信系统的模型,给出了信息量的数学表达式,解决了信道容量、信源统计特性、信源编码、信道编码等有关精确地传送通信符号的基本技术问题,并且开始创造性的定义了“信息”。这两篇论文成了现在信息论的奠基著作。而香农也一鸣惊人,成了这门新兴学科的奠基人。香农也因此被称为是“信息论之父”。 信息有什么内涵? 信息是现代社会的一种非常重要的资源,信息社会中的信息就像农业社会的土地,工业社会的资金和技术一样,将会成为人们竞相争夺的对象,从某种意义上来说,信息就是现代社会最重要的财富,谁掌握了信息,谁就掌握了未来。 信息的内涵是什么呢? 不同人对信息有着不同的理解。有人认为信息就是消息,传递信息就是传递消息。这种定义有一定道理,但不太准确。信息和消息是有区别的,一般来说,

信息论第二章答案

2.3 同时掷出两个正常的骰子,也就是各面呈现的概率都为1/6,求: (1) “3和5同时出现”这事件的自信息; (2) “两个1同时出现”这事件的自信息; (3) 两个点数的各种组合(无序)对的熵和平均信息量; (4) 两个点数之和(即2, 3, … , 12构成的子集)的熵; (5) 两个点数中至少有一个是1的自信息量。 解: (1) bit x p x I x p i i i 170.418 1 log )(log )(181 61616161)(=-=-== ?+?= (2) bit x p x I x p i i i 170.536 1 log )(log )(361 6161)(=-=-== ?= (3)两个点数的排列如下: 11 12 13 14 15 16 21 22 23 24 25 26 31 32 33 34 35 36 41 42 43 44 45 46 51 52 53 54 55 56 61 62 63 64 65 66 共有21种组合: 其中11,22,33,44,55,66的概率是36 16161=? 其他15个组合的概率是18 161612=?? symbol bit x p x p X H i i i / 337.4181log 18115361log 3616)(log )()(=??? ?? ?+?-=-=∑ (4)参考上面的两个点数的排列,可以得出两个点数求和的概率分布如下: sym bol bit x p x p X H X P X i i i / 274.3 61log 61365log 365291log 912121log 1212181log 1812361log 36 12 ) (log )()(36112181111211091936586173656915121418133612)(=? ?? ?? +?+?+?+?+?-=-=????????? ?=??????∑(5) bit x p x I x p i i i 710.136 11 log )(log )(3611116161)(=-=-== ??=

信息论

信息论的发展及应用 信息论是运用概率论与数理统计的方法研究信息、信息熵、通信系统、数据传输、密码学、数据压缩等问题的应用数学学科。 信息论将信息的传递作为一种统计现象来考虑,给出了估算通信信道容量的方法。信息传输和信息压缩是信息论研究中的两大领域。这两个方面又由信息传输定理、信源-信道隔离定理相互联系。信息论经过六十多年的发展,现在已经成为现代信息科学的一个重要组成部分,信息论是现代通信和信息技术的理论基础。现代信息论又是数学概率论与数理统计下年的一个分支学科。现在信息论已经成为国内数学系信息与计算科学专业的一门必须课程。作为信息论的奠基人克劳德·艾尔伍德·香农(Claude Elwood Shannon ),于1948 年和1949 年发表的两篇论文一起奠定了现代信息论的基础信息论的研究范围极为广阔。一般把信息论分成三种不同类型: (1)狭义信息论是一门应用数理统计方法来研究信息处理和信息传递的科学。它研究存在于通讯和控制系统中普遍存在着的信息传递的共同规律,以及如何提高各信息传输系统的有效性和可靠性的一门通讯理论。 (2)一般信息论主要是研究通讯问题,但还包括噪声理论、信号滤波与预测、调制与信息处理等问题。 (3)广义信息论不仅包括狭义信息论和一般信息论的问题,而且还包括所有与信息有关的领域,如心理学、语言学、神经心理学、语义学等。

信息论发展: 1924年,Nyquist提出信息传输理论; 1928年,Hartley提出信息量关系; 1932年,Morse发明电报编码; 1946年,柯切尼柯夫提出信号检测理论; 1948年,Shannon提出信息论,他发表的论文:“A mathematical theory of communication ”同时维纳提出了最佳滤波理论,成为信息论的一个重要分支。 1959年,香农为各种信息源编码的研究奠定基础,发表论文:“Coding theorems for a discrete source with a fidelity criterion”,数据压缩理论与技术成为信息论的重要分支 六十年代,信道编码技术有较大的发展,信道编码成为信息论重要分支。 1961年,香农的重要论文“双路通信信道”开拓了多用户信息理论的研究、 七十年代,有关信息论的研究,从点对点的单用户通信推广到多用户系统的研究。密码学成为信息论的重要分支。 详细介绍; 现代信息论其实是从上世纪二十年代奈奎斯特和哈特莱的研究开始的,他们最早开始研究了通信系统传输信息的能力,并且试图度量系统的信道容量。香农于1940 年在普林斯顿高级研究所期间开始思考信息论与有效通信系统的问题。经过8 年的努力,1948

信息论与编码习题与答案第四章

4-1 设有一个二元等该率信源{}1,0∈X ,2/110==p p ,通过一个二进制对称信道(BSC )。其失真函数ij d 与信道转移概率ij p 分别定义为 j i j i d ij =≠???=,0,1 ,j i j i p ij =≠? ??-=,1,εε 试求失真矩阵d 和平均失真D 。 解:由题意得, 失真矩阵为d ??????=0110d ,信道转移概率矩阵为P ?? ????--=εεεε11)(i j 平均失真为ε εεεε=?-+?+?+?-= =∑0)1(211211210)1(21),()()(,j i d i j p i p D j i 4-3 设输入符号与输出符号X 和Y 均取值于{0,1,2,3},且输入符号的概率分布为P(X=i)=1/4,i=0,1,2,3,设失真矩阵为 ????? ???????=0111101111011110d 求)(),(,,max min max min D R D R D D 以及相应的编码器转移概率矩阵。 解:由题意,得 0min =D 则symbol bit X H R D R /24log )()0()(2min ==== 这时信源无失真,0→0,1→1,2→2,3→3,相应的编码器转移概率矩阵为

????? ???????=1000 010*********)j (i P ∑===30 3,2,1,0max ),()(min i j j i d i p D ,,14 1141041141141141141041min{?+?+?+??+?+?+?= }04 1141141141141041141141?+?+?+??+?+?+?, 43}43,43,43,43min{== 则0)(max =D R 此时输出概率分布可有多种,其中一种为:p(0)=1,p(1)=p(2)=p(3)=0 则相应的编码器转移概率矩阵为????? ???????=0001000100010001)(i j P

信息论发展

信息论发展 现代信息论是从上世纪二十年代奈奎斯特和哈特莱的研究开始的,他们最早开始研究了通信系统传输信息的能力,并且试图度量系统的信道容量。香农于1940年在普林斯顿高级研究所期间开始思考信息论与有效通信系统的问题。经过8年的努力,1948年,来自贝尔研究所的ClaudeShannon(克劳德·香农)的《通信的数学理论》论文公诸于世,从此宣告了崭新的一门关于信息发面的学科──信息论的诞生。1949年,香农又在该杂志上发表了另一著名论文《噪声下的通信》。在这两篇论文中,香农阐明了通信的基本问题,给出了通信系统的模型,提出了信息量的数学表达式,并解决了信道容量、信源统计特性、信源编码、信道编码等一系列基本技术问题。两篇论文成为了信息论的奠基性著作。这两篇论文一起阐述了现代信息论的基础。并且香农开始创造性的定义了“信息”。 信息论自从二十世纪四十年代中叶到二十一世纪初期,现已成为一门独立的理论科学,他给出一切传输、存储、处理信息系统的一般理论,并指出,实现有效、可靠地传输和存储信息的途径是走数字化的道路。这是通信技术领域数字化革命的数学或理论基础。1946年的计算机和1947年晶体管的诞生和相应技术的发展,是这一革命的物理或物质基础。信息论是在长期的通信工程实践和理论研究的基础上发展起来的。当物理学中的电磁理论以及后来的电子学理论一旦有某些进展,很快就会促进电信系统的创造发明或改进。这是因为通信系统对人类社会的发展,其关系实在是太密切了。日常生活、工农业生产、科学研究以及战争等等,一切都离不开消息传递和信息流动。通信系统是人类社会的神经系统,即使在原始社会也存在着最简单的通信工具和通信系统,这方面的社会实践是悠久漫长的。自从香农十九世纪四十年代末两篇论文发表后,前苏联和美国的科学家采取了不同的研究途径经一部发展了信息论。柯尔莫哥洛夫、宾斯基和达布鲁新为首的一批著名数学家致力于信息论的公理化体系和更一般更抽象的数学模型,对信息论的基本定理给出了更为普遍的结果,为信息论发展成数学的一个分支作出了贡献。而在美国测试有一批数学修养很高的工程技术人员致力于信息有效处理和可靠传输的可实现性,维信息论转化为信息技术作出了贡献。 20世纪50年代,信息论向各门学科发起冲击;60年代信息论进入一个消化、

信息论发展史和展望 蒲鹤升

信息论发展史和展望 蒲鹤升(020150802) 一、信息论定义 信息论,顾名思义是一门研究信息的处理和传输的科学;即用概率论与数理统计方法来探究信息的度量、传递和变换规律的一门学科。它主要是研究通讯和控制系统中普遍存在着信息传递的共同规律以及研究最佳解决信息的获限、度量、变换、储存和传递等问题的基础理论。信息论将信息的传递作为一种统计现象来考虑,给出了估算通信信道容量的方法,信息传输和信息压缩是信息论研究中的两大领域,这两个方面又由信息传输理论、信源-信道隔离定理相互联系。信息是系统传输和处理的对象,它载荷于语言、文字、图像、数据等之中。这就是现代信息论的出发点。 二、狭义与广义 狭义的信息论是应用数理统计方法来研究信息处理和信息传递的科学,它研究存在于通讯和控制系统中普遍存在着的信息传递的共同规体,以及如何提高各信息传输系统的有效性和可能性的一门通讯理论。狭义信息论是申农氏于1948年创立的,其主要内容就是研究信源、信宿、传递及编码问题,因此它主要应用于通讯工作。后来信息论发展很快,将申农氏信息论的观点做为研究一切问题的理论,即广义信息论。信息论是建立在信息基础上的理论,所谓信息,即人类凭借感觉器官感知的周围一切变化,都可称作信息。 三、相关人物贡献 20世纪通信技术的发展推动了信息理论的研究. 美国科学家H.Nyquist 于1924年解释了信号带宽和信息速率之间的关系 美国科学家L.V.R.Hartley 于1928年开始研究通信系统传输信息的能力,给出了信息的度量方法 美国科学家C.E.Shannon 于1948年发表的著名论文《通信的数学理论》 A Mathematical Theory of Communication奠定了信息论的理论基础 四、各发展阶段 第一阶段:1948年贝尔研究所的香农在题为《通讯的数学理论》的论文中系统地提出了关于信息的论述,创立了信息论. 第二阶段:20世纪50年代,信息论向各门学科发起冲击;60年代信息论进入一个消化、理解的时期,在已有的基础上进行重大建设的时期.研究重点是信息和信源编码问题.

(完整word版)西安电子科技大学信息论与编码理论讲义

《信息论》 讲义 204教研室 2005年11月

主要内容: 第一章绪论 第二章离散信源及其信息测度第三章离散信道及其信道容量第四章无失真信源编码 第五章有噪信道编码

第一章 绪论 信息论——人们在长期通信工程的实践中,由通信技术与概率论、随机过程和数理统计相结合而逐步发展起来的一门学科。 奠基人——香农 1948年发表了著名的论文——《通信的数学理论》,为信息论奠定了理论基础。 1.1 信息的概念 人类离不开信息,信息的接收、传递、处理和利用时时刻刻都在发生。 如:“结绳记事”、“烽火告警”,信息的重要性是不言而喻的。 什么是信息?——信息论中最基本、最重要的概念。 信息与“消息”、“情报”、“知识”、“情况”等的区别: “情报”——人们对于某个特定对象所见、所闻、所理解而产生的知识。是一类特定的信息。 “知识”——人们根据某种目的,从自然界收集得来的数据中,整理、概括、提取得到的有价值的、人们所需的信息。是一种具有普遍和概括性质的高层次的信息。 “消息”——以文字、符号、数据、语言、音符、图片、图像等能够被人们感觉器官所感知的形式,表达客观物质运动和主观思维活动的状态。 消息包含信息,是信息的载体。二者既有区别又有联系。 “信号”——消息的运载工具。 香农从研究通信系统传输的实质出发,对信息作了科学的定义,并进行了定性和定量的描述。 收信者: 收到消息前,发送者发送的消息——1、描述的是何种事物运动状态的具体消息;2、描述的是这种消息还是那种消息;3、若存在干扰,所得消息是否正确与可靠。 存在“不知”、“不确定”或“疑问” 收到消息后,知道消息的具体内容,原先的“不知”、“不确定”或“疑问”消除或部分消除了。 消息传递过程——从不知到知的过程;从知之甚少到知之甚多的过程;从不确定到部分确定或全部确定的过程。 通信过程——消除不确定性的过程。 不确定性的消除,就获得了信息。 若原先不确定性全部消除了,就获得了全部的消息;若消除了部分不确定性,就获得了部分信息;若原先不确定性没有任何消除,就没有获得任何消息。 信息——事物运动状态或存在方式的不确定性的描述。 通信的结果——消除或部分消除不确定性而获得信息。 信息如何测度? 信息量与不确定性消除的程度有关。消除了多少不确定性,就获得了多少信息量。 不确定性——随机性——概率论与随机过程。 样本空间——所有可能选择的消息的集合。 概率空间——样本空间和它的概率测度。],[P X

论信息论与编码的发展与前景

信息论与编码的发展与前景 摘要:信息论理论的建立,提出了信息、信息熵的概念,接着人们提出了编码定理。编码方法有较大发展,各种界限也不断有人提出,使多用户信息论的理论日趋完整,前向纠错码(FEC)的码字也在不断完善。但现有信息理论中信息对象的层次区分对产生和构成信息存在的基本要素、对象及关系区分不清,适用于复杂信息系统的理论比较少,缺乏核心的“实有信息”概念,不能很好地解释信息的创生和语义歧义问题。只有无记忆单用户信道和多用户信道中的特殊情况的编码定理已有严格的证明,其他信道也有一些结果,但尚不完善。但近几年来,第三代移动通信系统(3G)的热衷探索,促进了各种数字信号处理技术发展,而且Turbo码与其他技术的结合也不断完善信道编码方案。 关键词:信息论信道编码纠错编码信息理论的缺陷 3G Turbo码 一、信息论的形成和发展 信息论从诞生到今天,已有五十多年历史,现已成为一门独立的理论科学,回顾它的发展历史,我们可以知道理论是如何从实践中经过抽象、概括、提高而逐步形成的。 1.1信息论形成的背景与基础 信息论是在人们长期的通信工程实践中,由通信技术和概率论、随机过程和数理统计相结合而逐步发展起来的一门学科。人们公认的信息论的奠基人是当代伟大的数学家、美国贝尔实验室杰出的科学家香农,他在1948年发表了著名的论文《通信的数学理论》,为信息论奠定了理论基础。近半个世纪以来,以通信理论为核心的经典信息论,正以信息技术为物化手段,向高精尖方向迅猛发展,并以神奇般的力量把人类社会推入了信息时代。随着信息理论的迅猛发展和信息概念的不断深化,信息论所涉及的内容早已超越了狭义的通信工程范畴,进入了信息科学领域。 通信系统是人类社会的神经系统,即使在原始社会也存在着最简单的通信工具和通信系统,这方面的社会实践是悠久漫长的。 电的通信系统(电信系统)已有100多年的历史了。在一百余年的发展过程中,一个很有意义的历史事实是:当物理学中的电磁理论以及后来的电子学理论一旦有某些进展,很快就会促进电信系统的创造发明或改进。这是因为通信系统对人类社会的发展,其关系实在是太密切了。日常生活、工农业生产、科学研究以及战争等等,一切都离不开消息传递和信息流动。 例如,当法拉第(M.Faraday)于1820年--1830年期间发现电磁感应的基本规律后,不久莫尔斯(F.B.Morse)就建立起电报系统(1832—1835)。1876年,贝尔(A.G.BELL)又发明了电话系统。1864年麦克斯韦(Maxell)预言了电磁波的存在,1888年赫兹(H.Hertz)用实验证明了这一预言。接着1895年英国的马可尼(G.Marconi)和俄国的波波夫(A.C.ΠoΠoB)就发明了无线电通信。 本世纪初(1907年),根据电子运动的规律,福雷斯特(1,Forest)发明了能把电磁波进行放大的电子管。之后很快出现了远距离无线电通信系统。大功率超高频电子管发明以后,电视系统就建立起来了(1925—1927)。电子在电磁场运动过程中能量相互交换的规律被人们认识后,就出现了微波电子管(最初是磁控管,后来是速调管、行波管),接着,在三十年代末和四十年代初的二次世界大战初期,微波通信系统、微波雷达系统等就迅速发展起来。五十年代后期发明了量子放大器,六十年代初发明的激光技术,使人类进入了光纤通信的时代。

信息论

电信1201班梁佳琪 A19120164 信息论与编码论文 ——香农理论与信道编码发展 前言 近年来,无线通信技术得到了广泛的发展,从移动的G3,到联通的沃3G业务,再到电信的WCDMA业务,再最近研究的4G领域,无不显示了无线通信的蓬勃发展。 而要实现信息的无线传输,满足信息传输的三个特性——有效性、可靠性和保密性,就要对通信技术提出了更高的要求,为了达到这个目的,现在世界各国的通信方面的专家都在积极研究这个领域,以实现更高速、更有效地信源、信道编码及传输要求。 香农理论的诞生 说起通信,需要回溯到香农与信息论的关系。香农在1948年发表了《通信的一个数学理论》完整地解决了通信速度上限的问题。“信息论”从此诞生。但是香农也留下了一个巨大挑战:怎样才能达到这个速度上限?这个挑战,就开辟了后来五十年来十分热门的研究领域。 信道编码 在数据传送时,我们不是直接把一个一个数码送去调制,而是只传送一些预先选定的序列。要传送的数据被对应到相应的码字来传送。在接收方,根据收到的码字就能恢复出原始数据。这种传送的方法就称为编码。编码的目的可以有多种。一个目的是保密,这里不讨论。另一个目的是加快数据传送速度。把不常用的数据编成长码,常用的编成短码,就能降低码的平均长度,而传送更多的数据。上文开始时介绍的摩斯码就是这个原理。我们现在常用zip程式来压缩文档,也是如此。在通信中,这种编码叫做源编码,有时也称数据压缩。香农在这方面也有开创性的工作,按下不表。第三个目的,就是纠正噪声引起的传送错误。这在上文中也有简单介绍。这种编码就叫信道编码,也叫纠错码。 香农在证明他的信道容量定理中,引进了“典型序列”的概念。典型序列就是指序列中的符号出现的比例与符号的先验概率相同。对于足够长的序列,所有出现机率不为零的序列都是典型序列。通过选取一些典型序列作为码字,香农证明了最大传送速率。但是这个概念实行起来有困难。很长的序列在编码和解码两方面都会非常困难。而如果序列不长的话,就无法利用“典型序列”的概念。所以,香农给出的传输速率,在几十年中都不能达到。 信道编码的类型 编码类型在近几十年中经历了几个不同的的阶段。最早的编码类型是分组码。这也是最容易理解的一种码。顾名思义,分组码这种编码方式就是把输入数据分为长度固定的组,对每一组分别编码。比如,最早的分组码是汉明码,写为(7,4,3)。它的意思是把数据分成4个比特一组,所以共有2的4次方,也就是16

王育民信息论与编码理论第四章答案2

4.5若将N 个相同的BSC 级联如题图4.5所示,各信道的转移概率矩阵为??????--p p p p 11。令Q t =P{X t =0},t=0,1,…,N,且Q 0为已知。 题图 4.5 (a)求Q t 的表达式。 (b)证明N →∞时有Q N →1/2,且与Q 0取值无关,从而证明N →∞级联信道的信道容量C N →0,P>0。 解: (a)对于满足X N 为马氏链的串联信道,他们总的信道转移概率矩阵为各个串联信道矩阵的乘积,即P(X N |X 0)= P(X 1|X 0) P(X 2|X 1)……P(X N |X N-1) 由已知得,但各信道的转移概率矩阵为?? ?? ??--p p p p 11 则两个信道级联的转移概率矩阵为: P 2=??????--p p p p 11????? ?--p p p p 11=()()()()??????-+---+2222112p 12p 1p p p p p p 三个信道级联的转移概率矩阵为: P 3=()()()()???? ??????-+----+33331221211221211221211-2p 2121p p p 四个信道级联的转移概率矩阵为: P 4=()()()()???? ??????-+----+44441221211221211221211-2p 2121p p p 以此类推:可得N 个信道级联的转移概率矩阵为: P N =()()()()??????????-+----+N N N N p p p 122121122 1211221211-2p 2121 则 Q t =P{X t =0}=()()()()()000121221211122121122121Q p p Q p Q p t t t t -+--=-?? ????--+??????-+

信息论与编码的应用和发展

信息论与编码的应用与发展 通过信道编码器和译码器实现的用于提高信道可靠性的理论和方法。信息论的内容之一。信道编码大致分为两类:①信道编码定理,从理论上解决理想编码器、译码器的存在性问题,也就是解决信道能传送的最大信息率的可能性和超过这个最大值时的传输问题。②构造性的编码方法以及这些方法能达到的性能界限。编码定理的证明,从离散信道发展到连续信道,从无记忆信道到有记忆信道,从单用户信道到多用户信道,从证明差错概率可接近于零到以指数规律逼近于零,正在不断完善。编码方法,在离散信道中一般用代数码形式,其类型有较大发展,各种界限也不断有人提出,但尚未达到编码定理所启示的限度,尤其是关于多用户信道,更显得不足。在连续信道中常采用正交函数系来代表消息,这在极限情况下可达到编码定理的限度。不是所有信道的编码定理都已被证明。只有无记忆单用户信道和多用户信道中的特殊情况的编码定理已有严格的证明;其他信道也有一些结果,但尚不完善。 信道编码技术 数字信号在传输中往往由于各种原因,使得在传送的数据流中产生误码,从而使接收端产生图象跳跃、不连续、出现马赛克等现象。所以通过信道编码这一环节,对数码流进行相应的处理,使系统具有一定的纠错能力和抗干扰能力,可极大地避免码流传送中误码的发生。误码的处理技术有纠错、交织、线性内插等。 提高数据传输效率,降低误码率是信道编码的任务。信道编码的本质是增加通信的可靠性。但信道编码会使有用的信息数据传输减少,信道编码的过程是在源数据码流中加插一些码元,从而达到在接收端进行判错和纠错的目的,这就是我们常常说的开销。这就好象我们运送一批玻璃杯一样,为了保证运送途中不出现打烂玻璃杯的情况,我们通常都用一些泡沫或海棉等物将玻璃杯包装起来,这种包装使玻璃杯所占的容积变大,原来一部车能装5000各玻璃杯的,包装后就只能装4000个了,显然包装的代价使运送玻璃杯的有效个数减少了。同样,在带宽固定的信道中,总的传送码率也是固定的,由于信道编码增加了数据量,其结果只能是以降低传送有用信息码率为代价了。将有用比特数除以总比特数就等于编码效率了,不同的编码方式,其编码效率有所不同。 数字电视中常用的纠错编码,通常采用两次附加纠错码的前向纠错(FEC)编码。RS编码属于第一个FEC,188字节后附加16字节RS码,构成(204,188)RS码,这也可以称为外编码。第二个附加纠错码的FEC 一般采用卷积编码,又称为内编码。外编码和内编码结合一起,称之为级联编码。级联编码后得到的数据流再按规定的调制方式对载频进行调制。 前向纠错码(FEC)的码字是具有一定纠错能力的码型,它在接收端解码后,不仅可以发现错误,而且能够判断错误码元所在的位置,并自动纠错。这种纠错码信息不需要储存,不需要反馈,实时性好。所以在广播系统(单向传输系统)都采用这种信道编码方式。 下面是纠错码的各种类型: 1、RS编码

信息论与编码 第四章 (1)

信息论与编码 第四章 4.5判断以下几种信道是不是准对称信道 (1)?? ????3.02.05.05.03.02.0不是 (2)???? ??????7.03.06.04.03.07.0不是 (3)?? ????7.01.02.02.01.07.0是 (4)?? ????6/13/13/16/16/16/13/13/1 是 4.7计算以下离散无记忆信道DMC 的容量及最佳分布 (1)P=???? ??????---p p p p p p 101001 解: 此为对称信道,达到C 需要等概,则该信道的最佳分布为: X q (X ) = x1 x2 x313 13 13 所以该信道的容量为:C=log 3+(1-p )log(1?p)+p log p =log3-H 2(p ) (2)P=??????----2/)1(2/)1(2/2 /2/2/2/)1(2/)1(p p p p p p p p

解: 易得该信道为一个准对称信道,假定最佳分布为: X q (X ) = x1 x2 13 13 s1= (1?p)/2p/2p/2(1?p)/2 s2= (1?p)/2p/2p/2(1?p)/2 C=log k - N s *log M s -H =log 2-(1/2*log 1/2+1/2*log 1/2)+(1-p)log(1?p)/2+p log p =log2+(1-p)log(1?p)/2+p log p =log2-H 2(p ) (5)P= 132323 13 解: C=log 2+13×log 13+23×log 23 =0.083 4.10给定离散信道的信道转移概率矩阵P=????? ???????----q q q q p p p p 100100001001,计算其信道容量C 解:

信息论

摘要 人类已经进入了“信息时代”,我们的社会日益转型为一个“信息社会”。本文主要探讨了信息论的概念及其应用和和发展。 关键词 信息论;应用;发展 信息论的应用与发展 引言 信息论是运用概率论与数理统计的方法研究信息、信息熵、通信系统、数据传输、密码学、数据压缩等问题的应用数学学科。信息论将信息的传递作为一种统计现象来考虑,给出了估算通信信道容量的方法。信息传输和信息压缩是信息论研究中的两大领域。这两个方面又由信息传输定理、信源-信道隔离定理相互联系。 1 信息论 克劳德·香农(Claude Shannon)被称为“信息论之父”。人们通常将香农于1948年10月发表于《贝尔系统技术学报》上的论文《通信的数学理论(英语:A Mathematical Theory of Communication)》(A Mathematical Theory of Communication)作为现代信息论研究的开端。这一文章部分基于哈里·奈奎斯特和拉尔夫·哈特利先前的成果。在该文中,香农给出了信息熵(以下简称为“熵”)的定义: H(x)=E[I(xi)]=E[log2 1/p(xi)]= -Σp(xi)log2 p(xi)(i=1,2,..n)

这一定义可以用来推算传递经二进制编码后的原信息所需的信道带宽。熵度量的是消息中所含的信息量,其中去除了由消息的固有结构所决定的部分,比如,语言结构的冗余性以及语言中字母、词的使用频度等统计特性。 信息论中熵的概念与物理学中的热力学熵有着紧密的联系。玻尔兹曼与吉布斯在统计物理学中对熵做了很多的工作。信息论中的熵也正是受之启发。 互信息(Mutual Information)是另一有用的信息度量,它是指两个事件集合之间的相关性。两个事件X和Y的互信息定义为: I(X,Y) = H(X) + H(Y) - H(X,Y) 其中 H(X,Y) 是联合熵(Joint Entropy),其定义为: H(X,Y) = - ∑ p(x,y)logp(x,y) x,y 2 信息论的应用 信息论是研究信息的产生、获取、变换、传输、存贮、处理识别及利用的学科。信息论还研究信道的容量、消息的编码与调制的问题以及噪声与滤波的理论等方面的内容。信息论还研究语义信息、有效信息和模糊信息等方面的问题。 信息论有狭义和广义之分。狭义信息论即香农早期的研究成果,它以编码理论为中心,主要研究信息系统模型、信息的度量、信息容量、编码理论及噪声理论等。广义信息论又称信息科学,主要研究以计算机处理为中心的信息处理的基本理论,包括评议、文字的处理、

信息论论文

信息论及其应用 摘要 信息论是在人们长期的通信工程实践中,由通信技术和概率论、随机过程和数理统计相结合而逐步发展起来的一门应用数学学科,能够运用概率论和数理统计的方法来研究信息、信息熵、通信系统、数据传输、密码学、数据压缩等问题。本文主要介绍信息论的一些基本知识以及它在数据压缩、密码学、统计及信号处理中的应用。 关键字:信息论三大定律应用 一信息论的产生及发展 信息论是20世纪40年代由当代伟大的数学家、美国贝尔实验室杰出的科学家香农提出的,他在1948年发表了著名的论文《通信的数学理论》,为信息论奠定了理论基础。 信息论有狭义和广义之分。狭义信息论即香农早期的研究成果,它以编码理论为中心,主要研究信息系统模型、信息的度量、信息容量、编码理论及噪声理论等。广义信息论又称信息科学,是以信息为主要研究对象,以信息及其运动规律为主要研究内容,以信息科学方法论为主要研究方法,以扩展人的信息器官的功能为主要研究目标的一门新兴的横向科学。它把各种事物都看作是一个信息流动的系统,通过对信息流程的分析和处理,达到对事物复杂运动规律认识的一种科学方法。它的特点是撇开对象的具体运动形态,把它作为一个信息流通过程加以分析。 信息论与编码研究的是整个通信的最基本的问题,可以说信息论是我们专业的大纲,从香农1948年发表《通信中的数学原理》到现在60余年的时间,信息论对整个行业的发展有着不可替代的指导意义。

信息论中最著名的是香农的四大定理(国内一般称三大定理),第一定理信源编码定理,是解决通信中信源的压缩问题,也是后来图像和视频压缩的基本定理;第二定理信道编码定理,是解决通信中数据能够在特定信道中传输的最大值的问题,即最大数据速率小于信道容量,容量问题是通信中研究最活跃的问题之一;第三定理有损信源编码定理解决了在允许一定失真的情况下的信源编码问题,比如jpeg图像编码,mp3音频编码,都是有损的编码,其都是在香农第三定理的界之下得出的;第四定理信源信道分离定理,解决了信源编码和信道编码能够分开来解决的问题,所以现在做信源编码的可以是一部分人,做信道编码的可以是另一部分人。 二信息论的研究内容 实际通信系统比较复杂,但是任何通信系统都可以抽象为信息源发送机信道接收机收信者,因此,通信过程中信息的定量表示信源和信宿信道和信道容量编码和译码等方面的问题,就构成了信息论的基本内容。信息论将信息的传递作为一种统计现象来考虑,给出了估算通信信道容量的方法。信息传输和信息压缩是信息论研究中的两大领域这两个方面又由信息传输定理信源信道隔离定理相互联系。 1. 信息。从广义上讲,信息是指不同物质在运动过程中发出的各种信号;从狭义上讲,信息是指各种物质在运动过程中发出的映出来的数据。指令消息情报图象信号等对于信息的定义,目前学术界还没有一个一致的看法,信息论的创始人申农认为,信息就是用以消除随机的不定性的东西;控制论的创始人维纳认为,信息是人与环境相互交换内容的名称,也可以叫负商。 2. 信息量。它是信息多少的量度许多科学家对信息进行深入的研究以后,发现事件的信息量与事件出现的概率有密切的关系:事件发生的概率大,信息量就越小;反之,事件发生的概率就越小,信息量就越大。例如:池塘周围的护栏越密,小孩或大人掉进池塘的可能性就越少;反之则反[4]。 3. 信源和信宿。信源即消息的来源消息一般以符号的形式发出,通常就有随即性信源是多方面的,自然界的一切物体都可以成为信源。如果信源发出的信号是确定的,即是事先知道的,就不会传输任何信息如果符号的出现是时刻变化

信息论

论信息论与编码 信息论是信息科学的主要理论基础之一,它是在长期通信工程实践和理论基础上发展起来的。信息论是应用概率论、随机过程和数理统计和近代代数等方法,来研究信息的存储、传输和处理中一般规律的学科。它的主要目的是提高通信系统的可靠性、有效性和安全性,以便达到系统的最优化。编码理论与信息论紧密关联,它以信息论基本原理为理论依据,研究编码和译码的理论知识和实现方法。由于信息论方法具有相当普遍的意义和价值,因此在计算机科学、人工智能、语言学、基因工程、神经解剖学甚至金融投资学等众多领域都有广泛的应用,信息论促进了这些学科领域的发展,同时也促进了整个社会经济的发展。人们已经开始利用信息论的方法来探索系统的存在方式和运动变化的规律,信息论已经成为认识世界和改造世界的手段,因此信息论对哲学领域也有深远的影响。编码和译码的理论知识和实现方法。由于信息论方法具有相当普遍的意义和价值,因此在计算机科学、人工智能、语言学、基因工程、神经解剖学甚至金融投资学等众多领域都有广泛的应用,信息论促进了这些学科领域的发展,同时也促进了整个社会经济的发展。人们已经开始利用信息论的方法来探索系统的存在方式和运动变化的规律,信息论已经成为认识世界和改造世界的手段,因此信息论对哲学领域也有深远的影响。 信息论是应用概率论、随机过程和数理统计和近代代数等方法,来研究信息的存储、传输和处理中一般规律的学科。它的主要目的是提高通信系统的可靠性、有效性和安全性,以便达到系统的最优化。 关于信息论的基本理论体系,1948年,香农在贝尔系统技术杂志上发表“通信的数学理论”。在文中,他用概率测度和数理统计的方法系统地讨论了通信的基本问题,得出了几个重要而带有普遍意义的结论,并由此奠定了现代信息论的基础。香农理论的核心是:揭示了在通信系统中采用适当的编码后能够实现高效率和高可靠地传输信息,并得出了信源编码定理和信道编码定理。然而,它们给出了编码的性能极限,在理论上阐明了通信系统中各种因素的相互关系,为寻找最佳通信系统提供了重要的理论依据。 对信息论的研究内容一般有以下三种理解: (1) 狭义信息论,也称经典信息论。它主要研究信息的测度、信道容量以及

信息论与编码第二章答案

2-1、一阶马尔可夫链信源有3个符号 {}123,,u u u ,转移概率为:1 112 ()u p u =, 2112()u p u =,31()0u p u =,1213()u p u = ,22()0u p u =,3223()u p u =,1313()u p u =,2323()u p u =,33()0u p u =。画出状态图并求出各符号稳态概率。 解:由题可得状态概率矩阵为: 1/21/2 0[(|)]1/302/31/32/30j i p s s ????=?? ???? 状态转换图为: 令各状态的稳态分布概率为1W ,2W ,3W ,则: 1W = 121W +132W +133W , 2W =121W +233W , 3W =2 3 2W 且:1W +2W +3W =1 ∴稳态分布概率为: 1W = 25,2W =925,3W = 6 25 2-2.由符号集{0,1}组成的二阶马尔可夫链,其转移概率为:P(0|00)=,P(0|11)=,P(1|00)=,P(1|11)=,P(0|01)=,p(0|10)=,p(1|01)=,p(1|10)=画出状态图,并计算各符号稳态概率。 解:状态转移概率矩阵为: 令各状态的稳态分布概率为1w 、2w 、3w 、4w ,利用(2-1-17)可得方程组。 111122133144113 211222233244213 311322333344324411422433444424 0.80.50.20.50.50.20.50.8w w p w p w p w p w w w w p w p w p w p w w w w p w p w p w p w w w w p w p w p w p w w =+++=+??=+++=+?? =+++=+??=+++=+? 且12341w w w w +++=; 0.8 0.2 0 00 0 0.5 0.5()0.5 0.5 0 00 0 0.2 0.8j i p s s ?? ?? ? ?=??????

信息论的基本思路

?信息论的基本思路 通信是人类活动中最为普遍的现象之一,信息的传递与交换是时时处处都发生着的事情。在信息的传递与交换中,人们当然希望能够又多、又快、又好、又经济地传递信息。那么很自然地会出现这样一个问题:什么是信息传递的多快好省呢?怎样来衡量这种多快好省呢?怎样来判断某种通信方法的优劣呢?这就需要建立一种合理的定量描述信息传输过程的方法,首先是定量描述和度量信息的方法。 1948年,美国一位数学家克劳特·香农(C.E.Shannon)发表了一篇著名的论文《通信的数学理论》。差不多与此同时,美国另一位数学家诺伯特·维纳也发表了题为《时间序列的内插、外推和平滑化》的论文以及题为《控制论》的专著。在这些著作中,他们分别解决了按“通信的消息”来理解的信息(狭义信息)的度量问题,并得到了相同的结果。香农的论文还给出了信息传输问题的一系列重要结果,建立了比较完整而系统的信息理论,这就是香农信息论,也叫狭义信息论(简称“信息论”)。 香农信息理论具有崭新的风貌,是通信科学发展史上的一个转折点,它使通信问题的研究从经验转变为科学。因此,它一出现就在科学界引起了巨大的轰动,许多不同领域的科学工作者对它怀有浓厚的兴趣,并试图争相应用这一理论来解决各自领域的问题.从此,信息问题的研究,进入了一个新的纪元。 香农信息理论的基本思路,大致可归结为以下三个基本观点: ?一、非决定论观点 我们知道,在科学史上,直到20世纪初,拉普拉斯的决定论的观点始终处于统治的地位。这种观点认为,世界上一切事物的运动都严格地遵从一定的机械规律。因此,只要知道了它的原因,就可以唯一地决定它的结果;反过来,只要知道了它的结果,也就可以唯一地决定它的原因。或者,只要知道了某个事物的初始条件和运动规律,就可以唯一地确定它在各个时刻的运动状态。这种观点只承认必然性,排斥、否认偶然性。 根据通信问题研究对象的特点,信息理论按照非决定论的观点,采用了概率统计的方法,作为分析通信问题的数学工具,因而比以往的研究更切合实际、更科学、更有吸引力。 ?二、形式化假说 可提出如下的假设:虽然信息的语义因素和语用因素对于广义信息来说并不是次要因素,但对于作为“通信的消息”来理解的狭义信息来说是次要因素。因此,在描述和度量作为“通信的消息”来理解的狭义信息时,可以先把语义、语用因素搁置起来,假定各种信息的语义信息量和语用信息量恒定不变,而只单纯考虑信息的形式因素。 ?三、不确定性 对通信过程作进一步分析就可发现,人们要进行通信,不外有两种情形:一是自己有某种形式的信息要告诉对方,同时估计对方既会对这种信息感到兴趣,而又尚不知道这个信息。也就是说,对方在关于这个信息的知识上存在着不确定性;另一种情况是,自己有某种疑问要向对方询问,而且估计对方能够解答自己的疑问。在前一种情况下,如果估计对方已经了解了所欲告之的消息,自然就没有必要通信了;在后一种情况,如果自己没有疑问,当然就不必询问了。 这里所谓“疑问”、“不知道”,就是一种知识上的“不确定性”,即对某个事情的若干种可能结果,或对某个问题的若干可能答案,不能做出明确的判断。 所以,我们可以把作为“通信的消息”来理解的“狭义信息”,看作(或明确定义)为一种用来消除通信对方知识上的“不确定性”的东西。由此,我们可以引伸出一个十分重要而关键的结论:接收者收到某一消息后所获得的信息,可以用接收者在通信前后“不确定性”的消除量来度量。简而言之,接收者所得到的信息量,在数量上等于通信前后“不确定性”的消除量(或减少量)。这就是信息理论中度量信息的基本观点。

相关文档
最新文档