例谈二次函数中的恒成立问题

例谈二次函数中的恒成立问题
例谈二次函数中的恒成立问题

二次函数与特殊四边形综合问题专题训练(有答案)

二次函数中动点与特殊四边形综合问题解析与训练 一、知识准备: 抛物线与直线形的结合表形式之一是,以抛物线为载体,探讨是否存在一些点,使其能构成某些特殊四边形,有以下常风的基本形式 (1)抛物线上的点能否构成平行四边形 (2)抛物线上的点能否构成矩形,菱形,正方形 特殊四边形的性质与是解决这类问题的基础,而待定系数法,数形结合,分类讨论是解决这类问题的关键。 二、例题精析 ㈠【抛物线上的点能否构成平行四边形】 例一、(2013河南)如图,抛物线2 y x bx c =-++与直线 1 2 2 y x =+交于,C D两点,其 中点C在y轴上,点D的坐标为 7 (3,) 2 。点P是y轴右侧的抛物线上一动点,过点P作 PE x ⊥轴于点E,交CD于点F. (1)求抛物线的解析式; (2)若点P的横坐标为m,当m为何值时,以,,, O C P F为顶点的四边形是平行四边形?请说明理由。 【解答】(1)∵直线 1 2 2 y x =+经过点C,∴(0,2) C ∵抛物线2 y x bx c =-++经过点(0,2) C,D 7 (3,) 2

∴22727 332 2c b b c c =?? =? ?∴??=-++??=?? ∴抛物线的解析式为2 7 22 y x x =-++ (2)∵点P 的横坐标为m 且在抛物线上 ∴2 71 (,2),(,2)22 P m m m F m m -+ ++ ∵PF ∥CO ,∴当PF CO =时,以,,,O C P F 为顶点的四边形是平行四边形 ① 当03m <<时,2 271 2(2)322 PF m m m m m =-+ +-+=-+ ∴2 32m m -+=,解得:121,2m m == 即当1m =或2时,四边形OCPF 是平行四边形 ② 当3m ≥时,2 217 (2)(2)32 2 PF m m m m m =+--+ +=- 232m m -= ,解得:123322 m m += =(舍去) 即当132 m += 时,四边形OCFP 是平行四边形 练习1:(2013?盘锦)如图,抛物线y=ax 2+bx+3与x 轴相交于点A (﹣1,0)、B (3,0), 与y 轴相交于点C ,点P 为线段OB 上的动点(不与O 、B 重合),过点P 垂直于x 轴的直线与抛物线及线段BC 分别交于点E 、F ,点D 在y 轴正半轴上,OD=2,连接DE 、OF . (1)求抛物线的解析式; (2)当四边形ODEF 是平行四边形时,求点P 的坐标;

恒成立与存在性问题的基本解题策略

“恒成立问题”与“存在性问题”的基本解题策略 一、“恒成立问题”与“存在性问题”的基本类型 恒成立、能成立、恰成立问题的基本类型 1、恒成立问题的转化:()a f x >恒成立?()max a f x >;()()min a f x a f x ≤?≤恒成立 2、能成立问题的转化:()a f x >能成立?()min a f x >;()()max a f x a f x ≤?≤能成立 3、恰成立问题的转化:()a f x >在M 上恰成立?()a f x >的解集为M ()()R a f x M a f x C M ?>???≤?? 在上恒成立 在上恒成立 另一转化方法:若A x f D x ≥∈)(,在D 上恰成立,等价于)(x f 在D 上的最小值A x f =)(min ,若,D x ∈B x f ≤)(在D 上恰成立,则等价于)(x f 在D 上的最大值B x f =)(max . 4、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min min ≥ 5、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max max ≤ 6、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min max ≥ 7、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max min ≤ 8、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f =,设f(x)在区间[a,b]上 的值域为A ,g(x)在区间[c,d]上的值域为B,则A ?B. 9、若不等式()()f x g x >在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象上方; 10、若不等式()()f x g x <在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象下方; 恒成立问题的基本类型 在数学问题研究中经常碰到在给定条件下某些结论恒成立的命题. 函数在给定区间上某结论成立问题,其表现形式通常有: 在给定区间上某关系恒成立; 某函数的定义域为全体实数R;●某不等式的解为一切实数;?某表达式的值恒大于a 等等… 恒成立问题,涉及到一次函数、二次函数的性质、图象,渗透着换元、化归、数形结合、函数与方程等思想方法,有利于考查学生的综合解题能力,在培养思维的灵活性、创造性等方面起到了积极的作用。因此也成为历年高考的一个热点。 恒成立问题在解题过程中大致可分为以下几种类型: ①一次函数型;②二次函数型;③变量分离型;④根据函数的奇偶性、周期性等性质;⑤直接根据函数的图象。 二、恒成立问题解决的基本策略 大家知道,恒成立问题分等式中的恒成立问题和不等式中的恒成立问题。等式中的恒成立问题,特别是多项式恒成立问题,常简化为对应次数的系数相等从而建立一个方程组来解决问题的。 (一)两个基本思想解决“恒成立问题” 思路1、max )]([)(x f m D x x f m ≥?∈≥上恒成立在 思路2、min )]([)(x f m D x x f m ≤?∈≤上恒成立在 如何在区间D 上求函数f(x)的最大值或者最小值问题,我们可以通过习题的实际,采取合理有效的方法进行求解,通常可以考虑利用函数的单调性、函数的图像、二次函数的配方法、三角函数的有界性、均值定理、函数求导

二次函数综合应用专题归纳训练一

二次函数综合应用专题归纳训练一 一、相似三角形的存在性问题 1.在平面直角坐标系中,一个二次函数的图像经过A(1,0)B(3,0)两点. (1)写出这个二次函数图像的对称轴; (2)设这个二次函数图像的顶点为D,与y轴交与点C,它的对称轴与x轴交与点E,连接AC、DE和DB.当△AOC与△DEB相似时,求这个二次函数的表达式. 二、等腰三角形的存在性问题 2.如图,直线3 y交x轴于A点,交y轴于B点,过A、B两点的抛物线交x =x 3+ 轴于另一点C(3,0). ⑴求抛物线的解析式 ⑵在抛物线的对称轴上是否存在点Q,使△ABQ 存在,求出符合条件的Q点坐标;若不存在,请说明理由.

3.已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l 是抛物线的对称轴. (1)求抛物线的函数关系式; (2)设点P是直线L上的一个动点,当△PAC的周长最 小时,求点P的坐标; (3)在直线L上是否存在点M,使△MAC为等腰三角 形?若存在,直接写出所有符合条件的点M的坐标; 若不存在,请说明理由.

三、平行四边形的存在性问题 4.(2014年山东泰安)二次函数y=ax2+bx+c的图象经过点(﹣1,4),且与直线y=﹣x+1相交于A、B两点(如图),A点在y轴上,过点B作BC⊥x轴,垂足为点C(﹣3,0). (1)求二次函数的表达式; (2)点N是二次函数图象上一点(点N在AB上方),过N作NP⊥x轴,垂足为点P,交AB于点M,求MN的最大值; (3)在(2)的条件下,点N在何位置时,BM与NC相互垂直平分?并求出所有满足条件的N点的坐标. 分析:(1)首先求得A、B的坐标,然后利用待定系数法即可求得二次函数的解析式; (2)设M的横坐标是x,则根据M和N所在函数的解析式,即可利用x表示出M、N 的坐标,利用x表示出MN的长,利用二次函数的性质求解; (3)BM与NC互相垂直平分,即四边形BCMN是菱形,则BC=MC,据此即可列方程,求得x的值,从而得到N的坐标.

二次函数恒成立问题

二次函数恒成立问题 2016年8月东莞莞美学校 一、恒成立问题的基本类型: 类型1:设)0()(2 ≠++=a c bx ax x f , (1)R x x f ∈>在0)(上恒成立00?且a ; (2)R x x f ∈<在0)(上恒成立00a 时,],[0)(βα∈>x x f 在上恒成立?????>>- ?????<-?0 )(2020)(2βββαααf a b a b f a b 或或, ],[0)(βα∈x x f 在上恒成立?? ?>>?0 )(0 )(βαf f ],[0)(βα∈-?????<- ?0 )(2020)(2βββαααf a b a b f a b 或或 类型3: αα>?∈>min )()(x f I x x f 恒成立对一切αα>?∈?∈>的图象的上方或的图象在恒成立对一切 二、恒成立问题常见的解题策略: 策略一:利用二次函数的判别式 对于一元二次函数),0(0)(2 R x a c bx ax x f ∈≠>++=有: (1)R x x f ∈>在0)(上恒成立00?且a ; (2)R x x f ∈<在0)(上恒成立00+-+-x m x m 的解集是R ,求m 的范围。 解析:要想应用上面的结论,就得保证是二次的,才有判别式,但二次项系数含有参数m ,所以要讨论m-1是否是0。

二次函数、不等式恒成立

川越教育讲义 日期 老师 科目 第 次课 学生 年级 一、简易逻辑 基础题目: 1.命题“若a >b ,则ac 2>bc 2 (a ,b ∈R )”与它的逆命题、否命题中,真命题的个数为 ( ) A .4 B .3 C .2 D .0 2.已知p:{}:,0q ?φ {}{}.2,11∈由他们构成的新命题“q p ∧”,“q p ∨”, “p ?”中,真命题有( ) A 1个 B 2个 C 3个 D 4个 3.已知条件:12p x +>,条件2:56q x x ->,则p ?是q ?的( )条件 A .充分不必要 B .必要不充分 C .充要 D .既不充分也不必要 4.有下列四个命题: ①“若0x y += , 则,x y 互为相反数”的逆命题; ②“全等三角形的面积相等”的否命题; ③“若1q ≤ ,则220x x q ++=有实根”的逆否命题; ④“不等边三角形的三个内角相等”逆命题;其中真命题为 ( ) A .①② B .②③ C .①③ D .③④ 5.“a 和b 都不是偶数”的否定形式是( ) A .a 和b 至少有一个是偶数 B .a 和b 至多有一个是偶数 C .a 是偶数,b 不是偶数 D .a 和b 都是偶数 6.条件p :1>x ,1>y ,条件q :2>+y x ,1>xy ,则条件p 是条件q 的( )条件 7.设原命题:若a +b ≥2,则a ,b 中至少有一个不小于1。则原命题与其逆命题的真假情况是( ) 8.不等式04)2(2)2(2<--+-x a x a 对于R x ∈恒成立,那么a 的取值范围是( ) 9.命题“03x -x R,x 2>+∈?”的否定是______________命题;命题“01x R,x 2<+∈?”的否定是______________命题。 10 从“充分而不必要条件”,“必要而不充分条件”或“充要条件”中选出适当的一种填空: (1)是的 ;(2)是的 (3)是 的 ;(4)是 的 (5)“”是“”的 (6)“”是“”的 (7)“”是“”的 (8)“四边形内接于圆”是“四边形对角互补” (9)设,的半径为,,则“”是“两圆外切”的 10.若p :“平行四边形一定是菱形”,则“非p ”为___ _____。 11.有下列命题: x A B ∈ x A ∈x A B ∈ x B ∈()U x A ∈ex U ∈()U x A A ∈ 饀x A ∈A =?A B B = A B üA B A = x A ∈x A B ∈ 1O 2O 1r 2r 1212OO r r =+

中考数学—二次函数的综合压轴题专题复习附答案

中考数学—二次函数的综合压轴题专题复习附答案 一、二次函数 1.已知二次函数223y ax ax =-+的最大值为4,且该抛物线与y 轴的交点为C ,顶点为D . (1)求该二次函数的解析式及点C ,D 的坐标; (2)点(,0)P t 是x 轴上的动点, ①求PC PD -的最大值及对应的点P 的坐标; ②设(0,2)Q t 是y 轴上的动点,若线段PQ 与函数2 ||23y a x a x =-+的图像只有一个公共点,求t 的取值范围. 【答案】(1)2y x 2x 3=-++,C 点坐标为(0,3),顶点D 的坐标为(1,4);(2)①最 ,P 的坐标为(3,0)-,②t 的取值范围为3t ≤-或 332t ≤<或72t =. 【解析】 【分析】 (1)先利用对称轴公式x=2a 12a --=,计算对称轴,即顶点坐标为(1,4),再将两点代入列二元一次方程组求出解析式; (2)根据三角形的三边关系:可知P 、C 、D 三点共线时|PC-PD|取得最大值,求出直线CD 与x 轴的交点坐标,就是此时点P 的坐标; (3)先把函数中的绝对值化去,可知22x 23,0,y x 23,0.x x x x ?-++≥=?--+

高中数学专题-二次函数综合问题例谈

二次函数综合问题例谈 二次函数是中学代数的基本内容之一,它既简单又具有丰富的内涵和外延. 作为最基本的初等函数,可以以它为素材来研究函数的单调性、奇偶性、最值等性质,还可建立起函数、方程、不等式之间的有机联系;作为抛物线,可以联系其它平面曲线讨论相互之间关系. 这些纵横联系,使得围绕二次函数可以编制出层出不穷、灵活多变的数学问题. 同时,有关二次函数的内容又与近、现代数学发展紧密联系,是学生进入高校继续深造的重要知识基础. 因此,从这个意义上说,有关二次函数的问题在高考中频繁出现,也就不足为奇了. 学习二次函数,可以从两个方面入手:一是解析式,二是图像特征. 从解析式出发,可以进行纯粹的代数推理,这种代数推理、论证的能力反映出一个人的基本数学素养;从图像特征出发,可以实现数与形的自然结合,这正是中学数学中一种非常重要的思想方法. 本文将从这两个方面研究涉及二次函数的一些综合问题. 1. 代数推理 由于二次函数的解析式简捷明了,易于变形(一般式、顶点式、零点式等),所以,在解决二次函数的问题时,常常借助其解析式,通过纯代数推理,进而导出二次函数的有关性质. 1.1 二次函数的一般式c bx ax y ++=2 )0(≠c 中有三个参数c b a ,,. 解题的关键在于:通过三个独立条件“确定”这三个参数. 例1 已知f x ax bx ()=+2 ,满足1≤-≤f ()12且214≤≤f (),求f ()-2的取值范围. 分析:本题中,所给条件并不足以确定参数b a ,的值,但应该注意到:所要求的结论不是()2-f 的确定值,而是与条件相对应的“取值范围”,因此,我们可以把1≤-≤f ()12和 4)1(2≤≤f 当成两个独立条件,先用()1-f 和()1f 来表示b a ,. 解:由()b a f +=1,()b a f -=-1可解得: ))1()1((2 1 )),1()1((21--=-+= f f b f f a (*) 将以上二式代入f x ax bx ()=+2 ,并整理得 ()()??? ? ??--+???? ??+=2)1(2122x x f x x f x f , ∴ ()()()1312-+=f f f . 又∵214≤≤f (),2)1(1≤-≤f , ∴ ()1025≤≤f .

二次函数恒成立问题

二次函数恒成立问题 This model paper was revised by the Standardization Office on December 10, 2020

二次函数恒成立问题 2016年8月东莞莞美学校 一、恒成立问题的基本类型: 类型1:设)0()(2≠++=a c bx ax x f , (1)R x x f ∈>在0)(上恒成立00?且a ; (2)R x x f ∈<在0)(上恒成立00a 时,],[0)(βα∈>x x f 在上恒成立 ?????>>-?????<-?0 )(2020)(2βββαααf a b a b f a b 或或, ],[0)(βα∈x x f 在上恒成立? ??>>?0)(0)(βαf f ],[0)(βα∈-?????<-?0 )(2020)(2βββαααf a b a b f a b 或或 类型3: αα>?∈>min )()(x f I x x f 恒成立对一切αα>?∈

类型4: 二、恒成立问题常见的解题策略: 策略一:利用二次函数的判别式 对于一元二次函数),0(0)(2R x a c bx ax x f ∈≠>++=有: (1)R x x f ∈>在0)(上恒成立00?且a ; (2)R x x f ∈<在0)(上恒成立00+-+-x m x m 的解集是R ,求m 的范围。 解析:要想应用上面的结论,就得保证是二次的,才有判别式,但二次项系数含有参数m ,所以要讨论m-1是否是0。 (1)当m-1=0时,不等式化为2>0恒成立,满足题意; (2)01≠-m 时,只需???<---=?>-0 )1(8)1(012m m m ,所以,)9,1[∈m 。 策略二:利用函数的最值(或值域) (1)m x f ≥)(对任意x 都成立m x f ≥?min )(; (2)m x f ≤)(对任意x 都成立max )(x f m ≥?。简单计作:“大的大于最大的,小的小于最小的”。由此看出,本类问题实质上是一类求函数的最值问题。 例2.已知a ax x x f -++=3)(2,若2)(],2,2[≥-∈x f x 恒成立,求a 的取值范围.

关于不等式恒成立问题的几种求解方法

关于不等式恒成立问题的几种求解方法 不等式恒成立问题,在高中数学中较为常见。这类问题的解决涉及到一次函数、二次函数、三角函数、指数与对数函数等函数的性质、图象,渗透着换元、化归、数形结合、函数与方程等思想方法,有利于考查学生的综合解题能力,在培养思维的灵活性、创造性等方面起到了积极的作用。 不等式恒成立问题在解题过程中有以下几种求解方法:①一次函数型;②二次函数型;③变量分离型;④数形结合型。 下面我们一起来探讨其中一些典型的问题 一、一次函数型——利用单调性求解 例1、若不等式对满足的所有实数m都成立,求x的取值范围。 若对该不等式移项变形,转化为含参数m的关于x的一元二次不等式,再根据对称轴和区间位置关系求对应的二次函数的最小值,利用最小值大于零求解。这样得分好几种情况讨论,这思路应该说从理论上是可行的,不过运算量不小。能不能找出不需要讨论的方法解决此问题呢?若将不等式右边移到左边,然后将新得到的不等式左边看做关于m的一次函数,借助一次函数的图像直线(其实是线段)在m轴上方只需要线段的两个端点在上方即可。 分析:在不等式中出现了两个字母:x及m,关键在于该把哪个字母看成是一个变量,另一个作为常数。显然可将m视作自变量,则上述问题即可转化为在[-2,2]内关于m的一次函数大于0恒成立的问题。 解:原不等式转化为(1-x2)m+2x-1>0在|m|2时恒成立, 设f(m)= (1-x2)m+2x-1,则f(m)在[-2,2]上恒大于0,故有: 此类题本质上是利用了一次函数在区间[a,b]上的图象是一线段,故只需保证该线段两端点均在m轴上方(或下方)即可。 给定一次函数y=f(x)=ax+b(a≠0),若y=f(x)在[m,n]内恒有f(x)>0,则根据函数的图象(线段)(如下图)可得上述结论等价于 ⅰ),或ⅱ) 可合并成 同理,若在[m,n]内恒有f(x)0恒成立;f(x)3;

三角函数与二次函数综合专题(含解析)

三角函数与二次函数综合卷2 1.如图,在矩形ABCD 中,点E 为AB 的中点,EF ⊥EC 交AD 于点F ,连接CF (AD >AE ),下列结论: ①∠AEF=∠BCE ; ②AF+BC >CF ; ③S △CEF =S △EAF +S △CBE ; ④若= ,则△CEF ≌△CDF . 其中正确的结论是 .(填写所有正确结论的序号) 2.已知:BD 是四边形 ABCD 的对角线,AB ⊥BC ,∠C=60°,AB=1, (1)求tan ∠ABD 的值; (2)求AD 的长. 3.海上有一小岛,为了测量小岛两端A 、B 的距离,测量人员设计了一种测量方法,如图所示,已知B 点是CD 的中点,E 是BA 延长线上的一点,测得AE = 10海里,DE =30海里,且DE ⊥EC ,cos ∠D (1)求小岛两端A 、B 的距离; (2)过点C 作CF ⊥AB 交AB 的延长线于点F ,求sin ∠BCF 的值. A B 4.如图,在△ABC 中,90ACB ∠=,AC BC =,点P 是△ABC 内一点,且135APB APC ∠=∠=.

A B C P (1)求证:△CPA ∽△APB ; (2)试求tan PCB ∠的值. 5.如图,在梯形A B CD 中,?=∠=∠ 90B A 点E 在AB 上,?=∠45AED ,6=DE ,7=CE . (1)求AE 的长; (2)求BCE ∠sin 的值. 6.如图,在△ABC 中, AD 是BC 边上的高,AE 是BC 边上的中线,∠C=45°,AD=4. (1)求BC 的长; (2)求tan ∠DAE 的值. 7.如图,在Rt △ABC 中,∠ABO=90°,OB=4,AB=8内的图象分别交OA 、AB 于点C 和点D ,连结OD ,若4=?BOD S , (1)求反比例函数解析式; (2)求C 点坐标. 8.如图,在△ABC 中,BD ⊥AC 于点D , ,,并且. 求的长. AB =BD = 12 ABD CBD ∠=∠AC

例谈二次函数综合题的解题策略

□ 孙朝仁 朱松林 二次函数既是中考的重点内容,也是热点问题.而二次函数综合题在各级各类考试中都属于难度较大的问题,要求同学们不但对于二次函数本身的内容掌握要牢固,而且还要善于将二次函数和其他的有关知识(方程、不等式以及几何等知识)“攀亲”,搞好关系,这样问题的综合层次和要求都比较高 .解决这类问题的关键就是要“沉得住气”,认真仔细地将题目中所提供的信息进行加工梳理,有条不紊地进行“抽丝剥茧”,最终解决问题 .下面略举几例,谈谈二次函数综合题的常见的解题策略 . 一、得意知“形”,由“形”想“数” 例1 已知函数y =x 2+bx +2的图象经过点(3,2). (1)求这个函数的关系式; (2)画出它的图象; (3)根据图象指出:当x 取何值时,y ≥2? 分析 首先,利用待定系数法,可以求出b 的值, 从而获得函数表达式;其次,根据函数关系式不难知“形”—— 用描特殊点法画出函数图象;第三,借助函数图象,由“形”想 “数”,要“确定y ≥2时,x 的取值范围”就是要求位于“直线 y=2上方”图象的自变量取值范围. 解 (1)根据题意,得 2=9+3b +2, 解得 b =-3. ∴函数关系式为y =x 2-3x +2. (2)易求该抛物线与x 轴的两个交点坐标为(1,0)、(2,0),与y 轴的交点坐标为(0,2),对称轴为2 3 x .函数y =x 2-3x +2的图象如图1所示. 图1

(3)根据图象可得,当y =2时,对应的x 的值为0和3 .因此,当x ≤0或x ≥3时,y ≥2. 评析 充分利用函数图象的直观性,分析解决问题是体现“数形结合”思想一个重要方面.本题还可以直接指出“当x 取何值时,y ≤2?”以及根据图象写出“不等式x 2 -3x +2≤0的解集”,这两个问题,请同学们自行写出. 二、函数与方程“攀亲”,由方程求函数 例2 如图2,一元二次方程0322 =-+x x 的两根1x ,2x (1x <2x )是抛物线)0(2≠++=a c bx ax y 与x 轴的两个交点B ,C 的横坐标,且此抛物线过点A (3,6). (1)求此二次函数的解析式; (2)设此抛物线的顶点为P ,对称轴与线段AC 相交于点Q ,求点P 和点Q 的坐标; (3)在x 轴上有一动点M ,当MQ+MA 取得最小值时,求M 点的坐标. 分析 (1)求出方程的两个根,就相当于知道了B ,C 两 点的坐标,进而由A ,B ,C 三点的坐标,利用待定系数法,很 让容易求出二次函数的解析式;(2)要求交点Q 的坐标,只要 函数与方程“攀亲”,将该抛物线的“对称轴方程”与“直线 AC 的解析式”联立得方程组,解这个方程组就可得到;(3)要 求“MQ+MA ”的最小值,只需作点A 关于x 轴的对称点即可,用 对称性及“两点之间线段最短”的几何知识加以解决. 解 (1)解方程0322=-+x x ,得1x =-3,2x =1. ∴抛物线与x 轴的两个交点坐标为:C (-3,0),B (1,0). 将 A (3,6),B (1,0),C (-3,0)代入抛物线的解析式,得 ?????=+-=++=++.039,0,639c b a c b a c b a 解这个方程组,得 ??? ????-===.23,1,21c b a ∴抛物线解析式为2 3212-+=x x y . x ) ) 图2

人教中考数学专题题库∶二次函数的综合题含答案

一、二次函数 真题与模拟题分类汇编(难题易错题) 1.(6分)(2015?牡丹江)如图,抛物线y=x 2+bx+c 经过点A (﹣1,0),B (3,0).请解答下列问题: (1)求抛物线的解析式; (2)点E (2,m )在抛物线上,抛物线的对称轴与x 轴交于点H ,点F 是AE 中点,连接FH ,求线段FH 的长. 注:抛物线y=ax 2+bx+c (a≠0)的对称轴是x=﹣ . 【答案】(1)y=-2x-3;(2). 【解析】 试题分析:(1)把A,B 两点坐标代入,求待定系数b,c ,进而确定抛物线的解析式;(2)连接BE ,点F 是AE 中点,H 是AB 中点,则FH 为三角形ABE 的中位线,求出BE 的长,FH 就知道了,先由抛物线解析式求出点E 坐标,根据勾股定理可求BE ,再根据三角形中位线定理求线段HF 的长. 试题解析:(1)∵抛物线y=x 2+bx+c 经过点A (﹣1,0),B (3,0),∴把A,B 两点坐标代入得: ,解得: ,∴抛物线的解析式是:y=-2x-3;(2)∵点 E (2,m )在抛物线上,∴把E 点坐标代入抛物线解析式y=-2x-3得:m=4﹣4﹣3=﹣3,∴E (2,﹣3),∴BE= = .∵点F 是AE 中点,点H 是抛物线的对称轴与 x 轴交点,即H 为AB 的中点,∴FH 是三角形ABE 的中位线,∴FH=BE=×= .∴ 线段FH 的长 . 考点:1.待定系数法求抛物线的解析式;2.勾股定理;3.三角形中位线定理. 2.如图,已知顶点为(0,3)C -的抛物线2(0)y ax b a =+≠与x 轴交于A ,B 两点,直线 y x m =+过顶点C 和点B .

二次函数综合问题例谈

二次函数综合问题例谈 二次函数是中学代数的基本内容之一,它既简单又具有丰富的内涵和外延. 作为最基本的初等函数,可以以它为素材来研究函数的单调性、奇偶性、最值等性质,还可建立起函数、方程、不等式之间的有机联系;作为抛物线,可以联系其它平面曲线讨论相互之间关系. 这些纵横联系,使得围绕二次函数可以编制出层出不穷、灵活多变的数学问题. 同时,有关二次函数的内容又与近、现代数学发展紧密联系,是学生进入高校继续深造的重要知识基础. 因此,从这个意义上说,有关二次函数的问题在高考中频繁出现,也就不足为奇了. 学习二次函数,可以从两个方面入手:一是解析式,二是图像特征. 从解析式出发,可以进行纯粹的代数推理,这种代数推理、论证的能力反映出一个人的基本数学素养;从图像特征出发,可以实现数与形的自然结合,这正是中学数学中一种非常重要的思想方法. 本文将从这两个方面研究涉及二次函数的一些综合问题. 1. 代数推理 由于二次函数的解析式简捷明了,易于变形(一般式、顶点式、零点式等),所以,在解决二次函数的问题时,常常借助其解析式,通过纯代数推理,进而导出二次函数的有关性质. 1.1 二次函数的一般式c bx ax y ++=2)0(≠c 中有三个参数c b a ,,. 解题的关键在于:通过三个独立条件“确定”这三个参数. 例1 已知f x ax bx ()=+2,满足1≤-≤f ()12且214≤≤f (),求f ()-2的取值范围. 分析:本题中,所给条件并不足以确定参数b a ,的值,但应该注意到:所要求的结论不是()2-f 的确定值,而是与条件相对应的“取值范围”,因此,我们可以把1≤-≤f ()12和4)1(2≤≤f 当成两个独立条件,先用()1-f 和()1f 来表示b a ,. 解:由()b a f +=1,()b a f -=-1可解得: ))1()1((2 1)),1()1((21--=-+=f f b f f a (*) 将以上二式代入f x ax bx ()=+2,并整理得 ()()??? ? ??--+???? ??+=2)1(2122x x f x x f x f , ∴ ()()()1312-+=f f f . 又∵214≤≤f (),2)1(1≤-≤f , ∴ ()1025≤≤f .

二次函数七大综合专题

二次函数七大综合专题 二次函数与三角形的综合题

函数中因动点产生的相似三角形问题一般有三个解题途径 ① 求相似三角形的第三个顶点时,先要分析已知三角形的边.和角.的特点,进而得出已知三角形是否为特殊三角形。根据未知三角形中已知边与已知三角形的可能对应边分类讨论。 ②或利用已知三角形中对应角,在未知三角形中利用勾股定理、三角函数、对称、旋转等知识来推导边的大小。 ③若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利用相似来列方程求解。 如图,已知抛物线与交于A(-1,0)、E(3,0)两点,与轴交于点B(0,3)。 (1) 求抛物线的解析式; (2) 设抛物线顶点为D ,求四边形AEDB 的面积; (3) △AOB 与△DBE 是否相似?如果相似,请给以证明;如果不相似,请说明理由。 (2016?益阳第21题) 如图,顶点为A 的抛物线经过坐标原点O ,与x 轴交于点B . (1)求抛物线对应的二次函数的表达式; (2)过B 作OA 的平行线交y 轴于点C ,交抛物线于点D ,求证:△OCD ≌△OAB ; (3)在x 轴上找一点P ,使得△PCD 的周长最小,求出P 点的坐标. x y

考点:考查二次函数,三角形的全等、三角形的相似。 解析:(1 )∵抛物线顶点为A , 设抛物线对应的二次函数的表达式为2(1y a x =+, 将原点坐标(0,0)代入表达式,得1 3a =-. ∴抛物线对应的二次函数的表达式为:213y x =-+ . (2)将0y = 代入213y x =-+ 中,得B 点坐标为:, 设直线OA 对应的一次函数的表达式为y kx =, 将A 代入表达式y kx = 中,得k = , ∴直线OA 对应的一次函数的表达式为y x =. ∵BD ∥AO ,设直线BD 对应的一次函数的表达式为y b =+, 将 B 代入y b = +中,得2b =- , ∴直线BD 对应的一次函数的表达式为2y x =-. 由2213y x y x ?= -????=-?? 得交点D 的坐标为(3)-, 将0x = 代入2y =-中,得C 点的坐标为(0,2)-, 由勾股定理,得:OA =2=OC ,AB =2=CD , OB OD ==. 在△OAB 与△OCD 中,OA OC AB CD OB OD =?? =??=? , ∴△OAB ≌△OCD . (3)点C 关于x 轴的对称点C '的坐标为(0,2),则C D '与x 轴的交点即为点P ,它使得△PCD 的周长最小. 过点D 作DQ ⊥y ,垂足为Q ,则PO ∥DQ .∴C PO '?∽C DQ '?. ∴ PO C O DQ C Q '=', 25 = ,∴PO =, ∴ 点P 的坐标为(. 二次函数与平行四边形的综合题 7

二次函数综合专题训练

二次函数综合专题训练 1.1因动点产生的线段和差问题 1.在坐标平面xoy 内,Rt △BOC 如图放置在坐标平面内,已知如图,tan ∠CBO=2,将Rt △BOC 绕直角顶点O 顺时针旋转90°得到△EOA .抛物线y=ax 2 +bx+2经过A,B,C 三点。 (1) 求抛物线的解析式; (2) 设点P 在坐标轴上,△PAE 为等腰三角形,写出点P 的坐标。 (3) 在抛物线的对称轴上是否存在一点M,使|MB-MC |最大? (4) 在抛物线上是否存在点Q ,使△BCQ 为直角三角形?若存在,求出点Q 的坐标,若不 存在,请说明理由. 2.(2012?恩施州)如图,已知抛物线y=﹣x 2+bx+c 与一直线相交于A (﹣1,0),C (2,3)两点,与y 轴交于点N .其顶点为D . (1)抛物线及直线AC 的函数关系式; (2)设点M (3,m ),求使MN+MD 的值最小时m 的值; (3)若抛物线的对称轴与直线AC 相交于点B ,E 为直线AC 上的任意一点,过点E 作EF ∥BD 交抛物线于点F ,以B ,D ,E ,F 为顶点的四边形能否为平行四边形?若能,求点E 的坐标;若不能,请说明理由; (4)若P 是抛物线上位于直线AC 上方的一个动点,求△APC 的面积的最大值. x y O B C E A

1.2 因动点产生的特殊三角形问题 3. 如图,在平面直角坐标xOy 中,正方形OABC 的边长为4,边OA 在x 轴的正半轴上,边OC 在y 轴的正半轴上,点D 是OC 的中点,BE ⊥DB 交x 轴于点E . (1)求经过点D 、B 、E 的抛物线的解析式;(4分) (2)将∠DBE 绕点B 旋转一定的角度后,边BE 交线段OA 于点F ,边BD 交y 轴于点G ,交(1)中的抛物线于M (不与点B 重合),如果点M 的横坐标为 512,那么结论OF= 2 1 DG 能成立吗?请说明理由;(4分) (3)过(2)中的点F 的直线交射线CB 于点P ,交(1)中的抛物线在第一象限的部分于点Q ,且使△PFE 为等腰三角形,求Q 点的坐标.(4分) 4.如图,抛物线y=ax 2+bx+c 经过点A (﹣3,0),B (1.0),C (0, 3)。 (1)求抛物线的解析式; (2)若点P 为抛物线在第二象限上的一点,设△PAC 的面积为S ,求S 的最大值并求出此时点P 的坐标; (3)设抛物线的顶点为D ,DE ⊥x 轴于点E ,在y 轴上是否存在点M ,使得△ADM 是等腰直角三角形?若存在,请直接写出点M 的坐标;若不存在,请说明理由。

二次函数综合(定值)问题与解析

成都市中考压轴题(二次函数)精选 【例一】.如图,抛物线y=ax2+c(a≠0)经过C(2,0),D(0,﹣1)两点,并与直线y=kx交于A、B两点,直线l过点E(0,﹣2)且平行于x轴,过A、B两点分别作直线l的垂线,垂足分别为点M、N.(1)求此抛物线的解析式; (2)求证:AO=AM; (3)探究: ①当k=0时,直线y=kx与x轴重合,求出此时的值; ②试说明无论k取何值,的值都等于同一个常数. 的长,然后代入计算即可得解; ,x+,再联立抛物线与直线解析式, , x ,

=AM==+==1x ,+==,+ = 取何值,++ 【例二】. 如图,在平面直角坐标系xOy 中,△OAB 的顶点A的坐标为(10,0),顶点B 在第一象限 内,且AB ,sin ∠(1)若点C 是点B 关于x 轴的对称点,求经过O 、C 、A 三点的抛物线的函数表达式; (2)在(1)中,抛物线上是否存在一点P ,使以P 、O 、C 、A 为顶点的四边形为梯形?若存在,求出点P 的坐标;若不存在,请说明理由; (3)若将点O 、点A 分别变换为点Q ( -2k ,0)、点R (5k ,0)(k>1的常数),设过Q 、R 两点,且以QR 的垂直平分线为对称轴的抛物线与y 轴的交点为N ,其顶点为M ,记△QNM 的面积为QMN S ,△QNR

的面积QNR S ?,求QMN S ?∶QNR S ?的值. 解:(1)如图,过点B 作BD OA ⊥于点D . 在Rt ABD △中, AB = sin OAB ∠= sin 3BD AB OAB ∴=∠==. 又由勾股定理, 得6AD = ==. 1064OD OA AD ∴=-=-=. 点B 在第一象限内, ∴点B 的坐标为(43),. ∴点B 关于x 轴对称的点C 的坐标为(43)-,. · ·················································· 2分 设经过(00)(43)(100)O C A -,,,,,三点的抛物线的函数表达式为 2(0)y ax bx a =+≠. 由11643810010054 a a b a b b ? =?+=-?????+=??=-??,. ∴经过O C A ,,三点的抛物线的函数表达式为215 84 y x x = -. ····························· 2分 (2)假设在(1)中的抛物线上存在点P ,使以P O C A ,,,为顶点的四边形为梯形. ①点(43)C -, 不是抛物线215 84 y x =-的顶点, ∴过点C 作直线OA 的平行线与抛物线交于点1P .

二次函数综合题专题

二次函数专题一:二次函数与距离、角度的综合 1、已知抛物线y=x2?4x+1.将此抛物线沿x轴方向向左平移4个单位长度,得到一条新的抛物线。 (1)求平移后的抛物线解析式; (2)若直线y=m与这两条抛物线有且只有四个交点,求实数m的取值范围; (3)若将已知的抛物线解析式改为y=ax2+bx+c(a>0,b<0),并将此抛物线沿x轴方向向左平移?ba个单位长度,试探索问题(2). 2、如图,已知抛物线y=ax2+bx+c经过A(?3,0),B(1,0),C(0,3)三点,其顶点为D,对称轴是直线l,l与x轴交于点H. (1)求该抛物线的解析式; (2)若点P是该抛物线对称轴l上的一个动点,求△PBC周长的最小值; (3)如图(2),若E是线段AD上的一个动点(E与A. D不重合),过E点作平行于y轴的直线交抛物线于点F,交x轴于点G,设点E的横坐标为m,△ADF的面积为S. ①求S与m的函数关系式; ②S是否存在最大值?若存在,求出最大值及此时点E的坐标;若不存在,请说明理由。 3、如图,已知抛物线y=ax2+bx+2的图象经过点A和点B. (1)求该抛物线的解析式。 (2)把(1)中的抛物线先向左平移1个单位长度,再向上或向下平移多少个单位长度能使抛物线与直线AB只有

一个交点?写出此时抛物线的解析式。 (3)将(2)中的抛物线向右平移52个单位长度,再向下平移t个单位长度(t>0),此时,抛物线与x轴交于M、N 两点,直线AB与y轴交于点P.当t为何值时,过M、N、P三点的圆的面积最小?最小面积是多少? 4、已知抛物线y=ax2+bx+c的图象与x轴交于A. B两点(点A在点B的左边),与y轴交于点C(0,3),过点C作x轴的平行线与抛物线交于点D,抛物线的顶点为M,直线y=x+5经过D. M两点。 (1)求此抛物线的解析式; (2)连接AM、AC、BC,试比较∠MAB和∠ACB的大小,并说明你的理由。 5、在平面直角坐标系xOy中,抛物线y=ax2+bx+3经过点N(2,?5),过点N作x轴的平行线交此抛物线左侧于点M,MN=6. (1)求此抛物线的解析式; (2)点P(x,y)为此抛物线上一动点,连接MP交此抛物线的对称轴于点D,当△DMN为直角三角形时,求点P 的坐标;

二次函数恒成立问题42147

二次不等式恒成立问题 策略一:利用二次函数的判别式 对于一元二次函数),0(0)(2R x a c bx ax x f ∈≠>++=有: (1)R x x f ∈>在0)(上恒成立00?且a ;(2)R x x f ∈<在0)(上恒成立00+-+-x m x m 的解集是R ,求m 的范围。 策略二:利用零点分布 例2.已知a ax x x f -++=3)(2,若2)(],2,2[≥-∈x f x 恒成立,求a 的取值范围. 变式:设22)(2+-=mx x x f ,当),1[+∞-∈x 时,m x f ≥)(恒成立,求实数m 的取值范围。 策略三:分离参数 若所给的不等式能通过恒等变形使参数与主元分离于不等式两端,从而问题转化为求主元函数的最值,进而求出参数范围。这种方法本质也还是求最值,但它思路更清晰,操作性更强。一般地有:

1)为参数)a a g x f )(()(<恒成立max )()(x f a g >? 2)为参数)a a g x f )(()(>恒成立max )()(x f a g x f 恒成立,求实数a 的取值范围。 变式:已知函数]4,0(,4)(2∈--=x x x ax x f 时0)(--a ax x 的解集为),(+∞-∞,求实数a 的取值范围;(2)若关于x 的不等式32-≤--a ax x 的解集不是空集,求实数a 的取值范围.

相关文档
最新文档