惯性导航系统

惯性导航系统
惯性导航系统

惯性导航系统

惯性导航系统(INS,以下简称惯导)是一种不依赖于外部信息、也不向外部辐射能量的自主式导航系统。其工作环境不仅包括空中、地面,还可以在水下。惯导的基本工作原理是以牛顿力学定律为基础,通过测量载体在惯性参考系的加速度,将它对时间进行积分,且把它变换到导航坐标系中,就能够得到在导航坐标系中的速度、偏航角和位置等信息。

惯性导航系统(英语:INS )惯性导航系统是以陀螺和加速度计为敏感器件的导航参数解算系统,该系统根据陀螺的输出建立导航坐标系,根据加速度计输出解算出运载体在导航坐标系中的速度和位置。

惯性导航系统(INS,Inertial Navigation System)也称作惯性参考系统,是一种不依赖于外部信息、也不向外部辐射能量(如无线电导航那样)的自主式导航系统。其工作环境不仅包括空中、地面,还可以在水下。惯性导航的基本工作原理是以牛顿力学定律为基础,通过测量载体在惯性参考系的加速度,将它对时间进行积分,且把它变换到导航坐标系中,就能够得到在导航坐标系中的速度、偏航角和位置等信息。

惯性导航系统属于推算导航方式,即从一已知点的位置根据连续测得的运动体航向角和速度推算出其下一点的位置,因而可连续测出运动体的当前位置。惯性导航系统中的陀螺仪用来形成一个导航坐标系,使加速度计的测量轴稳定在该坐标系中,并给出航向和姿态角;加速度计用来测量运动体的加速度,经过对时间的一次积分得到速度,速度再经过对时间的一次积分即可得到距离。

惯性导航系统有如下优点:1、由于它是不依赖于任何外部信息,也不向外部辐射能量的自主式系统,故隐蔽性好,也不受外界电磁干扰的影响;2、可全天候、全时间地工作于空中、地球表面乃至水下;3、能提供位置、速度、航向和姿态角数据,所产生的导航信息连续性好而且噪声低;4、数据更新率高、短期精度和稳定性好。

其缺点是:1、由于导航信息经过积分而产生,定位误差随时间而增大,长期精度差;2、每次使用之前需要较长的初始对准时间;3、设备的价格较昂贵;4、不能给出时间信息。[1]但惯导有固定的漂移率,这样会造成物体运动的误差,因此射程远的武器通常会采用指令、GPS等对惯导进行定时修正,以获取持续准确的位置参数。惯导系统目前已经发展出挠性惯导、光纤惯导、激光惯导、微固态惯性仪表等多种方式。陀螺仪由传统的绕线陀螺发展到静电陀螺、激光陀螺、光纤陀螺、微机械陀螺等。激光陀螺测量动态范围宽,线性度好,性能稳定,具有良好的温度稳定性和重复性,在高精度的应用领域中一直占据着主导位置。由于科技进步,成本较低的光纤陀螺(FOG)和微机械陀螺(MEMS)精度越来越高,是未来陀螺技术发展的方向。

分类捷联式惯性导航系统

解析式惯性导航系统

半解析式惯性导航系

编辑本段应用惯性导航系统用于各种运动机具中,包括飞机、潜[2]艇、航天飞机等运输工具及导弹,然而成本及复杂性限制了其可以应用的场合。

惯性系统最先应用于火箭制导,美国火箭先驱罗伯特.戈达尔(ROBERT GODDARD )试验了早期的陀螺系统。二战期间经德国人冯布劳恩改进应后,应用于V-2火箭制导。战后美国麻省理工学院等研究机构及人员对惯性制导进行深入研究,从而发展成应用飞机、火箭、航天飞机、潜艇的现代惯性导航系统。

编辑本段惯性技术的重要性惯性技术是对载体进行导航的关键技术之一,惯性技术是利用惯性原理或其它有关原理,自主测量和控制运载体运动过程的技术,它是惯性导航、惯性制导、惯性测量和惯性敏感器技术的总称。现代惯性技术在各国政府雄厚资金的支持下,

己经从最初的军事应用渗透到民用领域。惯性技术在国防装备技术中占有非常重要的地位。对于惯性制导的中远程导弹,一般说来命中精度70%取决于制导系统的精度。对于导弹核潜艇,由于潜航时间长,其位置和速度是变化的,而这些数据是发射导弹的初始参数,直接影响导弹的命中精度,因而需要提供高精度位置、速度和垂直对准信号。目前适用于潜艇的唯一导航设备就是惯性导航系统。惯性导航完全是依靠运载体自身设备独立自主地进行导航,不依赖外部信息,具有隐蔽性好、工作不受气象条件和人为干扰影响的优点,而且精度高。对于远程巡航导弹,惯性制导系统加上地图匹配技术或其它制导技术,可保证它飞越几千公里之后仍能以很高的精度击中目标。惯性技术己经逐步推广到航天、航空、航海、石油开发、大地测量、海洋调查、地质钻控、机器人技术和铁路等领域,随着新型惯性敏感器件的出现,惯性技术在汽车工业、医疗电子设备中都得到了应用。因此惯性技术不仅在国防现代化中占有十分重要的地位,在国民经济各个领域中也日益显示出它的巨大作用。

编辑本段惯性技术的发展从广义上讲从起始点将航行载体引导到目的地的过程统称为导航。从狭义上讲导航是指给航行载体提供实时的姿态、速度和位置信息的技术和方法。早期人们依靠地磁场、星光、太阳高度等天文、地理方法获取定位、定向信息,随着科学技术的发展,无线电导航、惯性导航和卫星导航等技术相继问世,在军事、民用等领域广泛应用。其中,惯性导航是使用装载在运载体上的陀螺仪和加速度计来测定运载体姿态、速度、位置等信息的技术方法。实现惯性导航的软、硬件设备称为惯性导航系统,简称惯导系统。捷联式惯性导航系统(Strap-down Inertial Navigation System,简写SINS)是将加速度计和陀螺仪直接安装在载体上,在计算机中实时计算姿态矩阵,即计算出载体坐标系与导航坐标系之间的关系,从而把载体坐标系的加速度计信息转换为导航坐标系下的信息,然后进行导航计算。由于其具有可靠性高、功能强、重量轻、成本低、精度高以及使用灵活等优点,使得SINS 已经成为当今惯性导航系统发展的主流。捷联惯性测量组件(Inertial Measurement Unit,简写IMU)是惯导系统的核心组件,IMU 的输出信息的精度在很大程度上决定了系统的精度。

陀螺仪和加速度计是惯性导航系统中不可缺少的核心测量器件。现代高精度的惯性导航系统对所采用的陀螺仪和加速度计提出了很高的要求,因为陀螺仪的漂移误差和加速度计的零位偏值是影响惯导系统精度的最直接的和最重要的因素,因此如何改善惯性器件的性能,提高惯性组件的测量精度,特别是陀螺仪的测量精度,一直是惯性导航领域研究的重点。陀螺仪的发展经历了几个阶段。最初的滚珠轴承式陀螺,其漂移速率为(l-2)°/h,通过攻克惯性仪表支撑技术而发展起来的气浮、液浮和磁浮陀螺仪,其精度可以达到0.001°/h,而静电支撑陀螺的精度可优于0.0001°/h。从60 年代开始,挠性陀螺的研制工作开始起步,其漂移精度优于0.05°/h 量级,最好的水平可以达到0.001°/h。

1960 年激光陀螺首次研制成功,标志着光学陀螺开始主宰陀螺市场。目前激光陀螺的零偏稳定性最高可达0.0005°/h,激光陀螺面临的最大问题是其制造工艺比较复杂,因而造成成本偏高,同时其体积和重量也偏大,这一方面在一定程度上限制了其在某些领域的发展应用,另一方面也促使激光陀螺向低成本、小型化以及三轴整体式方向发展。而另一种光学陀螺-光纤陀螺不但具有激光陀螺的很多优点,而且还具有制造工艺简单、成本低和重量轻等特点,目前正成为发展最快的一种光学陀螺

编辑本段我国发展我国的惯导技术近年来已经取得了长足进步,液浮陀螺平台惯性导航系统、动力调谐陀螺四轴平台系统已相继应用于长征系列运载火箭。其他各类小型化捷联惯导、光纤陀螺惯导、激光陀螺惯导以及匹配GPS修正的惯导装置等也已经大量应用于战术制导武器、飞机、舰艇、运载火箭、宇宙飞船等。如漂移率0.01°~0.02°/h 的新型激光陀螺捷联系统在新型战机上试飞,漂移率0.05°/h 以下的光纤陀螺、捷联惯导在舰艇、潜艇上的

应用,以及小型化挠性捷联惯导在各类导弹制导武器上的应用,都极大的改善了我军装备的性能。

惯性导航技术的工作原理

惯性导航技术的工作原 理 Document number:PBGCG-0857-BTDO-0089-PTT1998

惯性导航系统基本工作原理 惯性导航系统是十分复杂的高精度机电综合系统,只有当科学技术发展到一定高度时工程上才能实现这种系统,但其基本工作原理却以经典的牛顿力学为基础。 设质量m受弹簧的约束,悬挂弹簧的壳体固定在载体上,载体以加速度a 作水平运动,则m处于平衡后,所受到的水平约束力F与a的关系满足牛顿第 二定律: F a m 。测量水平约束力F,求的a,对a积分一次,即得水平速 度,再积分一次即得水平位移。以上所述是简单化了的理性情况。由于运载体不可能只作水平运动,当有姿态变化时,必须测得沿固定坐标系的加速度,所以加速度计必须安装在惯性平台上,平台靠陀螺维持要求的空间角位置,导航计算和对平台的控制由计算机完成。 陀螺仪组件测取沿运载体坐标系3个轴的角速度信号,并被送入导航计算机,经误差补偿计算后进行姿态矩阵计算。加速度计组件测取沿运载体坐标系3个轴的加速度信号,并被送入导航计算机,经误差补偿计算后,进行由运载体坐标系至“平台坐标系”的坐标变换计算。他们沿机体坐标系三轴安装,并且与机体固连,它们所测得的都是机体坐标系下的物理量。 参与控制和测量的陀螺和加速度计称为惯性器件,这是因为陀螺和加速度计都是相对惯性空间测量的,也就是说加速度计输出的是运载体的绝对加速度,陀螺输出的是运载体相对惯性空间的角速度或角增量。而加速度和角速度或角增量包含了运载体全部的信息,所以惯导系统仅靠系统本身的惯性器件就能获得导航用的全部信息,它既不向外辐射任何信息,也不需要任何其他系统

车载捷联惯导系统基本原理

车载捷联惯导系统基本原理 一、捷联惯导系统基本原理 捷联惯导系统基本原理如图2-1所示: 图中陀螺和加速度计直接与载体系b固联,用来测量载体的角运动信息和线运动信息。导航解算的本质是根据初值进行积分的过程,通过求解姿态微分方程完成对姿态和航向角的积分,通过求解比力微分方程完成对速度的积分,通过求解位置微分方程实现对位置的积分。捷联惯导的姿态矩阵C n 相当于“数学平台”,取代了平台惯导中的实体平台,而ω?相当于对数学平台“施矩”的指令角速率。

二、捷联惯导微分方程 (一)姿态微分方程 在捷联惯导系统中,导航坐标系n 和载体坐标系b 之间的角位置关系通常用姿态矩阵、四元数和欧拉角表示,相应也存在姿态矩阵微分方程、四元数微分方程和欧拉角微分方程三种形式。 姿态矩阵微分方程的表达式为:

在欧拉角微分方程式(2.2-7)中,当俯仰角θ趋于90o时,cosθ趋于0,tanθ趋于无穷,方程存在奇异性,所以这种方法不能在全姿态范围内正常工作;姿态矩阵微分方程式(2.2-1)可全姿态工作,但姿态矩阵更新相当于求解包含9个未知量的线性微分方程组,计算量大;四元数微分方程式(2.2-6)同样可以全姿态工作,且更新算法只需求解4个未知量的线性微分方程组,计算量小,算法简单,是较实用的工程算法。 (二)速度微分方程 速度微分方程即比力方程,是惯性导航解算的基本关系式: 三、捷联惯性导航算法 捷联惯导解算的目的是根据惯性器件输出求解载体姿

态、速度和位置等导航信息,实际上就是求解三个微分方程的过程,相应存在姿态更新算法、速度更新算法和位置更新算法。 (一)姿态更新算法 求解微分方程式(2.2-6)可得四元数姿态更新算法为:

惯性导航系统发展综述报告

惯性导航系统发展综述报告 学号:姓名: 摘要:本文介绍了惯性导航系统的主要组成、基本原理、分类以及优缺点。列举了惯性导航系统在当前的主要应用领域及发展趋势。 关键词:惯性导航系统、陀螺仪、加速度计、GPS、组合导航 一.引言 美国《防务新闻》网站报道称,美军正在研制新型导航定位设备,以替代现在广泛使用的GPS卫星定位导航系统。GPS之所以被美军诟病,主要是由于该系统过于依赖脆弱的天基卫星系统。卫星在战时极易被干扰、破坏,或受到网络攻击,自身安全性难以得到有效保证。为有效解决GPS安全性问题和美军对精确定位、导航、授时服务的需求之间难以调和的矛盾,美军开始积极寻求GPS 的替代品。据称,基于现代原子物理学最新成就的微型惯性导航技术是未来代替GPS的一个重要的技术解决方案。 惯性导航系统是人类最早研发明的导航系统之一。早在1942年德国在V-2火箭上就率先应用了惯性导航技术。从2009年,美国国防部先进研究项目局就深入进行新一代微型惯性导航技术的研发与测试工作。据悉,这种新一代导航系统主要通过集成在微型芯片上的三个原子陀螺仪、加速器和原子钟精确测量载体平台相对惯性空间的角速率和加速度信息,利用牛顿运动定律自动计算出载体平台的瞬时速度、位置信息并为载体提供精确的授时服务。 美军也对该系统的未来发展充满信心。安德瑞·席克尔认为,就像30年前人们没有预想到GPS会发展到目前如此程度一样,在未来20年新一代微型惯性导航系统的发展程度也是无可限量的。 从此报道中可以看出研究惯性导航技术的重要作用。 二.惯性导航系统的概念 惯性导航(inertial navigation)是依据牛顿惯性原理,利用惯性元件(加速度计)来测量运载体本身的加速度,经过积分和运算得到速度和位置,从而达到

辅助惯性导航系统的方法和算法发展

2008年8月 第36卷第4期 现代防御技术 M ODERN DEFENCE TECHNOLOGY Aug.2008 Vo.l36No.4 导航、制导与控制 辅助惯性导航系统的方法和算法发展* 武虎子,南英,付莹珍 (南昌航空大学航空与机械工程学院,江西南昌330063) 摘要:综述了辅助惯导的一些主要算法和方法,主要有:重力辅助的匹配方法、基于衰减记忆的匹配算法、基于贝叶斯算法、基于神经网络算法、基于迭代最近点算法、无线电高度与数字地图辅助方法、粒子滤波算法、声呐技术辅助方法、概率数据关联算法、成像激光雷达辅助方法。分别对各类辅助算法和方法的基本原理、主要优缺点进行了简要介绍,展望了辅助算法和方法的发展趋势。 关键词:惯性导航系统;辅助算法;辅助方法;发展趋势 中图分类号:V448122+4;U66611文献标识码:A文章编号:10092086X(2008)20420062206 The Developm en t of A i ded A l gor ithm and M ethods i n Iner ti a l N avi ga ti on Syste m WU H u2z,i NAN Y i n g,F U Y ing2z hen (Nanchang Un i versity of Aeronautics,School of Aero nauti c and M echanical Engi neeri ng,Ji angxi Nanchang330063,Ch i na) A bstra ct:So me main a l g orithms and methods i n a i d ed2inertial navi g ati o n are summ ar iz ed.They can be c lassified as f ollo ws:gravity a i d ed matchingm ethod,match i n g algorithm based on FadingMe mory,a l2 gorithm based on Bayes Rule,a l g orit h m based on A rtificial Neura lN et w ork,algorith m based on iterative closest poin,t a i d ed method of w ire less he i g ht and d i g italmap,partic le filter algorithm,aided m et h od of sonar technology,probab ilistic data association filter algorith m,a i d ed method of i m agi n g laser radar.The main pri n ciple and ma i n advantages and disadvan tages of a ll k i n ds of a l g orit h ms and methods are i n tro2 duced si m p l y and separately.The develop men t trend of the m is prospected. K ey words:i n ertial navi g ati o n syste m(I N S);a i d ed a l g orithm;a i d ed m et h ods;deve lopment trend 0引言 随着导航技术的逐渐成熟,飞行器对自主导航精度的要求也越来越高,因而辅助惯性导航方法与算法也快速兴起。所谓辅助惯性导航系统(i n erti a l navi g ation syste m,I N S)的方法与算法,就是一种能提高惯导导航精度的方式和途径(如导航精度参数CEP,S EP,R,R MS等达到规定的范围内)。采用这些方法与算法可以重调和校正单一的惯导系统(如位置和方位的重新调整、陀螺漂移的校正)。 在过去的几十年里,辅助惯性导航技术已经有了很大的发展。其辅助算法都可以通过建立数学模 *收稿日期:2007-12-01;修回日期:2008-02-12 作者简介:武虎子(1981-),男,陕西富平人。硕士生,研究方向为飞行控制与导航。 通信地址:330063南昌市丰和南大道696号南昌航空大学航空与机械工程学院

惯性导航的工作原理及惯性导航系统分类

惯性导航的工作原理及惯性导航系统分类 惯性导航系统(INS)是一种自主式的导航设备,能连续、实时地提供载体位置、姿态、速度等信息;特点是不依赖外界信息,不受气候条件和外部各种干扰因素。 惯性导航及控制系统最初主要为航空航天、地面及海上军事用户所应用,是现代国防系统的核心技术产品,被广泛应用于飞机、导弹、舰船、潜艇、坦克等国防领域。随着成本的降低和需求的增长,惯性导航技术已扩展到大地测量、资源勘测、地球物理测量、海洋探测、铁路、隧道等商用领域,甚至在机器人、摄像机、儿童玩具中也被广泛应用。 不同领域使用惯性传感器的目的、方法大致相同,但对器件性能要求的侧重各不相同。从精度方面来看,航天与航海领域对精度要求高,其连续工作时间也长;从系统寿命来看,卫星、空间站等航天器要求最高,因其发射升空后不可更换或维修;制导武器对系统寿命要求最短,但可能须要满足长时间战备的要求。涉及到军事应用等领域,对可靠性要求较高。 惯性导航的工作原理 惯性导航系统是一种自主式的导航方法,它完全依靠载体上的设备自主地确定载体的航向、位置、姿态和速度等导航参数,而不需要借助外界任何的光、电、磁等信息。 惯性导航是一门涉及精密机械、计算机技术、微电子、光学、自动控制、材料等多种学科和领域的综合技术。其基本工作原理是以牛顿力学定律为基础,通过测量载体在惯性参考系的加速度、角加速度,将它对时间进行一次积分,求得运动载体的速度、角速度,之后进行二次积分求得运动载体的位置信息,然后将其变换到导航坐标系,得到在导航坐标系中的速度、偏航角和位置信息等。百度搜索“乐晴智库”,获得更多行业深度研究报告 惯性导航系统分类

惯性导航系统发展应用现状

惯性导航系统发展应用现状 测绘10-2班张智远07103094 摘要:阐述了惯性导航技术的核心技术构成(陀螺定向),总结了惯性导航的发展概况,并列举出陀螺仪的发展历程及发展方向。同时,概括了惯性技术的应用领域及当前应用情况。最后指出,随着新型惯性器件的涌现和完善,以惯性导航为基础的组合导航系统将成为未来导航系统的主要发展方向。 关键词:惯性导航陀螺仪惯性导航技术惯性导航系统 惯性导航(Inertial Navigation)是20 世纪中期发展起来的完自主式的导航技术。通过惯性测量组件(IMU)测量载体相对惯性空间的角速率和加速度信息,利用牛顿运动定律自动推算载体的瞬时速度和位置信息,具有不依赖外界信息、不向外界辐射能量、不受干扰、隐蔽性好的特点,且惯导系统能连续地提供载体的全部导航、制导参数(位置、线速度、角速度、姿态角)。惯性导航技术,包括平台式惯导系统和捷联惯导系统。平台式惯性导航系统将陀螺通过平台稳定回路控制平台跟踪导航坐标系在惯性空间的角速度。捷联惯性导航系统利用相对导航坐标系角速度计算姿态矩阵,把雷体坐标系轴向加速度信息转换到导航坐标系轴向并进行导航计算。惯性导航系统通常由惯性测量装置、计算机、控制显示器等组成。惯性测量装置包括加速度计和陀螺仪,又称惯性导航组合。3个自由度陀螺仪用来测量飞行器的三个转动运动;3个加速度计用来测量飞行器的3个平移运动的加速度。计算机根据测得的加速度信号计算出飞行器的速度和位置数据。控制显示器显示各种导航参数。 陀螺仪是惯性系统的主要元件。陀螺仪通常是指安装在万向支架中高速旋转的转子,转子同时可绕垂直于自转轴的一根轴或两根轴进动,前者称单自由度陀螺仪,后者称二自由度陀螺仪。陀螺仪具有定轴性和进动性,利用这些特性制成了敏感角速度的速率陀螺和敏感角偏差的位置陀螺。由于光学、MEMS 等技术被引入于陀螺仪的研制,现在习惯上把能够完成陀螺功能的装置统称为陀螺。陀螺仪种类多种多样,按陀螺转子主轴所具有的进动自由度数目可分为二自由度陀螺仪和单自由度陀螺仪;按支承系统可分为滚珠轴承支承陀螺,液浮、气浮与磁浮陀螺,挠性陀螺(动力调谐式挠性陀螺仪),静电陀螺;按物理原理分为利用高速旋转体物理特性工作的转子式陀螺,和利用其他物理原理工作的半球谐振陀螺、微机械陀螺、环形激光陀螺和光纤陀螺等。 由于陀螺仪是惯性导航的核心部件,因此,可以按各种类型陀螺出现的先后、理论的建立和新型传感器制造技术的出现,将惯性技术的发展划分为四代,但是惯性技术发展的各阶段之间并无明显界线。 第一代惯性技术指1930年以前的惯性技术。自1687年牛顿三大定律的建立,并成为惯性导航的理论基础;到l852年,傅科(Leon Foucault)提出陀螺的定义、原理及应用设想;再到1908年由安修茨(Hermann Anschütz—Kaempfe)研制出世界上第一台摆式陀螺罗经,以及1910年的舒勒(Max Schuler)调谐原理;第一代惯性技术奠定了整个惯性导航发展的基础。 第二代惯性技术开始于上世纪40年代火箭发展的初期,其研究内容从惯性仪表技术发展扩大到惯性导航系统的应用。首先是惯性技术在德国V-II火箭上的第一次成功应用。到50年代中后期,0.5n mile/h的单自由度液浮陀螺平台惯导系统研制并应用成功。1968年,漂移约为0.005°/h的G6B4型动压陀螺研制成功。这一时期,还出现了另一种惯性传感

惯性导航系统

惯性导航系统 以下是为大家整理的惯性导航系统的相关范文,本文关键词为惯性,导航,系统,,您可以从右上方搜索框检索更多相关文章,如果您觉得有用,请继续关注我们并推荐给您的好友,您可以在教育文库中查看更多范文。 目录 1.惯性导航系统的概念.........................22.惯导系统的发展历史及发展趋势 (3)

惯性导航系统的发展.......................3我国的惯性导航系统.......................5捷联惯导系统现状及发展趋势...............63.惯性导航系统的组成........................104、惯性导航系统的工作原理....................145、惯性导航系统的功能.......................186、惯性导航系统的服务模式与应用模式..........207、惯性导航系统当前的应用情况................218、惯性导航系统的特点 (23) 系统的主要优点......................23系统的主要缺点.....................249、惯性导航系统给我们的启示. (24) 1 惯性导航系统 一、惯性导航系统的概念 什么是惯性导航或惯性制导呢?惯性导航系统(Ins)是一种不依赖于外部信息、也不向外部辐射能量的自主式导航系统。在给定的运动初始条件(初始地理坐标和初始速度)下,利用惯性敏感元件测量飞机相对惯性空间的线运动和角运动参数,用计算机推算出飞机的速度、位置和姿态等参数,从而引导飞机航行。 推算的方法是在运载体上安装加速度计,经过计算(一次积分和二次积分),从而求得运动轨道(载体的运动速度和距离),进而进行导航。在运载体上安装加速度计,用它来敏感、测量运载体运动的加速

车载组合导航系统

车载组合导航系统 ( Car Integrated Navigation System) GI-100 用户手册 V1.6 上海航姿测控科技有限公司 2016年12月15日

1.1产品概述 (1) 1.2产品特点 (1) 1.3产品优点 (1) 1.4产品应用 (2) 2 设计原理 (2) 3电器特性 (4) 3.1极大值参数 (4) 3.2电器特性 (4) 4性能指标 (5) 5机械尺寸与引脚定义 (6) 5.1机械尺寸 (6) 5.2引脚定义 (7) 6 推荐电路 (8) 6.1推荐PCB封装 (8) 6.2推荐参考电路 (8) 7坐标系和安装方位 (9) 7.1坐标系 (9) 7.2 安装方位 (9) 8使用说明 (10) 8.1传感标定 (10) 8.2通信接口 (10) 8.3通信频率 (10) 8.4 通信协议 (10) 8.5 控制命令 (11) 9注意事项 (12) 10固件升级 (13) 10.1 winxp系统...................................................................... 错误!未定义书签。 10.2 win7系统 ....................................................................... 错误!未定义书签。附录:.. (15)

2 GPRMC (16) 3 GPATT (17)

1系统介绍 1.1产品概述 GI-100是一款高性能的面向车载导航领域的车载组合导航系统,系统包含高性能的同时支持北斗和GPS的卫星接收机芯片、三轴陀螺仪、三轴加速度等;通过在线的自适应组合导航算法,GI-100提供实时高精度的车辆定位、测速和测姿信息,在GNSS系统的信号精度降低甚至丢失卫星信号时,不借助里程计信息,GI-100利用纯惯性导航技术,也可在较长时间内单独对汽车载体进行高精度定位、测速和测姿。 图1. GI-100 1.2产品特点 元件选型:高性能三轴陀螺仪和三轴加速度计; 误差补偿:完成正交误差/温度漂移等误差补偿; 唯一防盗:每个产品标定参数均不一致防盗版; 物理尺寸:紧凑模块化设计可节省用户产品空间; 通信协议:即插即用的标准通信协议NEMA0183; 工程安装:无安装角度要求方便用户车载安装; 亚米级:支持RTCM2.3协议/复杂环境亚米级导航; 1.3产品优点 陀螺漂移:消除陀螺漂移获高精度姿态航向信息; 加速噪声:消除震动加速度获高精度速度信息; 零速修正:零速修正算法可防止导航数据漂移; 软件算法:基于自适应的扩展卡尔曼滤波算法; 智能识别:识别并隔离有较大误差的GNSS数据; 摆脱里程计:利用纯惯性导航实现高精度定位; 导航技术:组合导航和纯惯导航技术自主切换;

惯性导航系统的发展及应用

惯性导航系统的发展及应用 绪论 惯性导航是一门重要的学科技术,它是飞机、船舶、火箭等载体能顺利完成导航和控制任务的关键性技术之一。1942年德国在V-2火箭上首次应用了惯性导航原理;1954年纯惯性导航系统在飞机上试飞成功。30余年来,惯性导航技术获得迅速发展。在我国惯性导航技术已在航空、航天、航海和陆地车辆的导航和定位中得到应用。1970年以来,我过多次发射的人造地球卫星和火箭都采用了本国研制的惯性导航系统。不仅如此,70多年以来,这门科学技术还在大地测量、海洋勘测、石油钻井、航空测量和摄影等国民经济领域里获得成功应用。 惯性导航简介 惯性导航(Inertial Navigation)是20 世纪中期发展起来的完自主式的导航技术。通过惯性测量组件(IMU)测量载体相对惯性空间的角速率和加速度信息,利用牛顿运动定律自动推算载体的瞬时速度和位置信息,具有不依赖外界信息、不向外界辐射能量、不受干扰、隐蔽性好的特点,且惯导系统能连续地提供载体的全部导航、制导参数(位置、线速度、角速度、姿态角)。惯性导航技术,包括平台式惯导系统和捷联惯导系统。平台式惯性导航系统将陀螺通过平台稳定回路控制平台跟踪导航坐标系在惯性空间的角速度。捷联惯性导航系统利用相对导航坐标系角速度计算姿态矩阵,把雷体坐标系轴向加速度信息转换到导航坐标系轴向并进行导航计算。惯性导航系统通常由惯性测量装置、计算机、控制显示器等组成。惯性测量装置包括加速度计和陀螺仪,又称惯性导航组合。3个自由度陀螺仪用来测量飞行器的三个转动运动;3个加速度计用来测量飞行器的3个平移运动的加速度。计算机根据测得的加速度信号计算出飞行器的速度和位置数据。控制显示器显示各种导航参数。 陀螺仪 陀螺仪是惯性系统的主要元件。陀螺仪通常是指安装在万向支架中高速旋转的转子,转子同时可绕垂直于自转轴的一根轴或两根轴进动,前者称单自由度陀螺仪,后者称二自由度陀螺仪。陀螺仪具有定轴性和进动性,利用这些特性制成了敏感角速度的速率陀螺和敏感角偏差的位置陀螺。由于光学、MEMS 等技术被引入于陀螺仪的研制,现在习惯上把能够完成陀螺功能的装置统称为陀螺。陀螺仪种类多种多样,按陀螺转子主轴所具有的进动自由度数目可分为二自由度陀螺仪和单自由度陀螺仪;按支承系统可分为滚珠轴承支承陀螺,液浮、气浮与磁浮陀螺,挠性陀螺(动力调谐式挠性陀螺仪),静电陀螺;按物理原理分为利用高速旋转体物理特性工作的转子式陀螺,和利用其他物理原理工作的半球谐振陀螺、微机械陀螺、环形激光陀螺和光纤陀螺等。 单自由度陀螺仪敏感角速度,二自由度陀螺仪敏感角位移。为了将角速度和角位移转换成惯性系统中可用的信号,陀螺仪需安装信号传感器。为了能控制陀螺仪按一定的规律进动,需安装力矩器。 加速度计 加速度计是惯性导航系统的核心元件之一。依靠它对比力的测量,完成惯性导航系统确定载体的位置、速度以及产生跟踪信号的任务。载体加速度的测量必须十分准确地进行,而

《惯性导航系统》学习指南

学习指南 《惯性导航系统》课程包括惯性导航基础、惯性元件、惯性平台、平台式惯导原理、捷联式惯导原理等5个单元的内容。由于本门课程具有:涉及知识面宽,与物理学、工程力学、控制科学、材料学、计算机科学等知识联系紧密;教学内容丰富,数学公式复杂,空间关系抽象,逻辑推理和形象思维要求高的课程特点,导致课程在教学过程易于出现教师难教、学生难学的现象。为帮助大家学好本门课程,我们给出学习建议,供大家参考。 一、课程前后关系 1.前置课程 本门课程是电气工程及其自动化和自动化等专业的专业基础课,根据专业人才培养方案和课程自身的知识体系结构,学习本门课程需要具备《物理学》、《理论力学》、《电机学》、《电路原理》、《模拟数字电路》、《自动控制原理》和《陀螺原理》等相关课程的专门知识,这些知识是学好本门课程的重要基础。 2.后续课程 本门课程的后续课程主要有《飞行控制系统》、《组合导航系统》、《机载航电设备》等。学好本门课程可以为上述课程的学习打下良好的学习基础。 二、主讲教材与参考教材 1.主讲教材 本门课程的主讲教材是2008年9月国防工业出版社出版的空军航空机务体系统编教材《惯性导航》。该教材从惯性导航基础、惯性元件、惯性平台、平台式惯导原理、捷联式惯导原理五个知识模块,系统阐述了惯性导航基本概念、基本原理和基本结构。

教材针对惯性导航理论抽象、复杂的特点,特别加强了空间概念、坐标系转换和惯导几何位置关系的物理解释,惯性导航方程、力学编排方程、误差方程、对准方程等复杂公式推导过程的物理本质分析,以便于读者加深对惯性导航内涵和实质的理解。 2.参考教材 本门课程为广大读者提供了大量辅助参考资料,参考资料包括参考教材、学位论文、学术论文三个类别。这些参考资料有助于读者全面了解惯性导航及相关领域的知识结构,惯性导航理论和技术的发展方向。以下给出的是主要参考教材清单。 (1)《惯性导航与组合导航》,张宗麟,北京,航空工业出版社,2000年8月 (2)《惯性导航》,秦永元,北京,科学出版社,2006年5月(3)《捷联惯性导航技术》(英)David H.Titterton,北京,国防工业出版社,2007年12月 (4)《惯性器件与惯性导航系统》,邓志红,北京,科学出版社2012年6 月 (5)《光纤陀螺仪》,(法)Hrtve G. Lefevre,北京,国防工沛出版社,2002年1月 (6)《陀螺原理》,许江宁,北京,国防工业出版社,2005年1月 (7)《无陀螺捷联式惯性导航系统》,史震,哈尔滨,哈尔滨工程大学出版社,2007年8月 (8)《惯性导航与组合导航基础》,刘智平,北京,国防工业出版社,2013年6月 (9)《惯性技术》,邓正隆,哈尔滨,哈尔滨工业大学出版社,2006年2月 (10)《惯性仪器测试与数据分析》,严恭敏,北京,国防工业

《惯性导航简介》

惯性导航简介 ——《导航概论》课程论文 专业:测绘工程A组姓名:师嘉奇学号:2015301610091 一.摘要与关键字 1.本文摘要:本文主要对导航工程的基本内涵,方法与原理进行简单介绍,主要介绍有关惯性导航的相关内容,并且根据在本学期《导航概论》这门课程上所学习的内容谈一谈自己对导航应用的设想以及对本课程教学的建议。 2.关键字:惯性导航,定位技术,应用与服务,发展与前景 二.导航工程基本内涵 导航定位的历史与人类自身发展的历史一样久远。人类的导航定位活动源自于其生活和生产的需要。陆地上的导航定位最早发生在人类祖先外出寻找食物或狩猎的过程中,那时,他们通常在沿途设置一些特殊的“标记”来解决回家迷路的问题。随着探索遥远地域的愿望与行动的出现,他们则通过观察和利用自然地标(如山峰、河流、树木、岩石等)以及自然天体(恒星)来解决导航定位问题这也使得他们能够翻越高山、跨越河流。谈到导航,很多人会认为这是一个在近现代才提出的词汇,但是,导航的历史已经非常久远了。从古代黄帝作战使用的指南车,到战国时期的司南,从近代航海使用的指南针,再到当今社会人手一部的智能手机,导航已经有了很悠久的历史。那么,导航工程的基本内涵到底是什么呢?

首先,我们可以通过两个英文的句子来大概了解一下到底什么是导航“when am I?”和“How and when to get there?”,这两个问题问的是我现在在哪?我要怎么到那里去?它们也指出了导航的内涵,那就是在哪,怎样去,多久到达。因此,通过科学的定义,将航行载体从起始点引导到目的地的过程称为导航,导航系统给出的基本参数是载体在空间的即时位置、速度和姿态、航向等,导航参数的确定由导航仪或导航系统完成。通过这种技术引导载体方向的过程即为导航。导航是解决人,事件,目标相互位置动态关系随时间变化的科学,技术,工程问题。 在室外或者自然环境中的导航,按照载体运动的范围,可分为海陆空天(海洋、陆地、空中、空间)导航四类;按照所采用的技术,常用的导航方法有,天文导航、惯性导航、陆基无线电导航、卫星导航、特征匹配辅助导航(如地形匹配、地磁匹配、重力匹配)等,以及上述导航方法之间的不同组合(组合导航)。室内定位导航作为当今导航技术发展的个重要分支,它借鉴室外导航的相关技术,同时结合现代通信技术、网络技术传感器技术以及计算机技术的最新发展,已经成为一个重要的研究热点并在人们日常工作和生活中逐步得到应用。室内导航与自然环境中的导航既有联系又有其自身的特点,其主要差异是来自于应用环境及所采用的技术方法不同。 导航系统有两种工作状态:指示状态和自动导航状态。如导航设备提供的导航信息仅供驾驶员操纵和引导载体用,则导航系统工作为指示状态,在指示状态下,导航系统不直接对载体进行控制,如果导

惯性导航系统

惯性导航系统 惯性导航系统(INS,以下简称惯导)是一种不依赖于外部信息、也不向外部辐射能量的自主式导航系统。其工作环境不仅包括空中、地面,还可以在水下。惯导的基本工作原理是以牛顿力学定律为基础,通过测量载体在惯性参考系的加速度,将它对时间进行积分,且把它变换到导航坐标系中,就能够得到在导航坐标系中的速度、偏航角和位置等信息。 惯性导航系统(英语:INS )惯性导航系统是以陀螺和加速度计为敏感器件的导航参数解算系统,该系统根据陀螺的输出建立导航坐标系,根据加速度计输出解算出运载体在导航坐标系中的速度和位置。 惯性导航系统(INS,Inertial Navigation System)也称作惯性参考系统,是一种不依赖于外部信息、也不向外部辐射能量(如无线电导航那样)的自主式导航系统。其工作环境不仅包括空中、地面,还可以在水下。惯性导航的基本工作原理是以牛顿力学定律为基础,通过测量载体在惯性参考系的加速度,将它对时间进行积分,且把它变换到导航坐标系中,就能够得到在导航坐标系中的速度、偏航角和位置等信息。 惯性导航系统属于推算导航方式,即从一已知点的位置根据连续测得的运动体航向角和速度推算出其下一点的位置,因而可连续测出运动体的当前位置。惯性导航系统中的陀螺仪用来形成一个导航坐标系,使加速度计的测量轴稳定在该坐标系中,并给出航向和姿态角;加速度计用来测量运动体的加速度,经过对时间的一次积分得到速度,速度再经过对时间的一次积分即可得到距离。 惯性导航系统有如下优点:1、由于它是不依赖于任何外部信息,也不向外部辐射能量的自主式系统,故隐蔽性好,也不受外界电磁干扰的影响;2、可全天候、全时间地工作于空中、地球表面乃至水下;3、能提供位置、速度、航向和姿态角数据,所产生的导航信息连续性好而且噪声低;4、数据更新率高、短期精度和稳定性好。 其缺点是:1、由于导航信息经过积分而产生,定位误差随时间而增大,长期精度差;2、每次使用之前需要较长的初始对准时间;3、设备的价格较昂贵;4、不能给出时间信息。[1]但惯导有固定的漂移率,这样会造成物体运动的误差,因此射程远的武器通常会采用指令、GPS等对惯导进行定时修正,以获取持续准确的位置参数。惯导系统目前已经发展出挠性惯导、光纤惯导、激光惯导、微固态惯性仪表等多种方式。陀螺仪由传统的绕线陀螺发展到静电陀螺、激光陀螺、光纤陀螺、微机械陀螺等。激光陀螺测量动态范围宽,线性度好,性能稳定,具有良好的温度稳定性和重复性,在高精度的应用领域中一直占据着主导位置。由于科技进步,成本较低的光纤陀螺(FOG)和微机械陀螺(MEMS)精度越来越高,是未来陀螺技术发展的方向。 分类捷联式惯性导航系统 解析式惯性导航系统 半解析式惯性导航系 编辑本段应用惯性导航系统用于各种运动机具中,包括飞机、潜[2]艇、航天飞机等运输工具及导弹,然而成本及复杂性限制了其可以应用的场合。 惯性系统最先应用于火箭制导,美国火箭先驱罗伯特.戈达尔(ROBERT GODDARD )试验了早期的陀螺系统。二战期间经德国人冯布劳恩改进应后,应用于V-2火箭制导。战后美国麻省理工学院等研究机构及人员对惯性制导进行深入研究,从而发展成应用飞机、火箭、航天飞机、潜艇的现代惯性导航系统。 编辑本段惯性技术的重要性惯性技术是对载体进行导航的关键技术之一,惯性技术是利用惯性原理或其它有关原理,自主测量和控制运载体运动过程的技术,它是惯性导航、惯性制导、惯性测量和惯性敏感器技术的总称。现代惯性技术在各国政府雄厚资金的支持下,

基于惯性导航系统的车辆自动驾驶装置设计

中图分类号:TN967.1;V249.3文献标识码:A文章编号:1009-2552(2011)02-0069-03基于惯性导航系统的车辆自动驾驶装置设计 寇超1,陈志佳1,杨茂林1,倪蕾2 (1.军械工程学院光学与电子工程系,石家庄050003;2.62541部队,北京100025) 摘要:介绍了一种能够遥控和自主行驶的运动平台的设计方法。该运动平台以惯性导航仪提供的坐标为基础,可以由上位机规划路径和障碍,通过蓝牙模块将路径信息传递给自动驾驶控制器,自动驾驶控制器按照导航路径和惯性导航仪给出的实时坐标解算控制量,完成对运动平台的模糊控制,使运动平台按照指定路径前进。 关键词:惯性导航;自动驾驶;路径规划;路径跟踪 Design of vehicle auto m atic driving device base d on i nerti al navigation syste m KOU Chao1,C HEN Zh-i jia1,YANG M ao-lin1,N I Lei2 (1.Depart m ent of O ptics and E lectron i cs Engi n eer i ng,O rdnance Engi n eer i ng Co llege,Sh iji azhuang050003,Ch ina; 2.62541T roop s of PLA,B eijing100025,Ch i na) A bstract:The desi g n o f movable platfor m t h at can be re m ote contr o led and auto m atic dri v ed is i n troduced.The platfor m based on i n ertial nav i g ati o n i n stru m ent trans m its t h e i n for m ation o f t h e path to the auto m atic dri v i n g controller through blue tooth.The path and obstac l e can be planned by the co m puter.According to the nav i g ati o n and rea-l ti m e coor d i n ate,t h e auto m atic driv i n g contr o ller ca lculates the contro l para m eter and realizes fuzzy contro.l F i n ally,the m ovable platfor m m oves on the path that has been specifi e d. K ey words:i n ertia l navigation;auto m atic driving;path plann i n g;path fo ll o w i n g 0引言 自动驾驶车辆是地面无人作战平台的一种,它是一台可以在崎岖的地形上沿规划的路线自主导航及躲避障碍、必要时可重新规划路线的智能车辆。目前,对地面无人作战平台的研究主要集中在半自主无人车辆开发上。近期的发展趋势主要是不断增强车辆对不同任务的适应能力,如侦察、监视和目标探测、工程侦察、通信中继、战术欺骗、作战补给、反狙击部署等。同时也正在努力增强车辆自身的环境感知能力和自主导航能力,为完全自主无人车辆研究奠定技术基础[1]。 本设计的主要任务是设计一个自动驾驶控制装置,控制载体车辆在实验场地上按照预先规划好的路径行驶,为其他课题实验提供无人运动平台。1控制系统总体设计 整个自动驾驶装置分为运动车辆及控制其自动行驶的控制器、操纵杆和上位机路径规划软件三部分。各部分关系如图1所示,运动车辆作为运 动载 图1全系统组成示意图 收稿日期:2010-09-03 作者简介:寇超(1985-),男,硕士研究生,主要研究方向为通信与信息系统。 ) 69 )

惯性导航系统

惯性导航系统 一、惯性导航系统(Inertial Navigation System,INS) 1、基本概念 惯性导航系统(INS)是一种不依赖于外部信息、也不向外部辐射能量的自主式导航系统。其工作环境不仅包括空中、地面,还可以在水下。 惯性导航系统目前已经发展出挠性惯导、光纤惯导、激光惯导、微固 态惯性仪表等多种方式。陀螺仪由传统的绕线陀螺发展到静电陀螺、激光 陀螺、光纤陀螺、微机械陀螺等。激光陀螺测量动态范围宽,线性度好, 性能稳定,具有良好的温度稳定性和重复性,在高精度的应用领域中一直 占据着主导位置。由于科技进步,成本较低的光纤陀螺(FOG)和微机械陀螺(MEMS)精度越来越高,是未来陀螺技术发展的方向。我国的惯导技术 近年来已经取得了长足进步,液浮陀螺平台惯性导航系统、动力调谐陀螺 四轴平台系统已相继应用于长征系列运载火箭。其他各类小型化捷联惯导、光纤陀螺惯导、激光陀螺惯导以及匹配GPS修正的惯导装置等也已经大量应用于战术制导武器、飞机、舰艇、运载火箭、宇宙飞船等。如漂移率 0.01°-0.02°/h 的新型激光陀螺捷联系统在新型战机上试飞,漂移率 0.05°/h 以下的光纤陀螺、捷联惯导在舰艇、潜艇上的应用,以及小型化挠性捷联惯导在各类导弹制导武器上的应用,都极大的改善了我军装备的 性能。 惯性导航系统有如下主要优点:(1)由于它是不依赖于任何外部信息,也不向外部辐射能量的自主式系统,故隐蔽性好,也不受外界电磁干扰的 影响;(2)可全天流全球、全时间地工作于空中、地球表面乃至水下;(3)能提供位置、速度、航向和姿态角数据,所产生的导航信息连续性好而且 噪声低;(4)数据更新率高、短期精度和稳定性好。其缺点是:(1)由 于导航信息经过积分而产生,定位误差随时间而增大,长期精度差;(2)每次使用之前需要较长的初始对准时间;(3)设备的价格较昂贵;(4) 不能给出时间信息。但惯导有固定的漂移率,这样会造成物体运动的误差,因此射程远的武器通常会采用指令、GPS等对惯导进行定时修正,以获取持续准确的位置参数。 2、惯性导航原理 目前,惯性导航分为两大类:平台式惯导和捷联式惯导。它们的主要区别在于,前者有实体的物理平台,陀螺和加速度计置于由陀螺定的平台上,该平台跟踪导航坐标系,以实现速度和位置解算,姿态数据直接取自于平台的环架;在捷联式惯导中,陀螺和加速度计直接固连在载体上。惯性平台的功能由计算机完成,

惯导(惯性导航系统)

惯导(惯性导航系统) 概述 惯性导航系统(INS,以下简称惯导)是一种不依赖于外部信息、也不向外部辐射能量的自主式导航系统。其工作环境不仅包括空中、地面,还可以在水下。惯导的基本工作原理是以牛顿力学定律为基础,通过测量载体在惯性参考系的加速度,将它对时间进行积分,且把它变换到导航坐标系中,就能够得到在导航坐标系中的速度、偏航角和位置等信息。 惯性导航系统(英语:INS)惯性导航系统是以陀螺和加速度计为敏感器件的导航参数解算系统,该系统根据陀螺的输出建立导航坐标系,根据加速度计输出解算出运载体在导航坐标系中的速度和位置。 运用领域 现代惯性技术在各国政府雄厚资金的支持下,己经从最初的军事应用渗透到民用领域。惯性技术在国防装备技术中占有非常重要的地位。对于惯性制导的中远程导弹,一般说来命中精度70%取决于制导系统的精度。对于导弹核潜艇,由于潜航时间长,其位置和速度是变化的,而这些数据是发射导弹的初始参数,直接影响导弹的命中精度,因而需要提供高精度位置、速度和垂直对准信号。目前适用于潜艇的唯一导航设备就是惯性导航系统。惯性导航完全是依靠运载体自身设备独立自主地进行导航,不依赖外部信息,具有隐蔽性好、工作不受气象条件和人为干扰影响的优点,而且精度高。对于远程巡航导弹,惯性制导系统加上地图匹配技术或其它制导技术,可保证它飞越几千公里之后仍能以很高的精度击中目标。惯性技术己经逐步推广到航天、航空、航海、石油开发、大地测量、海洋调查、地质钻控、机器人技术和铁路等领域,随着新型惯性敏感器件的出现,惯性技术在汽车工业、医疗电子设备中都得到了应用。因此惯性技术不仅在国防现代化中占有十分重要的地位,在国民经济各个领域中也日益显示出它的巨大作用。

惯性导航系统分析

西安航空学院 本科毕业设计(论文) 题目:某型飞机翼肋中段装配型架 设计与装配工艺仿真 学院:飞行器学院 专业: 学号: 学生姓名: 指导教师: 二〇一六年六月一日

学士学位论文原创性声明 本人声明,所呈交的论文是本人在导师的指导下独立完成的研究成果。除了文中特别加以标注引用的内容外,本论文不包含法律意义上已属于他人的任何形式的研究成果,也不包含本人已用于其他学位申请的论文或成果。对本文的研究作出重要贡献的个人和集体,均已在文中以明确方式表明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权西安航空学院可以将本论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 作者签名:日期:年月日 导师签名:日期:年月日

某型飞机翼肋中段装配型架设计与装配工艺仿真 摘要:飞机装配型架是飞机装配过程中的生产工艺装备,其主要功用是保证产品准确度与互换性,提高劳动生产率和减轻工人劳动强度,减少生产所需成本[1]。装配型架结构的设计是否合理,不仅影响到装配型架本身制造过程中的工作量大小、制造周期的长短、生产成本的高低,还对装配过程中各工件的对接、配合尺寸的协调一致,对飞机装配的互换协调性、制造质量和进度有很大影响,从而直接影响到整个飞机的制造周期。本文通过对翼肋中段组合件的结构及工艺性进行分析,编制相应的装配工艺规程,根据翼肋中段组合件的装配工艺特点设计了对应的装配型架,最后结合翼肋中段组合件的结构特点,根据设计的装配工艺规程,利用三维设计软件UG对翼肋中段组合件及装配型架组件进行建模,并对其装配过程进行了仿真模拟。 关键字:翼肋中段;装配型架;仿真模拟

相关文档
最新文档