实变函数与泛函分析(郑维行王声望)第四版下册课后习题答案(非完整版)

实变函数与泛函分析(郑维行王声望)第四版下册课后习题答案(非完整版)
实变函数与泛函分析(郑维行王声望)第四版下册课后习题答案(非完整版)

(完整版)复变函数知识点梳理解读

第一章:复数与复变函数 这一章主要是解释复数和复变函数的相关概念,大部分内容与实变函数近似,不难理解。 一、复数及其表示法 介绍复数和几种新的表示方法,其实就是把表示形式变来变去,方便和其他的数学知识联系起来。 二、复数的运算 高中知识,加减乘除,乘方开方等。主要是用新的表示方法来解释了运算的几何意义。 三、复数形式的代数方程和平面几何图形 就是把实数替换成复数,因为复数的性质,所以平面图形的方程式二元的。 四、复数域的几何模型——复球面 将复平面上的点,一一映射到球面上,意义是扩充了复数域和复平面,就是多了一个无穷远点,现在还不知道有什么意义,猜想应该是方便将微积分的思想用到复变函数上。 五、复变函数 不同于实变函数是一个或一组坐标对应一个坐标,复变函数是一组或多组坐标对应一组坐标,所以看起来好像是映射在另一个坐标系里。 六、复变函数的极限和连续性 与实变函数的极限、连续性相同。 第二章:解析函数

这一章主要介绍解析函数这个概念,将实变函数中导数、初等函数等概念移植到复变函数体系中。 一、解析函数的概念 介绍复变函数的导数,类似于实变二元函数的导数,求导法则与实变函数相同。 所谓的解析函数,就是函数处处可导换了个说法,而且只适用于复变函数。而复变函数可以解析的条件就是:μ对x与ν对y的偏微分相等且μ对y和ν对x的偏微分互为相反数,这就是柯西黎曼方程。二、解析函数和调和函数的关系 出现了新的概念:调和函数。就是对同一个未知数的二阶偏导数互为相反数的实变函数。而解析函数的实部函数和虚部函数都是调和函数。而满足柯西黎曼方程的两个调和函数可以组成一个解析函数,而这两个调和函数互为共轭调和函数。 三、初等函数 和实变函数中的初等函数形式一样,但是变量成为复数,所以有一些不同的性质。 第三章:复变函数的积分 这一章,主要是将实变函数的积分问题,在复变函数这个体系里进行了系统的转化,让复变函数有独立的积分体系。但是很多知识都和实变函数的知识是类似的。可以理解为实变函数积分问题的一个兄弟。 一、复积分的概念 复积分就是复变函数的积分,实质是两个实二型线积分。所以应该具有相应的实二型线积分的性质。复积分存在的充分条件是实部函数和虚部函数都连续。 二、柯西积分定理

实变函数论课后答案第三章1

实变函数论课后答案第三章1 第三章第一节习题 1.证明:若E 有界,则m E *<∞. 证明:若n E R ?有界,则存在一个开区间 (){}120,,;n M n E R I x x x M x M ?=-<< . (0M >充分大)使M E I ?. 故()()()111 inf ;2n n n n m n n i m E I E I I M M M ∞∞ * ===??=?≤=--=<+∞????∑∏ . 2.证明任何可数点集的外测度都是零. 证:设{}12,,,n E a a a = 是n R 中的任一可数集.由于单点集的外测度为零, 故{}{}{}()12111 ,,,00n i i i i i m E m a a a m a m a ∞ ∞ ∞ * * * *===??==≤== ???∑∑ . 3.证明对于一维空间1R 中任何外测度大于零的有界集合E 及任意常数μ,只要 0m E μ*≤≤,就有1E E ?,使1m E μ*=. 证明:因为E 有界,设[],E a b ?(,a b 有限), 令()(),f x m E a x b *=?<< , 则()()()()[]()()0,,f a m E m f b m a b E m E ****=?=?=== . 考虑x x x +?与,不妨设a x x x b ≤≤+?≤, 则由[])[]())()[](),,,,,a x x E a x x x x E a x E x x x E +?=+?=+????? . 可知())()[](),,f x x m a x E m x x x E ** +?≤++??? ()[]()(),f x m x x x f x x *≤++?=+?.

实变函数第一章复习题及解答(1)

第一章 复习题(一) 一、判断题 1、大人全体构成集合。(× ) 2、小个子全体构成集合。(× ) 3、所有集合都可用列举法表示。(× ) 4、所有集合都可用描述法表示。(√ ) 5、对任意集合A ,总有A ??。(√ ) 6、()A B B A -?=。(× ) 7、()()A B B A B B A A -?=?=-?。(√ ) 8、若B A ?,则()A B B A -?=。(√ ) 9、c A A ?≠?,c A A X ?=,其中X 表示全集。(× ) 10、A B B A ?=?。(× ) 11、()c c c A B A B ?=?,()c c c A B A B ?=?。(× ) 12、()()()A B C A C B C ??=???,()()()A B C A C B C ??=???。(√ ) 13、若A B ,B C ,则A C 。(√ ) 14、若A B ,则A B =,反之亦然。(√ ) 15、若12A A A =?,12B B B =?,且11A B ,22A B ,则A B 。(× ) 16、若A B ?,则A B ≤。(√ ) 17、若A B ?,且A B ≠,则A B <。(× ) 18、可数集的交集必为可数集。(× ) 19、有限或可数个可数集的并集必为可数集。(√ ) 20、因整数集Z ?有理数集Q ,所以Q 为不可数集。(× ) 21、()c c A A =。(√ ) 二、证明题 1、证明:c A B A B -=?。 证明:对任意x A B ∈-,有x A ∈且x B ?,从而x A ∈且c x B ∈,即c x A B ∈?, 所以 c A B A B -??;反之,对任意c x A B ∈?,有x A ∈且c x B ∈,从而x A ∈且x B ?,

实变函数论课后答案第五章1

实变函数论课后答案第五章1 第无章第一节习题 1.试就[0,1]上 的D i r i c h l e 函数()D x 和Riemann 函数()R x 计算[0,1] ()D x dx ? 和 [0,1] ()R x dx ? 解:回忆1 1()0\x Q D x x R Q ∈?=?∈?即()()Q D x x χ= (Q 为1 R 上全体有理数之集合) 回忆: ()E x χ可测E ?为可测集和P129定理2:若E 是n R 中测度有 限的可测集, ()f x 是E 上的非负有界函数,则_ ()()() E E f x dx f x dx f x =???为E 上的可测函数 显然, Q 可数,则*0m Q =,()Q Q x χ可测,可测,有界,从而Lebesgue 可积 由P134Th4(2)知 [0,1] [0,1][0,1][0,1][0,1]()()()10c c Q Q Q Q Q Q Q x dx x dx x dx dx dx χχχ????= + = + ? ? ? ? ? 1([0,1])0([0,1])10010c m Q m Q =??+??=?+?= 回忆Riemann 函数()R x :1:[0,1]R R 11,()0[0,1]n n x m n m R x x x Q ?= ??==??∈-?? 和无大于的公因子1 在数学分析中我们知道, ()R x 在有理点处不连续,而在所有无理点处连续,且在[0,1]上Riemann 可积, ()0 .R x a e =于[0,1]上,故()R x 可

测(P104定理3),且 [0,1] ()R x dx ? [0,1]()()Q Q R x dx R x dx -= +? ? 而0()10Q Q R x dx dx mQ ≤≤==??(Q 可数,故*0m Q =)故 [0,1] [0,1][0,1]()()00Q Q R x dx R x dx dx --= = =? ? ? 2.证明定理1(iii)中的第一式 证明:要证的是:若mE <+∞,(),()f x g x 都是E 上的非负有界函数,则 ()()()E E E f x dx f x dx g x dx --≥+??? 下面证明之: 0ε?>,有下积分的定义,有E 的两个划分1D 和2D 使 1 ()()2 D E s f f x dx ε -> - ? ,2 ()()2 D E s g g x dx ε -> - ? 此处1 ()D s f ,2 ()D s g 分别是f 关于1D 和g 关于2D 的小和数,合并12 ,D D 而成E 的一个更细密的划分D ,则当()D s f g +为()()f x g x +关于D 的小和数时 12(()())()D D D D D f x g x dx s f g s f s g s f s g - +≥+≥+≥+? ()()()()22E E E E f x dx g x dx f x dx g x dx εε ε----≥ -+-=+-? ???(用到下确界的性 质和P125引理1) 由ε的任意性,令0ε→,而得(()())()()E E f x g x dx f x dx g x dx - --+≥+??? 3.补作定理5中()E f x dx =+∞?的情形的详细证明 证明 :令 {} |||||m E E x x m =≤,当 ()E f x dx =+∞ ?时, ()lim ()m m E E f x dx f x dx →∞ +∞==?? 0M ?>,存在00()m m M N =∈,当0m m ≥时,

实变函数集合规范标准答案

第一章 集合 一、內容小结 1. 这一章学习了集合的概念、表示方法、集合的运算(并、交、差、补);引入 了集合列的上、下极限和极限的运算;对集合运算规则作了仔细的讨论,特别是德摩根公式。 2. 引入了集合对等的概念,证明了判别两个集合对等的有力工具——伯恩斯坦定 理。 3. 引入了集合基数的概念,深入地研究了可数基数和连续基数。 二、学习要点 1. 准确熟练地掌握集合的运算法则,特别要注意集合运算既有和代数运算在形式 上一许多类似的公式,但也有许多本质。但是千万不要不加证明地把代数恒等式搬到集合运算中来。例如:(a+b)-a=b,但是(A+B)-B=A 却不一定成立。条件为A,B 不交。 2. 可数集合是所有无限集中最小的无限集。若可数A 去掉可数B 后若还无限则C 必可数。 3. 存在不可数集。无最大基数集。 以下介绍学习中应掌握的方法 4. 肯定方面与否定方面。B X B X ?∈与, 5. 集合列的上、下限集是用集合运算来解决分析问题的基础,应很好地掌握。其 中用交并表示很重要。对第四章的学习特别重要。 6. 基数部分重点:集合对等、构造集合的一一对应;利用对等的传递性(伯恩斯 坦定理)来进行相应的证明。 7. 集合可数性的证明方法很重要:可排列、与已知可数集对等、利用集合的运算 得到可数、第四节定理6. 8. 证明集合基数为C 中常用到已知的基数为C 的集合。∞E R n , 三、习题解答 1. 证明:)()()(C A B A C B A Y I Y I Y = 证明 则若设,).(A x C B A x ∈∈I Y B A x Y ∈,得).()(C A B A x Y I Y ∈

泛函分析在力学和工程中的应用

泛函分析在力学和工程中的应用 陆章基 (复旦大学应用力学系) 摘要 本文简单介绍泛函分析方法在力学和工程中的若干应用,包括泛函观点下的结构数学理论、直交投影法、超圆方法、变分法、变分不等式与凸分析、算子的特征值与谱方法、与实验技术有关的泛函方法等。并介绍当前非线性分析中部分动态。 $ 1 泛函分析概述 泛函分析是高度抽象的数学分支,研究各类泛函空间及算子理论。所谓泛函空间是带有某类数学结构(主要是拓扑和代数结构)的抽象集。其元(或点)可以是数、向量、函数、张量场,甚至各种物理状态等。根据不同拓扑和代数结构,泛函空间划分为各个类别。力学和工程中常见的有①:(i)度量(距离)空间。对任意两抽象元引入距离,由此自然地引入开集等拓扑结构。从而,度量空间是一特殊拓扑空间,但尚未赋予代数结构;(ii)线性拓扑空间(拓扑向量空间。同时带有拓扑和代数结构。所谓拓扑无非是在抽象集中规定某些子集为开集),他们满足开集的基本公理。有了拓扑后,即能引入极限、连续、紧致和收敛等初等分析的重要概念。这里所述的代数结构指的是线性结构(加法和数乘运算)。由此可讨论线性无关、基和维数等代数概念。泛函分析的空间(尤其各类函数空间)绝大部分是无限维的。线性空间(带有线性结构的度量空间)是线性拓扑空间的一例。但最重要的线性拓扑空间应是下列线性赋范空间;(iii)线性赋范空间。每个元(常称向量)配有番薯||x||(是普通向量长度的推广)。线性空间配上范数后,能自然地诱导出度量和拓扑。就这个意义而言,它是特殊的线性拓扑和度量空间。于是,具有这两个空间中所有概念。例如可以讨论该空间(或其子集)是否完备。即任何柯西序列是否为收敛序列。(iv)Banach空间。它是完备的线性赋范空间。完备性使该空间具有十分良好的性质。例如闭图像定理、共鸣定理、逆算子定理和开映照原理等。(v)内积空间。内积的引入使该空间更直观形象,内容格外丰富。内积把普通的几何术语差不多全带到抽象空间中。例如:长度、两向量交角、直交性、直交投影、就范直交系、点(向量)和子空间的距离等。使抽象泛函空间涂上浓厚的几何色彩。力学家和工程师对此尤感兴趣。由于内积可诱导番薯,内积空间是特殊线性赋范空间,但反之不然。与普通欧式空间最相像的应数下述Hilbert空间;(vi)Hilbert空间。它是完备的内积空间,内容最丰富。例如Fourier展开、Bessel不等式和Parseval等式等。由于本文讨论泛函的力学应用,必须提及的最后一类空间是Sobolev空间。(vii)Sobolev空间W m,p(Ω)(p (Ω)空间中可以连续求m阶分布导数的函数u组成的子空间,≥1,m≥0)[3]。它是由L p 并配上Sobolev空间。它是特殊的线性赋范空间。其中,分布导数是普通导数的推广,对于性质极差的Dirac delta之类的广义函数,也能求分布导数。因此,对函数的“光滑程度”提供更一般、更精确的含义。由于Sobolev嵌入定理,可以通过找弱解来讨论偏微分方程的定解问题。p=2这类Sobolev空间特别重要,它是特殊的Hilbert空间,记之为H m(Ω),称作Hilbert-Sobolev空间。 泛函分析另一内容是算子理论,可以讲更为重要。它研究上述各类泛函空间上线性与非线性算子的各种特性。对于单个算子,可引入连续、有界、下有界、闭、紧致和全连续等性质。对于算子集(线性连续算子集或线性连续泛函集等)又可引入新的线性结构和范数等,构成高层的算子空间。其中对偶(共轭)空间尤为重要。据此,可引入自共轭(自伴)算子、投影算子、酉算子、正常算子、自反空间、强和弱收敛等。在初等分析中卓见成效的微分运算

实变函数引论参考答案 曹怀信 第二章

。习题2.1 1.若E 是区间]1,0[]1,0[?中的全体有理点之集,求b E E E E ,,,' . 解 E =?;[0,1][0,1]b E E E '===?。 2.设)}0,0{(1sin ,10:),( ???? ??=≤<=x y x y x E ,求b E E E E ,,,' . 解 E =?;{(,):0,11}.b E E x y x y E E '==-≤≤== 3.下列各式是否一定成立? 若成立,证明之,若不成立,举反例说明. (1) 11n n n n E E ∞ ∞=='??'= ???; (2) )()(B A B A ''=' ; (3) n n n n E E ∞=∞==? ??? ??1 1 ; (4) B A B A =; (5) ???=B A B A )(; (6) .)(? ??=B A B A 解 (1) 不一定。如设12={,, ,,}n r r r Q ,{}n n E r =(单点集),则1 ( )n n E ∞=''==Q R , 而1.n n E ∞ ='=?但是,总有11 n n n n E E ∞∞=='??'? ???。 (2) 不一定。如 A =Q , B =R \Q , 则(),A B '=? 而.A B ''=R R =R (3) 不一定。如设12={,, ,,}n r r r Q ,{}n n E r =(单点集),则 1 n n E ∞===Q R , 而 1 .n n E ∞ ==Q 但是,总有11 n n n n E E ∞∞ ==??? ???。 (4) 不一定。如(,)A a b =,(,)B b c =,则A B =?,而{}A B b =。 (5) 不一定。如[,]A a b =, [,]B b c =, 则(,)A a b =, (,)B b c =,而 ()(,)A B a c =,(,)\{}A B a c b =. (6) 成立。因为A B A ?, A B B ?, 所以()A B A ?, ()A B B ?。因此, 有()A B A B ?。设x A B ∈, 则存在10δ>,20δ>使得1(,)B x A δ?且2(,)B x B δ?,令12min(,)δδδ=,则(,)B x A B δ?。故有()x A B ∈,即 ()A B A B ?。因此,()A B A B =. 4.试作一点集A ,使得A '≠?,而?='')(A . 解 令1111 {1,,,,,,}234A n =,则{0}A '=,()A ''=?. 5.试作一点集E ,使得b E E ?. 解 取E =Q ,则b E =R 。 6.证明:无聚点的点集至多是可数集. 证明 因为无聚点的点集必然是只有孤立点的点集,所以只要证明:任一只有孤立点的点集A 是最多可数。对任意的x A ∈,都存在0x δ>使得(,){}x B x A x δ=。有理开球(即中心为有理点、半径为正有理数的开球)(,)(,)x x x B P r B x δ?使得(,)x x x B P r ∈,从而 (,){}x x B P r A x =。显然,对于任意的,x y A ∈,当x y ≠时,有(,)(,)x x y y B P r B P r ≠, 从而(,)(,)x x y y P r P r ≠。令()(,)x x f x P r =,则得到单射:n f A + →?Q Q 。由于n + ?Q Q 可

实变函数集合标准答案样本

第一章集合 一、內容小结 1.这一章学习了集合的概念、表示方法、集合的运算 ( 并、交、差、补) ; 引入了集合列的上、下极限 和极限的运算; 对集合运算规则作了仔细的讨论, 特别 是德摩根公式。 2.引入了集合对等的概念, 证明了判别两个集合对等的有 力工具——伯恩斯坦定理。 3.引入了集合基数的概念, 深入地研究了可数基数和连续 基数。 二、学习要点 1.准确熟练地掌握集合的运算法则, 特别要注意集合运算 既有和代数运算在形式上一许多类似的公式, 但也有许 多本质。可是千万不要不加证明地把代数恒等式搬到集 合运算中来。例如: (a+b)-a=b,可是(A+B)-B=A却不一定 成立。条件为A,B不交。 2.可数集合是所有无限集中最小的无限集。若可数A去掉 可数B后若还无限则C必可数。

3. 存在不可数集。无最大基数集。 以下介绍学习中应掌握的方法 4. 肯定方面与否定方面。B X B X ?∈与, 5. 集合列的上、 下限集是用集合运算来解决分析问题的基 础, 应很好地掌握。其中用交并表示很重要。对第四章的学习特别重要。 6. 基数部分重点: 集合对等、 构造集合的一一对应; 利用 对等的传递性( 伯恩斯坦定理) 来进行相应的证明。 7. 集合可数性的证明方法很重要: 可排列、 与已知可数集 对等、 利用集合的运算得到可数、 第四节定理6. 8. 证明集合基数为C 中常见到已知的基数为C 的集合。 ∞E R n , 三、习题解答 1. 证明: )()()(C A B A C B A = 证明 则若设,).(A x C B A x ∈∈ B A x ∈,得).()(C A B A x ∈ 若则同样有 设,C B x ∈B A x ∈且C A x ∈, 得 ).()(C A B A x ∈因此 )()()(C A B A C B A ?

泛函分析在控制工程的应用

泛函分析在控制工程中的 应用 作者:景苏银 学号: 0211443 单位:兰州交通大学 日期:2011.12.1

泛函分析在控制工程中的应用 【摘要】本文综合运用函数论,几何学,代数学的观点来研究无限维向量空间上的函数,算子和极限理论,通过泛函理论求解工程中可微方程的极值问题,为工程的设计提供了理论基础。它可以看作无限维向量空间的解析几何及数学分析。 【关键词】泛函分析控制工程控制优化 泛函分析在数学物理方程,概率论,计算数学等分科中都有应用,也是研究具有无限个自由度的物理系统的数学工具。主要内容有拓扑线性空间等。它广泛应用于物理学、力学以及工程技 术等许多专业领域。 泛函分析(Functional Analysis)是现代数学的一个分支,隶属于分析学,其研究的主要对象是函数构成的空间。泛函分析是由对变换(如傅立叶变换等)的性质的研究和对微分方程以及积分方程的研究发展而来的。使用泛函作为表述源自变分法,代表作用于函数的函数。巴拿赫(Stefan Banach)是泛函分析理论的主要奠基人之一,而数学家兼物理学家伏尔泰拉(Vito Volterra)对泛函分析的广泛应用有重要贡献。 Functional analysis in water conservancy of application

Abstract:This article through the functional theory solution of differential equations can be hydraulic extremum problems, for water conservancy project design provides theory basis. It draws function theory, geometry, algebra point of view to study the infinite dimensional vector space function, operator and limit theory. It can be as infinite dimensional vector space analytic geometry and mathematics analysis。 Functional Analysis (Functional Analysis) is the modern a branch of mathematics, belongs to learn Analysis, the study of main object is function consists of the space. Functional analysis is made to transform (such as Fourier transform, etc.) of the nature of the study and differential equation and integral equation of research and development. Using functional as a statement from the variational method, representative of the function for function. And take Hector <(Stefan Banach) is functional analysis of the theory of the primary founders, and mathematician and physicist voltaire pull (Vito Volterra) to the wide application of functional analysis is an important contribution. Functional analysis is the 1930 s of the formation of the mathematics branch. From the variational problem, integral equation and theoretical physics research develops. Functional analysis in mathematical physics equation, probability theory, the calculation of mathematics branch all has the application, is also a degree of freedom with an infinite physical system mathematical tools. Main content have topological space, etc. It is widely used in physics and mechanics and engineering skills and Art etc many professional fields. 【正文】

(0195)《实变函数论》网上作业题及答案

[0195]《实变函数论》 第一次作业 [单选题]1.开集减去闭集是() A:A.开集 B:B.闭集 C:C.既不是开集也不是闭集 参考答案:A [单选题]2.闭集减去开集是() A:开集 B:闭集 C:既不是开集也不是闭集 参考答案:B [单选题]3.可数多个开集的交是() A:开集 B:闭集 C:可测集 参考答案:C [单选题]4.可数多个闭集的并是() A:开集 B:闭集 C:可测集 参考答案:C [单选题]6.可数集与有限集的并是() A:有界集 B:可数集 C:闭集 参考答案:B

[判断题]5.任意多个开集的并仍是开集。 参考答案:正确 [单选题]8.可数多个有限集的并一定是() A:可数集 B:有限集 C:以上都不对 参考答案:C [单选题]7.设f(x)是定义在[a,b]上的单调函数,则f(x)的间断点集是()A:开集 B:闭集 C:可数集 参考答案:C [单选题]9.设f(x)是定义在R上的连续函数,E=R(f>0),则E是 A:开集 B:闭集 C:有界集 参考答案:A [单选题]10.波雷尔集是() A:开集 B:闭集 C:可测集 参考答案:C [判断题]7.可数多个零测集的并仍是零测集合。 参考答案:正确 [单选题]1.开集减去闭集是()。 A:A.开集 B.闭集 C.既不是开集也不是闭集 参考答案:A [单选题]5.可数多个开集的并是() A:开集 B:闭集

C:可数集 参考答案:A [判断题]8.不可数集合的测度一定大于零。 参考答案:错误 [判断题]6.闭集一定是可测集合。 参考答案:正确 [判断题]10.开集一定是可测集合。 参考答案:正确 [判断题]4.连续函数一定是可测函数。 参考答案:错误 [判断题]3.零测度集合或者是可数集合或者是有限集。 参考答案:正确 [判断题]2.有界集合的测度一定是实数。 参考答案:正确 [判断题]1.可数集合是零测集 参考答案:正确 [判断题]9.任意多个闭集的并仍是闭集。 参考答案:错误 [判断题]9.任意多个闭集的并仍是闭集。 参考答案:错误 第二次作业 [单选题]4.设E是平面上边长为2的正方形中所有无理点构成的集合,则E的测度是A:0 B:2 C:4 参考答案:C [单选题]3.设E是平面上边长为2的正方形中所有有理点构成的集合,则E的测度是A:0 B:2 C:4 参考答案:A [单选题].2.[0,1] 中的全体有理数构成的集合的测度是() A:0 B:1

胡适耕实变函数答案第一章(B)

第一章习题 B 36.若A ΔB =A ΔC ,则B =C . 证一:(反证)不妨设,?x 0∈B ,且x 0?C 1) x 0∈A ,则x 0?A ΔB ,x 0∈A ΔC 这与A ΔB =A ΔC 矛盾 2) x 0?A ,则x 0∈A ΔB ,x 0?A ΔC 这与A ΔB =A ΔC 矛盾 所以假设不成立,即B =C . 证二:()B A A ??()[]()[]A B A B A A \\??= =()()B A B B A =\ 同理()C C A A =??,现在已知A B A C ?=?故上两式左边相等,从而C B =. 37.集列{A n }收敛?{A n }的任何子列收敛. 证 由习题8集列{}n A 收敛?特征函数列{} n A χ收敛,由数分知识得数列 {}n A χ收敛?{}n A χ的任一子列{}j n A χ 均收敛,又由习题8可得{}j n A 收敛. 38.设)2,1}(:/{ =∈=n Z m n m A n ,则lim n n A =Z ,lim n n A =Q . 证 显然有lim lim n n n n Z A A Q ??? 1) 假设?x \,Q Z ∈使x ∈lim n n A ∴?N >0,当n>N 时,有n x A ∈,特别地, n x A ∈,1n x A +∈ ∴?m 1,m 2∈Z ,使x =1m n ,x =21m n + ∴1m n =21 m n + 从而1 21,m m m n =+ 这与m 2∈Z 矛盾,所以假设不成立,即:lim n n A =Z . 2)?x ∈Q,则?m,n ∈Z,使得x = m n ∴x=m n =2m n n ?=…=1k k m n n +?=… ∴x ∈k n A ,(k =1,2…),从而x ∈lim n n A ∴lim n n A =Q .

1-2复变函数基本概念

§1.2 复数函数 授课要点:区域的概念,闭区域,复变函数的极限,连续的概念。 难点:极限概念及其与实变函数中相关概念的区别 1、 邻域:以0z 为圆心,以任意小ε半径作圆,则圆内所有点的集合称为0z 的邻域。 注意,这里说的是“圆内”,“圆边”上的不算。 内点、外点和边界点: 设有一个点集E ,若0z 及其领域均属于点集E ,则称0z 为E 的“内” ,若0z 及其邻域均不属于E ,则0z 为外点,若0z 的每个领域内,既有属于E 的点,也有不属于E 的点,则称0z 为E 的边界点,边界点的全体称为E 的边界线。 区域:(1)全由内点组成 (2)具有连通性,即点集中任意两点都可以用一条折线连起来,且折线上的点全都 属于该点集。 闭区域:区域B 及其边界线所组成的点集称为闭区域,用B 表示。 练习: 下面几个图所示的,哪个是区域? 答:(a),(b)皆为区域,(a)为单通区域,(b)为复连通区域,(c)不是区域. 例子: ||z r <代表一个圆内区域 ||z r <代表一个圆外区域 12||r z r <<代表一个圆环区域 将上面三个式中的 < 换成 ≤, > 换成 ≥,则变成闭区域。 注意:区域的边界并不属于区域,闭区域和区域是两个概念 2、复变函数 定义:形式和实变函数一样,()w f z =

复变函数的定义域不再限于实轴上某个区间,而是复平面上的某个区域. 函数的值域也可以对应复平面上的某个区域(也可能不是): 变量:z x iy =+ 函数:()(,)(,,)w f z u x y iv x y ==+ 复变函数的实部和虚部都是一个二元函数(实函数),关于二元实变函数的很多理论都可用于复变函数中(形式可能有所变化) 极限: 设函数f (z )在0z 点的领域内有定义,如果存在复数A ,对于任意的0ε>,总能找到一个()0δε>,使得:当0||z z δ-<时,恒有|()|f z A ε-<,则称0z z →时f (z )的极限为A ,即 0lim ()z z f z A →= 对于非数学专业的学生而言,这段话略显晦涩,一个不太严格但直观的表述是: 当z 以任意方式逼近0z ,()f z 都逼近A 不会因为z 逼近方式之不同,而导致()f z 逼近不同的值,或者发散 举例:(1)222()()xy f z i x y x y =+++ 222(,)xy u x y x y =+ 2222 lim 22(,)010 kx k u x y x x ky k y ==→++→ 结果将因k 之不同而不同,故极限不存在. (2)实变函数例子1()f x x = 0lim ()x f x +→=+∞, lim ()x x f x -→=-∞ 连续:0 0lim ()()z z f z A f z →== 因为()(,)(,)f z u x y iv x y =+,所以,复变函数的连续问题,可以归结为两个二元实变函数的连续问题。 几个简单的复变函数 (1) 多项式:2012n n a a z a z a z +++ (其中n 为整数) (2) 有理分式:20122012n n n n a a z a z a z b b z b z b z ++++++

泛函分析的应用

现代数学基础学习报告 泛函分析应用 院系: 专业: 导师: 姓名: 学号:

摘要 信号与系统的泛函分析是以泛函理论为工具描述和研究信号与系统特性的近代分析方法。这种方法可使信号与系统的表示更加抽象与概括,并使连续与离散、时域与频域、分析与综合达到统一,从而在信号与系统学科中得到了日益广泛的应用。本文仅就其基本理论及其在电路设计中的应用加以简要的介绍。本文将利用泛函分析中的度量空间的理论研究信号处理纠错的问题,首先介绍度量空间相关理论,然后举例分析其在信号纠错处理中的解决过程,通过应用泛函知识,使纠错过程变得更简便和概括。然后简单介绍泛函的理论知识,使其应用到求解最低功耗电源的设计中,结果表明应用泛函理论可以将求解过程变得更加简便和清晰。

1.泛函分析介绍 泛函分特点和内容[1] 泛函分析是20世纪30年代形成的分科,是从变分问题,积分方程和的研究中发展起来的。它综合运用函数论,几何学,现代数学的观点来研究无限维向量空间上的泛函,算子和。它可以看作无限维向量空间的解析几何及。泛函分析在,概率论,计算数学等分科中都有应用,也是研究具有无限个自由度的物理系统的。 泛函分析的特点是它不但把古典分析的基本概念和方法一般化了,而且还把这些概念和方法几何化了。比如,不同类型的函数可以看作是“”的点或矢量,这样最后得到了“抽象空间”这个一般的概念。它既包含了以前讨论过的几何对象,也包括了不同的函数空间。 泛函分析对于研究现代物理学是一个有力的工具。n维空间可以用来描述具有n个的系统的运动,实际上需要有新的来描述具有无穷多自由度的力学系统。比如梁的震动问题就是无穷多力学系统的例子。一般来说,从力学过渡到连续介质力学,就要由有穷自由度系统过渡到无穷自由度系统。现代物理学中的理论就属于无穷自由度系统。 正如研究有穷自由度系统要求n维空间的几何学和作为工具一样,研究无穷自由度的系统需要无穷维空间的几何学和分析学,这正是泛函分析的基本内容。因此,泛函分析也可以通俗的叫做无穷的几何学和微积分学。古典分析中的基本方法,也就是用的对象去逼近非线性的对象,完全可以运用到泛函分析这门学科中。 泛函分析是分析数学中最“年轻”的分支,是古典分析观点的推广,综合函数论、几何和代数的观点研究无穷维向量空间上的函数、算子、和。他在二十世纪四十到五十年代就已经成为一门理论完备、内容丰富的数学学科了。 半个多世纪来,泛函分析一方面以其他众多学科所提供的素材来提取自己研究的对象和某些研究手段,并形成了自己的许多重要分支,例如算子谱理论、巴拿赫代数、拓扑线性空间理论、等等;另一方面,它也强有力地推动着其他不少分析学科的发展。它在、概率论、函数论、连续介质力学、、计算数学、、等学科中都有重要的应用,还是建立理论的基本工具,也是研究无限个自由度的重要而自然的工具之一。今天,它的观点和方法已经渗入到不少工程技术性的学科之中,已成为近代分析的基础之一。 泛函分析在数学物理方程、、、、等学科有着广泛的应用。近十几年来,泛函分析在工程技术方面有获得更为有效的应用。它还渗透到数学内部的各个分支中去,起着重要的作用。 泛函的理论[2]

实变函数论考试试题及答案

实变函数论考试试题及答案 证明题:60分 1、证明 1lim =n m n n m n A A ∞ ∞ →∞ ==UI 。 证明:设lim n n x A →∞ ∈,则N ?,使一切n N >,n x A ∈,所以I ∞ +=∈ 1 n m m A x Y I ∞=∞ =?1n n m m A , 则可知n n A ∞ →lim YI ∞ =∞ =?1n n m m A 。设YI ∞ =∞ =∈1n n m m A x ,则有n ,使I ∞ =∈n m m A x ,所以 n n A x lim ∞ →∈。 因此,n n A lim ∞ →=YI ∞=∞ =1n n m m A 。 2、若n R E ?,对0>?ε,存在开集G , 使得G E ?且满足 *()m G E ε-<, 证明E 是可测集。 证明:对任何正整数n , 由条件存在开集E G n ?,使得()1*m G E n -<。 令I ∞ ==1n n G G ,则G 是可测集,又因()()1**n m G E m G E n -≤-< , 对一切正整数n 成立,因而)(E G m -*=0,即E G M -=是一零测度集,故可测。由)(E G G E --=知E 可测。证毕。 3、设在E 上()()n f x f x ?,且1()()n n f x f x +≤几乎处处成立,Λ,3,2,1=n , 则有{()}n f x .收敛于)(x f 。 证明 因为()()n f x f x ?,则存在{}{}i n n f f ?,使()i n f x 在E 上.收敛到()f x 。设 0E 是()i n f x 不收敛到()f x 的点集。1[]n n n E E f f +=>,则00,0n mE mE ==。因此 ()0n n n n m E mE ∞∞==≤=∑U 。在1 n n E E ∞ =-U 上,()i n f x 收敛到()f x , 且()n f x 是单调的。 因此()n f x 收敛到()f x (单调序列的子列收敛,则序列本身收敛到同一极限)。 即除去一个零集1n n E ∞ =U 外,()n f x 收敛于()f x ,就是()n f x . 收敛到()f x 。

实变函数第一章答案

习题1.1 1.证明下列集合等式. (1) ()()()C A B A C B A \\=; (2) ()()()C B C A C B A \\\ =; (3) ()()()C A B A C B A \\\=. 证明 (1) )()C \B (c C B A A = )()( c c C B A A B A = c C A B A )()( = )(\)(C A B A = . (2) c C B A A )(C \B)(= )()(c c C B C A = =)\()\(C A C A . (3) )(\C)\(B \c C B A A = c c C B A )( = )(C B A c = )()(C A B A c = )()\(C A B A =. 2.证明下列命题. (1) ()A B B A = \的充分必要条件是:A B ?; (2) ()A B B A =\ 的充分必要条件是:=B A ?; (3) ()()B B A B B A \\ =的充分必要条件是:=B ?. 证明 (1) A B A B B B A B B A B B A c c ==== )()()()\(的充要条 是:.A B ? (2) c c c c B A B B B A B B A B B A ===)()()(\)( 必要性. 设A B B A =\)( 成立,则A B A c = , 于是有c B A ?, 可得.?=B A 反之若,?≠B A 取B A x ∈, 则B x A x ∈∈且, 那么B x A x ?∈且与c B A ?矛盾.

充分性. 假设?=B A 成立, 则c B A ?, 于是有A B A c = , 即.\)(A B B A = (3) 必要性. 假设B B A B B A \)()\( =, 即.\c C A B A B A == 若,?≠B 取,B x ∈ 则,c B x ? 于是,c B A x ? 但,B A x ∈ 与c C A B A =矛盾. 充分性. 假设?=B 成立, 显然B A B A \= 成立, 即B B A B B A \)()\( =. 3.证明定理1.1.6. 定理1.1.6 (1) 如果{}n A 是渐张集列, 即),1(1≥??+n A A n n 则{}n A 收敛且 ∞ =∞ →=1 ;lim n n n n A A (2) 如果{}n A 是渐缩集列, 即),1(1≥??+n A A n n 则{}n A 收敛且 ∞ =∞ →= 1 . lim n n n n A A 证明 (1) 设),1(1≥??+n A A n n 则对任意 ∞ =∈ 1 ,n n A x 存在N 使得,N A x ∈ 从而 ),(N n A x N ≥?∈ 所以,lim n n A x ∞ →∈ 则.lim 1 n n n n A A ∞→∞ =? 又因为 ∞ =∞ →∞ →??1 ,lim lim n n n n n n A A A 由此可见{}n A 收敛且 ∞ =∞ →= 1 ;lim n n n n A A (2) 当)1(1≥??+n A A n n 时, 对于, lim n n A x ∞ →∈存 )1(1≥?<+k n n k k 使得 ),1(≥?∈k A x k n 于是对于任意的,1≥n 存在0k 使得n n k >0, 从而,0 n n A A x k ?∈ 可见.lim 1 ∞ =∞ →?n n n n A A 又因为,lim lim 1 n n n n n n A A A ∞ →∞ →∞ =?? 所以可知{}n A 收敛且 ∞ =∞ →=1 .lim n n n n A A 4.设f 是定义于集合E 上的实值函数,c 为任意实数,证明: (1) ??? ???+≥=>∞ =n c f E c f E n 1][1 ; (2) ?? ? ???+<=≤∞ =n c f E c f E n 1][1 ; (3) 若))(()(lim E x x f x f n n ∈?=∞ →,则对任意实数c 有 ?????? ->=????? ?->=≥∞→∞=∞ =∞ =∞ =k c f E k c f E c f E n n k n N n N k 1lim 1][111 . 证明 (1) 对任意的[],c f E x >∈ 有,)(c x f > 则存在+ ∈Z n 使得n c x f 1)(+ ≥成

相关文档
最新文档