实验二 对称密码基本加密

实验二 对称密码基本加密
实验二 对称密码基本加密

西北师范大学计算机科学与工程学院学生实验报告学号:201371060113 2016 年 3 月13 日

(2)将下面的运算迭代16轮(i=1,2,…,16):Li=Ri-1 ,Ri-1=Li-1f(Ri-1,ki);这里ki称为轮

R1`=L0`f(R0`,k1`)=R16f(L16,k1`)=[L16f(R15,k16)]f(R15,k16)=L15,即(L1`,R1`)=(R15,L15);同样

解密过程可表示为:,其中

l 6位子分组的相异或;

16位整数的模216加,即;

16位整数的模216+1乘,即。

个子块,每块16位,分别记为。64位的密文也分为4个子块,每块16位,分别记为。128位的密钥经过子密钥生成算法产生出52个16位的子密钥,每一轮加密迭代使用6个子密钥,输出变换使用4个子密钥。记为第r轮迭代使用的第i个子密钥,。记为输出变换使用的第i个子密钥,。

(1)。

(2)。

(3)。

(4)。

(7)将第(5)步的结果乘以。

(9)将第(8)步的结果乘以。

分组也如此:k=k0,k1,…,k15;内部数据结构的表示为一个44矩阵:

输入密钥

B=L(A)=A(A<<<2)(A<<<10)(A<<<18)(A<<<24)

L’为L的修改,;M i i i

(1)加密过程

在“加密过程”框中,选择明文的输入形式后,输入明文;DES要求明文分组长度为64位,输入要求参照密钥输入步骤;

点击“比特流”按钮生成输入的明文分组的比特流;

点击“初始置换IP”对明文比特流进行初始置换,并等分为32位左右两部分L0和R0;

点击“扩展置换E”按钮对32位R0进行扩展置换,将其扩展到48位;

点击“异或计算”按钮,将得到的扩展结果与轮密钥K1进行异或,得到48位异或结果;

分别点击“S1”、“S2”、…、“S8”按钮,将得到的48位异或结果通过S代换产生32位输出;

DES算法实验报告

DES算法实验报告 姓名:学号:班级: 一、实验环境 1.硬件配置:处理器(英特尔Pentium双核E5400 @ 2.70GHZ 内存:2G) 2.使用软件: ⑴操作系统:Windows XP 专业版32位SP3(DirectX 9.0C) ⑵软件工具:Microsoft Visual C++ 6.0 二、实验涉及的相关概念或基本原理 1、加密原理 DES 使用一个 56 位的密钥以及附加的 8 位奇偶校验位,产生最大 64 位的分组大小。这是一个迭代的分组密码,使用称为 Feistel 的技术,其中将加密的文本块分成两半。使用子密钥对其中一半应用循环功能,然后将输出与另一半进行“异或”运算;接着交换这两半,这一过程会继续下去,但最后一个循环不交换。DES 使用 16 个循环,使用异或,置换,代换,移位操作四种基本运算。 三、实验内容 1、关键代码 ⑴子密钥产生

⑵F函数以及加密16轮迭代 2、DES加密算法的描述及流程图 ⑴子密钥产生 在DES算法中,每一轮迭代都要使用一个子密钥,子密钥是从用户输入的初始密钥产生的。K是长度为64位的比特串,其中56位是密钥,8位是奇偶校验位,分布在8,16,24,32,40,48,56,64比特位上,可在8位中检查单个错误。在密钥编排计算中只用56位,不包括这8位。子密钥生成大致分为:置换选择1(PC-1)、循环左移、置换选择2(PC-2)等变换,分别产生16个子密钥。 DES解密算法与加密算法是相同的,只是子密钥的使用次序相反。 ⑵DES加密算法 DES密码算法采用Feistel密码的S-P网络结构,其特点是:加密和解密使用同一算法、

非对称加密实验

非对称加密实验 【实验环境】 ISES客户端 Microsoft CLR Debugger 2005或其它调试器 【实验内容】 通过运算器工具实现RSA和ElGamal算法的加解密计算 手工计算RSA密钥并检验,将其应用于签名中并验证 对RSA密钥生成、RSA密钥加密、ElGamal参数生成、ElGamal密钥生成和ElGamal加密进行算法跟踪 非对称加密实验 【实验原理】 非对称密码体制又称为公钥密码体制,加解密使用公私钥密钥对,私钥由密钥拥有者保管,公钥可以公开,基于公开渠道进行分发,解决了对称密钥体制中密钥管理、分发和数字签名等难题。 一、 RSA算法 RSA公钥算法由Rivest、Shamir、Adleman于1978年提出的,是目前公钥密码的国际标准。算法的数学基础是Euler定理,是基于Deffie-Hellman的单项陷门函数的定义而给出的第一个公钥密码的实际实现,其安全性建立在大整数因子分解的困难性之上。 RSA算法的明文空间M=密文空间C=Z整数,其算法描述如下: n (1) 密钥生成 随机选择两个大素数p和q,计算n=p?q,;选择一个随机整数e<,满足,计算整数;公开公钥(n,e),安全的销毁p、q和,并保留(d,n)作为私钥。

(2) 加密 (3) 解密 使用中国剩余定理可以加速RSA密码算法的实现。 二、 ElGamal算法 ElGamal算法是Deffie-Hellman单项陷门函数的一个成功应用,把函数转化为公钥加密体制,其安全性建立在有限域上的离散对数问题。 ElGamal算法的描述如下: (1) 密钥生成 随机选择一个素数p,计算p个元素的有限域的乘法群的一个随机乘法生成元g;均匀随机地在模p-1的整数集合中选取x,计算;把(p,g,y)作为公钥公开,把(p,g,x)作为私钥。 (2) 加密 均匀随机地在模p-1的整数集合中选取k,消息m

非对称加密-张儒雅

实验二非对称加密实验 姓名:张儒雅学号:20111120075专业:信息安全 指导老师:金鑫成绩: 一、实验目的 了解非对称密码的加密和解密特点,理解加密解密与数字签名的基本原理,掌握PGP加密的原理,使用PGP加密软件加密信息。 了解PGP的各种原理后,安装PGP以及在安装后使用PGP加密文件以及邮件! 二.实验内容 1.实验原理: 在此次实验中所使用PGP加密是一种基于公钥原理以对在通信领域中对其内容进行加密以保证通信的安全性 加密电子邮件: 我们一般的Email是明码传送的,在经过Internet上多个主机转发后,我们无法保证它不曾被他人截获过。使用PGP则可以非常安全地发送机密信件。首先用明码传送或查数据库服务器得到收件人的"publickey",然后用这个"public key"先加密要发他的信件,再发送出去。由于这封信只有与这个"publickey"对应的"private key"能解,而" private key"只掌握在收件人手中,即使别人截获这封信也不可能解得开,从而保证了信件的安全。 电子签名: 当您往INTERNET上发送一篇文章或一个文件时,别人怎么保证这是您发的而不是冒名顶替的呢?用电子签名就可以解决这个问题。您先用您的"privatekey"加密您的签名,然后发出去。别人收到以后就用您的"public key"去解,如果解开了,那您就是货真价实的了。解不开的话,肯定是冒名顶替的。因为您的"privatekey"只有您个人才拥有,谁都不可能伪造。 2.实验步骤 在本次实验中首先安装PGP,在windows xp操作系统上进行实验 1.安装步骤: (此处大致描述一下) 点击安装程序,我们在这里选择在WindowsXP中安装的是PGP8的软件,点击打开安装界面后按照步骤选择操作,在第二步选择组件时注意一下:

对称密码算法DES第一次实验

实验报告样式 湖北文理学院《对称密码算法DES》 实验报告 专业班级: 姓名: 学号: 任课教师: 2014 年9 月29 日

实验项目名称 一、实验目的 理解对称加密算法的原理和特点;理解DES算法的加密原理。 二、实验原理 对称密钥加密机制即对称密码体系,也称为单钥密码体系和传统密码体系。对称密码体系通常分为两大类,一类是分组密码(如DES、AES算法),另一类是序列密码(如RC4算法)。 对称密码体系加密和解密时所用的密钥是相同的或者是类似的,即由加密密钥可以很容易地推导出解密密钥,反之亦然。同时在一个密码系统中,我们不能假定加密算法和解密算法是保密的,因此密钥必须保密。发送信息的通道往往是不可靠的或者不安全的,所以在对称密码系统中,必须用不同于发送信息的另外一个安全信道来发送密钥。 三、实验内容及过程 本练习主机A、B为一组,C、D为一组,E、F为一组。 首先使用“快照X”恢复Windows系统环境。 一.DES加密解密 (1)本机进入“密码工具”|“加密解密”|“DES加密算法”|“加密/解密”页签,在明文输入区输入明文:HelloWorld 。 (2)在密钥窗口输入8(64位)个字符的密钥k,密钥k= abcdefgh 。单击“加密”按钮,将密文导出到DES文件夹(D:\Work\Encryption\DES\)中,通告同组主机获取密文,并将密钥k告诉同组主机。

(3)单击“导入”按钮,从同组主机的的DES共享文件夹中将密文导入,然后在密钥窗口输入被同组主机通告的密钥k,点击“解密”按钮进行DES解密。

(4)将破解后的明文与同组主机记录的明文比较。 二.DES算法 本机进入“密码工具”|“加密解密”|“DES加密算法”|“演示”页签,向64位明文中输入8个字符(8*8bit=64),向64位密钥中输入8个字符(8*8bit=64)。点击“加密”按钮。完成加密操作,分别点击“初始置换”、“密钥生成演示”、“十六轮加密变换”和“终结置换”按钮,查看初始置换、密钥生成演示、十六轮加密变换和终结置换的详细加密操作流程。 四、实验总结与体会 本次试验主要考察对称加密算法的原理和特点以及理解DES算法的加密原理。我们在虚拟机的windows环境下进行了试验操作,在实验的过程中有许多的细节需要注意,首先在进入虚拟机环境时,要选择windows环境,虽然linux系统下也可以进行试验操作但是与本次实验要求不符而无法得出正确的实验结果。在加密完成后,需要传输到队友的电脑上进行解密操作,而传输对IP地址有严格的要求,若IP地址修改过则无法正常传输。 在老师的帮助和同学的协助下顺利完成了本次实验,通过这次实验,对DES算法有了更深的了解,一些课堂上的疑问也得到了解决。

实验四RSA加解密算法的实现

实验四 RSA加解密算法的实现 一.实验目的 1、对算法描述可进行充分理解,精确理解算法的各个步骤。 2、完成RSA软件算法的详细设计。 3、用C++完成算法的设计模块。 4、编制测试代码。 二.实验内容 1.实验原理及基本技术路线图(方框原理图) 加密过程: 第一步,用户首先输入两个素数p和q,并求出 n = p*q,然后再求出n的欧拉函数值phi。 第二步,在[e,phi]中选出一个与phi互素的整数e,并根据e*d ≡1(mod phi),求出e的乘法逆元。至此我们已经得到了公开密钥{e,n}和秘密密钥{d,n}。 第三步,让用户输入要进行加密的小于n一组正整数(个数不超过MAXLENGTH=500),输入以-1为结束标志,实际个数存入size中,正整数以clear[MAXLENGTH]保存。 第四步,对第三步所得的明文clear[MAXLENGTH]进行加密。遍历clear[size],对每一个整数用以下算法进行加密,并将加密后的密文保存在Ciphertext[MAXLENGTH]中。 注意:此处不能用m2[j] = clear[j] ^ e整数的幂,因为当e和clear[j]较大时,会发生溢出,至使出现无法预料的结果。 第五步,输出加密后的密文。 解密过程: 第一步,根据在以上算法中求出的解密密钥[d,phi],对加密后的密文Ciphertext[MAXLENGTH]进行解密,结果保存在DecryptionText[MAXLENGTH]中,算法如下: 第二步,输出对加密前的明文和加密并解密后的密文进行比较,判断两个数组是否一致,从而得知算法是否正确。

2.所用仪器、材料(设备名称、型号、规格等) 计算机一台、vc6.0 3.实验方法、步骤 #include #include using namespace std; #define MAXLENGTH 500 //明文最大长度,即所允许最大整数个数 int size = 0;//保存要进行加密的正整数的个数 int p, q; //两个大素数 int n, phi; //n = p * q,phi = (p-1) * (q-1) 是n的欧拉函数值 int e; //{e, n}为公开密钥 int d; //{d, n}为秘密密钥 int clear[MAXLENGTH], Ciphertext[MAXLENGTH];//分别用于存放加//密前的明//文和加密后的密文int DecryptionText[MAXLENGTH];//存放解密后的明文 //////////////////////////////////////////////////////////// //以下为加密算法 void Encryption() {//加密算法 cout << " 请输入两个较大的素数:" ; cin >> p >> q ; cout << " p = " << p << ", q = " << q << endl; n = p * q;//求解 n, phi = (p - 1) * ( q - 1 );//求解 n 的欧拉函数值 cout << " n = " << n << ", phi = " << phi << endl; cout << " 请从[0," << phi - 1 << "]中选择一个与 " << phi << " 互素的数 e:"; cin >> e; float d0; for( int i = 1; ; i++) {///求解乘法逆元 e * d ≡ 1 (mod phi) d0 = (float)(phi*i+1) / e; if( d0 - (int)d0 == 0 ) break; } d = (int)d0; cout << endl; cout << " e = " << e << ", d = " << d << endl; cout << " 公开密钥 Pk = {e,n} = {" << e << "," << n << "}" << endl; cout << " 秘密密钥 Sk = {d,n} = {" << d << "," << n << "}" << endl; cout << endl;

数据加密实验报告

实验报告 课程:计算机保密_ _ 实验名称:数据的加密与解密_ _ 院系(部):计科院_ _ 专业班级:计科11001班_ _ 学号: 201003647_ _ 实验日期: 2013-4-25_ _ 姓名: _刘雄 _ 报告日期: _2013-5-1 _ 报告评分:教师签字:

一. 实验名称 数据加密与解密 二.运行环境 Windows XP系统 IE浏览器 三.实验目的 熟悉加密解密的处理过程,了解基本的加密解密算法。尝试编制基本的加密解密程序。掌握信息认证技术。 四.实验内容及步骤 1、安装运行常用的加解密软件。 2、掌握加解密软件的实际运用。 *3、编写凯撒密码实现、维吉尼亚表加密等置换和替换加解密程序。 4、掌握信息认证的方法及完整性认证。 (1)安装运行常用的加解密软件,掌握加解密软件的实际运用 任务一:通过安装运行加密解密软件(Apocalypso.exe;RSATool.exe;SWriter.exe等(参见:实验一指导))的实际运用,了解并掌握对称密码体系DES、IDEA、AES等算法,及非对称密码体制RSA等算法实施加密加密的原理及技术。 ?DES:加密解密是一种分组加密算法,输入的明文为64位,密钥为56位,生成的密文为64位。 ?BlowFish:算法用来加密64Bit长度的字符串或文件和文件夹加密软件。 ?Gost(Gosudarstvennyi Standard):算法是一种由前苏联设计的类似DES算法的分组密码算法。它是一个64位分组及256位密钥的采用32轮简单迭代型加密算法. ?IDEA:国际数据加密算法:使用128 位密钥提供非常强的安全性; ?Rijndael:是带有可变块长和可变密钥长度的迭代块密码(AES 算法)。块长和密钥长度可以分别指定成128、192 或256 位。 ?MISTY1:它用128位密钥对64位数据进行不确定轮回的加密。文档分为两部分:密钥产生部分和数据随机化部分。 ?Twofish:同Blowfish一样,Twofish使用分组加密机制。它使用任何长度为256比特的单个密钥,对如智能卡的微处理器和嵌入在硬件中运行的软件很有效。它允许使用者调节加密速度,密钥安装时间,和编码大小来平衡性能。 ?Cast-256:AES 算法的一种。 (同学们也可自己下载相应的加解密软件,应用并分析加解密过程) 任务二:下载带MD5验证码的软件(如:https://www.360docs.net/doc/d417460893.html,/downloads/installer/下载(MySQL):Windows (x86, 32-bit), MSI Installer 5.6.11、1.5M;MD5码: 20f788b009a7af437ff4abce8fb3a7d1),使用MD5Verify工具对刚下载的软件生成信息摘要,并与原来的MD5码比较以确定所下载软件的完整性。或用两款不同的MD5软件对同一文件提取信息摘要,而后比较是否一致,由此可进行文件的完整性认证。

密码学对称加密算法

对称加密算法 一、网络安全 1.网络安全 (1) 网络的安全问题:有以下四个方面 A. 端-端的安全问题,主要指用户(包括代理)之间的加密、鉴别和数据完整性维护。 B. 端系统的安全问题,主要涉及防火墙技术 C. 安全服务质量问题,主要指如何保护合法用户的带宽,防止用户非法占用带宽。 D. 安全的网络基础设施,主要涉及路由器、DNS服务器,以及网络控制信息和管理信息的安全问题。 (2)网络的安全服务:有以下五个方面 A.身份认证:这是考虑到在网络的应用环境下,验证身份的双方一般是通过网络而非直接交互,所以传统的验证手段如根据对方的指纹等方法就无法应用。同时大量的黑客随时都可能尝试向网络渗透,截获合法用户的口令并冒充顶替,以合法身份入网。所以应该提供一种安全可靠的身份认证的手段。 B.授权控制:授权控制是控制不同用户对信息资源的访问权限。授权控制是以身份认证为基础的。通过给不同用户的提供严格的不同层次和不同程度的权限,同时结合可靠的身份认机制,可以从很大程度上减少非法入侵事件发生的机会。 C.数据加密:数据加密技术顾名思义。在互联网上应用加密技术来保证信息交换的可靠性已经的到了人们普遍的认可,已经进入了应用阶段。目前的加密技术主要有两大类:一类是基于对称密钥加密的算法,另一类是基于非对称密钥加密的算法。它们都已经达到了一个很高的强度,同时加密算法在理论上也已经相当的成熟,形成了一门独立的学科。而从应用方式上,一般分成软件加密和硬件加密。前者成本低而且实用灵活,更换也方便;而后者加密效率高,本身安全性高。在应用中,可以根据不同的需要来进行选择。 D.数据完整性:数据完整性是指通过网上传输的数据应该防止被修改、删除、插入、替换或重发,以保证合法用户接收和使用该数据的真实性。 E.防止否认:在网上传输数据时,网络应提供两种防止否认的机制:一是防止发送方否认自己发送过的信息,而谎称对方收到的信息是别人冒名或篡改过的;二是防止接收方否认自己收到过信息。利用非对称加密技术可以很好的实现第一个否认机制。 二、加密技术 (1) 加密技术的产生和发展 A. 古代,目前记录的比较早的是一个在公元前2世纪,由一个希腊人提出来的,26个字母放在一个5×5的表格里,这样所有的源文都可以行列号来表示。 B. 近代,在第二次世界大战里,密码机(如紫罗兰)得到了比较广泛的已经技术,同时破译密码的技术也得到了发展,出现了一次性密码技术。同时密码技术也促进了计算机的发展。 C. 现代,由于计算机和计算机网络的出现,对密码技术提出了更高的需求。密码学的论文和会议不断的增加,以密码技术为主的商业公司开始出现,密码算法层出不穷,并开始走向国际标准化的道路,出现了DES,AES等国家(美国的)标准。同时各个国家和政府对密码技术也越来越重视,都加密技术的出口和进口都作了相当严格的规定。 (2) 加密技术的分类 A.对称加密技术 a. 描述 对称算法(symmetric algorithm),有时又叫传统密码算法,就是加密密钥能够从解密密钥中推算出来,同时解密密钥也可以从加密密钥中推算出来。而在大多数的对称算法中,加密密钥和解密密钥是相同的。所以也称这种加密算法为秘密密钥算法或单密钥算法。它要求发送方和接收方在安全通信之前,商定一个密钥。对称算法的安全性依赖于密钥,泄漏密钥就意味着任何人都可以对他们发送或接收的消息解密,所以密钥的保密性对通信性

实验四 公钥加密算法实验(改)

实验四公钥加密算法实验 1、实验目的 掌握消息RSA密钥生成和加密算法的原理。 2、实验环境 硬件:ZXBee CC2530 节点板2 块、USB 接口的CC2530 仿真器,PC 机; 软件:Windows 7/Windows XP、IAR 集成开发环境、串口监控程序。 3、实验原理 RSA算法的关键是生成公钥私钥对。本实验采用了一个简化的算法,通过一个给定的seed(实验组号)搜索两个不同的素数(100以内),并计算出公钥PubliceKey(e,n)和私钥PrivateKey(d,n)。 RSA加/解密公式为C=P e mod n和P=C d mod n,其中的幂指数运算速度慢,可采用下面的公式进行转换: C=P e mod n=((...((P*P mod n)*P mod n)*P mod n)... ...)*P mod n 此外,RSA算法的明文和密文均为0到n-1之间的整数,而一般传送消息的长度单位为字节(8 bits),n 的大小与消息长度难以匹配。因此,本实验采用如下的特殊处理方法: (1)令选定公钥/私钥的n值小于65536,即n值小于16bits的二进制。 (2)将消息的每个字节(8bits)作为一个明文块。 (3)每个明文块进行RSA加密后,得到的密文块为16bits,用2个字节存放。即密文的长度为明文的2倍。 (4)接收方收到的密文,按2个字节为一个密文块进行RSA解密,解密后的结果只保留低8bits。 4、实验步骤 1)本实验程序可在《指导书》4.4节程序上进行修改,可节约时间。信道编号不用更改。

5 代码:

6)修改接收数据函数rfRecvData()。接收节点不断接收各个发送节点发送的信息,先判断数据的第一个字节是不是本站点,如果是再进行解密。通过串口显示结果。

AES加密算法实验报告

四川大学计算机学院、软件学院实验报告 学号::专业:班级:第10 周

在程序运行读取需要加密的图片时,需要进行图片的选取,本次实验中使用在弹窗中选取文件的方式,使用头文件commdlg.h来实现在文件夹中选择需要的文件的选取。 三、加密算法流程 AES加密算法流程如下 字节代替:用一个S盒完成分组的字节到字节的代替; 行移位:进行一次行上的置换; 列混合:利用有限域GF(28)上的运算特性的一个代替; 轮密钥加:当前分组和扩展密钥的一部分进行按位异或。

四、代码实现 cryptograph.h #include #include class plaintext { public: plaintext(); static void createplaintext(unsigned char a[]); static void SubBytes(unsigned char p[16]); static void inSubBytes(unsigned char p[16]); static void ShiftRows(unsigned char e[]); static void inShiftRows(unsigned char e[]); static void MatrixToByte(unsigned char e[]); static void inMatrixToByte(unsigned char e[]); static unsigned char FFmul(unsigned char a, unsigned char b); static void KeyAdding(unsigned char state[16], unsigned char k[][4]); static void KeyExpansion(unsigned char* key, unsigned char w[][4][4]); ~plaintext(); private: }; cryptograph.cpp #include"cryptography.h" using namespace std; static unsigned char sBox[] = {};/定义加密S盒/ unsigned char insBox[256] ={};//定义解密S盒 plaintext::plaintext() {

DES加密算法实验报告

苏州科技学院 实验报告 学生姓名:杨刘涛学号:1220126117 指导教师:陶滔 刘学书1220126114 实验地点:计算机学院大楼东309 实验时间:2015-04-20 一、实验室名称:软件实验室 二、实验项目名称:DES加解密算法实现 三、实验学时:4学时 四、实验原理: DES算法由加密、子密钥和解密的生成三部分组成。现将DES算法介绍如下。1.加密 DES算法处理的数据对象是一组64比特的明文串。设该明文串为m=m1m2…m64 (mi=0或1)。明文串经过64比特的密钥K来加密,最后生成长度为64比特的密文E。其加密过程图示如下:

图2-1:DES算法加密过程 对DES算法加密过程图示的说明如下: 待加密的64比特明文串m,经过IP置换(初始置换)后,得到的比特串的下标列表如下: 表2-1:得到的比特串的下标列表

该比特串被分为32位的L0和32位的R0两部分。R0子密钥K1(子密钥的生成将在后面讲)经过变换f(R0,K1)(f变换将在下面讲)输出32位的比特串 f1,f1与L0做不进位的二进制加法运算。运算规则为: f1与L0做不进位的二进制加法运算后的结果赋给R1,R0则原封不动的赋给L1。L1与R0又做与以上完全相同的运算,生成L2,R2……一共经过16次运算。最后生成R16和L16。其中R16为L15与f(R15,K16)做不进位二进制加法运算的结果,L16是R15的直接赋值。 R16与L16合并成64位的比特串。值得注意的是R16一定要排在L16前面。R16与L16合并后成的比特串,经过置换IP-1(终结置换)后所得比特串的下标列表如下: 表2-2:置换后所得比特串的下标列表 经过置换IP-1后生成的比特串就是密文e。 变换f(Ri-1,Ki): 它的功能是将32比特的输入再转化为32比特的输出。其过程如图2-2所示:

AES加密算法实验报告

实验报告 学号:姓名:专业:班级:第10周

简介 #in elude vstri ng> #in elude class pla in text { public : plai ntext(); static void createplaintext( unsigned char a[]); 实验内容(算法、 程 序、 步骤 和方 法)

static void SubBytes( unsigned char p[16]); static void inSubBytes( unsigned char p[16]); static void ShiftRows( unsigned char e[]); static void inShiftRows( unsigned char e[]); static void MatrixToByte( unsigned char e[]); static void inMatrixToByte( unsigned char e[]); static unsigned char FFmul( unsigned char a, unsigned char b); static void KeyAdding( unsigned char state[16], unsigned char k[][4]); static void KeyExpansion( unsigned char* key, unsigned char w[][4][4]); ~plai ntext(); private : }; #in elude "" using namespacestd; static unsigned char sBox[] = {}; /定义加密S盒/ unsigned char insBox[256] ={}; //定义解密S盒 pla in text ::plai ntext() { unsigned int p[16]; for (int j = 0; j<200; j++) { p[i] = a[i]; a[i] = a[i + 16]; } void pla in text ::createpla in text( un sig ned char a[]) // 仓U建明文 int i = 0; if ( a[j] == 0) for (; i<16; i++)

对称加密算法

对称密码基本加密实验 【实验内容】 通过运算器工具实现DES、3DES、IDEA、AES-128/192/256、SMS4等算法的加解密计算 通过流程演示工具完成DES算法加解密运算的逐步演示和实例演示 通过轮密钥查看工具查看3DES和AES的轮密钥生成过程 查看AES算法逐步计算的动画演示 对DES、3DES、IDEA、AES-128/192/256、SMS4等算法的加解密进行扩展实验 对DES、3DES、IDEA、AES-128/192/256、SMS4等算法的加解密进行算法跟踪 对称密码基本加密实验 【实验原理】 对称密码体制使用相同的加密密钥和解密密钥,其安全性主要依赖于密钥的保密性。分组密码是对称密码体制的重要组成部分,其基本原理为:将明文消息编码后的序列m0,m1,m2,…,m i划分为长度为L(通常为64或128)位的组m=(m0,m1,m2,…,m L-1),每组分别在密钥k=(k0,k1,k2,…,k t-1)(密钥长度为t)的控制下变换成等长的一组密文输出序列c=(c0,c1,c2,…,c L-1)。分组密码的模型如图1.1.4-1所示。 012t-1012t-1 图1.1.4-1 分组密码实际上是在密钥的控制下,从一个足够大和足够好的置换子集中简单而迅速地选出一个置换,用来对当前输入的明文分组进行加密变换。现在所使用的对称分组加密算法大多数都是基于Feistel分组密码结构的,遵从的基本指导原则是Shannon提出的扩散和混乱,扩散和混乱是分组密码的最本质操作。 分组密码与流密码的对比:分组密码以一定大小的分组作为每次处理的基本单元,而流密码则以一个元素(如一个字母或一个比特)作为基本的处理单元;流密码使用一个随时间变化的加密变换,具有转换速度快、低错误传播的优点,软硬件实现简单,缺点是低扩散、插入及修改不敏感;分组密码使用的是一个不对时间变化的固定变换,具有扩散性好、插入敏感等优点,缺点是加解密处理速度慢、存在错误传播。 一、DES算法 数据加密标准(Data Encryption Standard,DES)中的算法是第一个也是最重要的现代对称加密算法,其分组长度为64比特,使用的密钥长度为56比特(实际上函数要求一个64位的密钥作为输入,但其中用到的有效长度只有56位,剩余8位可作为奇偶校验位或完全随意设置),DES加解密过程类似,加解密使用同样的算法,唯一不同的是解密时子密钥的使用

DES算法实验报告

DES算法实验报告 导读:就爱阅读网友为您分享以下“DES算法实验报告”的资讯,希望对您有所帮助,感谢您对https://www.360docs.net/doc/d417460893.html,的支持! 实验报告 姓名:xxxx 学号:0XXXXX 班级:XXXXXXX 日期:2013/11/* 题目:DES算法实验 一、实验环境 1.硬件配置: 处理器:Inter(R) Core(TM) i5-2430M CPU @ 2.40GHz (4

CPUs) ,~2.4GHz 内存:2048MB RAM 2.使用软件: (1) 操作系统:win7 旗舰版 (2) 软件工具: Microsoft Visual c++ 6.0 二、实验涉及的相关概念或基本原理 DES是一个分组密码算法,使用64位密钥(除去8位奇偶校验,实际密钥长度为56位)对64比特的数据分组(二进制数据)加密,产生64位密文数据。DES是一个对称密码体制,加密和解密使用同意密钥,解密和加密使用同一算法(这样,在硬件与软件设计时有利于加密单元的重用)。DES 的所有的保密性均依赖于密钥。 DES的加密过程可分为加密处理,加密变换和子密钥生成几个部分组成。 1.加密处理过程(1)初始置换IP。加密处理首先要对64位的明文按表1所示的初始换位表IP进行变换。表中的数值表示输入位被置换后的新位置。

(2)加密处理。上述换位处理的输出,中间要经过16轮加密变换。初始置换的64位的输出作为下一次的输入,将64位分为左、右两个32位,分别记为L0和R0,从L0、R0到L16、R16,共进行16轮加密变换。其中,经过i轮处理后的点左右32位分别为Li和Ri则可做如下定义: Li=Ri-1 Ri=Li-1 ⊕F(Ri-1,K) 其中,F为F变换 (3)最后换位。进行16轮的加密变换之后,将L16和R16合成64位的数据,再按照表2所示的最后换位表进行IP-1的换位,得到64位的密文,这就是DES算法加密的结果。 2.加密变换过程 64位的密钥先由置换选择1减少至56六位,进行循环左移,然后通过置换选择2减少至48位。而通过扩展运算将32位按表3扩展换位表扩展为48位的右半部分通过异或操作和48位的密钥结合,并分成6位的8个分组,通过8个S-盒

实验五 数据加密与解密实验

实验五数据加密与解密实验(3学时) 一、实验目的 1、了解OPENSSL开放源程序的应用; 2、熟悉用对称加密的方法加密和解密。 3、熟悉利用RSA非对称密钥对文件进行加密与解密的整个过程方法。 二、实验设备及软件环境 (一)实验设备 服务器、交换机和PC机组成NT网络。 (二)软件环境 1.服务器采用Microsoft Windows 2003 Server 操作系统; 2.学生客户端采用Windows XP系统、IE6.0以上浏览器。 3.OPENSSL开放源程序 三、实验内容与步骤(整个实验共分五个部分) (一)准备工作 步骤一下载OPENSSL安装包到C盘根目录下。 (下载地址:https://www.360docs.net/doc/d417460893.html,/openssl.rar) 步骤二在C盘中右击压缩包,使用“解压到openssl\”方式来解压 软件包,在C盘根目录下,自动生成OPENSSL文件夹。 步骤三点击“开始”、“程序”、“附件”、“命令提示符”,打开“命令提示符”窗口。如图8-1。 图8-1 命令提示符

步骤四在“C:\Documents and Settingsowner>”键入cd c:\openssl\out32dll,输入后按回车键,进入到openssl\out32dll的目录下,如图8-2所示。 (命令的含义:打开C盘目录下,openssl文件夹下的out32dll文件夹) 图8-2 openssl\out32dll的目录 (二)对称加密实验步骤 步骤一用记事本创建一个文本文件,文件名为学生的学号(如026h321f.txt),内容为学生的名字和学号,保存在c:\openssl\out32dll的文件夹下,如图9-1所示。 图9-1用记事本创建的文本文件 步骤二输入命令“openssl enc -des3 -in 026h231f.txt -out out026h231f.des”(注意所有的-符号的前面都有一个空格),输入后按回车键,加密过程中会提示你输入保护密码,按回车键后会再输一次密码进行确认,(注:输入密码时屏幕无任何显示)执行结果如图9-2所示。执行完上述命令完后,在c:\openssl\out32dll目录下会自动生成一个用des3算法加密后out026h231f.des的文件。 (命令的含义:使用DES3算法对数据进行对称加密。

对称密码体制

云南大学数学与统计学实验教学中心实验报告 一、实验目的: 通过实验掌握AES加密实验的构造算法,以及其重要思想。 二、实验内容: 查阅资料,实现AES密码体制的编码算法、译码算法、子密钥生成算法 三、实验环境 Win7、Eclipse 四、实验过程(请学生认真填写): 实验过程、结果以及相应的解释: 1. 预备知识 密码学中的高级加密标准(Advanced Encryption Standard,AES),是一种对称加密的方法。 本实验使用Java平台来编写的,虽然在java中已经很好的实现了AES等安全机制,但是为了了解如何实现,还是写了一个AES加密的java程序。 2. 实验过程 A、原理分析: 大多数AES计算是在一个特别的有限域完成的。 AES加密过程是在一个4×4的字节矩阵上运作,这个矩阵又称为“体(state)”,其初值就 是一个明文区块(矩阵中一个元素大小就是明文区块中的一个Byte)。(Rijndael加密法因支 持更大的区块,其矩阵行数可视情况增加)加密时,各轮AES加密循环(除最后一轮外)均 包含4个步骤: AddRoundKey —矩阵中的每一个字节都与该次回合金钥(round key)做XOR运算;每个子 密钥由密钥生成方案产生。 SubBytes —通过一个非线性的替换函数,用查找表的方式把每个字节替换成对应的字节。 ShiftRows —将矩阵中的每个横列进行循环式移位。 MixColumns —为了充分混合矩阵中各个直行的操作。这个步骤使用线性转换来混合每列的 四个字节。 最后一个加密循环中省略MixColumns步骤,而以另一个AddRoundKey取代。 B、具体代码如下: //如6.2,若是将每一行看做是一个对象的话 //具体实现的整体结构思想如此下图

AES加密算法实验报告

实验报告 姓名:陈清扬学号:2051313 班级:信息安全日期:2011-04-23 AES加密算法 一、实验环境 1.硬件配置:酷睿i3cpu ,2G内存 2.使用软件: (1) 操作系统:windows7旗舰版 (2) 软件工具:visualc++6.0 二、AES涉及的相关概念或基本原理 简介: 密码学中的高级加密标准(Advanced Encryption Standard,AES),又称Rijndael加密法,是美国联邦政府采用的一种区块加密标准。这个标准用来替代原先的DES,已经被多方分析且广为全世界所使用。经过五年的甄选流程,高级加密标准由美国国家标准与技术研究院(NIST)于2001年11月26日发布于FIPS PUB 197,并在2002年5月26日成为有效的标准。2006年,高级加密标准已然成为对称密钥加密中最流行的算法之一。 密码说明: 严格地说,AES和Rijndael加密法并不完全一样(虽然在实际应用中二者可以互换),因为Rijndael加密法可以支援更大范围的区块和密钥长度:AES的区块长度固定为128 位元,密钥长度则可以是

128,192或256位元;而Rijndael使用的密钥和区块长度可以是32位元的整数倍,以128位元为下限,256位元为上限。加密过程中使用的密钥是由Rijndael密钥生成方案产生。大多数AES计算是在一个特别的有限域完成的。AES加密过程是在一个4×4的字节矩阵上运作,这个矩阵又称为“体(state)”,其初值就是一个明文区块(矩阵中一个元素大小就是明文区块中的一个Byte)。(Rijndael加密法因支援更大的区块,其矩阵行数可视情况增加)加密时,各轮AES加密循环(除最后一轮外)均包含4个步骤: 1AddRoundKey—矩阵中的每一个字节都与该次回合金钥(round key)做XOR运算;每个子密钥由密钥生成方案产生。 2SubBytes—透过一个非线性的替换函数,用查找表的方式把每个字节替换成对应的字节。 3ShiftRows—将矩阵中的每个横列进行循环式移位。 4MixColumns—为了充分混合矩阵中各个直行的操作。这个步骤使用线性转换来混合每行内的四个字节。 最后一个加密循环中省略MixColumns步骤,而以另一个AddRoundKey取代。 安全性: 截至2006年,针对AES唯一的成功攻击是旁道攻击。旁道攻击不是攻击密码本身,而是攻击那些实作于不安全系统上的加密系统。

基于DNA技术的对称加密方法

基于DNA 技术的对称加密方法 摘要 DNA 密码是伴随DNA 计算的研究而出现的密码学前沿领域。文中结合现代基因工程技术和密码学技术设计了一个对称加密系统—DNASC 。在DNASC 中,加密钥和解密钥是DNA 探针,密文是特殊设计的DNA 芯片。系统的安全性主要基于生物学困难问题而不是传统的计算问题,因而对未来的量子计算机的攻击免疫。加密过程是制作特殊设计的DNA 芯片(微阵列),解密过程是进行芯片杂交。在DNASC 中,数以万亿计的DNA 探针被方便地同时进行杂交并识别出来,从一定程度上体现了DNA 在超大规模并行计算和超高容量数据存储方面的巨大潜力。 关键词 对称加密 DNA 密码 DNA 计算 近几年来,DNA 所固有的超大规模并行性、超低的能量消耗和超高密度的存储容量被开发出来用于计算、数据储存以及密码学等领域。DNA 密码就是在这样的背景下诞生的。类似于量子密码,DNA 密码是传统密码系统的潜在替代与补充,但二者在实现技术上大不相同。DNA 密码系统的安全性不依赖于计算困难问题,因此不管未来的DNA 计算机和量子计算机的计算能力有多么强大,DNA 密码对这些计算机的攻击都是免疫的。并且,同量子密码相比,DNA 密码更适用于安全的数据存储。 新生的DNA 密码在理论和实现上都远未成熟,有效的DNA 密码系统鲜见。这主要是因为下述原因:首先,当前的DNA 技术主要处于试验阶段,缺乏可用于DNA 密码中的成熟理论。其次,DNA 密码涉及交叉学科,相关研究需要密码学家和生物学家的通力合作,而这两个领域在以往的研究中关联很少。另外,相关的核心技术如(PCR)技术和DNA 芯片技术以及自动测序技术都是近年来才走向成熟[1]。密码学家要完全理解这些技术,需要一定的时间。 文中提出如下几点:首先,阻碍生物学发展的生物学困难问题在密码学中会有不同的用途,有可能用来构建新型的密码系统。本文提出了一个生物学困难问题,并根据当前的生物技术发展水平,对这个困难问题的难度进行了探讨。基于这个困难问题,提出了一个非确定性的对称加密系统—DNASC 。DNASC 的安全性主要依赖于文中提出的生物学困难问题,对于量子计算机等超级计算机的攻击是免疫的[2]。其次,DNASC 的加密是非确定性的,在一定程度上类似于一次一密,其随机化的过程是基于DNA 计算的超大规模并行性。虽然DNA 计算具有超大规模并行计算的潜力,但是在实际应用中很难得到体现。在DNASC 的解密过程中,数以万亿计的DNA 探针被方便地同时进行杂交并识别出来,在一定程度上体现了DNA 在并行计算和超大规模数据存储方面的巨大潜力。第三,已有的DNA 密码系统多需要利用核苷酸直接编码,因而难以实现。本文中利用DNA 芯片(微阵列)技术,提出了新的数据存储技术、新的编码技术以及新的数据读取技术,因此,在加密阶段不再需要合成DNA 序列,在解密阶段也不再需要对DNA 序列进行测序,这使得DNASC 更容易实现[3]。本文的目的并不是要提出一个马上就可以替代DES 等加密系统的实用密码系统,而是展示DNA 在密码学的应用中有巨大的发展潜力。未来,DNA 密码有可能发展成为密码学的重要组成部分。

密码学应用-对称加密算法DES的应用

密码学应用-对称加密算法DES的应用 实验虚拟主机用户密码如下: H-basiclinux--1主机: 用户:root 密码:123456 第一步、进入basiclinux 实验机,开始实验 第二步、基本加密 1) 看明文文件a.txt # cat a.txt 2) 执行#openssl des3 -pass pass:"123" -in a.txt -out a.txt.des3

注:其中加密算法是des3,密钥是123,明文文件是a.txt, 密文文件是a.txt.des3 加密结果在a.txt.des3中。 3) 查看a.txt.des3 的内容#cat a.txt.des3 第三步、基本解密 执行#openssl enc -d -des3 -pass pass:"123" -in a.txt.des3 -out b.txt 第四步、3des算法的初始值

除密钥,明文文件外,3des 算法需要salt,key和iv值。通过以下命令可以获得 从上述操作可以获得des3 加密的三个初始值:salt,key 和iv。 第五步、每次加密3des 加密的初始值是不同的 执行多次#openssl enc -P -des3 -pass pass:123 -in a.txt 由于key 是由salt + pass 生成的,尽管pass 都相同,但key 都是不同的, 第五步、缺省的加密过称是使用salt 的,加盐法的最大特色是增加加密强度,它是一种动态方法。经过加盐处理可以做到,即使用同样的明文、同样的用户密码每次加密得到的密文都不一样,密码、明文、密文没有固定的对应关系这样当然不好分析了。下面我们使用没

相关文档
最新文档