例1+ANSYS桁架结构计算示例

脚手架计算示例

脚手架计算书(1) 本工程脚步手架采用Φ48×3.5无缝钢管,立杆横距为1.05m,立杆纵距为1.8m,步距为1.8m,共9步16.2m;施工作业层按一层计,则脚手片满铺三层,自重标准值为0.1KN/m2;脚手架外立杆里侧挂密目安全网封闭施工,自重标准值为0.1KN/m2。 一、横向、纵向水平杆计算 1、横向、纵向水平杆的抗弯强度按下式计算: ≤f σ=M W 式中M—弯矩设计值,按M=1.2M GK+1.4 M GK计算; M GK为脚手板自重标准值产生的弯矩; M QK为施工荷载标准值产生的弯矩; W—截面模量,查表Φ48×3.5mm钢管W=5.08cm3; f (1。 图1:纵向水平杆计算简图 a g k=0.1×1.05/3=0.035KN/m=35N/m 按图2静载布置情况考虑跨中和支座最大弯矩。

图2:静载状况下计算简图 M1 M B=M C=-0.1g K l a2 b、考虑活载情况 图3:活载最不利状况计算简图之(1) 图4:活载最不利状况计算简图之(2) M1中=0.101q K l a2 按图5种活载最不利位置考虑支座最大弯矩。

图5:活载最不利状况计算支座弯矩 1中M GK =0.08g K l a 2=0.08×35×1.82=9.07N.m M QK =0.101q K l a 2=0.101×1050×1.82=343.6 N.m M=1.2M GK +1.4M QK =1.2×9.07+1.4×343.6= 491.92N.m σ=M W =491.92×10 5.08×103=96.8N/mm 2〈f=205N/mm 2 (2)横向水平杆的抗弯强度计算 图6:横向水平杆计算简图P/2P P P/2 挡脚板 竹笆脚手板Q/2Q Q Q/2木板q p 横距l 0=1050mm ,脚手架横向水平杆的构造计算外伸长度a 1=350mm ,a 2=100mm 。 a 、考虑静载情况 P= g k ×l 0=35×1.8=63N

脚手架荷载等计算示例

6计算参数: 钢管强度为205.0 N/mm2,钢管强度折减系数取1.00。 双排脚手架,搭设高度40米,6米以下采用双管立杆,6米以上采用单管立杆。 立杆的纵距1.30米,立杆的横距1.10米,内排架距离结构0.50米,立杆的步距1.80米。 钢管类型? 48X 3.0,连墙件采用2步3跨,竖向间距3.6米,水平间距3.9米' 施工活荷载为3.0kN/m2,同时考虑2层施工。 脚手板采用竹笆片,荷载为0.10kN/m2,按照铺设4层计算。 2 栏杆采用竹笆片,荷载为0.17kN/m,安全网荷载取0.0100kN/m。 脚手板下大横杆在小横杆上面,且主结点间增加2根大横杆。 一 2 基本风压0.30kN/m,高度变化系数1.0000,体型系数0.6000。 9 9 地基承载力标准值170kN/m,底面扩展面积0.250m ,地基承载力调整系数0.40 钢管惯性矩计算采用匸n (D4-d4)/64 ,抵抗距计算采用W=n (D4-d4)/32D。 6.1大横杆的计算 大横杆按照三跨连续梁进行强度和挠度计算,大横杆在小横杆的上面。 按照大横杆上面的脚手板和活荷载作为均布荷载计算大横杆的最大弯矩和变形。6.1.1均布荷载值计算 大横杆的自重标准值P 1=0.038kN/m 脚手板的荷载标准值P 2=0.100 X 1.100/2=0.055kN/m 活荷载标准值Q=3.000 X 1.100/2=1.650kN/m 静荷载的计算值q 1=1.2 X 0.038+1.2 X 0.055=0.112kN/m 活荷载的计算值q 2=1.4 X 1.650=2.310kN/m q、

静定桁架的内力计算

第二节平面静定桁架的内力计算 桁架是工程中常见的一种杆系结构,它是由若干直杆在其两端用铰链连接而成的几何形状不变的结构。桁架中各杆件的连接处称为节点。由于桁架结构受力合理,使用材料比较经济,因而在工程实际中被广泛采用。房屋的屋架(见图3-10)、桥梁的拱架、高压输电塔、电视塔、修建高层建筑用的塔吊等便是例子。 图3-10房屋屋架 杆件轴线都在同一平面内的桁架称为平面桁架(如一些屋架、桥梁桁架等),否则称为空间桁架(如输电铁塔、电视发射塔等)。本节只讨论平面桁架的基本概念和初步计算,有关桁架的详细理论可参考“结构力学”课本。在平面桁架计算中,通常引用如下假定: 1)组成桁架的各杆均为直杆; 2)所有外力(载荷和支座反力)都作用在桁架所处的平面内,且都作用于节点处; 3)组成桁架的各杆件彼此都用光滑铰链连接,杆件自重不计,桁架的每根杆件都是二力杆。 满足上述假定的桁架称为理想桁架,实际的桁架与上述假定是有差别的,如钢桁架结构的节点为铆接(见图3-11)或焊接,钢筋混凝土桁架结构的节点是有一定刚性的整体节点, 图3-11 钢桁架结构的节点 它们都有一定的弹性变形,杆件的中心线也不可能是绝对直的,但上述三点假定已反映了实际桁架的主要受力特征,其计算结果可满足工程实际的需要。 分析静定平面桁架内力的基本方法有节点法和截面法,下面分别予以介绍。 一、节点法 因为桁架中各杆都是二力杆,所以每个节点都受到平面汇交力系的作用,为计算各杆内力,可以逐个地取节点为研究对象,分别列出平衡方程,即可由已知力求出全部杆件的内力,这就是节点法。由于平面汇交力系只能列出两个独立平衡方程,所以应用节点法往往从只含两个未知力的节点开始计算。 例3-8 平面桁架的受力及尺寸如图3-12a所示,试求桁架各杆的内力。

钢架结构重量计算方法及公式

5.方茴说:“那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。我们只说喜欢,就算喜欢也是偷偷摸摸的。” 6.方茴说:“我觉得之所以说相见不如怀念,是因为相见只能让人在现实面前无奈地哀悼伤痛,而怀念却可以把已经注定的谎言变成童话。” 7.在村头有一截巨大的雷击木,直径十几米,此时主干上唯一的柳条已经在朝霞中掩去了莹光,变得普普通通了。 8.这些孩子都很活泼与好动,即便吃饭时也都不太老实,不少人抱着陶碗从自家出来,凑到了一起。 9.石村周围草木丰茂,猛兽众多,可守着大山,村人的食物相对来说却算不上丰盛,只是一些粗麦饼、野果以及孩子们碗中少量的肉食。 钢架结构重量计算方法 材料重量计算 圆钢重量(公斤)=0.00617×直径×直径×长度 方钢重量(公斤)=0.00785×边宽×边宽×长度 六角钢重量(公斤)=0.0068×对边宽×对边宽×长度 八角钢重量(公斤)=0.0065×对边宽×对边宽×长度 螺纹钢重量(公斤)=0.00617×计算直径×计算直径×长度 角钢重量(公斤)=0.00785×(边宽+边宽-边厚)×边厚×长度 扁钢重量(公斤)=0.00785×厚度×边宽×长度 钢管重量(公斤)=0.02466×壁厚×(外径-壁厚)×长度 六方体体积的计算 公式① s20.866×H/m/k 即对边×对边×0.866×高或厚度 各种钢管(材)重量换算公式 钢管的重量=0.25×π×(外径平方-内径平方)×L×钢铁比重其中:π= 3.14 L=钢管长度钢铁比重取7.8 所以,钢管的重量=0.25×3.14×(外径平方-内径平方)×L×7.8 * 如果尺寸单位取米(M),则计算的重量结果为公斤(Kg) 钢的密度为:7.85g/cm3 (注意:单位换算) 钢材理论重量计算 钢材理论重量计算的计量单位为公斤(kg )。其基本公式为: W(重量,kg )=F(断面积mm2)×L(长度,m)×ρ(密度, 1.“噢,居然有土龙肉,给我一块!” 2.老人们都笑了,自巨石上起身。而那些身材健壮如虎的成年人则是一阵笑骂,数落着自己的孩子,拎着骨棒与阔剑也快步向自家中走去。

刚架结构计算参考

一、设计资料 某加工厂一厂房,该厂房为单层,采用单跨双坡门式刚架,刚架跨度18m ,柱高 6m ;共有12榀刚架,柱距6m ,屋面坡度1:10。刚架平面布置见图1(a),刚架形式 及几何尺寸见图1(b)。屋面及墙面板均为彩色压型钢板,内填充以保温玻璃棉板,详 细做法见建筑专业设计文件;钢材采用Q235钢,焊条采用E43型。 112 A B 图1(a).刚架平面布置图 图1(b).刚架形式及几何尺寸 18000 6000900 二、荷载计算 (一)荷载取值计算 1.屋盖永久荷载标准值(对水平投影面) YX51-380-760型彩色压型钢板 0.15 KN/m 2

50mm厚保温玻璃棉板0.05 KN/m2 PVC铝箔及不锈钢丝网0.02 KN/m2 檩条及支撑0.10 KN/m2 刚架斜梁自重0.15 KN/m2 悬挂设备0.20 KN/m2 合计0.67 KN/m2 2.屋面可变荷载标准值 屋面活荷载:按不上人屋面考虑,取为0.50 KN/m2。 雪荷载:基本雪压S0=0.45 KN/m2。对于单跨双坡屋面,屋面坡角 α=5°42′38″,μr=1.0,雪荷载标准值Sk=μr S0=0.45 KN/m2。 取屋面活荷载与雪荷载中的较大值0.50 KN/m2,不考虑积灰荷载。 3.轻质墙面及柱自重标准值(包括柱、墙骨架等)0.50 KN/m2 4.风荷载标准值 按《门式刚架轻型房屋钢结构技术规程》CECS102:2002附录A的规定计算。 基本风压ω0=1.05×0.45 KN/m2,地面粗糙度类别为B类;风荷载高度变化系数按《建筑结构荷载规范》(GB50009-2001)的规定采用,当高度小于10m时,按10m 高度处的数值采用,μz=1.0。风荷载体型系数μs:迎风面柱及屋面分别为+0.25和-1.0,背风面柱及屋面分别为+0.55和-0.65(CECS102:2002中间区)。 5.地震作用 据《全国民用建筑工程设计技术措施—结构》中第18.8.1条建议:单层门式刚架轻型房屋钢结构一般在抗震设防烈度小于等于7度的地区可不进行抗震计算。故本工程结构设计不考虑地震作用。 (二)各部分作用的荷载标准值计算 屋面: 恒荷载标准值:0.50×6=3.00KN/m 活荷载标准值:0.65×6=3.00KN/m 柱荷载: 恒荷载标准值:0.45×6=2.70KN

桁架内力计算

15-1 多跨静定梁

031=+-=+'=qx qa qx y Q D X a x 3 1 = 2 当l X = α cos 2 l q Q B -= αα0sin sin =--qx y N A X

因在梁上的总载不变:ql l q =11 αcos 11 111q l l q q l l q === ()()()111221122111 1 1 d p l V f H M H H x a p a p l V M b p b p l V A A C B A B A A -?= ===+==+= ∑∑∑

f M H V V V V C A B B A A = = = f=0时,H A =∞,为可弯体系。 简支梁: ① 1 P V Q A - = ()a x P V A- - 1 H=+H A ,(压为正) ②()y H a x p x V M A A - - - = 1 1 即y H M M A - = D截面M、Q、N ()y H a x p x V M A A x ? - - - = 1 1 即y H M M A x - = ? ? ? ? sin sin sin cos H Q N H Q Q x x + = - = 说明:?随截面不同而变化,如果拱轴曲线方程()x f y=已知的话,可利用 dx dy tg= ?确定?的值。 二.三铰拱的合理轴线(拱轴任意截面 = = Q M ) 据:y H M M A ? - = 当0 = M时, A H M y = M是简支梁任意截面的弯矩值,为变值。 说明:合理拱轴材料可得到充分发挥。 f M H c A =(只有轴力,正应力沿截面均匀分布) c M 为简支跨中弯矩。

脚手架计算示例

脚手架计算书⑴ 本工程脚步手架采用①48x3、5无缱钢管,立杆横距为1、05m,立杆纵距为1、8m,步距为1、 8m,共9步16、2m;施工作业层按一层计,则脚手片满铺三层『自重标准值为0、IKN/m?;脚手架外 立杆里侧挂密目安全网封闭施工『自重标准值为0、1K N/m2。 一、横向.纵向水平杆计算 1、横向、纵向水平杆得抗弯强度按下式计算: 式中M —弯矩设计值按M"、2M GK +1、4M GK 计算; M GK 为脚手板自重标准值产生得弯矩; M QK 为施工荷载标准值产生得弯矩; W —?面模量,查表e48x3、5mm 钢管W=5、0 8 cm3; f —40材得抗弯强度计算值,住2 05N/mm2. (1)纵向水平杆得抗弯强度按图1三跨连续梁计算,计算跨度取纵距1 a=l 8 00mm 。 a 、考虑静载情况 gk = 0、1x1、05/3=0、0 35KN/m= 3 5N/m 按图2静载布置情况考虑跨中与支座最大弯矩。 图1:纵向水平杆计篦简图 厶ck

Ml中=0、08gMa2 M B =M C= - 0、Igda? b、考虑活载情况 qk=3kN/m2xl、0 5 m/3=10 5 ON/m 按图久4两种活载最不利位置考虑跨中最大弯矩。 ■p 图3:活救最不利状况计算简图之(1) nr HZ I" 图4:活栽最不利状况计算简图之(2) Ml中=0、lOlqda^ 按图5种活载最不利位置考虑支座最大弯矩。 M B=M C=-O, 17 7 q K 1

.|k n lo 图5:活戦战不利状况计算支座弯矩 根据以上情况分析,可知图2与图3(或图4)这种静载与活载最不利组合时Ml 中 跨中弯矩最大。 M GK=0、08gKla2=0、08x35x1, 8—9、07N、m M QK=O、10 5以=0、101x1050x1, 82=343. 6 N、m M = l, 2M GK +1.4M QK=1.2X9. 07+1、4x343、6= 491、92 N、m 注汽卷器9 6、8N/mm2 (f=2O5N/mm2 (2)横向水平杆得抗弯强度计算 木板1 1 tt 笆wrts —,1 L 1 $ 图6:横向水平杆计》简图 计算横向水平杆得内力时按简支梁计算如图6,计算跨度取立杆横距lo=lO5Omm,KI手架横向水平杆得构造计算夕卜伸长度a i=350mm,a 2= 1 OOrnrrio a.考虑静载情况

脚手架荷载等计算示例

6计算参数: 钢管强度为205.0 N/mm2,钢管强度折减系数取1.00。 双排脚手架,搭设高度40米,6米以下采用双管立杆,6米以上采用单管立杆。立杆的纵距1.30米,立杆的横距1.10米,内排架距离结构0.50米,立杆的步距1.80米。 钢管类型φ48×3.0,连墙件采用2步3跨,竖向间距3.6米,水平间距3.9米。施工活荷载为3.0kN/m2,同时考虑2层施工。 脚手板采用竹笆片,荷载为0.10kN/m2,按照铺设4层计算。 栏杆采用竹笆片,荷载为0.17kN/m,安全网荷载取0.0100kN/m2。 脚手板下大横杆在小横杆上面,且主结点间增加2根大横杆。 基本风压0.30kN/m2,高度变化系数1.0000,体型系数0.6000。 地基承载力标准值170kN/m2,底面扩展面积0.250m2,地基承载力调整系数0.40。钢管惯性矩计算采用I=π(D4-d4)/64,抵抗距计算采用W=π(D4-d4)/32D。 6.1 大横杆的计算 大横杆按照三跨连续梁进行强度和挠度计算,大横杆在小横杆的上面。 按照大横杆上面的脚手板和活荷载作为均布荷载计算大横杆的最大弯矩和变形。 6.1.1 均布荷载值计算

大横杆的自重标准值P1=0.038kN/m 脚手板的荷载标准值P2=0.100×1.100/2=0.055kN/m 活荷载标准值Q=3.000×1.100/2=1.650kN/m 静荷载的计算值q1=1.2×0.038+1.2×0.055=0.112kN/m 活荷载的计算值q2=1.4×1.650=2.310kN/m 大横杆计算荷载组合简图(跨中最大弯矩和跨中最大挠度) 大横杆计算荷载组合简图(支座最大弯矩) 6.1.2 抗弯强度计算 最大弯矩考虑为三跨连续梁均布荷载作用下的弯矩 跨中最大弯矩计算公式如下: 跨中最大弯矩为

脚手架荷载等计算示例之欧阳家百创编

6计算参数: 欧阳家百(2021.03.07) 钢管强度为205.0 N/mm2,钢管强度折减系数取1.00。 双排脚手架,搭设高度40米,6米以下采取双管立杆,6米以上采取单管立杆。 立杆的纵距1.30米,立杆的横距1.10米,内排架距离结构0.50米,立杆的步距1.80米。 钢管类型φ48×3.0,连墙件采取2步3跨,竖向间距3.6米,水平间距3.9米。 施工活荷载为3.0kN/m2,同时考虑2层施工。 脚手板采取竹笆片,荷载为0.10kN/m2,依照铺设4层计算。 栏杆采取竹笆片,荷载为0.17kN/m,平安网荷载取0.0100kN/m2。脚手板下年夜横杆在小横杆上面,且主结点间增加2根年夜横杆。基本风压0.30kN/m2,高度变更系数1.0000,体型系数0.6000。 地基承载力标准值170kN/m2,底面扩展面积0.250m2,地基承载力调整系数0.40。

钢管惯性矩计算采取I=π(D4d4)/64,抵当距计算采取W=π(D4d4)/32D。 6.1 年夜横杆的计算 年夜横杆依照三跨连续梁进行强度和挠度计算,年夜横杆在小横杆的上面。 依照年夜横杆上面的脚手板和活荷载作为均布荷载计算年夜横杆的最年夜弯矩和变形。 6.1.1 均布荷载值计算 年夜横杆的自重标准值P1=0.038kN/m 脚手板的荷载标准值P2=0.100×1.100/2=0.055kN/m 活荷载标准值Q=3.000×1.100/2=1.650kN/m 静荷载的计算值q1=1.2×0.038+1.2×0.055=0.112kN/m 活荷载的计算值q2=1.4×1.650=2.310kN/m 年夜横杆计算荷载组合简图(跨中最年夜弯矩和跨中最年夜挠度) 年夜横杆计算荷载组合简图(支座最年夜弯矩) 6.1.2抗弯强度计算 最年夜弯矩考虑为三跨连续梁均布荷载作用下的弯矩

脚手架荷载等计算示例

6计算参数: 钢管强度为205、0 N/mm2,钢管强度折减系数取1、00。 双排脚手架,搭设高度40米,6米以下采用双管立杆,6米以上采用单管立杆。 立杆得纵距1、30米,立杆得横距1、10米,内排架距离结构0、50米,立杆得步距1、80米。 钢管类型φ48×3、0,连墙件采用2步3跨,竖向间距3、6米,水平间距3、9米。施工活荷载为3、0kN/m2,同时考虑2层施工。 脚手板采用竹笆片,荷载为0、10kN/m2,按照铺设4层计算。 栏杆采用竹笆片,荷载为0、17kN/m,安全网荷载取0、0100kN/m2。 脚手板下大横杆在小横杆上面,且主结点间增加2根大横杆。 基本风压0、30kN/m2,高度变化系数1、0000,体型系数0、6000。 地基承载力标准值170kN/m2,底面扩展面积0、250m2,地基承载力调整系数0、40。钢管惯性矩计算采用 I=π(D4-d4)/64,抵抗距计算采用 W=π(D4-d4)/32D。 6、1 大横杆得计算 大横杆按照三跨连续梁进行强度与挠度计算,大横杆在小横杆得上面。 按照大横杆上面得脚手板与活荷载作为均布荷载计算大横杆得最大弯矩与变形。 6、1、1 均布荷载值计算 大横杆得自重标准值 P1=0、038kN/m 脚手板得荷载标准值 P2=0、100×1、100/2=0、055kN/m

活荷载标准值 Q=3、000×1、100/2=1、650kN/m 静荷载得计算值 q1=1、2×0、038+1、2×0、055=0、112kN/m 活荷载得计算值 q2=1、4×1、650=2、310kN/m 大横杆计算荷载组合简图(跨中最大弯矩与跨中最大挠度) 大横杆计算荷载组合简图(支座最大弯矩) 6、1、2 抗弯强度计算 最大弯矩考虑为三跨连续梁均布荷载作用下得弯矩 跨中最大弯矩计算公式如下: 跨中最大弯矩为 M1=(0、08×0、112+0、10×2、310)×1、3002=0、406kN、m 支座最大弯矩计算公式如下: 支座最大弯矩为

门式刚架计算原理和设计实例之二

第二章轻型门式钢刚架设计的差不多理论 第一节结构布置和材料选用 一、结构组成 轻型门式钢刚架的结构体系包括以下组成部分: (1)主结构:横向刚架(包括中部和端部刚架)、楼面梁、托梁、支撑体系等; (2)次结构:屋面檩条和墙面檩条等; (3)围护结构:屋面板和墙板; (4)辅助结构:楼梯、平台、扶栏等; (5)基础。 图2-1给出了轻型门式钢刚架组成的图示讲明。 图2-1 轻型钢结构的组成

平面门式刚架和支撑体系再加上托梁、楼面梁等组成了轻型钢结构的要紧受力骨架,即主结构体系。屋面檩条和墙面檩条既是围护材料的支承结构,又为主结构梁柱提供了部分侧向支撑作用,构成了轻型钢建筑的次结构。屋面板和墙面板起整个结构的围护和封闭作用,由于蒙皮效应事实上也增加了轻型钢建筑的整体刚度。 外部荷载直接作用在围护结构上。其中,竖向和横向荷载通过次结构传递到主结构的横向门式刚架上,依靠门式刚架的自身刚度抵抗外部作用。纵向风荷载通过屋面和墙面支撑传递到基础上。 二、结构布置 轻型门式钢刚架的跨度和柱距要紧依照工艺和建筑要求确定。结构布置要考虑的要紧问题是温度区间的确定和支撑体系的布置。 考虑到温度效应,轻型钢结构建筑的纵向温度区段长度不应大于300m,横向温度区段不应大于150m。当建筑尺寸超过时,应设置温度伸缩缝。温度伸缩缝可通过设置双柱,或设置次结构

及檩条的可调节构造来实现。 支撑布置的目的是使每个温度区段或分期建设的区段建筑能构成稳定的空间结构骨架。布置的要紧原则如下:(1)柱间支撑和屋面支撑必须布置在同一开间内形成抵抗纵向荷载的支撑桁架。支撑桁架的直杆和单斜杆应采纳刚性系杆,交叉斜杆可采纳柔性构件。刚性系杆是指圆管、H型截面、Z或C型冷弯薄壁截面等,柔性构件是指圆钢、拉索等只受拉截面。柔性拉杆必须施加预紧力以抵消其自重作用引起的下垂; (2)支撑的间距一般为30m-40m,不应大于60m; (3)支撑可布置在温度区间的第一个或第二个开间,当布置在第二个开间时,第一开间的相应位置应设置刚性系杆; (4) 45的支撑斜杆能最有效地传递水平荷载,当柱子较高导致单层支撑构件角度过大时应考虑设置双层柱间支撑; (5)刚架柱顶、屋脊等转折处应设置刚性系杆。结构纵向于支撑桁架节点处应设置通长的刚性系杆; (6)轻钢结构的刚性系杆可由相应位置处的檩条兼作,刚度或承载力不足时设置附加系杆。 除了结构设计中必须正确设置支撑体系以确保其整体稳定性之外,还必须注意结构安装过程中的整体稳定性。安装时应该

脚手架荷载计算

脚手架变异处说明 本工程因一层为储藏室,二层至六层为标准单元楼层,在搭设二层脚手架时,于南侧两阳台之间增设一排脚手架,搭设于一层储藏室顶,现根据现场实际情况对脚手架进行计算。经计算,脚手架满足搭设要求。 2#住宅楼住宅楼

2#住宅楼脚手架计算书 本工程因一层为储藏室,二层至六层为标准单元楼层,在搭设二层脚手架时,于南侧两阳台之间增设一排脚手架,搭设于一层储藏室顶,现根据现场实际情况对脚手架进行计算。 现浇板上架体高度为17.8米,立杆步距取h=1.5m,立杆纵距1.5m,横距1.2m,横向水平杆间距:S=1.5米,钢管为Φ48×3.5,装饰用脚手架活荷载标准值为2KN/M,冲压钢脚手板均布荷载为 0.3KN/M。 一、1、脚手架结构自重标准值产生的轴向力: NG1K=0.1394×17.8=2.48KN 2、脚手板、栏杆、轴向力标准值: NG2K=0.3×2(1.2+0.075)×1.2/2+1.2×0.14=0.627KN 3、施工荷载标准值产生和轴向力: 作用于架上的风荷载标准值: Ln=1.2时,构建转运层处:h=1.5m Ia=1.2m ψ=0.095 Цs=1.5×0.095×1=0.14 Wk=0.7WzЦsWo=0.7×0.8×1×0.14=0.078KN/M2。 NQ1k=0.5(1.2+0.078) ×1.2×2=1.53KN 二、立杆段轴向力设计值:

N=1.2(NG1K+ NG2K)+0.85×1.4 NQ1k =1.2(2.48+0.627)+0.85×1.4×1.53 =5.55KN 三、板的弯曲抗压强度设计值 fcmk=1.1×0.67fcuk=0.74fcuk=1.48KN/M2 查表得ζb=0.544 Mumax=fcmbh02ζb (1-0.5ζb) =14.8×0.6×(0.075) 2×0.544(1-0.5×0.544) ×1000 =19.78KN·M 计算简图: 3.6m M=1/8q12=1/8×5.55×3.62=8.99 KN·M ∵M≤Mumax ∴符合要求

平面桁架杆件内力的计算方法探究

平面桁架杆件内力的计算方法探究 杨航 (机械工程学院2009级6班,200961024) 摘要在生活与工程实践中,我们随处可见平面桁架结构,以及基于平面桁架结构的空间桁架。为了确保安全,计算得到各杆件的内力,进而进行合理设计显得尤为重要。本文将基于节点法、截面法、力法正则方程对一些平面桁架杆件内力的计算方法进行探究。 关键词平面桁架;杆件内力;节点法;截面法;力法正则方程 平面桁架结构的内力计算可以分为基本的两大类基本问题,静定结构的内力计算和非静定结构的内力计算。静定结构主要采用节点法和截面法能全面求解。实际工程中以静不定结构多见。 1 静定结构参考[1] 1.1 节点法 桁架结构中各杆的连接点称为节点。节点法就是选去某个节点为研究对象,将于这个节点相连的杆件截断,作用在节点上的力可能包含被截断杆件的内力、加在节点行的外力和支座的约束反力,他们组成了平面汇交力系,用平衡方程即可求得各个桁架内力。 1.2 截面法 假想地用一截面m-m截面处把杆件裁成两部分,然后取任一部分为研究对象,另一部分对它的作用力,即为m-m截面上的内力N。因为整个杆件是平衡的,所以每一部分也都平衡,那么,m-m截面上的内力必和相应部分上的外力平衡。由平衡条件就可以确定内力。 2 静不定结构原创 2.1 一次静不定结构 对于一次静不定结构问题的求解,可采用建立在相当系统上的静定系统来球接触多预感间的内力,结合节点法、截面法求解器他敢间的内力。具具体方法是: (1)将平面桁架结构的一根杆件假象截开,代之以方向相反的一对未知力X1,分别作用于两个截面上。 (2)根据力法正则方程得到他满足的变形协调条件:。 (3)利用单位载荷法求出系数,带回上式即可求得X1。在利用单位载荷法求系数时,可以假设全部拉杆受力为正,压杆受力为负。 (4)利用节点法、截面法求出剩余杆件的内力。 2.2 多次静不定结构 方法与求解一次静不定问题相似,只是正则方程需要使用方程组,高次时利用矩阵求解多元方程组更为简便。可以利用简化计算。 相当与求解i个方程,不同的是,用矩阵的方法不但可以简化表达,而且还可以编程用计算机求解。 2.3 一些简化算法 2.3.1 与可动铰支座相连的杆件 可动铰支座假设在水平方向可动,则与它相连的所有杆件水平方向合力为零。通常来讲,如果只有一根杆件与它水平相连,则它的内力为零。如果与它竖直相连,则其内力就是可动铰支座提供的支反力。 2.3.2 结构对称外载荷对称的桁架 在结构对称的前提下,外载荷对称则对称杆件的轴力分布也对称。这样为我们简化计算提供

桁架支撑计算

施工平台支撑验算 支架搭设高度为7.4米, 搭设尺寸为:立杆的纵距b=1.20m,立杆的横距l=1.20m,立杆的步距h=1.50m,顶托下部采用2根50*100的方通。方通下方为桁架。 1.立杆计算: (1)荷载计算: 取1个计算单元:(1.2m*1.2m) 立杆自重:7.4m*3.5kg/m=0.26kN; 施工荷载取100kg/m2; 堆放荷载取100kg/m2; 水平杆作用在单根立杆上的重量为(5道双向): 2.4*5* 3.5kg/m=0.42kN; 单根立杆荷载总和为: N=2*1.44+0.26+0.42=3.6kN; (2)立杆稳定性验算: A=4.24cm2,i=1.6cm 计算长度l0=uh=1.75*1.5=2.6m λ= l0/i=260/1.6=162.5, φ=0.294 f=N/ΦA=3.6/(424*0.294)=28.9N/mm2<[f]=215N/mm2 满足要求。 2.方通验算: 按三跨连续梁计算:

(1)变形验算: 用SAP 2000进行计算,结果如下: 最大挠度位于1.6m处,(双方通) 挠度为14mm/2=7mm<3600mm/250=14.4mm 满足要求。 (2)刚度验算: 弯矩图如下(kN.m): M max=3.54kN.m,W=15.52cm3;

f=M/W=3.54/(2*15.52)=114N/mm2<[f]=215N/mm2 满足要求。 (3)支座反力: 支座反力如下: 3.桁架验算: 计算模型:

a.Y-Z平面: 内力计算结果为: 上部横杆计算结果为: 下部横杆计算结果为:

脚手架承重支撑荷载计算

脚手架承重支撑荷载计算 齐鲁商会大厦工程现场场地狭小,在基坑东侧及基坑上部设置钢筋等材料周转承重脚手架,长约70米,宽约8米,高度2.4米,顶部搭设1.1米高防护栏杆,详见脚手架平面图、立面图。 一、荷载值计算 脚手架体上铺脚手板等自重荷载值0.4KN/㎡ 脚手架上部承重取值 2.0 KN/㎡ 合计: 2.4 KN/㎡ 二、脚手架立杆轴心受力、稳定性计算 根据脚手架设计,钢管每区分格为:基坑上部脚手架(1.5×1=1.5㎡);基坑周边脚手架(1×1=1㎡);计算时取较大值(1.5×1=1.5㎡),立杆间距取值1.5米,验算最不利情况下脚手架受力情况。则每根立杆竖向受力值为: 1.5×2.4=3.6 KN 脚手架斜杆受力分析图如下:轴心受力值4.25 KN 3.6 KN 现场脚手架搭设采用Φ48钢管,A=424㎜2 钢管回转半径:I =[(d2+d12)/4]1/2 =15.9㎜ 脚手架立杆受压应力为: δ=N/A=4.25/424=10.02N/ ㎜2 安脚手架立杆稳定性计算受压应力:

长细比:λ=l/I =1500/I=94.3;查表得:?=0.594 δ=N/? A=4.25/424*0.594=16.87N/ ㎜2< f = 205N/ ㎜2 脚手架立杆稳定性满足要求。 三、横杆的强度和刚度验算 脚手架顶部铺设5㎝厚木脚手板,横杆承受均部荷载,可以视为连续梁,其抗弯强度和挠度计算如下: δ=Mmax/w=(2400*1500)/(10*5000)=132/ ㎜2< f = 205N/ ㎜2 其中δ----横杆最大应力 Mmax-------横杆最大弯矩 W-------横杆的截面抵抗距,取5000㎜3 根据上述计算脚手架横杆抗弯强度满足要求。 Wmax=ql4/150EI=(2200*15004/1000)/(150*2060*100*12.19*1000) = 2.99㎜< 3㎜ 其中Wmax-----挠度最大值 q---------均布荷载 l----------立杆最大间距 E---------钢管的弹性模量,2.06×100 KN/ ㎜2 I---------截面惯性距,12.19×100㎜4 根据上述计算脚手架横杆刚度满足要求. 四、扣件容许荷载值验算。 本脚手架立杆未采用对接扣件连接,只对直角、回转扣件进行演算,计算时取较大值(1.5×1=1.5㎡),立杆间距取值1.5米,验算最不利情况下脚手架扣件受力情况。 1.5× 2.4= 3.6 KN< 5 KN 根据施工手册可知每直角、回转扣件最小容许荷载5KN,满足施工要求。

2020年脚手架荷载等计算示例

作者:旧在几 作品编号:2254487796631145587263GF24000022 时间:2020.12.13 6计算参数: 钢管强度为205.0 N/mm2,钢管强度折减系数取1.00。 双排脚手架,搭设高度40米,6米以下采用双管立杆,6米以上采用单管立杆。立杆的纵距1.30米,立杆的横距1.10米,内排架距离结构0.50米,立杆的步距1.80米。 钢管类型φ48×3.0,连墙件采用2步3跨,竖向间距3.6米,水平间距3.9米。施工活荷载为3.0kN/m2,同时考虑2层施工。 脚手板采用竹笆片,荷载为0.10kN/m2,按照铺设4层计算。 栏杆采用竹笆片,荷载为0.17kN/m,安全网荷载取0.0100kN/m2。 脚手板下大横杆在小横杆上面,且主结点间增加2根大横杆。 基本风压0.30kN/m2,高度变化系数1.0000,体型系数0.6000。 地基承载力标准值170kN/m2,底面扩展面积0.250m2,地基承载力调整系数0.40。钢管惯性矩计算采用 I=π(D4-d4)/64,抵抗距计算采用 W=π(D4-d4)/32D。 6.1 大横杆的计算 大横杆按照三跨连续梁进行强度和挠度计算,大横杆在小横杆的上面。

按照大横杆上面的脚手板和活荷载作为均布荷载计算大横杆的最大弯矩和变形。 6.1.1 均布荷载值计算 大横杆的自重标准值 P1=0.038kN/m 脚手板的荷载标准值 P2=0.100×1.100/2=0.055kN/m 活荷载标准值 Q=3.000×1.100/2=1.650kN/m 静荷载的计算值 q1=1.2×0.038+1.2×0.055=0.112kN/m 活荷载的计算值 q2=1.4×1.650=2.310kN/m 大横杆计算荷载组合简图(跨中最大弯矩和跨中最大挠度) 大横杆计算荷载组合简图(支座最大弯矩) 6.1.2 抗弯强度计算 最大弯矩考虑为三跨连续梁均布荷载作用下的弯矩 跨中最大弯矩计算公式如下:

简单桁架内力计算

3.4 静定平面桁架 教学要求 掌握静定平面桁架结构的受力特点和结构特点,熟练掌握桁架结构的内力计算方法——结点法、截面法、联合法 3.4.1 桁架的特点和组成 3.4.1.1 静定平面桁架 桁架结构是指若干直杆在两端铰接组成的静定结构。这种结构形式在桥梁和房屋建筑中应用较为广泛,如南京长江大桥、钢木屋架等。 实际的桁架结构形式和各杆件之间的联结以及所用的材料是多种多样的,实际受力情况复杂,要对它们进行精确的分析是困难的。但根据对桁架的实际工作情况和对桁架进行结构实验的结果表明,由于大多数的常用桁架是由比较细长的杆件所组成,而且承受的荷载大多数都是通过其它杆件传到结点上,这就使得桁架结点的刚性对杆件内力的影响可以大大的减小,接近于铰的作用,结构中所有的杆件在荷载作用下,主要承受轴向力,而弯矩和剪力很小,可以忽略不计。因此,为了简化计算,在取桁架的计算简图时,作如下三个方面的假定: (1)桁架的结点都是光滑的铰结点。 (2)各杆的轴线都是直线并通过铰的中心。 (3)荷载和支座反力都作用在铰结点上。 通常把符合上述假定条件的桁架称为理想桁架。 3.4.1.2 桁架的受力特点 桁架的杆件只在两端受力。因此,桁架中的所有杆件均为二力杆。在杆的截面上只有轴力。 3.4.1.3 桁架的分类 (1)简单桁架:由基础或一个基本铰接三角形开始,逐次增加二元体所组成的几何不变体。(图3-14a) (2)联合桁架:由几个简单桁架联合组成的几何不变的铰接体系。(图3-14b) (3)复杂桁架:不属于前两类的桁架。(图3-14c)

3.4.2 桁架内力计算的方法 桁架结构的内力计算方法主要为:结点法、截面法、联合法 结点法――适用于计算简单桁架。 截面法――适用于计算联合桁架、简单桁架中少数杆件的计算。 联合法――在解决一些复杂的桁架时,单独应用结点法或截面法往往不能够求解结构的内力,这时需要将这两种方法进行联合应用,从而进行解题。 解题的关键是从几何构造分析着手,利用结点单杆、截面单杆的特点,使问题可解。 在具体计算时,规定内力符号以杆件受拉为正,受压为负。结点隔离体上拉力的指向是离开结点,压力指向是指向结点。对于方向已知的内力应该按照实际方向画出,对于方向未知的内力,通常假设为拉力,如果计算结果为负值,则说明此内力为压力。

门式钢架的受力分析实例

门式钢架的受力分析实例 一、分析种类:结构力学静力分析二、基本理论: 结构矩阵分析是结构力学的一种分析方法。结构矩阵分析方法认为:结构整体可以看作是由有限个力学小单元相互连接而组成的集合体,每个单元的力学性能可以比作建筑物中的砖瓦,装配在一起就提供整体结构的力学特性。有限元法的基本思想是: 1.假想把连续系统分割成数目有限的单元,单元只在数目有限的节点相连。在节点引进等效载荷,代替实际作用与系统的外载荷 2.对每个单元由分块近似的思想,按一定的规则建立求解未知量与节点相互作用之间的关系 3.把所有单元的这种特性关系按一定条件集合起来,引入边界条件,构成一组以节点变量为未知量的代数方程组,求解就得到有限个节点处的待求变量 所以,有限元法实质上是把具有无限个自由度的联系系统,理想化为只有有限个自由度的单元集合体,使问题转化为适合于数值求解的结构型问题 静力分析用于求解静力载荷作用下结构的位移和应力等。静力分析包括线性和非线性分析。而非线性分析涉及塑性,应力刚化,大变形,大应变,超弹性,接触面和蠕变。本次分析为结构线性静力分析

静力分析计算在固定不变的载荷作用下结构的效应,它不考虑惯性和阻尼的影响,如结构受随时间变化载荷的情况。可是,静力分析可以计算那些固定不变的惯性载荷对结构的影响(如重力和离心力),以及那些可以近似为等价静力作用的随时间变化载荷。 静力分析用于计算由那些不包括惯性和阻尼效应的载荷作用于结构或部件上引起的位移,应力,应变和力。固定不变的载荷和响应是一种假定;即假定载荷和结构的响应随时间的变化非常缓慢。静力分析所施加的载荷包括:l.外部施加的作用力和压力 2.稳态的惯性力(如中力和离心力) 3.位移载荷 4.温度载荷 线性静力分析的求解步骤1.建模 2.施加载荷和边界条件,求解 3.结果评价和分析三、有限元方法及软件: 利用位移函数—虚功原理推导梁单元的有限元计算公式第一步:写出单元位移、节点力向量应用软件ansys10.0在ansys产品家族中有七种结构分析的类型。结构分析中计算得出的基本未知量(节点自由度)是位移,其他的一些未知量,如应变,应力,和反力可通过节点位移导出。本次分析静力分析(stastic) 四、实例:门式钢架的受力分析4.1问题描述: 门式钢架受到均布载荷q=200n/m作用,其柱高5m,横梁

脚手架计算实例

落地脚手架计算实例(一) 1.脚手架参数一、 双排脚手架搭设高度为46.0 米,20.00米以下采用双管立杆,20.00米以上采用单管立杆;采用的钢管类型为Φ48×3.5;搭设尺寸为:立杆的纵距为 1.50米,立杆的横距为1.20米,大小横杆的步距为1.50 米; 内排架距离墙长度为0.30米;脚手架沿墙纵向长度为290 米; 小横杆在上,搭接在大横杆上的小横杆根数为2 根; 横杆与立杆连接方式为单扣件;取扣件抗滑承载力系数为0.80; 连墙件采用两步三跨,竖向间距3.00 米,水平间距4.50 米,采用扣件连接; 连墙件连接方式为双扣件; 2.活荷载参数 施工均布活荷载标准值:4.500 kN/m2;脚手架用途:结构脚手架; 同时施工层数:1 层; 3.风荷载参数 本工程地处北京市,基本风压为0.45 kN/m2; 风荷载高度变化系数μz为0.84,风荷载体型系数μs为0.65; 脚手架计算中考虑风荷载作用; 4.静荷载参数 每米立杆承受的结构自重标准值(kN/m2):0.1394; 脚手板自重标准值(kN/m2):0.300;栏杆挡脚板自重标准值(kN/m2):0.110; 安全设施与安全网(kN/m2):0.010;脚手板铺设层数:1; 脚手板类别:冲压钢脚手板;栏杆挡板类别:栏杆、冲压钢脚手板挡板; 每米脚手架钢管自重标准值(kN/m2):0.038; 5.地基参数 地基土类型:素填土;地基承载力标准值(kN/m2):135.00; 立杆基础底面面积(m2):0.30;地面广截力调整系数:0.40。

二、小横杆的计算: 小横杆按照简支梁进行强度和挠度计算,小横杆在大横杆的上面。 按照小横杆上面的脚手板和活荷载作为均布荷载计算小横杆的最大弯矩和变形。 1.均布荷载值计算 小横杆的自重标准值: P1= 0.038 kN/m ; 脚手板的荷载标准值: P2= 0.300×1.500/3=0.150 kN/m ; 活荷载标准值: Q=4.500×1.500/3=2.250 kN/m; 荷载的计算值: q=1.2×0.038+1.2×0.150+1.4×2.250 = 3.376 kN/m; 小横杆计算简图 2.强度计算 最大弯矩考虑为简支梁均布荷载作用下的弯矩, 计算公式如下: 最大弯矩M qmax =3.376×1.2002/8 = 0.608 kN.m; 最大应力计算值σ = M qmax/W =119.625 N/mm2; 小横杆的最大应力计算值σ =119.625 N/mm2小于小横杆的抗压强度设计值[f]=205.0 N/mm2,满足要求! 3.挠度计算: 最大挠度考虑为简支梁均布荷载作用下的挠度 荷载标准值q=0.038+0.150+2.250 = 2.438 kN/m ;

桁架承重架设计计算书

桁架承重架设计计算书 The latest revision on November 22, 2020

桁架承重架设计计算书 桁架承重架示意图(类型一) 二、计算公式 荷载计算:1.静荷载包括模板自重、钢筋混凝土自重、桁架自重(×1.2); 2.活荷载包括倾倒混凝土荷载标准值和施工均布荷载(×1.4)。 弯矩计算: 按简支梁受均布荷载情况计算 剪力计算: 挠度计算: 轴心受力杆件强度验算: 轴心受压构件整体稳定性计算: 三、桁架梁的计算 桁架简支梁的强度和挠度计算 1.桁架荷载值的计算. 静荷载的计算值为 q1 = 62.18kN/m. 活荷载的计算值为 q2 = 16.80kN/m. 桁架节点等效荷载 Fn = -39.49kN/m. 桁架结构及其杆件编号示意图如下: 桁架横梁计算简图 2.桁架杆件轴力的计算. 经过桁架内力计算得各杆件轴力大小如下: 桁架杆件轴力图 桁架杆件轴力最大拉力为 Fa = 105.31kN. 桁架杆件轴力最大压力为 Fb = -139.62kN. 3.桁架受弯杆件弯矩的计算. 桁架横梁受弯杆件弯矩图 桁架受弯杆件最大弯矩为M = 2.468kN.m 桁架受弯构件计算强度验算= 18.095N/mm 钢架横梁的计算强度小于215N/mm2,满足要求! 4.挠度的计算. 最大挠度考虑为简支梁均布荷载作用下的挠度 桁架横梁位移图 简支梁均布荷载作用下的最大挠度为 V = 0.425mm. 钢架横梁的最大挠度不大于10mm,而且不大于L/400 = 1.25mm,满足要求! 5.轴心受力杆件强度的计算.

式中 N ——轴心拉力或轴心压力大小; A ——轴心受力杆件的净截面面积。 桁架杆件最大轴向力为139.622kN, 截面面积为14.126cm2 . 轴心受力杆件计算强度 = 98.841N/mm2. 计算强度小于强度设计值215N/mm2,满足要求! 6.轴心受力杆件稳定性的验算. 式中 N ——杆件轴心压力大小; A ——杆件的净截面面积; ——受压杆件的稳定性系数。 轴心受力杆件稳定性验算结果列 表 ------------------------------------------------------------- ---------------- 杆件单元长细比稳定系数轴向压力kN 计算强度N/mm2 ------------------------------------------------------------- ---------------- 1 37.948 0.914 0.000 -------- 2 37.948 0.914 105.310 -------- 3 37.948 0.91 4 -52.65 5 40.770 4 40.046 0.907 -139.622 109.010 5 37.948 0.914 0.000 -------- 6 40.046 0.90 7 83.774 -------- 7 37.948 0.914 -26.327 20.385 8 37.948 0.914 -26.327 20.385 9 37.948 0.914 -39.491 30.577 10 37.948 0.914 -52.655 40.770

相关文档
最新文档