单键电容式触摸按键IC-TW301

单键电容式触摸按键IC-TW301
单键电容式触摸按键IC-TW301

单键电容式触摸按键IC----TW301

1概述

TW301是单键电容式触摸按键专用检测传感器IC。采用最新一代电荷检测技术,利用操作者的手指与触摸按键焊盘之间产生电荷电平来确定手指接近或者触摸到感应表面。没有任何机械部件,不会磨损,感测部分可以放置到任何绝缘层(通常为玻璃或者塑料材料)的后面,很容易制成与周围环境相密封的键盘。面板图案随意设计,按键大小、形状自由选择,字符、商标、透视窗等可任意搭配,外形美观、时尚,而且不褪色、不变形、经久耐用。从根本上改变了各种金属面板以及机械面板无法达到的效果。

其可靠性和美观设计随心所欲,可以直接取代现有普通面板(金属键盘、薄膜键盘、导电胶键盘)。不需要对现有的程序做任何改动。具有外围元件少、成本低、功耗少等优势。

2特点

输入电压范围较宽:2.0V~5.5V;

工作电流极低:2.5uA;

灵敏度可通过外部电容值来调整;

可实现ON/OFF控制输出及LEVEL HOLD方式输出;

带有自校准的独立触摸按键控制;

内置稳压电路LDO,更稳定可靠;

SOT23-6封装

3应用场合

触摸DVD、触摸遥控器、触摸MP3、触摸MP4、触摸密码锁、触摸电饭煲、触摸微波炉、触摸电热水器、触摸电风扇、触摸冰箱、触摸吸尘器、触摸空气清新器、触摸抽油烟机、触摸音箱、触摸调光灯、触摸电气开关、触摸打印机、触摸传真机、触摸LCD TV、触摸LCD Monitor、触摸电话机等。

4封装及引脚定义

No引脚名称I/O功能描述

1OUT O触摸检测输出脚

2GND P电源地

3SO I触摸输入检测脚

4SLH I输出高低电平选择,内置下拉电阻

5VDD P正电源

6STG I模式选择脚,内置下拉电阻

STG SLH功能描述

00Hold模式,高电平有效,CMOS输出

01Hold模式,低电平有效,CMOS输出

10ON/OFF模式,上电状态为CMOS,低电平输出

11ON/OFF模式,上电状态为CMOS,高电平输出5应用电路

注1:C1电容值越大,灵敏度越低,感应面板的厚度就越薄。反之电容值越小,灵敏度就越高,感应面板厚度就越厚。

注2:为提高产品的抗干扰性能,建议在触摸感应PAD与TW301芯片So 输入脚之间串接一个100-1000Ω电阻。

6电气参数

特性符号测试条件最小单位工作温度T

OP

----20~+70℃

存放温度T

STG

----50~+125℃电源电压VDD T A=25℃VSS-0.3~VSS+5.5Ω

输入电压V in T A=25℃VSS-0.3~VDD+0.3?

抗静电强度ESD--->4KV

特性符号测试条件最小值典型值最大值单位工作电压VDD--- 2.0 3.0 5.5V

工作电流I

OP VDD=3.0V-- 2.5

7.0uA

输入端V OL输入低电压0--0.2VDD 输入端V OH输入高电压0.8-- 1.0VDD

输出响应时间T

R VDD=3.0V----

60ms

传感器F

SEN VDD=3.0V无负载----

1Mhz

7封装说明

单片机实现触摸按键

感应按键电路分析 感应按键电路分析: 感应按键是刚刚在电磁炉上运用的一种新技术,其主要特点是使电磁炉易清洁,防水性能好。目前在电磁炉上用的感应按键主要有天线感应式及电容式,我们目前用的是利用人体电容的电容式感应按键 感应按键原理如下面的图式; 感应按键电路包括信号产生、信号整形2个单元:首先由信号产生单元产生约几百KHz的高电平占空比约50%的信号;然后信号整形单元对所产生的信号进行整形,整形过程类似于开关电源工作过程;最后将信号送至MCU 的AD口。 当有人体靠近感应按键时,将会形成一个对地的电容在信号整形的高电平期间分流一部分电流,致使整形后的信号下降,并在人体离开前一直维持在下降的电位上;而当人体离开后,整流后的信号又会上升到原来的电位水平。 由于存在电路耦合及寄生电容,所以一般用下降沿和上升沿来识别感应按键的响应动作。

*************************************************************************************************** *************************************************************************************************** *************************************************************************************************** *************************************************************************************************** *************************************************************************************************** *************************************************************************************************** *************************************************************************************************** ************************************************************************************************** 原理图:示意图1,按键AD每个单独检测,不用切换

触摸感应按键设计指南

触摸感应按键设计指南 张伟林 2009-12-09 sales@soujet.com http://www.soujet.com

1. 概述 对触摸屏与触摸按键在手机中的设计与应用进行介绍,对设计的经验数据进行总结。达到设计资料和经验的共享,避免低级错误的重复发生。 2. 触摸按键设计指导 2.1 触摸按键的功能与原理 2.1.1触摸按键的功能 触摸按键起keypad 的作用。与keypad 不同的是,keypad 通过开关或metaldome 的通断发挥作用,触摸按键通过检测电容的变化,经过触摸按键集成芯片处理后,输出开关的通断信号。 2.1.2触摸按键的原理 如下图,是触摸按键的工作原理。在任何两个导电的物体之间都存在电容,电容的大小与介质的导电性质、极板的大小与导电性质、极板周围是否存在导电物质等有关。PCB 板(或者FPC )之间两块露铜区域就是电容的两个极板,等于一个电容器。当人体的手指接近PCB 时,由于人体的导电性,会改变电容的大小。触摸按键芯片检测到电容值大幅升高后,输出开关信号。 在触摸按键PCB 上,存在电容极板、地、走线、隔离区等,组成触摸按键的电容环境,如下图所示。 Finger Time Capacitance C

2.1.3 触摸按键的按键形式 触摸按键可以组成以下几种按键 z单个按键 z条状按键(包括环状按键) z块状按键 单个按键 条状按键块状按键 2.1.4触摸按键的电气原理图如下:

在PCB板上的露铜区域组成电容器,即触摸按键传感器。传感器的信号输入芯片,芯片经过检测并计算后,输出开关信号并控制灯照亮与否。灯构成触摸按键的背光源。 2.2 触摸按键的尺寸设计 按键可以是圆形、矩形、椭圆形或者任何其他的形状。其中以矩形和圆形应用最为普遍,如图所示: 通常在按键的中间挖空,使PCB下方的光线可以通过挖空导到PCB上方,照亮LENS上的字符。根据ADI公司的推荐,按键大小尺寸如下表: 按键的挖空尺寸与按键的大小相关,如下表

电容式触摸按键PCB布线

`电容式触摸按键 1. 电源 A.优先采用线性电源,因为开关电源有所产生的纹波对于触摸芯片来说影响比较大 B.触摸IC的电源采用开关电源时,尽量控制纹波幅度和噪声。在做电源变化时,如果纹波不好控制, 可采用LDO经行转换 C.触摸芯片的电源要与其他的电源分开,可采用星型接法,同时要进行滤波处理。 如果电源干扰的纹波比较大时可以采用如下的方式: 2.感应按键 A. 材料 根据应用场合可以选择PCB铜箔、金属片、平顶圆柱弹簧、导电棉、导电油墨、导电橡胶、导电玻璃的ITO层等 但在安装时不管使用什么材料,按键感应盘必须紧密贴在面板上,中间不能有空气间隙。 B. 形状: 原则上可以做成任意形状,中间可留孔或镂空。我们推荐做成边缘圆滑的形状,如圆形或六角形,可以避免尖端放电效应 C. 大小 最小4mmX4mm, 最大30mmX30mm,有的建议不要大于15mmX15mm,太大的话,外界的干扰相应的也会增加 D. 灵敏度 一般的感应按键面积大小和灵敏度成正比。一般来说,按键感应盘的直径要大于面板厚度的4倍,并且增大电极的尺寸,可以提高信噪比。各个感应盘的形状、面积应该相同,以保证灵敏度一致。 灵敏度与外接CIN电容的大小成反比;与面板的厚度成反比;与按键感应盘的大小成正比。 CIN电容的选择: CIN电容可在0PF~50PF选择。电容越小,灵敏度越高,但是抗干扰能力越差。电容越大,灵敏度越低,但是抗干扰能力越强。通常,我们推荐5PF~20PF E. 按键的间距 各个感应盘间的距离要尽可能的大一些(大于5mm),以减少它们形成的电场之间的相互干扰。当用PCB铜箔做感应盘时,若感应盘间距离较近(5MM~10MM),感应盘周围必须用铺地隔离。 如图:各个按键距离比较远,周围空白的都用地线隔开了。但注意地线要与按键保持一定的距离

电容式触摸按键解决方案模板

电容式触摸按键解 决方案

电容式触摸按键解决方案 一、方案简介 在便携式媒体播放器和移动手持终端等大容量、高可视性产品的应用中,触摸按键已被广泛采用。由于其具有方便易用,时尚和低成本的优势,越来越多的电子产品开始从传统机械按键转向触摸式按键。 触摸按键方案优点: 1、没有任何机械部件,不会磨损,无限寿命,减少后期维护成本。 2、其感测部分能够放置到任何绝缘层(一般为玻璃或塑料材料)的后面,很容易制成与周围环境相密封的键盘。以起到防潮防水的作用。 3、面板图案随心所欲,按键大小、形状任意设计,字符、商标、透视窗等任意搭配,外型美观、时尚,不褪色、不变形、经久耐用。从根本上解决了各种金属面板以及各种机械面板无法达到的效果。其可靠性和美观设计随意性,能够直接取代现有普通面板(金属键盘、薄膜键盘、导电胶键盘),而且给您的产品倍增活力! 4、触摸按键板可提供UART、IIC、SPI等多种接口,满足各种产品接口需求。 二、原理概述 如图1所示在PCB上构建的电容器,电容式触摸感应按键实际上只是PCB上的一小块“覆铜焊盘”,触摸按键与周围的“地信号”构成一个感

应电容,当手指靠近电容上方区域时,它会干扰电场,从而引起电容相应变化。根据这个电容量的变化,能够检测是否有人体接近或接触该触摸按键。 接地板一般放置在按键板的下方,用于屏蔽其它电子产品产生的干扰。此类设计受PCB上的寄生电容和温度以及湿度等环境因素的影响,检测系统需持续监控和跟踪此变化并作出基准值调整。 基准电容值由特定结构的PCB产生,介质变化时,电容大小亦发生变化。 图1 PCB上构建开放式电容器示意图 三、方案实现 该系列电容式触摸按键方案,充分利用触摸按键芯片内的比较器特性,结合外部一个电容传感器,构造一个简单的振荡器,针对传感器上电容的变化,频率对应发生变化,然后利用内部的计时器来测量出该变化,

电容式触摸按键设计指南

Capacitive Touch Sensor Design Guide October 16, 2008 Copyright ? 2007-2008 Yured International Co., Ltd.1YU-TECH-0002-012-1

(3) (3) (5) (9) (11) (11) (17) (20) Copyright ? 2007-2008 Yured International Co., Ltd.2YU-TECH-0002-012-1

Copyright ? 2007-2008 Yured International Co., Ltd.3 YU-TECH-0002-012-1 1. 2. ( ) 3M 468MP NITTO 500 818

Copyright ? 2007-2008 Yured International Co., Ltd.4 YU-TECH-0002-012-1 3. 4. Front Panel Sensor Pad Sensor Pad Electroplating Or Spray Paint Nothing

Copyright ? 2007-2008 Yured International Co., Ltd.5 YU-TECH-0002-012-1 1. (FPC) ITO (Membrane) ITO ITO ( 10K ) FPC ITO MEMBRANE PCB

Copyright ? 2007-2008 Yured International Co., Ltd.6 YU-TECH-0002-012-1 2.ITO LCD ITO ( 10K ) 3. 1mm 8mm ( 8mm X 8mm ) 1mm 8mm X 8mm 2mm 10mm X 10mm 3mm 12mm X 12mm 4mm 15mm X 15mm 5mm 18mm X 18mm ( ) 196.85 mil (5mm) 0.254mm(10mil) 2mm 5mm 2mm

电容式触摸屏设计要求规范精典

电容式触摸屏设计规 【导读】:本文简单介绍了电容屏方面的相关知识,正文主要分为电子设计和结构设计两个部分。电子设计部分包含了原理介绍、电路设计等方面,结构设计部分包好了外形结构设计、原料用材、供应商工艺等方面 【名词解释】 1. V.A区:装机后可看到的区域,不能出现不透明的线路及色差明显的区域等。 2. A.A区:可操作的区域,保证机械性能和电器性能的区域。 3. ITO:Indium Tin Oxide氧化铟锡。涂镀在Film或Glass上的导电材料。 4. ITO FILM:有导电功能的透明PET胶片。 5. ITO GALSS:导电玻璃。 6. OCA:Optically Clear Adhesive光学透明胶。 7. FPC:可挠性印刷电路板。 8. Cover Glass(lens):表面装饰用的盖板玻璃。 9. Sensor:装饰玻璃下面有触摸功能的部件。(Flim Sensor OR Glass Sensor) 【电子设计】 一、电容式触摸屏简介 电容式触摸屏即Capacitive Touch Panel(Capacitive Touch Screen),简称CTP。根据其驱动原理不同可分为自电容式CTP和互电容式CTP,根据应用领域不同

可分为单点触摸CTP和多点触摸CTP。 1、实现原理 电容式触摸屏的采用多层ITO膜,形成矩阵式分布,以X、Y交叉分布作为电容矩阵,当手指触碰屏幕时,通过对X、Y轴的扫描,检测到触碰位置的电容变化,进而计算出手指触碰点位置。电容矩阵如下图1所示。 图1 电容分布矩阵 电容变化检测原理示意简介如下所示: 名词解释: ε0:真空介电常数。 ε1 、ε2:不同介质相对真空状态下的介电常数。 S1、d1、S2、d2分别为形成电容的面积及间距。

电容式触摸屏设计规范精典

电容式触摸屏设计规范【导读】:本文简单介绍了电容屏方面的相关知识,正文主要分为电子设 计和结构设计两个部分。电子设计部分包含了原理介绍、电路设计等方面,结构设计部分包好了外形结构设计、原料用材、供应商工艺等方面 【名词解释】 1. V.A区:装机后可看到的区域,不能出现不透明的线路及色差明显的区域等。 2. A.A区:可操作的区域,保证机械性能和电器性能的区域。 3. ITO:Indium Tin Oxide氧化铟锡。涂镀在Film或Glass上的导电材料。 4. ITO FILM:有导电功能的透明PET胶片。 5. ITO GALSS:导电玻璃。 6. OCA:Optically Clear Adhesive光学透明胶。 7. FPC:可挠性印刷电路板。 8. Cover Glass(lens):表面装饰用的盖板玻璃。 9. Sensor:装饰玻璃下面有触摸功能的部件。(Flim Sensor OR Glass Sensor) 【电子设计】 一、电容式触摸屏简介 电容式触摸屏即Capacitive Touch Panel(Capacitive Touch Screen),,根据应CTP和互电容式CTP。根据其驱动原理不同可分为自电容式CTP简称. 用领域不同可分为单点触摸CTP和多点触摸CTP。 1、实现原理 电容式触摸屏的采用多层ITO膜,形成矩阵式分布,以X、Y交叉分布作为电容矩阵,当手指触碰屏幕时,通过对X、Y轴的扫描,检测到触碰位置的电容变化,进而计算出手指触碰点位置。电容矩阵如下图1所示。 1 电容分布矩阵图 电容变化检测原理示意简介如下所示:名词解释::真空介电常数。ε0 ε2:不同介质相对真空状态下的介电常数。ε1 、d2S2d1S1、、、分别为形成电容的面积及间距。

感应按键原理

电容式触摸感应按键的基本原理 ◆Silicon Labs 现提供一种可侦测因触摸而改变的电容的方法 电容式触摸感应按键的基本原理就是一个不断地充电和放电的张弛振荡器。如果不触摸开关,张弛振荡器有一个固定的充电放电周期,频率是可以测量的。如果我们用手指或者触摸笔接触开关,就会增加电容器的介电常数,充电放电周期就变长,频率就会相应减少。所以,我们测量周期的变化,就可以侦测触摸动作。 具体测量的方式有二种: (一)可以测量频率,计算固定时间内张弛振荡器的周期数。如果在固定时间内测到的周期数较原先校准的为少,则此开关便被视作为被按压。 (二)也可以测量周期,即在固定次数的张弛周期间计算系统时钟周期的总数。如果开关被按压,则张弛振荡器的频率会减少,则在相同次数周期会测量到更多的系统时钟周期。 Silicon Labs推出的C8051F9xx微控制器(MCU)系列,可通过使用芯片上比较器和定时器实现触摸感应按键功能,连接最多23个感应按键。而且无须外部器件,通过PCB走线/开关作为电容部分,由内部触摸感应按键电路进行测量以得知电容值的变化。

◆以Silicon Labs的MCU实现触摸感应按键 利用Silicon Labs其它MCU系列,仅需搭配无源器件,即可实现电容式触摸感应按键方案。与C8051F93x-F92x方案相比,唯一所需的外部器件是(3+N) 电阻器,其中N是开关的数目,以及3个提供反馈的额外端口接点。C8051F93x-F92x 之外,Silicon Labs其它MCU系列可直接连接12个开关,或者通过外部模拟多路复用器连接更多开关。 设计触摸感应按键开关 因为我们要侦测电容值的变化,所以希望变化幅度越大越好。现在,有三个主要因素会影响开关电容及变化幅度。 ?PCB上开关的大小、形状和配置 ?PCB走线和使用者手指间的材料种类 ?连接开关和MCU的走线特性 我们测试了下图中这12种不同开关。目的是为了发现开关的形状尺寸会如何影响开关的空闲和被接触的状态,还可以发现哪一种开关的空闲电容最大,就不容易被PCB上的寄生电容而影响。测试结果表明,在特定区域中的开关越大且走线越多,则此开关的闲置电容便越高。图中的环状开关具有最低的电容,所以当开关动作时,可显现最大的电容相对变化。

触摸按键设计要求教案资料

触摸按键设计要求

触摸按键画板法 (以下所提到的芯片为HT45R34) ●Sensor pad形状: Sensor pad形状可以为圆形,方形,三角形(实心型),抑可以线条构成此类圆形(镂空型),前者用于覆盖板较厚的情况。后者则用于覆盖板较薄的情况下。推荐用圆形,感应效果更佳。 ●Sensor pad尺寸: Sensor pad面积越大灵敏度越大,但超过手指按压范围的部分对增加灵敏度没有作用。以圆形为例,一般设计为10m m~15mm的直径,符合成人手指的大小。 ●Sensor pad与ground plane之间的间隔: 间隔越大,touch swith的基础电容越小,RC震荡的频率越大,灵敏度也越大,但间隔太大,地对电场的约束越小,干扰越大;间隔太小,基础电容太大,灵敏度太小,且地对电场的约束太大,不利于电场穿透覆盖板,使得覆盖板只能较薄。推荐的间隔为0.5m m~ 1.0mm,例如10mm直径的sensor pad配合0.5mm的间隔。 ●布局要求: Sensor pad 要靠近MCU,每一个Sensor Pad到MCU的距离要尽量一致。IN,RREF,CREF引出脚要短,该RC模块要靠近MCU。另外,复位电路,晶振电路要靠近MCU。 布线要求:

由MCU的RC1~RC16PIN到touch swith的连线,要尽量的短,尽量远离其他走线或元件,线宽尽量窄(7~10mil).要避免touch swith的连线临近高频的通信线(例如I2C SPI通信线),在没有办法避免的情况下,请让两者直交布线。尽量将到touch swith的连线布在与S ensor Pad不同的Layer (采用双面板时),使其受到人体的影响降低,且这些线与线之间的也要尽量互相远离,线周围也要铺上地,以保证其尽量少受到其他信号的干扰。 ●覆盖板的材料: 覆盖板为一些坚固,易安装的绝缘材料,介电常数在2.5~10之间,Demo Board 上采用的是压克力板材,还有很多可采用的板材,例如:普通玻璃,徽晶板等,覆盖板的介电常数越小,Sensor Padde的感应范围越小。安装要求覆盖板紧贴Sensor Pad的表面,用粘胶将其贴在Sensor Pad的表面(排掉它们之间的空气)则效果更佳。 ●覆盖板的厚度: 覆盖板的厚度一般为1mm~5mm,厚度越大touch swith的灵敏度越小,信噪比也越低。Sensor Pad的面积越小,覆盖板要越薄。

电容式触摸按键布线

电容式触摸按键布线分享 1):电容式触摸按键特点及应用 与传统的机械按键相比,电容式触摸感应按键不仅美观时尚而且寿命长,功耗小,成本低,体积小,持久耐用。它颠覆了传统意义上的机械按键控制,只要轻轻触碰,他就可以实现对按键的开关控制,量化调节甚至方向控制,现在电容式触摸感应按键已经广泛用于手机,DVD,电视,洗衣机等一系列消费类电子产品中! 2):电容式触摸按工作基本原理 所谓感应式触摸按键,并不是要多大的力量去按,相反,力量大和小的效果是一样的,因为外层一般是一块硬邦邦的塑料壳。具体就电容式而言,是利用人手接触改变电容大小来实现的,通俗点,你手触摸到哪个位置,那里的电容就会发生变化,检测电路就会检测到,并将由于电容改变而带来的模拟信号的改变转化为数字信号的变化,进行处理! 3): 电容式触摸按电容构成及判断 PCB材料构成基本电容,PCB上大面积的焊盘(触摸按键)与附近的地构成的分布电容,由于人体电容的存在,当手指按上按键后,改变了分布电容的容量(原来的电容并上了人体电容),通过对PAD构成的分布电容充放电或构成振荡电路,再检测充放电的时间,或者振荡频率,脉冲宽度等方式可以检测电容容量的变化,继而可判断按键是否被按下。 电容式触摸按键布板要求 1): PCB板的电容构成因素: PCB板中电容构成因素如右图: 其中代表PCB板最终生成电容

代表空气中的介质常数 代表两板电介质常数 代表两极板面面积 代表两板距离 2): PCB板的布局 电容式感应触摸按键实际只是PCB上的一小块覆铜焊盘,当没有手指触摸时,焊盘和低型号产生约5—10PF的电容值,我们称之为“基准电容”故为了PCB设计尽量达到这值,PCB需要进行更好设计!如下图:

电容式触摸屏设计规范-A

电容式触摸屏设计规范

1 目的 规范电容式触摸屏(投射式)的设计,提高设计人员的设计水平及效率,确保触摸屏模块整体的合理性及可靠性。 2 适用范围 第五事业部TP厂技术部电容式触摸屏设计人员。 3 工程图设计 3.1 工程图纸为TP模块的成品管控,以及出货依据,包含以下内容: 3.1.1 正面视图: 该视图包含TP外形、view area、active area、FPC图形及相关尺寸.若TP需作表面处理,则必须对LOGO的位置、尺寸、材质、颜色、以及工艺进行标注。 需标注尺寸及公差如下: 3.1.2 侧视图: 该视图表示出TP的层状结构, TP各层的厚度、材质、FPC厚度(含IC等元件)必须标注。 需要标注尺寸及公差如下:

3.1.3 反面视图: 这一图层包含背胶、保护膜、泡棉及导光膜的外形尺寸,以及FPC背面的IC及元件区尺寸。 需要标注尺寸及公差如下: 3.1.4 FPC出线图:一般情况FPC的表示可以在正面视图中完成,主要反应FPC与主板的连接方式。如果FPC连接方式为ZIF ,则必须标注以下尺寸。 如果TP与主板的连接方式为B2B,则必须标注连接器的位置尺寸及公差。走线图,出线对照表: 走线图表示TP内部走线,如下图所示: 出线表为TP内部与外界的连接接口,电容的一般分I2C、SPI、USB,如下图所示: I2C接口

USB接口 3.2 文字说明 该部分对TP的常规非常规性能作重点表述,主要包括以下内容: 3.2.1 结构特性:包括lens材质,ITO膜的厂家及型号,IC型号3.2.2 光学特性:包括透光率,雾度,色度等 3.2.3 电气特性:工作电流,反应时间等 3.2.3 机械特性:输入方式,表面硬度等 3.2.4 环境特性:工作温度,储存温度,符合BHS-001标准等 以上特性如超出行业规格范围,需逐一标注,并让客户确认。 3.3 图档管理 图档管理这块需按以下原则进行相应维护: 3.3.1 按照命名规则填写图框,并签名。 3.3.2 如有更改需有更改记录及版本升级,并需客户确认。

四大触摸屏技术工作原理及特点分析

四大触摸屏技术工作原理及特点分析 为了操作上的方便,人们用触摸屏来代替鼠标或键盘。工作时,我们必须首先用手指或其它物体触摸安装在显示器前端的触摸屏,然后系统根据手指触摸的图标或菜单位置来定位选择信息输入。触摸屏由触摸检测部件和触摸屏控制器组成;触摸检测部件安装在显示器屏幕前面,用于检测用户触摸位置,接受后送触摸屏控制器;而触摸屏控制器的主要作用是从触摸点检测装置上接收触摸信息,并将它转换成触点坐标,再送给CPU,它同时能接收CPU发来的命令并加以执行。 触摸屏的主要类型 按照触摸屏的工作原理和传输信息的介质,我们把触摸屏分为四种,它们分别为电阻式、电容感应式、红外线式以及表面声波式。每一类触摸屏都有其各自的优缺点, 要了解那种触摸屏适用于那种场合,关键就在于要懂得每一类触摸屏技术的工作原理和特点。下面对上述的各种类型的触摸屏进行简要介绍一下: 1. 电阻式触摸屏 电阻式触摸屏的工作原理这种触摸屏利用压力感应进行控制。电阻触摸屏的主要部分是一块与显示器表面非常配合的电阻薄膜屏,这是一种多层的复合薄膜,它以一层玻璃或硬塑料平板作为基层,表面涂有一层透明氧化金属(透明的导电电阻)导电层,上面再盖有一层外表面硬化处理、光滑防擦的塑料层、它的内表面也涂有一层涂层、在他们之间有许多细小的(小于1/1000 英寸)的透明隔离点把两层导电层隔开绝缘。当手指触摸屏幕时,两层导电层在触摸点位置就有了接触,电阻发生变化,在X 和Y 两个方向上产生信号,然后送触摸屏控制器。控制器侦测到这一接触并计算出(X,Y)的位置,再根据模拟鼠标的方式运作。这就是电阻技术触摸屏的最基本的原理。电阻类触摸屏的关键在于材料科技,常用的透明导电涂层材料有:(1)ITO,氧化铟,弱导电体,特性是当厚度降到1800 个埃(埃=10-10米)以下时会突然变得透明,透光率为80%,再薄下去透光率反而下降,到300 埃厚度时又上升到80%。ITO 是所有电阻技术触摸屏及电容技术触摸屏都用到的主要材料,实际上电阻和电容技术触摸屏的工作面就是ITO 涂层。 (2)镍金涂层,五线电阻触摸屏的外层导电层使用的是延展性好的镍金涂层材料,

多点触摸电容屏技术实现

https://www.360docs.net/doc/d42707151.html, 多点触摸电容屏技术实现 电容屏多点触摸顾名思义就是识别到两个或以上手指的触摸。然而多点触摸技术目前有两种:Multi-Touch Gesture和Multi-Touch All-Point。 多点触摸电容屏技术通俗地讲,就是多点触摸识别手势方向和多点触摸识别手指位置。我们现在看到最多的是Multi-Touch Gesture,即两个手指触摸时,可以识别到这两个手指的运动方向,但还不能判断出具体位置,可以进行缩放、平移、旋转等操作。这种多点触摸的实现方式比较简单,轴坐标方式即可实现。把ITO分为X、Y轴,可以感应到两个触摸操作,但是感应到触摸和探测到触摸的具体位置是两个概念。XY轴方式的触摸屏可以探测到第2个触摸,但是无法了解第二个触摸的确切位置。单一触摸在每个轴上产生一个单一的最大值,从而断定触摸的位置,如果有第二个手指触摸屏面,在每个轴上就会有两个最大值。这两个最大值可以由两组不同的触摸来产生,于是系统就无法准确判断了。 Multi-Touch All-Point基于互电容的检测方式,而不是自电容,自电容检测的是每个感应单元的电容(也就是寄生电容Cp)的变化,有手指存在时寄生电容会增加,从而判断有触摸存在,而互电容是检测行列交叉处的互电容(也就是耦合电容Cm)的变化,如图2所示,当行列交叉通过时,行列之间会产生互电容(包括:行列感应单元之间的边缘电容,行列交叉重叠处产生的耦合电容),有手指存在时互电容会减小,就可以判断触摸存在,并且准确判断每一个触摸点位置。Truetouch的产品系列可以分成三类,单点触摸, 多点触摸识别方向(multi-touch gesture)以及多点触摸识别位置( multi-touch all-point)。每一类又有各种型号,在屏幕尺寸、扫描速度、通讯方式、存储器大小、功耗等方面作了区别,可以满足不同的应用。Truetouch系列是基于PSoC技术的,所以这些器件可以使用简单方便但功能强大的PSoC designer软件环境进行设计。TrueTouch方案的价值主要体现在以下几个方面:保持了触摸屏固有的美观、轻、薄特点,可以使客户的产品脱颖而出;采用感应电容触摸屏技术,不需机械器件,更耐用;拥有完整的系列,从单点触摸,到多点触摸识别方向,再到多点触摸识别位置;基于PSoC技术,使用灵活,可以和众多的LCD和ITO配合使用;PSoC所有的价值在Truetouch里都能体现,例如灵活性,可编程性等等,可以缩短开发周期,使产品快速上市,还有集成度高,可以把很多外围器件集成到PSoC(即Truetouch产品),这样不仅可以降低系统成本以外,还可以降低总体功耗,提高电源效率。 1

电容式触摸屏的通讯接口设计方案

电容式触摸屏的通讯接口设计方案 随着手机、PDA等便携式电子产品的普及,人们需要更小的产品尺寸和更大的LCD显示屏。受到整机重量和机械设计的限制,人机输入接口开始由传统的机械按键向电阻式触摸屏过渡。2007年iPhone面世并取得了巨大成功,它采用的电容式触摸屏提供了更高的透光性和新颖的多点触摸功能,开始成为便携式产品的新热点,并显现出成为主流输入接口方式的趋势。 一、 Cypress TrueTouch?电容触摸屏方案介绍 Cypress PSoC技术将可编程模拟/数字资源集成在单颗芯片上,为感应电容式触摸屏提供了TrueTouch?解决方案,它涵盖了从单点触摸、多点触摸识别手势到多点触摸识别位置的全部领域。配合高效灵活的PSoC Designer 5.0 开发环境,Cypress TrueTouch?方案正在业界获得广泛的应用。 图1是Cypress TrueTouch?方案中经常使用的轴坐标式感应单元矩阵的图形,类似于触摸板,将独立的ITO 感应单元串联在一起可以组成Y 轴或X 轴的一个感应单元,行感应单元组成Y 轴,列感应单元组成X 轴,行和列在分开的不同层上。多点触摸识别位置方法是基于互电容的触摸检测方法(行单元上加驱动激励信号,列单元上进行感应,有别于激励和感应的是同一感应单元的自电容方式),可以应用于任何触摸手势的检测,包括识别双手的10 个手指同时触摸的位置(图2)。它通过互电容检测的方式可以完全消除“鬼点”,当有多个

触摸点时,仅当某个触摸点所在的行感应单元被驱动,列感应单元被检测时,才会有电容变化检测值,这样就可以检测出多个行 / 列交*处触摸点的绝对位置。 图1 轴坐标式感应单元矩阵的图形

触摸按键设计规范

cx电压从0开始充电,一直到v1 上图右边是一个最基本的触摸按键,中间圆形绿色的为铜(我们可以称之为按键),在这些按键中会引出一根导线与MAU相连,MAU通过这些导线来检测是否有按键按下,外围的绿色也是铜不过这些铜与GND大地相连,在按键和外围铜直接是空隙(空隙d)上图右边是左图的截面图,当没有手指接触时只有一个电容cp,,当有手指接触时,按键通过手指就形成了电容cf 二。硬件连接 电容式触摸按键原理 现阶段,随着电容式触摸按键在外形美观和使用寿命等方面都优于传统的机械按键,电容式触摸按键的应用领域也日益广泛,包括家电、消费电子、工业控制和移动设备等。本文就一种具体的电容式触摸开关芯片SJT5104介绍一下电容式触摸按键的基本工作原理和材料选择。 一工作原理 任何两个导电的物体之间都存在着感应电容,一个按键即一个焊盘与大地也可构成一个感应电容,在周围环境不变的情况下,该感应电容值是固定不变的微小值。当有人体手指靠近触摸按键时,人体手

指与大地构成的感应电容并联焊盘与大地构成的感应电容,会使总感应电容值增加。电容式触摸按键IC在检测到某个按键的感应电容值发生改变后,将输出某个按键被按下的确定信号。电容式触摸按键因为没有机械构造,所有的检测都是电量的微小变化,所以对各种干扰会更加敏感,因此触摸按键设计、触摸面板的设计以及触摸IC的选择都十分关键。 二触摸PAD设计 1. 触摸PAD材料 触摸PAD可以用PCB铜箔、金属片、平顶圆柱弹簧、导电棉、导电油墨、导电橡胶、导电玻璃的ITO层等。不管使用什么材料,按键感应盘必须紧密贴在面板上,中间不能有空气间隙。当用平顶圆柱弹簧时,触摸线和弹簧连接处的PCB,镂空铺地的直径应该稍大于弹簧的直径,保证弹簧即使被压缩到PCB板上,也不会接触到铺地。 2. 触摸PAD形状 原则上可以做成任意形状,中间可留孔或镂空。作者推荐做成边缘圆滑的形状,可以避免尖端放电效应。一般应用圆形和正方形较常见。 3. 触摸PAD面积大小 按键感应盘面积大小:最小4mm×4mm,最大30mm×30mm。实际面积大小根据灵敏度的需求而定,面积大小和灵敏度成正比。一般来说,

触屏技术

触屏技术 电阻式触摸屏 电阻式触摸屏的工作原理电阻式触摸屏是一种传感器,它将矩形区域中触摸点(X,Y)的物理位置转换为代表X坐标和Y坐标的电压。很多LCD模块都采用了电阻式触摸屏,这种屏幕可以用四线、五线、七线或八线来产生屏幕偏置电压,同时读回触摸点的电压。电阻式触摸屏基本上是薄膜加上玻璃的结构,薄膜和玻璃相邻的一面上均涂有ITO(纳米铟锡金属氧化物)涂层,ITO具有很好的导电性和透明性。当触摸操作时,薄膜下层的ITO会接触到玻璃上层的ITO,经由感应器传出相应的电信号,经过转换电路送到处理器,通过运算转化为屏幕上的X、Y值,而完成点选的动作,并呈现在屏幕上。 触摸屏原理 触摸屏包含上下叠合的两个透明层,四线和八线触摸屏由两层具有相同表面电阻的透明阻性材料组成,五线和七线触摸屏由一个阻性层和一个导电层组成,通常还要用一种弹性材料来将两层隔开。当触摸屏表面受到的压力(如通过笔尖或手指进行按压)足够大时,顶层与底层之间会产生接触。所有的电阻式触摸屏都采用分压器原理来产生代表X坐标和Y坐标的电压。如图3,分压器是通过将两个电阻进行串联来实现的。上面的电阻(R1)连接正参考电压(VREF),下面的电阻(R2)接地。两个电阻连接点处的电压测量值与下面那个电阻的阻值成正比。 为了在电阻式触摸屏上的特定方向测量一个坐标,需要对一个阻性层进行偏置:将它的一边接VREF,另一边接地。同时,将未偏置的那一层连接到一个ADC的高阻抗输入端。当触摸屏上的压力足够大,使两层之间发生接触时,电阻性表面被分隔为两个电阻。它们的阻值与触摸点到偏置边缘的距离成正比。触摸点与接地边之间的电阻相当于分压器中下面的那个电阻。因此,在未偏置层上测得的电压与触摸点到接地边之间的距离成正比。 四线触摸屏

电容触摸按键设计

在目前市场上可提供的PCB(印刷电路板)基材中,FR4是最常用的一种。FR4是一种玻璃纤维增强型环氧树脂层压板,PCB可以是单层或多层。 在触摸模块的尺寸受限的情况下,使用单层PCB不是总能行得通的,通常使用四层或两层PCB。在本文中,我们将以最常用的两层PCB为例来介绍PCB布局,意在为S-Touch TM电容触摸感应设计所用的各种PCB (如FR4、柔性PCB或ITO面板)的结构和布局提供设计布局指导。 PCB设计与布局 在结构为两层的PCB中,S-Touch TM触摸控制器和其他部件被布设在PCB的底层,传感器电极被布设在PCB的顶层。 每个传感器通道所需的调谐匹配电容器可以直接布设在该传感器电极的底层。需要指出的是,S-Touch TM触摸控制器布设在底层,应该保证其对应的顶层没有布设有任何传感器电极。顶层和底层的空白区域可填充网状接地铜箔。 图 2.1 两层 PCB 板的顶层

图 2.2 两层 PCB 板的底层 设计规则第1 层(顶层) ?传感器电极位于PCB的顶层(PCB的上端与覆层板固定在一起)。为提高灵敏度,建议使用尺寸为10 x 10 毫米的感应电极。可以使用更小尺寸的感应电极,但会降低灵敏度。同时,建议感应电极的尺寸不超过15 x 15 毫米。如果感应电极超过这一尺寸,不但会降低灵敏度,而且会增加对噪声的易感性。 ?空白区域可填充接地铜箔(迹线宽度为6 密耳,网格尺寸为30 密耳)。 ?顶层可用来布设普通信号迹线(不包括传感器信号迹线)。应当尽可能多地把传感器信号迹线布设在底层。 ?感应电极与接地铜箔的间距至少应为0.75 毫米。 第2 层(底层) ?S -Touch TM控制器和其它无源部件应该设计布局在底层。 ?传感器信号迹线将被布设在底层。不要把一个通道的传感器信号迹线布设在其他传感通道的感应电极的下面。 ?空白区域可填充接地铜箔(迹线宽度为6 密耳,网格尺寸为30密耳)。 ?传感器信号迹线与接地铜箔的间距应当至少是传感器信号迹线宽度的两倍。

基于STM8的触摸按键方案

基于STM8的电容感应式触摸按键方案在 电磁炉中的应用 1、引言 相较于机械式按键和电阻式触摸按键,电容式触摸按键不仅耐用,造价低廉,结构简单易于安装,防水防污,而且还能提供如滚轮、滑动条的功能。但是电容式触摸按键也存在很多的问题,因为没有机械构造,所有的检测都是电量的微小变化,所以对各种干扰敏感得多。ST 针对家电应用特别是电磁炉应用,推出了一个基于 STM8系列8位通用微控制器平台的电容式触摸感应方案,无需增加专用触摸芯片,仅用简单的外围电路即可实现电容式触摸感应功能,方便客户二次开发。 2、方案介绍 ST的电容式触摸按键方案通过一个电阻和感应电极的电容CX构成的阻容网络的充电/放电时间来检测人体触摸所带来的电容变化。如图1所示,当人手按下时相当于感应电极上并联了一个电容CT,增加了感应电极上的电容,感应电极进行充放电的时间会增加,从而检测到按键的状态。而感应电极可以直接在PCB板上绘制成按键、滚轮或滑动条的应用样式,也可以做成弹簧件插在PCB板上,即使隔着绝缘层(玻璃、树脂)也不会对其检测性能有所影响。 图1 STM8S电容式触摸按键的工作原理电磁炉是采用磁场感应电流的加热原理对食物进行加热。加热时,通过面板下方的线圈产生强磁场,磁力线穿过导磁体做的锅的底部时,锅具切割交变磁力线而在锅具底部产生涡流使锅底迅速发热,达到加热食物的目的。在本解决方案中采用44pin的STM8S105S4做按键显示板的主控芯片,控制13个按键的扫描、24个LED及一个4位数码管的显示、I2C与主板的通讯,并留有一个SWIM接口方便工程师调试之用(如图2)。

图2 电磁炉按键板原理 STM8S105S4采用的是ST高级STM8内核,具备3级流水线的哈佛结构,3.0~5.5V工作电压,内部16MHz RC可提供MCU 16MHz工作频率,提供低功耗模式和外设时钟关闭功能,共有34个I/O可用。 STM8S105S4 具有2KB的RAM和16KB的FLASH,还有可达30万次擦写次数的1KB EEPROM数据存储器。 3、电磁炉工作环境中的干扰 ①电磁干扰 电磁炉在加热锅的同时,也会在电路板上感应电极正向或反向的电流,从而会缩短或增长按键充放电时间,会对按键的检测造成很大影响,甚至产生误动作,常见的方法采用硬件屏蔽和过零点检测来消除电磁辐射对按键的影响。 硬件屏蔽 在STM8S的解决方案中,ST提供了感应电极和走线的设计规范和如图3所示的Driven Shield功能(在Shield线上提供与按键管脚相同的驱动信号,电极与Shield之间的寄生电容就不会被充放电),能有效地减少感应电极走线的寄生电容对按键灵敏度的影响。 图3 Driven Shield 过零点检测

电容式触摸屏原理和技术的特点

电容式触摸屏原理和技术的特点 电容式触摸屏是通过在基材上镀上一层或者多层导电材料(比如铟锡氧化物ITO)而制成,之后与保护盖板密封贴合以保护电极。当其它的导电体,比如裸露的手指或者导电笔触摸到它的表面,一个电子回路就在那里形成,感应器嵌入在玻璃里面以检测电流的位置,就这样完成了一个触摸操作。 这种工作方式跟电阻TP依靠物理点击是完全不一样的。 电容式触摸屏可以分为以下两大类: Surface Capacitive-表面电容式 在玻璃基板上镀上透明导电涂层,然后在导电涂层上增加一层保护涂层。电极被放置在玻璃的四个角上,四个角都被施加上相同的相位电压,在玻璃表面形成一个匀强电场。当手指触摸到玻璃表面,电流将从玻璃的四个角上流经手指,从四个角上流经的电流比例将被测量以判断触摸点的具体位置。测量出来的电流值跟触摸点到四个角的距离是成反比的。 技术特点: ◆更适合大尺寸的显示器 ◆对很轻的触摸都有反应,而且不需要感应实际的物理压力

◆由于只有一层玻璃,产品的透过率很高 ◆结构坚固,因为它只由一层玻璃组成 ◆潮湿、灰尘和油污对触摸效果不会产生影响 ◆视差小 ◆高分辨率和高响应速度 ◆不支持裸露手指与带手套组合操作,不支持裸露手指与手写笔组合操作 ◆不支持多点触摸 ◆有可能被噪声干扰 Projected Capacitive-投射电容式 相比表面电容式,投射电容式触摸屏通常用在较小的屏幕尺寸上,内部结构上包括一个集成了IC芯片用于处理数据的线路板,拥有指定图案的许多透明电极层,表面上覆盖一层绝缘的玻璃或者塑料盖板。当手指接近触摸屏表面,静电电容在多个电极间同时变化,通过测量这些电流之间的比例,可以精确地判断出接触的位置。 投射电容式技术有两种感应方式:栅格式和线感式。人体能够导电是因为含有大量的水份,当手指靠近X和Y电极的图案,在手指和电极间将产生一个耦合电容,耦合电容会使

电容式触摸屏FPC设计

题目(中文): 电容式触摸屏FPC设计 (英文): The FPC Design of Capacitive Touch Screen 姓名 学号 院(系)电子工程系 专业、年级电子信息工程级 指导教师

湖南科技学院本科毕业论文(设计)诚信声明 本人郑重声明:所呈交的本科毕业论文(设计),是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议,除文中已经注明引用的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担。 本科毕业论文(设计)作者签名: 年月日

毕业论文(设计)任务书 课题名称:电容式触摸屏FPC设计 学生姓名: 系别:电子工程系 专业:通信工程 指导教师:

湖南科技学院本科毕业论文(设计)任务书 1、主题词、关键词: 柔性电路感应器连接器 2、毕业论文(设计)内容要求: (1)能让IC控制sensor,使sensor能够完美触摸,不受外界干扰; (2)可自由弯曲、折叠、卷绕,可在三维空间随意移动及伸缩; (3)实现轻量化、小型化、薄型化,从而达到元件装置和导线连接一体化。 3、文献查阅指引: [1] 祝大同.挠性PCB用基板材料的技术发展趋势与需求预测[J].印刷电路资讯期刊,2007, 5:2-15. [2] 舒言.电路的柔性未来[J].中国知网期刊,2011,3:7-11. [3] 蔡吉庆.FPC材料的基础动向[M].北京:印刷电路信息出版社,2008. [4] 金鸿,陈森.印刷电路技术[M].北京:化学工业出版社,2003. [5] 梁志立.柔性电路板生产技术[M].天津:天津大学出版社,2009. [6] 薛炎,胡腾,程跃华.中文版AutoCAD 2006 基础教程[M].北京:清华大学出版社,2008. [7] 陈伟.电容屏触摸原理教育训练教材[M].北京:电子工业出版社,2011. [8]Alexander CK,Sadiku M N O.Fundamentals of Electric Circuits.[M]:McGraw--Hill ICC,2004. [9] 凡春芳,石世宏.触控面板FPC改型设计[J].科技致富向导期刊,2011,4:15-21. [10] 王学屯.元器件生产及封装工艺[M].北京:电子工业出版社,2008. 4、毕业论文(设计)进度安排: 2012.11月-2012.12月根据任务书查阅资料,写好开题报告。 2013.01月-2013.03月在对资料充分研究的基础上,确定方案,编写程序。 2013.03月-2013.4月对系统进行调试,完成毕业论文的撰写。 2013.05月完成论文修改并定稿,准备答辩。 教研室意见: 负责人签名: 注:本任务书一式三份,由指导教师填写,经教研室审批后一份下达给学生,一份交指导教师,一份留系里存档。

相关文档
最新文档