线性代数上18线性子空间

线性代数教案-向量与向量空间

线性代数教学教案 第3章 向量与向量空间 授课序号01 教 学 基 本 指 标 教学课题 第3章 第1节 维向量及其线性运算 课的类型 新知识课 教学方法 讲授、课堂提问、讨论、启发、自学 教学手段 黑板多媒体结合 教学重点 维向量的概念、向量的线性运算的性质 教学难点 向量的线性运算的性质 参考教材 同济版《线性代数》 作业布置 课后习题 大纲要求 理解维向量的概念 教 学 基 本 内 容 一. 维向量的概念 1.维向量:由个数组成的有序数组称为维向量. 2.称为维行向量,称为维列向量. 二.维向量的线性运算 1.定义: (1)分量全为0的向量称为零向量; (2)对于,称为的负向量; (3)对于,,当且仅当时,称与相等; (4)对于,,称为与的和; (5)对于,,称为与的差; (6)对于,为实数,称为的数乘,记为. 2.向量的线性运算的性质:对任意的维向量和数,有: n n n n n n n a a a ,,,21 n ),,,(21n a a a n 12?????????????? n a a a n n ()12T n αa ,a ,,a = ()12---T n a ,a ,,a αT n a a a ),,,(21 =αT n b b b ),,,(21 =β),,2,1(n i b a i i ==αβT n a a a ),,,(21 =αT n b b b ),,,(21 =βT n n b a b a b a ),,,(2211+++ αβT n a a a ),,,(21 =αT n b b b ),,,(21 =β()1122---T n n a b ,a b ,,a b αβT n a a a ),,,(21 =αk T n ka ka ka ),,,(21 ααk n γβα,,l k ,

同济大学线性代数教案第一章线性方程组与矩阵

线性代数教学教案 第一章线性方程组与矩阵 授课序号01 1112121 2 n n m m mn a a a a a a ?? ?? ??? ,有时为了强调矩阵的行数和列数,也记为

n a ???. 212 n n n nn a a a ? ??? . 1112 00n n nn a a a a ?? ?? ? ? ?与上三角矩阵200 n nn a ? ??? . 000 0n a ??? ??? ,或记为100 1? ???? . 负矩阵的定义:对于矩阵()ij m n a ?=A ,称矩阵21 22 n m m m mn mn b a b a b ?? +++? ,

a b+

21 2 n m m mn a a a ????,转置矩阵212.m n n nm a ? ??? 矩阵的转置满足的运算规律(这里k 为常数,A 与B 为同型矩阵)阶方阵()ij a =A 如果满足222n n m mn n a x +21 2 n m m mn a a a ????称为该线性方程组的系数矩阵n x ???,m b = ? ??? β,有:

2221122221 21122n n n m m mn n m m mn n a a a x a x a x a x ??? ? =??? ???? ? ++ +????? . 再根据矩阵相等的定义,该线性方程组可以用矩阵形式来表示:=Ax β.

授课序号02 21 2 t s s st ????A A A ,21 2 t s s st ? = ? ??? B B B B ,的行数相同、列数相同,则有 21 22 t s s s st st ?? ±±±? B A B A B . 111221 2 t s s st ? ? ??? A A A A A ,都有21 2 t s s st k k ? ??? A A A .

线性代数教案设计

线性代数 课程教案 学院、部 系、所 授课教师 课程名称线性代数 课程学时45学时 实验学时 教材名称 年月日 线性代数课程教案

授课类型 理论课 授课时间 3 节 授课题目(教学章节或主题):第一章 行列式 §1 二阶与三阶行列式 §2 全排列及其逆序数 §3 n 阶行列式的定义 §4 对换 本授课单元教学目标或要求: 1. 会用对角线法则计算2阶和3阶行列式。 2. 知道n 阶行列式的定义。 本授课单元教学内容(包括基本内容、重点、难点,以及引导学生解决重点难点的方法、例题等): 基本内容:行列式的定义 1. 计算排列的逆序数的方法 设12n p p p 是1,2,,n 这n 个自然数的任一排列,并规定由小到大为标准次序。 先看有多少个比1p 大的数排在1p 前面,记为1t ; 再看有多少个比2p 大的数排在2p 前面,记为2t ; …… 最后看有多少个比n p 大的数排在n p 前面,记为n t ; 则此排列的逆序数为12n t t t t =+++ 。 2. n 阶行列式 121211 1212122212() 1 2(1)n n n n t p p np p p p n n nn a a a a a a D a a a a a a = = -∑ 其中12n p p p 为自然数1,2,,n 的一个排列,t 为这个排列的逆序数,求和符号∑是对所有排列 12()n p p p 求和。 n 阶行列式D 中所含2n 个数叫做D 的元素,位于第i 行第j 列的元素ij a ,叫做D 的(,)i j 元。 3. 对角线法则:只对2阶和3阶行列式适用 1112 112212212122 a a D a a a a a a = =-

同济大学线性代数教案第五章线性空间与线性变换

线性代数教学教案 第五章线性空间与线性变换 授课序号01 是一个非空集合,为实数域 中任一数 ): ββ +=+

就称为实数域是实数域 上线性空间,上线性空间}++∈ 1010,,,n a x a a a a , 对于通常的多项式加法、数乘多项式的乘法构成线性空间. ()[]} ,b x a 为上的连续函数[,a (212 1n ij m m mn a i a a a ??? ≤??? )是非空的, ()m n M ?对通常的矩阵加法和数乘构成线性空间(1112 2122212 1,n ij n m nn a a a a M a i a a a ?? ? ? ≤???

0a 对于通常的多项式加法和乘数运算不构成线性空间. x ,在其中定义加法及乘数运算为) ,验证对上述加法与乘数运算构成线性空间7 在实数域 上线性空间(212 1,n ij n m nn a i a a a ??? ≤??? nn a a ? ???? )的非空子集,且)关于)M 的加法和数乘是封闭的,所以)是()n M 的一个子空

授课序号02 个元素,,,ααα满足,,,ααα总可由,,,ααα那么,12,, ,n ααα就称为线性空间,, ,ααα是线性空间,,,x x x 12,, ,n x x x 12,, ,n ααα下的坐标,并记作,, ,ααα与,,,βββ

,,,ααα2,,,n βββ的基变换公式,矩阵P ,, ,ααα,,,βββ,,,βββ在基12,, ,n ααα下的坐标为,在基,,,βββ,且由基12,,,n ααα到基,,,n βββ的过渡矩阵为矩阵n n x y =? ?? ????P 或 =n n y x ? ? ? ????? P . )()21221,2ij A a i j a a ? ==≤≤∈?? ??? ??? ? 中,由于对任一向量 ()有 1112a a ?= ) 的一个

线性代数向量空间自测题(附答案)

《第四章 向量空间》 自测题 (75分钟) 一、选择、填空(20分,每小题4分) 1. 下列向量集合按向量的加法和数乘运算构成R 上一个向量空间的是( )。 (A )R n 中,分量满足x 1+x 2+…+x n =0的所有向量; (B )R n 中,分量是整数的所有向量; (C )R n 中,分量满足x 1+x 2+…+x n =1的所有向量; (D )R n 中,分量满足x 1=1,x 2,…,x n 可取任意实数的所有向量。 2.设R 4 的一组基为,,,,4321αααα令 414433322211,,,ααβααβααβααβ+=+=+=+=, 则子空间}4,3,2,1,|{44332211=∈+++=i F k k k k k W i ββββ的维数为 ,它的一组基为 。 3. 向量空间R n 的子空间 },0|)0,,,,{(1121121R x x x x x x x W n n ∈=+=-- 的维数为 , 它的一组基为 。 4. 设W 是所有二阶实对称矩阵构成的线性空间,即?? ? ???????∈???? ??=R a a a a a W ij 2212 1211,则它的维数为 ,一组基为 。 5.若A=????? ? ? ?????? ?? ? - 10 0021021b a 为正交矩阵,且|A|=-1,则a = ,= 。 二、计算题(60分) 1.(15分)设R 3的两组基为: T T T )1,1,0(,)0,1,1(,)1,0,1(321===ααα和T T T )1,2,1(,)2,1,1(,)1,1,1(321===βββ, 向量α=(2,3,3)T (1)求由基321,,ααα到基321,,βββ的过渡矩阵。 (2)求α关于这两组基的坐标。 (3)将321,,βββ化为一组标准正交基。 2. (15分)在R 4 中,求下述齐次线性方程组的解空间的维数和基,

线性代数 向量空间

第五节 向量空间 分布图示 ★ 向量空间 ★ 例1 ★ 例2 ★ 例3 ★ 例4 ★ 例5 ★ 子空间 ★ 例6 ★ 例7 ★ 向量空间的基与维数 ★ 例8 ★ 例9 ★ 向量在基下的坐标 ★ 例10 ★ 关于集合的坐标系的注记 ★ 例11 ★ 内容小结 ★ 课堂练习 ★ 习题3-5 内容要点 一、向量空间与子空间 定义1 设V 为n 维向量的集合,若集合V 非空,且集合V 对于n 维向量的加法及数乘两种运算封闭, 即 (1) 若,,V V ∈∈βα则V ∈+βα; (2) 若,,R V ∈∈λα则V ∈λα. 则称集合V 为R 上的向量空间. 记所有n 维向量的集合为n R , 由n 维向量的线性运算规律,容易验证集合n R 对于加法及数乘两种运算封闭. 因而集合n R 构成一向量空间, 称n R 为n 维向量空间. 注:3=n 时, 三维向量空间3R 表示实体空间; 2=n 时, 维向量空间2R 二表示平面; 1=n 时, 一维向量空间1R 表示数轴. 3>n 时, n R 没有直观的几何形象. 定义2 设有向量空间1V 和2V , 若向量空间21V V ?, 则称1V 是2V 的子空间. 二、向量空间的基与维数 定义3 设V 是向量空间, 若有r 个向量V r ∈ααα,,,21 , 且满足 (1) r αα,,1 线性无关; (2) V 中任一向量都可由r αα,,1 线性表示. 则称向量组r αα,,1 为向量空间V 的一个基, 数r 称为向量空间V 的维数,记为r V =dim 并称V 为r 维向量空间. 注: (1) 只含零向量的向量空间称为0维向量空间, 它没有基; (2) 若把向量空间V 看作向量组,则V 的基就是向量组的极大无关组, V 的维数就是向量组的秩; (3) 若向量组r αα,,1 是向量空间V 的一个基,则V 可表示为 }.,,,,|{2111R x x V r r r ∈++==λλλαλαλ 此时, V 又称为由基r αα,,1 所生成的向量空间. 故数组r λλ,,1 称为向量x 在基r αα,,1 中的坐标. 注: 如果在向量空间V 中取定一个基r a a a ,,,21 , 那么V 中任一向量x 可惟一地表示为 ,2211r r a a a x λλλ+++= 数组r λλλ,,,21 称为向量x 在基r a a a ,,,21 中的坐标.

线性代数教案 第一章 行列式

第一章 行列式 本章说明与要求: 行列式的理论是从解线性方程组的需要中建立和发展起来的,它在线性代数以及其他数学分支上都有着广泛的应用.在本章里我们主要讨论下面几个问题: (1) 行列式的定义; (2) 行列式的基本性质及计算方法; (3) 利用行列式求解线性方程组(克莱姆法则). 本章的重点是行列式的计算,要求在理解n 阶行列式的概念,掌握行列式性质的基础上,熟练正确地计算三阶、四阶及简单的n 阶行列式. 计算行列式的基本思路是:按行(列)展开公式,通过降阶来计算.但在展开之前往往先利用行列式性质通过对行列式的恒等变形,使行列式中出现较多的零和公因式,从而简化计算.常用的行列式计算方法和技巧有:直接利用定义法,化三角形法,降阶法,递推法,数学归纳法,利用已知行列式法. 行列式在本章的应用是求解线性方程组(克莱姆法则).要掌握克莱姆法则并注意克莱姆法则应用的条件. 。本章的重点:行列式性质;行列式的计算。 。本章的难点:行列式性质;高阶行列式的计算;克莱姆法则。 §1.1 二阶与三阶行列式 行列式的概念起源于解线性方程组,它是从二元与三元线性方程组的解的公式引出来的. 设有二元线性方程组 ???=+=+2 2221211 112111b x a x a b x a x a (1) 用加减消元法知,当a 11a 22 – a 12a 21≠0时,有:211222112122211a a a a b a a b x --=, 21 12221121 12112a a a a a b b a x --= (2) 这是一般二元线性方程组的公式解.但公式很不好记忆,应用时不方便,因此,我们引进新的符号来表示(2)这个结果,这就是行列式的起源.我们称4个数组成的符号 2112221122 211211a a a a a a a a -=为二阶行列式. 它含有两行,两列.横的叫行,纵的叫列.行列式中的数叫做行列式的元素.从上式知,二阶行列式是这样两项的代数和:一个是从左上角到右下角的对角线(又叫行列式的主对角线)上两个元素的乘积,取正号;另一个是从右上角到左下角的对角线(又叫次对角线)上两个元素的乘积,取负号.

线性代数教案

《线性代数》 授课教案 刘思圆 第一章行列式 本章说明与要求: 行列式的理论是人们从解线性方程组的需要中建立和发展起来的,它在线性代数以及其他数学分支上都有着广泛的应用.在本章里我们主要讨论下面几个问题: (1) 行列式的定义;

(2) 行列式的基本性质及计算方法; (3) 利用行列式求解线性方程组(克莱姆法则). 本章的重点是行列式的计算,要求在理解n 阶行列式的概念,掌握行列式性质的基础上,熟练正确地计算三阶、四阶及简单的n 阶行列式. 计算行列式的基本思路是:按行(列)展开公式,通过降阶来计算.但在展开之前往往先利用行列式性质通过对行列式的恒等变形,使行列式中出现较多的零和公因式,从而简化计算.常用的行列式计算方法和技巧有:直接利用定义法,化三角形法,降阶法,递推法,数学归纳法,利用已知行列式法. 行列式在本章的应用是求解线性方程组(克莱姆法则).要掌握克莱姆法则并注意克莱姆法则应用的条件. 。本章的重点:行列式性质;行列式的计算。 。本章的难点:行列式性质;高阶行列式的计算;克莱姆法则。 §1.1 二阶与三阶行列式 行列式的概念起源于解线性方程组,它是从二元与三元线性方程组的解的公式引出来的.因此我们首先讨论解方程组的问题. 设有二元线性方程组 ?? ?=+=+2 2221211 112111b x a x a b x a x a (1) 用加减消元法容易求出未知量x 1,x 2的值,当a 11a 22–a 12a 21≠0 时,有 ??? ??? ?--=--=2112221121 1211221 1222112122211a a a a a b b a x a a a a b a a b x (2) 这就是一般二元线性方程组的公式解.但这个公式很不好记忆,应用时不方便,因此,我们引进新的符号来表示(2)这个结果,这就是行列式的起源.我们称4个数组成的符号 2112221122 211211a a a a a a a a -= 为二阶行列式.它含有两行,两列.横的叫行,纵的叫列.行列式中的数叫做行列式的元素.从上式知,二阶行列式是这样两项的代数和:一个是从左上角到右下角的对角线(又叫行列式的主对角线)上两个元素的乘积,取正号;另一个是从右上角到左下角的对角线(又叫次对角线)上两个元素的乘积,取负号. 根据定义,容易得知(2) 中的两个分子可分别写成 222 121212221a b a b b a a b = -,2 21 111211211b a b a a b b a = -, 如果记22 21 1211a a a a D = ,22 2 1211a b a b D = ,2 21 1112b a b a D = 则当D ≠0时,方程组(1) 的解(2)可以表示成

线性代数的思想本质

线性代数课程,无论你从行列式入手还是直接从矩阵入手,从一开始就充斥着莫名其妙。比如说,在全国一般工科院系教学中应用最广泛的同济线性代数教材(现在到了第四版),一上来就介绍逆序数这个“前无古人,后无来者”的古怪概念,然后用逆序数给出行列式的一个极不直观的定义,接着是一些简直犯傻的行列式性质和习题——把这行乘一个系数加到另一行上,再把那一列减过来,折腾得那叫一个热闹,可就是压根看不出这个东西有嘛用。大多数像我一样资质平庸的学生到这里就有点犯晕:连这是个什么东西都模模糊糊的,就开始钻火圈表演了,这未免太“无厘头”了吧!于是开始有人逃课,更多的人开始抄作业。这下就中招了,因为其后的发展可以用一句峰回路转来形容,紧跟着这个无厘头的行列式的,是一个同样无厘头但是伟大的无以复加的家伙的出场——矩阵来了! 多年之后,我才明白,当老师犯傻似地用中括号把一堆傻了吧叽的数括起来,并且不紧不慢地说:“这个东西叫做矩阵”的时候,我的数学生涯掀开了何等悲壮辛酸、惨绝人寰的一幕!自那以后,在几乎所有跟“学问”二字稍微沾点边的东西里,矩阵这个家伙从不缺席。对于我这个没能一次搞定线性代数的笨蛋来说,矩阵老大的不请自来每每搞得我灰头土脸,头破血流。长期以来,我在阅读中一见矩阵,就如同阿Q见到了假洋鬼子,揉揉额角就绕道走。事实上,我并不是特例。一般工科学生初学线性代数,通常都会感到困难。这种情形在国内外皆然。瑞典数学家Lars Garding在其名著Encounter with Mathematics中说:“如果不熟悉线性代数的概念,要去学习自然科学,现在看来就和文盲差不多。”,然而“按照现行的国际标准,线性代数是通过公理化来表述的,它是第二代数学模型,...,这就带来了教学上的困难。”事实上,当我们开始学习线性代数的时候,不知不觉就进入了“第二代数学模型”的范畴当中,这意味着数学的表述方式和抽象性有了一次全面的进化,对于从小一直在“第一代数学模型”,即以实用为导向的、具体的数学模型中学习的我们来说,在没有并明确告知的情况下进行如此剧烈的paradigm shift,不感到困难才是奇怪的。 大部分工科学生,往往是在学习了一些后继课程,如数值分析、数学规划、矩阵论之后,才逐渐能够理解和熟练运用线性代数。即便如此,不少人即使能够很熟练地以线性代数为工具进行科研和应用工作,但对于很多这门课程的初学者提出的、看上去是很基础的问题却并不清楚。比如说: * 矩阵究竟是什么东西?向量可以被认为是具有n个相互独立的性质(维度)的对象的表示,矩阵又是什么呢?我们如果认为矩阵是一组列(行)向量组成的新的复合向量的展开式,那么为什么这种展开式具有如此广泛的应用?特别是,为什么偏偏二维的展开式如此有用?如果矩阵中每一个元素又是一个向量,那么我们再展开一次,变成三维的立方阵,是不是更有用? * 矩阵的乘法规则究竟为什么这样规定?为什么这样一种怪异的乘法规则却能够在实践中发挥如此巨大的功效?很多看上去似乎是完全不相关的问题,最后竟然都归结到矩阵的乘法,这难道不是很奇妙的事情?难道在矩阵乘法那看上去莫名其妙的规则下面,包含着世界的某些本质规律?如果是的话,这些本质规律是什么? * 行列式究竟是一个什么东西?为什么会有如此怪异的计算规则?行列式与其对应方阵本质上是什么关系?为什么只有方阵才有对应的行列式,而一般矩阵就没有(不要觉得这个问题很蠢,如果必要,针对m x n矩阵定义行列式不是做不到的,之所以不做,是因为没有这个必要,但是为什么没有这个必要)?而且,行列式的计算规则,看上去跟矩阵的任何计算规则都没有直观的联系,为什么又在很多方面决定了矩阵的性质?难道这一切仅是巧合?* 矩阵为什么可以分块计算?分块计算这件事情看上去是那么随意,为什么竟是可行的?* 对于矩阵转置运算AT,有(AB)T = BTAT,对于矩阵求逆运算A-1,有(AB)-1 = B-1A-1。两个看上去完全没有什么关系的运算,为什么有着类似的性质?这仅仅是巧合吗? * 为什么说P-1AP得到的矩阵与A矩阵“相似”?这里的“相似”是什么意思?

线性代数--中国科技大学--典型教案

典型教案 第一章线性方程组的解法 线性方程组就是一次方程组。 先来分析中学数学怎样解二元一次方程组。看它的原理和方法是否可以推广到一般的多元一次方程组。 例1、解方程组 3x+4y=2 (1) 2x-5y=9 (2) 解、用加减消去法消元: 5x(1)式+4x(2)式:23x=46 (3) 2x(1)式-3x(2)式:23y= -23 (4) 由(3)和(4)解出 x=2 ,y= -1。 代入(1),(2)式检验知道它是原方程组的解。 以上解法的基本原理是: 由原方程(1)、(2)分别乘以适当的常数再相加,得到各消去了一个未知数的新方程(3)、(4), 从中容易解出未知数的值来. 将一组方程分别乘以常数再相加,得到的新方程称为原来那一组方程的线性组合。原来那一组方程的公共解一定是它们的任意一个线性组合的解。 新方程(3)、(4)都是原方程(1)、(2)的线性组合, (1)、(2)的公共解一定是(3)、(4)的解. 但反过来, 由(3)、(4)求出的解是否一定是(1)、(2)的解?这却并不显然。 因此需要将(3)、(4)的解代入(1)、(2)检验。 或者说明(1)、(2)也是(3)、(4)的线性组合。从而由(3)、(4)组成的方程组与原方程组同解. 1.1. 方程组的同解变形 1. 线性方程组的定义 2. 方程的线性组合: 方程的加法 方程乘以常数 方程的线性组合: 将m 个方程分别乘以m 个已知常数,再将所得的m 个方程相加, 得到的新方程称为原来那m 个方程的一个线性组合 容易验证: 如果一组数(c_1,c_2,…,c_n) 是原来那些方程的公共解, 那么它也是这些方程的任一个线性组合的解. 注意: 线性组合的系数中可以有些是0, 甚至可以全部是0. 如果某些系数是0, 所得到的线性组合实际上也就是系数不为0 的那些方程的线性组合。 如果方程组(II) 中每个方程其余都是方程组(I) 中的方程的线性组合, 就称方程组(II) 是方程组(I) 的线性组合. 此时方程组(I) 的每一组解也都是方程组(II) 的解。 如果方程组(I) 与方程组(II) 互为线性组合, 就称这两个方程组等价。此时两

线性代数的理解-学完再看觉得自己弱爆了

线性代数的理解学完再看觉得自己弱爆了 对了解矩阵、线性变换的本质有太大帮助如果不熟悉线性代数的概念,要去学习自然科学,现在看来就和文盲差不多。”,然而“按照现行的国际标准,线性代数是通过公理化来表述的,它是第二代数学模型,这就带来了教学上的困难。”* 矩阵究竟是什么东西?向量可以被认为是具有n个相互独立的性质(维度)的对象的表示,矩阵又是什么呢?我们如果认为矩阵是一组列(行)向量组成的新的复合向量的展开式,那么为什么这种展开式具有如此广泛的应用?特别是,为什么偏偏二维的展开式如此有用?如果矩阵中每一个元素又是一个向量,那么我们再展开一次,变成三维的立方阵,是不是更有用? * 矩阵的乘法规则究竟为什么这样规定?为什么这样一种怪异的乘法规则却能够在实践中发挥如此巨大的功效?很多看上去似乎是完全不相关的问题,最后竟然都归结到矩阵的乘法,这难道不是很奇妙的事情?难道在矩阵乘法那看上去莫名其妙的规则下面,包含着世界的某些本质规律?如果是的话,这些本质规律是什么? * 行列式究竟是一个什么东西?为什么会有如此怪异的计算规则?行列式与其对应方阵本质上是什么关系?为什么只有方阵才有对应的行列式,而一般矩阵就没有(不要觉得

这个问题很蠢,如果必要,针对m x n矩阵定义行列式不是做不到的,之所以不做,是因为没有这个必要,但是为什么没有这个必要)?而且,行列式的计算规则,看上去跟矩阵的任何计算规则都没有直观的联系,为什么又在很多方面决定了矩阵的性质?难道这一切仅是巧合? * 矩阵为什么可以分块计算?分块计算这件事情看上去是那么随意,为什么竟是可行的? * 对于矩阵转置运算AT,有(AB)T = BTAT,对于矩阵求逆运算A-1,有(AB)-1 = B-1A-1。两个看上去完全没有什么关系的运算,为什么有着类似的性质?这仅仅是巧合吗?* 为什么说P-1AP得到的矩阵与A矩阵“相似”?这里的“相似”是什么意思? * 特征值和特征向量的本质是什么?它们定义就让人很惊讶,因为Ax =λx,一个诺大的矩阵的效应,竟然不过相当于一个小小的数λ,确实有点奇妙。但何至于用“特征”甚至“本征”来界定?它们刻划的究竟是什么?今天先谈谈对线形空间和矩阵的几个核心概念的理解。这些东西大部分是凭着自己的理解写出来的,基本上不抄书,可能有错误的地方,希望能够被指出。但我希望做到直觉,也就是说能把数学背后说的实质问题说出来。首先说说空间(space),这个概念是现代数学的命根子之一,从拓扑空间开始,一步步往上加定义,可以形成很多空间。线形空间其实还是比较

线性代数教案正式打印版

线性代数教案正式打印 版 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第(1)次课授课时间()

基本内容备注 第一节二、三阶行列式的定义 一、二阶行列式的定义 从二元方程组的解的公式,引出二阶行列式的概念。 设二元线性方程组 ? ? ? = + = + 2 2 22 2 21 1 2 12 1 11 b x a x a b x a x a 用消元法,当0 21 12 22 11 ≠ -a a a a时,解得 21 12 22 11 1 21 2 11 2 21 12 22 11 2 12 1 22 1 , a a a a b a b a x a a a a b a b a x - - = - - = 令 21 12 22 11 22 21 12 11a a a a a a a a - =,称为二阶行列式 ,则 如果将D中第一列的元素 11 a,21a换成常数项1b,2b ,则可得到 另一个行列式,用字母 1 D表示,于是有 22 2 12 1 1a b a b D= 按二阶行列式的定义,它等于两项的代数和: 21 2 22 1 a b a b-,这就是公 式(2)中 1 x的表达式的分子。同理将D中第二列的元素a 12,a 22 换成常数项b1,b2 ,可得到另一个行列式,用字母 2 D表示,于是有 2 12 1 11 2b a b a D= 按二阶行列式的定义,它等于两项的代数和: 1 21 2 11 b a b a-,这就是公 式(2)中 2 x的表达式的分子。 于是二元方程组的解的公式又可写为 ? ? ? ?? ? ? = = D D x D D x 2 2 1 1 其中0 ≠ D

线性代数教案(正式打印版)

线性代数教案(正式打印版)

第(1)次课授课时间() 教学章节第一章第一、二、三节学时2学时 教材和 参考书 1.《线性代数》(第4版)同济大学编 1.教学目的:熟练掌握2阶,3阶行列式的计算; 掌握逆序数的定义, 并会计算; 掌握n阶行列式的定义; 2.教学重点:逆序数的计算; 3.教学难点:逆序数的计算. 1.教学内容:二、三阶行列式的定义;全排列及其逆序数;n阶行列式的定义 2.时间安排:2学时; 3.教学方法:讲授与讨论相结合; 4.教学手段:黑板讲解与多媒体演示.

基本内容备注第一节二、三阶行列式的定义 一、二阶行列式的定义 从二元方程组的解的公式,引出二阶行列式的概念。 设二元线性方程组 ? ? ? = + = + 2 2 22 2 21 1 2 12 1 11 b x a x a b x a x a 用消元法,当0 21 12 22 11 ≠ -a a a a时,解得 21 12 22 11 1 21 2 11 2 21 12 22 11 2 12 1 22 1 , a a a a b a b a x a a a a b a b a x - - = - - = 令 21 12 22 11 22 21 12 11a a a a a a a a - =,称为二阶行列式,则 如果将D中第一列的元素 11 a,21a换成常数项1b,2b,则可得到 另一个行列式,用字母 1 D表示,于是有 22 2 12 1 1a b a b D= 按二阶行列式的定义,它等于两项的代数和: 21 2 22 1 a b a b-,这就是公 式(2)中 1 x的表达式的分子。同理将D中第二列的元素a 12,a 22换 成常数项b1,b2 ,可得到另一个行列式,用字母 2 D表示,于是有 2 12 1 11 2b a b a D= 按二阶行列式的定义,它等于两项的代数和: 1 21 2 11 b a b a-,这就是公

线性代数教案一例矩阵相乘

线性代数教案一例:矩阵相乘 线性代数,把数代进去。大学数学课程和中学知识脱节严重,教起来很费劲。所以我们可以依据学生在中学学到的数学知识系统和数学知识逻辑,通过知识系统和逻辑的平行对应关系来讲解大学数学里的一些知识难点.这样学生容易理解和接受,教起来也省劲。而这实际上也就是数学上很重要的转化思想。 下面以矩阵的乘积这一知识点来讲解说明。大家可以与《线性代数》同记第四版教材相对照。 三、矩阵与矩阵相乘 设有两个线性变换11111221332211222233y a x a x a x y a x a x a x =++??=++? (3) 转换一下 11121321222311223a a a a a a x y x y x ?? ??????? ??????→ ? ??? ? ?? 对应中学的映射或函数 f x y ?? → 举例 3y x = 111112222112223311322x b t b t x b t b t x b t b t =+??=+??=+? (4) 也转换一下 11122122313211223b b b b b b x t x t x ?? ? ? ??? ???? ????? → ? ??? ? ?? 知识平行对应 g t x ??→ 举例 2x t = 若想求出从12t t 、到12y y 、的线性变换,可将(4)代入(3),便得 111111221133111112122213322221112221233112112222223322()()()()y a b a b a b t a b a b a b t y a b a b a b t a b a b a b t =+++++??=+++++? (5) 转换 1112111213212221222331321122b b a a a b b a a a b b t y t y ?? ?? ? ? ??? ? ?? ???? ????????→ ? ? ???? 对应 ()f g t y ???→ 再化 f g t y ???→ 举例 23y t = 线性变换(5)可看成是先作线性变换(4)再作线性变换(3)的结果。我们把线性变换(5)叫作线性变换(3)与(4)的乘积,相应地把(5)所对应的矩阵定义为(3)与(4)所对应的矩阵的乘积,即 111211121321222122 233132b b a a a b b a a a b b ???? ? ? ??? ? ?? 对应法则的对应 ()f g 注意复合的先后关系 亦即 f g =111112211331111212221332211122212331211222222332a b a b a b a b a b a b a b a b a b a b a b a b ++++?? ?++++?? 对应 f g 那么“=”怎么来:()f g f g = 这样学生理解起来也很简单,容易接受,教学效果好。学生感觉到线性代数也没那么高难,和中学知识区别不大,只是改变了一个形式.不会打消他的积极性。学习兴趣有了,学好线性代数也就不会那么难了。 接下来让学生观察11121112 1321222122 233132b b a a a b b a a a b b ?? ?? ? ? ??? ??? 与111112211331111212221332211122212331211222222332a b a b a b a b a b a b a b a b a b a b a b a b ++++?? ?++++?? 的特征关系,这样定义就自然而然得出来了。

线性代数思维导图

代数: 代数是研究数、数量、关系、结构与代数方程的通用解法及其性质的数学分支。初等代数一般在中学时讲授,介绍代数的基本思想:研究当我们对数字作加法或乘法时会发生什么,以及了解变量的概念和如何建立多项式并找出它们的根。 线性代数是数学的一个分支,它的研究对象是向量,向量空间,线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。 定义与历史: 概念 线性代数是代数学的一个分支,主要处理线性关系问题。线性关系意即数学对象之间的关系是以一次形式来表达的。例如,在解析几何里,平面上直线的方程是二元一次方程;空间平面的方程是三元一次方程,而空间直线视为两个平面相交,由两个三元一次方程所组成的方程组来表示。含有n个未知量的一次方程称为线性方程。关于变量是一次的函数称为线性函数。线性关系问题简称线性问题。解线性方程组的问题是最简单的线性问题。 所谓“线性”,指的就是如下的数学关系:。其中,f叫线性算子或线性映射。所谓“代数”,指的就是用符号代替元素和运算,也

就是说:我们不关心上面的x,y是实数还是函数,也不关心f是多项式还是微分,我们统一把他们都抽象成一个记号,或是一类矩阵。合在一起,线性代数研究的就是:满足线性关系的线性算子f都有哪几类,以及他们分别都有什么性质。 历史 线性代数作为一个独立的分支在20世纪才形成,然而它的历史却非常久远。“鸡兔同笼”问题实际上就是一个简单的线性方程组求解的问题。最古老的线性问题是线性方程组的解法,在中国古代的数学著作《九章算术·方程》章中,已经作了比较完整的叙述,其中所述方法实质上相当于现代的对方程组的增广矩阵的行施行初等变换,消去未知量的方法。 由于费马和笛卡儿的工作,现代意义的线性代数基本上出现于十七世纪。直到十八世纪末,线性代数的领域还只限于平面与空间。十九世纪上半叶才完成了到n维线性空间的过渡。 随着研究线性方程组和变量的线性变换问题的深入,行列式和矩阵在18~19世纪期间先后产生,为处理线性问题提供了有力的工具,从而推动了线性代数的发展。向量概念的引入,形成了向量空间的概念。凡是线性问题都可以用向量空间的观点加以讨论。因此,向量空间及其线性变换,以及与此相联系的矩阵理论,构成了线性代数的中心内容。 矩阵论始于凯莱,在十九世纪下半叶,因若当的工作而达到了它的顶点。1888年,皮亚诺以公理的方式定义了有限维或无限维线性

最新清华版线性代数课件线性代数§电子教案

例2计算 n 阶行列式副对角线以上的元素全为0 其中表示元素为任意数解由定义有递推关系递推公式由以上结论容易得到四n 阶行列式的性质行列式 DT 称为行列式 D 的转置行列式记性质1 行列式的行与列互换其值不变即 DT D 性质1说明行列式对行成立的性质都适用于列下面仅对行讨论由性质 1 和前面关于下三角行列式的结果马 上可以得到上三角行列式主对角线以下的元素全为0 的值等于主对角元的积即性质2 行列式按任一行展开其值相等即其中是 D 中去掉第 i 行第 j 列的全部元素后剩下的元素按原来的顺序排成的 n-1 阶行列式称为的余子式称为的代数余子式即性质3 线性性质 1行列式的某一行列中所有的元素都乘以同一数k 等于用数 k 乘此行列式 2 若行列式的某一行 列的元素都是两数之和那么该行列式可以写成两个行列式的和例如 1 若行列式的某一行列的元素都是 n 个数之和那么该行列式可以写成 n 个行列式的和例如说明 2 若行列式的某 m 行列的元素都是两例如说明个数之和那么该行列式可以写成个行列式的和由性质3马上得到推论1 某行元素全为零的行列式其值为零性质4 行列式中两行对应元素全相等其值为 零对行列式的阶数用数学归纳法证明证明当D为二阶行列式时结论显然成立假设当 D 为 n-1 阶行列式时结论成立设行列式 D 的第 i 行和第 j 行元素对应相等则当D为 n 阶行列式时将 D 按第k 行展开得其中为 k-1 阶行列式且有两行元素对应相等故由归纳假设知推论2 行列式中两行对应元素成比例其值为零由性质 3 和性质 4 马上得到性质5 在行列式中把某行各元素分别乘以数 k再加

线性代数教案-第一章 线性空间

第一章线性空间 一、教学目标与基本要求 数学的特点之一是抽象.从实数、复数、实值函数、无穷级数、向量等数学对象中,可以抽象出它们的共同特点:同一集合中的元素彼此可以相加,可与数相乘,这些运算还遵从一些共同规律.本章讨论的线性空间,就是针对上述特点建立的一种一般性的数学概念.它包括了所有前面提到的实例,另有许多数学对象也可归属其中. 数学中所谓空间,就是具有某些特性的集合.所谓线性空间,概言之就是这样一个集合:在其上定 义了称为加法和数乘的两种运算,并可在该集合上实施(准确的定义见后详述).在此,既不强调集合元素的本来属性,又不规定这两种运算是如何实施的,只规定运算具有称为公理的某些性质. 1 线性空间的定义及例 定义1.1.1设V是一个非空集合,其元素用x、y、z等表示.V被称为一个线性空间,如果它满足以下被分为三组由10条公理构成的公理体系: 1.1.1封闭公理 公理1(加法封闭公理)在V中定义了加法运算:对于V中任意两个元素x和y,有唯一的V中的元素与之对应并被称为x与y的和,记为x+y. 公理2(数乘封闭公理)在V中定义了实数乘法(简称数乘)运算:对于V中任意元素x和任意实数a,有唯一的V中的元素与之对应并被称为a与x的积,记为a x. 加法运算和数乘运算合称线性运算. 1.1.2加法公理 公理3 (交换律)对于任意x,y∈V,有 x+ +. = x y y 公理4(结合律) 对于任意x,y,z∈V,有 + x+ = +. + y ) ) z (z ( y x 公理5 (零元素存在性)V中存在一个记为θ的零元素,对于任意x∈V,有 +. x= x θ -的x的负元素,使公理6 (负元素存在性)对于任意x∈V,V中存在记为x +) - (. θ x= x 1.1.3数乘公理 公理7(结合律)对于任意x∈V,任意实数a和b,有 b (ab a=. x) x ( )

线性代数在生活中的应用

线性代数在生活中的运用 线性代数的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。随着科学的发展,我们不仅要研究单个变量之间的关系,还要进一步研究多个变量之间的关系,既求解有限维的线性方程组,使各种实际问题在大多数情况下可以线性化,而由于计算机的发展,线性化了的问题又可以计算出来,解线性方程组正是解决这些问题的有力工具。本文由用初等数学解线性方程组的例子,引用线性代数中的一些基本概念,论述了线性代数与线性方程组的内在联系。 线性方程组是各个方程关于未知量均为一次的方程组 xj 表示未知量,aij 为系数,bi 为常数项。则有 ???????=+++=+++=+++n n nn n n n n n n b x a x a x a b x a x a x a b x a x a x a L L L L 22112222212111212111 若x1=c1,x2=c2,…,xn =cn 代入所给方程各式均成立,则称(c1,c2,…,cn )为一个解。若c1,c2,…,cn 不全为0,则称(c1,c2,…,cn )为非零解。若常数项均为0,则称为齐次线性方程组,它总有零解(0,0,…,0)。两个方程组,若它们的未知量个数相同且解集相等,则称为同解方程组。 线性方程组主要讨论的问题是:①一个方程组何时有解。②有解方程组解的个数。③对有解方程组求解,并决定解的结构。 当非齐次线性方程组有解时,解唯一的充要条件是对应的齐次线性方程组只有零解;解无穷多的充要条件是对应齐次线性方程组有非零解。但反之当非齐次线性方程组的导出组仅有零解和有非零解时,不一定原方程组有唯一解或无穷解,事实上,此时方程组不一定有解。 克莱姆法则给出了一类特殊线性方程组解的公式。n 个未知量的任一齐次方程组的解集均构成n 维空间的一个子空间。 线性方程组有广泛应用,熟知的线性规划问题即讨论对解有一定约束条件的线性方程组问题。请看下面一个例子。

线性代数-线性空间及线性相关性课件

第四章n元向量空间 ?n元向量组的线性相关性; ?向量组的秩; ?n元向量空间; ?线性方程组解的结构; ?欧氏空间.n

n 第4.1节元向量组的线性相关性 n 元向量的定义及线性运算在第章已经给出 元向量的定义及线性运算在第一章已经给出,本节进一步研究一个向量组的线性相关性。这里我们先只讨论含有有限个向量的向量组,以后再把讨论的结果推广到含有无限个向量的向量组。 个向量的向量组

一、线性组合与线性表示线性组合与线性表示 ()12:,,, n s 设Ⅰ, 义定 4.1.1ααα是中的一个向量组12,,, s k k k 是数域 中的数,称向量 ()112212,,,.s s s k k k k k k +++ Ⅰ为ααα为向量组的一,组线性组合合系数个(),Ⅰ如果给定的向量能表为向量组 的线性组合即存在使β121122,,, s s s k k k k k k =+++ 数域中的数,使 βααα()示数Ⅰ表系则称可由向量组,称组合系数为. 线性表示β

412零向量是任意向量组的线性组合这是因为 例4.1.2 零向量是任意向量组的线性组合,这是因为12000s =?+?++?0 ααα. 例1 向量组中的任意一个向量可由该向 量组的线性表示, 这是因为 12,,,s ααα11100100, (1,2,,). i i i i s i s -+=?++?+?+?++?= αααααα

已知向量组 例2 T T 12[1,2,3], [1,2,3], [024][345]αα==---T T 344123[0,2,,[3,4,5], ,,αααααα==试判断向量是否可由线性表示? 所以可以表示若能,表示式是否唯一? 4134123213,,ααααααα=-=--观察可知所以可以表示;又所以表解法法不唯一.41122332,x x x αααα=++设考察该方程解法组解的情况考察该方程组解的情况.

相关文档
最新文档