晶胞模型

晶胞模型
晶胞模型

己烷 C6 H12碳原子以 sp2 杂化与相邻两个碳原子碳环s骨架,与2个H 成 C-H 键。关键词:常见晶体结构

二茂铁 Fe(C5 H5 )2:上下环戊烯阴离子各以六个π电子参与成键,与Fe对称性匹配的d3p3 轨道形成六个分子轨道,Fe其余的三个价轨道为非键的孤对电子占据。

B12H122-: 12 个 B 形成封闭的三角二十面体,每个 B 还与 1 个 H 形成 B-H 键。

平凡人

C20H20:每个 C 以 sp3杂化与相邻的 3 个 C 、 1 个 H 形成 s 键,整个碳笼为正十二面体。

C60:每个 C 以 sp2杂化与相邻的 3 个 C 形成球形多面体 s 骨架( 12 个五边形与 20 个六边形),还有 1 个垂直于曲面的 p 轨道与其他 p 轨道形成 1 个离域的大 p 键。

石墨层内 C 以共价键与相邻的 3 个 C 形成平面骨架,层之间为范德华力。

金剛石:为 A4 结构,每个 C 以 sp3 杂化与相邻的 4 个 C 形成四面体配位,晶胞中有8 个 C 原子。

NaCl 晶体属面心立方点阵, Na+与Cl-的配位数均为6。Cl-作立方最密堆积,Na+填在Cl -形成的八面体空隙中。每个晶胞含有4个Cl-和4个Na+,Cl-位于晶胞顶点与面心位置,Na+位于体心与棱心位置。

立方 ZnS 晶体中, S 原子作立方最密堆积, Zn 原子填在一半的四面体空隙中,形成立方面心点阵,晶胞中含个 S 原子 4 个 Zn 原子;

六方 ZnS 晶体中, S 原子作六方最密堆积, Zn 原子填在一半的四面体空隙中,形成六方点阵,晶胞中含个 S 原子 4 个 Zn 原子。

CaF2晶体属立方面心点阵, F-作简单立方堆积, Ca2+数目比 F-少一半,填了一半的立方体空隙,每一个 Ca2+由八个 F-配位,而每个 F-有 4 个 Ca2+配位,每个 CaF2晶胞

有 4 个 Ca2+和 8 个 F-原子。

金红石( TiO2)为简单四方结构 ,Ti4+处在略为变形的氧八面体中,即氧离子作假六方堆积, Ti4+填在它的准八面体空隙中, Ti4+配位数为 6 , O2-与 3 个 Ti4+配位( 3 个 Ti4+几乎形成等边三角形)。

方石英(立方 SiO2)构型中的 Si ,与金刚石结构中 C 原子一样,形成 A4 堆积; O 原子位于 Si-Si 连线的中心位置附近,形成三维网络状低密度结构,离子晶体已过渡到共价晶体。晶体中 Si 原子与周围 4 个氧原子(在四面体顶点方向)成键,氧原子只和 2 个Si 原子配位, Si 与 O 的配位数分别降到 4:2 。

磷石英晶体由 [SiO4] 四面体公用顶点连接成三维骨架, 硅原子相当于六方 ZnS 中 Zn 和 S 的位置 , 氧原子介于两个硅原子之间。

CO2(干冰)晶体,已从共价晶体过渡到分子晶体。在晶体中,直线形 CO2分子是分立的, C 原子位于立方晶胞的顶点与面心位置,每个 CO2分子轴与平面成一定的角度。 CO2分子中 C-O 间以共价键结合,晶胞中分子间以范德华力联系。

CdI2型晶体则因离子极化成为层型结构。若用 a 、 b 、 c 来代表 Cd+ 的位置,用 A 、 B 、 C 来代表 I 的位置,层型分子沿垂直于层的方向堆积,可表示为 ||AbC||AbC||……在 ||AbC|| 层内每个 Cd 有 6 个 I-配位,每个 I 与 3 个 Cd 配位,原子间以共价键结合,层与层之间以范德华力结合。

CaTiO3晶体属正交晶系,每个晶胞中 Ca 处于体心位置, Ti 处于顶点位置, O 原子位于每条棱的中心位置, O 原子和 Ca 原子联合起来形成面心正交点阵, Ti 原子处在氧原子的八面体空隙中,配位数为 6 , Ca 原子配位数为 12 。

尖晶石 MgAl2O4属立方晶系。在尖晶石结构中, MgO4四面体与 AlO6八面体共用顶点氧, AlO6与邻近八面体 AlO6共用棱边,相互联结在一起。尖晶石晶胞较大,氧原子作立方面心堆积 2×2×2 堆成一个大立方晶胞,共有 32 个 O 原子,形成 32 个八面体空隙,其中一半( 16 个)为阳离子 Al(M3+) 占据, 64 个四面体空隙,其中 1/8 ( 8 个)为阳离子 Mg ( M2+)占据。

(完整版)常见晶胞模型

氯化钠晶体 离子晶体 (1)NaCI晶胞中每个Na+等距离且最近的Cl-(即Na+配位数)为6个 (2) (3)NaCI晶胞中每个CI-等距离且最近的Na+(即CI-配位数)一个晶胞内由均摊法计算出一个晶胞内占有的Na+4个; 占有的CI-4个。 在该晶体中每个Na+周围与之最接近且距离相等的Na+ 与每个Na+等距离且最近的CI-所围成的空间几何构型为 CsCI晶体(注意:右侧小立方体为CsCI晶胞;左侧为8个晶胞) (1)CsCI晶胞中每个Cs+等距离且最近的C「(即Cs+配位 数)为8个 CsCI晶胞中每个CI-等距离且最近的Cs+(即CI-配位数)为 8个,这几个Cs+在空间构成的几何构型为正方体。 (2)在每个Cs+周围与它最近的且距离相等的Cs+有6个这 几个Cs+在空间构成的几何构型为正八面体。 ? Cs* OCI- (3)一个晶胞内由均摊法计算出一个晶胞内占有的Cs+ 1个;占有的CI- 1个CaF2晶体 (1))Ca2+立方最密堆积,F-填充在全部四面体空隙中。 (2)CaF2晶胞中每个Ca2+等距离且最近的F-(即Ca2+配位数)为8个CaF2晶胞中每个F-等距离且最近的Ca2+(即F-配位数)为4个 (3)一个晶胞内由均摊法计算出一个晶胞内占有的Ca2+4个; 占有的F-8个。 ZnS晶体: (1)1个ZnS晶胞中,有4 个S2「,有4个 Zn2+ (2)Zn2+的配位数为4个, S2_的配位数为4个 O£n?,?

原子晶体 (1) 金刚石晶体 a 每个金刚石晶胞中含有 8个碳原子,最小的碳环为 6元环,并且不在同一平面(实际为椅 式结 构),碳原子为sp 3杂化,每个C 以共价键跟相邻的_4_个 C 结合,形成正四面体。键角109° 28' b 、 每个碳原子被12个六元环共用,每个共价键被6个六元环共用 c 、 12g 金刚石中有2mol 共价键,碳原子与共价键之比为 (2) Si 晶体 由于Si 与碳同主族,晶体Si 的结构同金刚石的结构。将金刚石晶胞中的 C 原子全部换成Si 原 子,健长稍长些便可得到晶体硅的晶胞。 (3) 某些非金属化合物【SiO 2、SiC (金刚砂)、BN (氮化硼)、Si 3N 4等】 例如SiC 将金刚石晶胞中的一个C 原子周围与之连接的4个C 原子全部换成Si 原子, 键长稍长些便可得到SiC 的晶胞。(其中晶胞的8个顶点和6个面心为Si 原子,4个互不相邻的立方 体体心的为C 原子,反之亦可) a 每个SiC 晶胞中含有 4个硅原子,含有 A 个碳原子 b 、1mol SiC 晶体中有4mol Si —C 共价键 (4)SiO 2晶体:在晶体硅的晶胞中,在每2个Si 之间插入1个O 原子, 便可 得到SiO 2晶胞。 a 每个硅原子都采取sp 3杂化,与它周围的4个氧原子所形成的空间 结构为正四面体型,SiO 2 晶体中最小的环为 _J2_ 元环 b 、每个Si 原子被 亚个十二元环共用,每个 O 原子被_6_个 十二元环共用 c 、每个SiO 2晶胞中含有_8_个Si 原子,含有J6_个O 原子 d 、1mol Si O 2晶体中有_4 mol 共价键 (5)晶体硼 已知晶体硼的基本结构单元是由 B 原子构成的正二十面体,其中有 20个等边三角形的面和一定 数目的顶点,每个顶点各有一个 B 原子。通过观察图形及推算,可知此结构单元是由 12个B 原子构成,其中B —B 键间的夹角是 60 ° 。假设将晶体硼结构单元中每个顶角均削去,余下 部分 的结构与G 。相同,贝U Go 由_12_个正五边形和 20个正六边形构成。 金刚石 金刚石晶胞 金刚石晶胞分位置注释 Si O

晶胞参数专题练习

晶胞参数专题练习 (1)铜是第四周期最重要的过渡元素之一,其单质及化合物具有广泛用途。某晶体结构如下图所示,则化学式为______________若该晶体的密度为 d g·cm-1,阿伏加德罗常数的值为N A,则该晶胞的边长为__________________________cm(用含d和N A的式子表示)。 题(1)(题2)题(3)(2)立方氮化硼晶体的结构与金刚石相似,硬度与金刚石相当,晶胞边长为361.5 pm。立方氮化硼晶胞中含有_______个氮原子、_________个硼原子,处于晶胞顶点的原子的配位数为________立方氮化硼的密度是______________g·cm-3(只要求列算式,不必计算出数值,阿伏伽德罗常数为N A)。 (3)由K、M、F三种元素组成的某种晶体的晶胞结构如图所示,基态M原子的外围电子排布式为3s2该晶体的化学式为____________该晶胞边长为a pm,则该晶体的密度为____________________。(用代数式表 示)题(4)题(5) (4)MgH2也是一种储氢材料,其晶胞结构如图所示。已知该晶胞的体积为V cm3,则该晶体的密度为___________________[用V、N A表示(其中N A为阿伏加德罗常数的值)]。 (5)某镍白铜合金的立方晶胞结构如图所示。 ①晶胞中铜原子与镍原子的数量比为________。 ②若合金的密度为d g·cm-3,晶胞参数a=__________________________nm。 (6)Cu 、N形成某种化合物的晶胞结构为如图2所示的立方晶胞(其中X显-3价),则其化学式为________。设阿伏加德罗常数为N A,距离最近的两个W的核间距为a cm,则该晶体的密度为________g·cm-3。(用含a 和N A的代数式表示)题(6)题(7) (7)H与硫元素形成的化合物HS的晶体结构如图所示,其晶胞边长为x pm,则HS晶体的密度为________(列式即可,阿伏加德罗常数用N A表示)g·cm-3;a与b之间的距离为________(用含x的式子表示)pm。

常见晶胞模型

氯化钠晶体 (1)NaCl晶胞中每个Na+等距离且最近的Cl-(即Na+配位数)为6个 NaCl晶胞中每个Cl-等距离且最近的Na+(即Cl-配位数)为6个 (2)一个晶胞内由均摊法计算出一个晶胞内占有的Na+4_个; 占有的Cl-4个。 (3)在该晶体中每个Na+周围与之最接近且距离相等的Na+共有12个; 与每个Na+等距离且最近的Cl-所围成的空间几何构型为正八面体 CsCl晶体(注意:右侧小立方体为CsCl晶胞;左侧为8个晶胞) (1)CsCl晶胞中每个Cs+等距离且最近的Cl-(即Cs+配位数) 为8个 CsCl晶胞中每个Cl-等距离且最近的Cs+(即Cl-配位数) 为8个,这几个Cs+在空间构成的几何构型为正方体。 (2)在每个Cs+周围与它最近的且距离相等的Cs+有6个 这几个Cs+在空间构成的几何构型为正八面体。 (3)一个晶胞内由均摊法计算出一个晶胞内占有的Cs+ 1个;占有的Cl- 1个。CaF2晶体 (1))Ca2+立方最密堆积,F-填充在全部四面体空隙中。 (2)CaF2晶胞中每个Ca2+等距离且最近的F-(即Ca2+配位数)为8个CaF2晶胞中每个F-等距离且最近的Ca2+(即F-配位数)为4个 (3)一个晶胞内由均摊法计算出一个晶胞内占有的Ca2+4个; 占有的F-8个。 ZnS晶体: (1)1个ZnS晶胞中,有4个S2-,有4个Zn2+。 (2)Zn2+的配位数为4个,S2-的配位数为 4个。

金刚石 金刚石晶胞 金刚石晶胞分位置注释 (1)金刚石晶体 a 、每个金刚石晶胞中含有8个碳原子,最小的碳环为6元环,并且不在同一平面(实际为椅 式结构),碳原子为sp 3杂化,每个C 以共价键跟相邻的_4_个C 结合,形成正四面体。键角109°28’ b 、每个碳原子被12个六元环共用,每个共价键被6个六元环共用 c 、12g 金刚石中有2mol 共价键,碳原子与共价键之比为 1:2 (2)Si 晶体 由于Si 与碳同主族,晶体Si 的结构同金刚石的结构。将金刚石晶胞中的C 原子全部换成Si 原子,健长稍长些便可得到晶体硅的晶胞。 (3)某些非金属化合物【SiO 2、SiC (金刚砂)、BN (氮化硼)、Si 3N 4等】 例如SiC 将金刚石晶胞中的一个C 原子周围与之连接的4个C 原子全部换成Si 原子, 键长稍长些便可得到SiC 的晶胞。(其中晶胞的8个顶点和6个面心为Si 原子,4个互不相邻的立方体体心的为C 原子,反之亦可) a 、每个SiC 晶胞中含有 4 个硅原子,含有 4 个碳原子 b 、1mol SiC 晶体中有4 mol Si —C 共价键 (4)SiO 2 晶体:在晶体硅的晶胞中,在每2个Si 之间插入1个O 原子, 便可得到SiO 2晶胞。 a 、每个硅原子都采取sp 3杂化,与它周围的4个氧原子所形成的空间 结构为__正四面体_型,S iO 2晶体中最小的环为 12 元环 b 、每个Si 原子被 12 个十二元环共用,每个O 原子被 6 个 十二元环共用 c 、每个SiO 2晶胞中含有 8 个Si 原子,含有 16 个O 原子 d 、1mol Si O 2晶体中有 4 mol 共价键 (5)晶体硼 已知晶体硼的基本结构单元是由B 原子构成的正二十面体,其中有20个等边三角形的面和一定数目的顶点,每个顶点各有一个B 原子。通过观察图形及推算,可知此结构单元是由__12_个B 原子构成,其中B —B 键间的夹角是__60°__。假设将晶体硼结构单元中每个顶角均削去,余下部分的结构与C 60相同,则C 60由_12_个正五边形和_20个正六边形构成。

高中化学 常见晶胞模型

离子晶体 氯化钠晶体 (1)NaCl晶胞每个Na+等距离且最近的Cl-(即Na+配位数)为6个 NaCl晶胞每个Cl-等距离且最近的Na+(即Cl-配位数)为6个 (2)一个晶胞内由均摊法计算出一个晶胞内占有的Na+4_个; 占有的Cl-4个。 (3)在该晶体中每个Na+周围与之最接近且距离相等的Na+ 共有12个; 与每个Na+等距离且最近的Cl-所围成的空间几何构型为正八面体 CsCl晶体(注意:右侧小立方体为CsCl晶胞;左侧为8个晶胞) (1) CsCl晶胞中每个Cs+等距离且最近的Cl-(即Cs+配位数) 为8个 CsCl晶胞中每个Cl-等距离且最近的Cs+(即Cl-配位数) 为8个,这几个Cs+在空间构成的几何构型为正方体。 (2)在每个Cs+周围与它最近的且距离相等的Cs+有6个 这几个Cs+在空间构成的几何构型为正八面体。 (3)一个晶胞内由均摊法计算出一个晶胞内占有的Cs+ 1个;占有的Cl- 1个。 CaF 2 晶体 (1)) Ca2+立方最密堆积,F-填充在全部四面体空隙中。 (2)CaF 2 晶胞中每个Ca2+等距离且最近的F-(即Ca2+配位数) 为8个 CaF 2 晶胞中每个F-等距离且最近的Ca2+(即F-配位数)为4个 (3)一个晶胞内由均摊法计算出一个晶胞内占有的Ca2+4个; 占有的F-8个。ZnS晶体: (1)1个ZnS晶胞中,有4个S2-,有4个Zn2+。 (2)Zn2+的配位数为4个,S2-的配位数为 4个。 原子晶体 金刚石金刚石晶胞金刚石晶胞 (1)金刚石晶体 a、每个金刚石晶胞中含有8个碳原子,最小的碳环为6元环,并且不在同一平 面(实际为椅式结构),碳原子为sp3杂化,每个C以共价键跟相邻的_4_个C 结合,形成正四面体。键角109°28’ b、每个碳原子被12个六元环共用,每个共价键被6个六元环共用 c、12g金刚石中有2mol共价键,碳原子与共价键之比为 1:2

jade分析物相及晶胞参数和晶粒尺寸计算过程

《无极材料测试技术》课程作业 对编号01N2009534的样品XRD测试数据进行物相分析,并计算其平均晶粒尺寸大小与晶胞参数。 1.物相分析过程 使用软件对样品XRD测试数据进行分析,以定性分析样品的物相。 1.1.数据的导入 将测试得到的XRD测试数据文件直接拖动到Jade软件图标上,导入数据,得到样品XRD衍射图(图1-1)。 图1-1数据导入后得到的XRD图 1.2.初步物相检索 右键点击键,弹出检索对话框,设定初步检索条件:选择所有类型的数据库;检索主物相(MajorPhase);不使用限定化学元素检索(UseChemistry前方框不打钩)(如图1-2所示)。点击“OK”开始检索,得到的检索结果见图1-3。 从初步检索结果可以看出,最可能的物相有四个:CaB5O8(OH)B(OH)3(H2O)3(图1-3)、CaB6O10·5H2O(图1-4a)、(图1-4b)和C20H20N16O8S4Th(图1-4c)。其中前三个均为无机物,第四个为有机金属化合物。 从结果分析,由图1-4b、c中可以看出,这两种物相的标准衍射峰没有与样品衍射峰中的最强峰匹配,因此样品中不含有第三、四中物相或者其主晶相不是第三、四种物相。而从图1-3以及图1-4a中可以看出,两种物相的衍射峰与样品的衍射峰几乎都能对上,并且强弱对应良好,因此样品中主晶相可能为CaB5O8(OH)B(OH)3(H2O)3或CaB6O10·5H2O 或者两者的混合物。 图1-2初步物相检索条件设定 图1-3经过初步检索得到的检索结果 a

b c 图1-4初步检索结果 1.3.限定条件的物相检索 初步分析结果,现对样品进行限定条件检索,检索条件设定如图1-5所示。检索结果见图1-6。 通过限定条件检索,发现CaB5O8(OH)B(OH)3(H2O)3与CaB6O10·5H2O两物相的衍射峰与样品衍射峰均能对应。虽然CaB5O8(OH)B(OH)3(H2O)3的FOM值较小,但是从图上可以看出其标准衍射峰与样品峰(包括最强峰)有很小偏离,而CaB6O10·5H2O的衍射峰与样品峰能够更好的对应(尤其是较强的衍射峰)。由于没有被告知样品的来历(合成或是天然矿物),因此,样品主晶相中一定含有CaB6O10·5H2O,可能有 CaB5O8(OH)B(OH)3(H2O)3以及和C20H20N16O8S4Th。 如果样品为人工合成,考虑到Th元素的稀少性以及第四种物相元素与前三种差别较大,可以排除样品中含有此物相的可能性;但是若为天然矿物,则无法做出类似判断。 CaB6O10·5H2O物相标准PDF卡号12-0528,卡片在附件中。 图1-5限定条件物相检索前的条件设定 图1-6经过限定元素后得到的分析结果 2.平均晶粒尺寸计算 Jade计算平均晶粒尺寸的基本原理就是谢乐公式,以衍射峰半高宽来计算。由于没有标准样品的衍射数据来制作仪器半高宽补正曲线,故计算过程中选择ConstantFWHM 选项作为半高宽补正。 2.1.数据导入 将编号01N2009534的文本数据拖动到Jade程序中,得到样品衍射图(图2-1)。 图2-1数据导入后得到的XRD图 2.2.物相检索 不对数据做任何处理,直接进行物相检索,根据1中的物相分析结果,认为主晶相为CaB6O10·5H2O,不考虑其他物相。检索结果如图2-2所示。 图2-2初步检索得到的检索结果 2.3.扣除背底、Kα2 点击键显示已有的背底(图2-3),然后再次点击键,去除背底以及Kα2(图2-4)。

晶体晶胞结构讲解

物质结构要点 1、核外电子排布式 外围核外电子排布式价电子排布式 价电子定义:1、对于主族元素,最外层电子 2、第四周期,包括3d与4S 电子 电子排布图 熟练记忆 Sc Fe Cr Cu 2、S能级只有一个原子轨道向空间伸展方向只有1种球形 P能级有三个原子轨道向空间伸展方向有3种纺锤形 d能级有五个原子轨道向空间伸展方向有5种 一个电子在空间就有一种运动状态 例1:N 电子云在空间的伸展方向有4种 N原子有5个原子轨道 电子在空间的运动状态有7种 未成对电子有3个 ------------------------结合核外电子排布式分析 例2 3、区的划分 按构造原理最后填入电子的能级符号 如Cu最后填入3d与4s 故为ds区 Ti 最后填入能级为3d 故为d区 4、第一电离能:同周期从左到右电离能逐渐增大趋势(反常情况:S2与P3 半满或全 满较稳定,比后面一个元素电离能较大) 例3、比较C、N、O、F第一电离能的大小 --------------- F >N>O>C

例4、某元素的全部电离能(电子伏特)如下: 回答下列各问: (1)I6到I7间,为什么有一个很大的差值?这能说明什么问题? _________________________ (2)I4和I5间,电离能为什么有一个较大的差值_________________________________ (3)此元素原子的电子层有 __________________层。最外层电子构型为 ______________ 5、电负性:同周期从左到右电负性逐渐增大(无反常)------------F> O >N >C 6、对角线规则:某些主族元素与右下方的主族元素的性质有 些相似,被称为“对角线规则”如:锂和镁在空气中燃烧 的产物,铍和铝的氢氧化物的酸碱性以及硼和硅的含氧酸酸性的强弱 7、共价键:按原子轨道重叠形式分为:σ键和π键 (具有方向性和饱和性) 单键 -------- 1个σ键 双键------1个σ键和1个π键 三键---------1个σ键和2个π键 8、等电子体:原子总数相等,价电子总数相等----------具有相似的化学键特征 例5、N2 CO CN-- C22-互为等电子体 CO2 CS2 N2O SCN-- CNO-- N3- 互为等电子体 从元素上下左右去找等电子体,左右找时及时加减电荷,保证价电子相等。9、应用VSEPR理论判断下表中分子或离子的构型。

高中化学选修三几种典型晶体晶胞结构模型总结

学生版:典型晶体模型 晶体晶体结构晶体详解 原子晶体金刚 石 (1)每个碳与相邻个碳以共价键结合, 形成体结构 (2)键角均为 (3)最小碳环由个C组成且六个原子不 在同一个平面内 (4)每个C参与条C—C键的形成,C原子 数与C—C键数之比为 SiO2 (1)每个Si与个O以共价键结合,形成正 四面体结构 (2)每个正四面体占有1个Si,4个“ 1 2O”,n(Si)∶ n(O)= (3)最小环上有个原子,即个O,个Si 分子晶体干冰 (1)8个CO2分子构成立方体且在6个面心又各 占据1个CO2分子 (2)每个CO2分子周围等距紧邻的CO2分子 有个 冰 每个水分子与相邻的个水分子,以相 连接,含1 mol H2O的冰中,最多可形成 mol“氢键”。 NaCl( 型)离子 晶体(1)每个Na+(Cl-)周围等距且紧邻的Cl-(Na+)有 个。每个Na+周围等距且紧邻的 Na+有个 (2)每个晶胞中含个Na+和个Cl- CsCl (型)(1)每个Cs+周围等距且紧邻的Cl-有个,每个Cs+(Cl-)周围等距且紧邻的Cs+(Cl-)有个(2)如图为个晶胞,每个晶胞中含个Cs +、个Cl-

金属晶体简单 六方 堆积 典型代表Po,配位数为,空间利用率52% 面心 立方 最密 堆积 又称为A1型或铜型,典型代表,配位 数为,空间利用率74% 体心 立方 堆积 又称为A2型或钾型,典型代表,配位 数为,空间利用率68% 六方 最密 堆积 又称为A3型或镁型,典型代表,配位 数为,空间利用率74% 混合晶体石墨(1)石墨层状晶体中,层与层之间的作用是 (2)平均每个正六边形拥有的碳原子个数是,C原子采取的杂化方式是 (3)每层中存在σ键和π键,还有金属键 (4)C—C的键长比金刚石的C—C键长,熔点比金刚石的 (5)硬度不大、有滑腻感、能导电

高三化学基础知识复习 课时 考点二五类常见晶体模型与晶胞计算

考点二五类常见晶体模型与晶胞计算 (考点层次B→共研、理解、整合) 1.典型晶体模型 (1)原子晶体(金刚石和二氧化硅) ①金刚石晶体中,每个C与另外4个C形成共价键,C—C键之间的夹角是109°28′,最小的环是六元环。含有1 mol C的金刚石中,形成的共价键有2 mol。 ②SiO 2 晶体中,每个Si原子与4个O成键,每个O原子与2个硅原子成键,最 小的环是十二元环,在“硅氧”四面体中,处于中心的是Si原子,1 mol SiO 2中含有4 mol Si—O键。 (2)分子晶体 ①干冰晶体中,每个CO 2分子周围等距且紧邻的CO 2 分子有12个。 ②冰的结构模型中,每个水分子与相邻的4个水分子以氢键相连接,含1 mol H 2 O 的冰中,最多可形成2 mol“氢键”。 (3)离子晶体 ①NaCl型:在晶体中,每个Na+同时吸引6个Cl-,每个Cl-同时吸引6个Na+,配位数为6。每个晶胞含4个Na+和4个Cl-。 ②CsCl型:在晶体中,每个Cl-吸引8个Cs+,每个Cs+吸引8个Cl-,配位数为8。 (4)石墨晶体 石墨层状晶体中,层与层之间的作用是分子间作用力,平均每个正六边形拥有的碳原子个数是2,C原子采取的杂化方式是sp2。

(5)常见金属晶体的原子堆积模型 2.晶胞中微粒的计算方法——均摊法 (1)原则:晶胞任意位置上的一个原子如果是被n个晶胞所共有,那么,每个晶 胞对这个原子分得的份额就是1 n (3)图示: 提醒:在使用均摊法计算晶胞中的微粒个数时,要注意晶胞的形状,不同形状的晶胞,应先分析任意位置上的一个粒子被几个晶胞所共有,如六棱柱晶胞中,顶点、侧棱、底面上的棱、面心的微粒依次被6、3、4、2个晶胞所共有。3.几种常见的晶胞结构及晶胞含有的粒子数目 A.NaCl(含4个Na+,4个Cl-) B.干冰(含4个CO 2 )

高中化学选修三晶胞参数计算

晶胞参数的计算 1. 均摊法确定晶体的化学式 给出晶体的—部分(称为晶胞)的图形,要求确定晶体的化学式:通常采用均摊法.均摊法有如下规则,以NaCl的晶胞为例: ①处于顶点的粒子,同时为8个晶胞所共有,所以,每个粒子只分摊1/8给该晶胞. ②处于棱上的粒子,同时为4个晶胞所共有,所以,每个粒子只分摊1/4给该晶胞. ③处于面上的粒子,同时为2个晶胞所共有,所以,每个粒子只分摊1/2给该晶胞. ④处于晶胞内部的粒子,则完全属于该晶胞. 由此算出在NaCl的晶胞中: 含数:

含数:

故NaCl晶体中,和 数目之比为1∶1. 2. 晶胞参数的计算 根据(1)ρ= m/V (2)V=a3 例.(1)化学教材中图示了NaCl晶体结构,它向三维空间延伸得到完美晶体。NiO(氧化镍)晶体的结构与NaCl 相同,Ni2+与最临近O2-的核间距离为a×10-8cm,计算NiO晶体的密度(已知NiO的摩尔质量为mol)。 (2)天然和绝大部分人工制备的晶体都存在各种缺陷,例如在某氧化镍晶体中就存在如图所示的缺陷:一个Ni2+空缺,另有两个Ni2+被两个Ni3+所取代。其结果晶体仍呈电中性,但化合物中Ni 和O的比值却发生了变化。某氧化镍样品组成,试计算该晶体中Ni3+与Ni2+的离子个数之比。[练习]

1. 由钾和氧组成的某种离子晶体中含钾的质量分数为78/126,其阴离子只有过氧离子(O22-)和超氧离子(O2-)两种。在此晶体中,过氧离子和超氧离子的物质的量之比为?? A. 2︰1 B. 1︰1 C. 1︰2 D. 1︰3 2.食盐晶体如右图所示。在晶体中,?表示Na+,?表示Cl?。已知食盐的密度为?g / cm3,NaCl 摩尔质量M g / mol,阿伏加德罗常数为N,则在食盐晶体里Na+和Cl?的间距大约是 ?? A?cm B? cm

晶胞参数、坐标参数的分析与应用

晶胞参数、坐标参数的分析与应用 宏观晶体密度与微观晶胞参数的关系 1.钙钛矿晶体的晶胞结构如图所示,则该晶体的化学式为________________。晶胞中的原子可用x 、y 、z 组成的三数组来表示它在晶胞中的位置,称为原子坐标。已知原子坐标为A(0,0,0),B(0,1 2 ,0);则Ca 的原子坐标为__________。 答案 CaTiO 3 (12,12,1 2) 2.(1)晶胞有两个基本要素: ①原子坐标参数,表示晶胞内部各原子的相对位置。如图为Ge 单晶的晶胞,其中原子坐标参数A 为(0,0,0);B 为(12,0,12);C(12,1 2 ,0)。则D 原子的坐标参数为________。 ②晶胞参数,描述晶胞的大小和形状。已知Ge 单晶的晶胞参数a =565.76 pm ,其密度为_____________________________________________________g·cm - 3(列出计算式即可)。 (2)某镍白铜合金的立方晶胞结构如图所示。

①晶胞中铜原子与镍原子的数量比为________。 ②若合金的密度为d g·cm - 3,晶胞参数a =________nm 。 答案 (1)①(14,14,1 4) ②8×736.02×565.763×107 (2)①3∶1 ②??? ?251 6.02×1023×d 1 3×107 解析 (2)①根据均摊法计算,晶胞中铜原子个数为6×12=3,镍原子的个数为8×1 8=1,则 铜原子和镍原子的数量比为3∶1;②根据上述分析,该晶胞的组成为Cu 3Ni ,若合金的密度为d g·cm -3 ,根据ρ=m V ,则晶胞参数a = 3 251 dN A ×107 nm 。 3.用晶体的X-射线衍射法对Cu 的测定得到以下结果:Cu 的晶胞为面心立方最密堆积(如下图),已知该晶体的密度为9.00 g·cm - 3,晶胞中该原子的配位数为________;Cu 的原子半径为________________________________________________________________________cm (阿伏加德罗常数为N A ,要求列式计算)。 答案 12 2 4 ×3 4×649.00×6.02×10 23 cm ≈1.28×10- 8 解析 设晶胞的边长为a cm ,则a 3·ρ·N A =4×64 a = 3 4×64 ρ·N A 面对角线为2a 面对角线的1 4为Cu 原子半径 r =24× 3 4×649.00×6.02×10 23 cm ≈1.28×10- 8cm 。

常见典型晶体晶胞结构.doc

典型晶体晶胞结构1.原子晶体 (金刚石 ) 2.分子晶体

3.离子晶体 + Na - Cl

4.金属晶体 堆积模型简单立方钾型镁型铜型典型代表Po Na K Fe Mg Zn Ti Cu Ag Au 配位数 6 8 12 12 晶胞 5.混合型晶体——石墨 1.元素是Cu 的一种氯化物晶体的晶胞结构如图 13 所示,该氯化物的化学 式,它可与浓盐酸发生非氧化还原反应,生成配合物H n WCl 3,反应的化 学方程式为。 2.( 2011 山东高考)CaO 与NaCl 的晶胞同为面心立方结构,已知CaO 晶体密度为ag·cm-3,N A表示阿伏加德罗常数,则CaO 晶胞体积为cm3。 2.( 2011 新课标全国)六方氮化硼BN 在高温高压下,可以转化为立方氮化硼,其结构与金刚石相似,硬度与金刚 石相当,晶苞边长为361.5pm ,立方氮化硼晶胞中含有______各氮原子、 ________各硼原子,立方氮化硼的密度是_______g ·cm-3(只要求列算式,不必计算出数值,阿伏伽德罗常数为N A)。

解析:描述晶体结构的基本单元叫做晶胞,金刚石晶胞是立方体,其中8 个顶点有8 个碳原子, 6 个面各有 6 个碳 原子,立方体内部还有 4 个碳原子,如图所示。所以金刚石的一个晶胞中含有的碳原子数= 8×1/8+6 ×1/2+4=8 ,因此立方氮化硼晶胞中应该含有 4 个 N 和 4 个 B 原子。由于立方氮化硼的一个晶胞中含有 4 个 4 25g 是,立方体的体积是(361.5cm)3,因此立方氮化硼的密度是 N 和 4 个 B 原子,其质量是 1023 6.02 g·cm-3。 3.( 4)元素金( Au )处于周期表中的第六周期,与Cu 同族, Au 原子最外层电子排布式为______;一种铜合金晶体具有立方最密堆积的结构,在晶胞中Cu 原子处于面心, Au 原子处于顶点位置,则该合金中Cu 原子与 Au 原子数量之比为 _______;该晶体中,原子之间的作用力是________; ( 5)上述晶体具有储氢功能,氢原子可进入到由Cu 原子与 Au 原子构成的四面体空隙中。若将Cu原子与Au原子等同看待,该晶体储氢后的晶胞结构为CaF2的结构相似,该晶体储氢后的化学式应为_____。 4.( 2010 山东卷)铅、钡、氧形成的某化合物的晶胞结构是:Pb4+处于立方晶胞顶点,Ba2+处于晶胞中心, O2-处于晶胞棱边中心,该化合物化学式为,每个 Ba2+与个 O2-配位。 5.(4) CaC2晶体的晶胞结构与NaCl晶体的相似(如右图所示),但 CaC2晶体中含有的中哑 铃形 C 22 的存在,使晶胞沿一个方向拉长。CaC 2晶体中1个 Ca 2 周围距离最近的 C 22 数目 为。 6.( 09 江苏卷 21 A )③在 1 个 Cu2O 晶胞中(结构如图所示),所包含的Cu 原子数目 为。

常见晶胞模型

常见晶胞模型

已知晶体硼的基本结构单元是由B 原子构成的正二十面体,其中有20个等边三角形的面和一定数目的顶点,每个顶点各有一个B 原子。通过观察图形及推算,可知此结构单元是由__12_个B 原子构成,其中B —B 键间的夹角是__60°__。假设将晶体硼结构单元中每个顶角均削去,余下部分的结构与C 60相同,则C 60由_12_个正五边形和_20个正六边形构成。 分子晶体 1、CO 2晶体 以CO 2为例:如右图为干冰晶体的晶胞,立方体的 面心 和 顶点 各 有一个CO 2分子,因此,每个晶胞中有 4 个CO 2分子。 在干冰晶体中,每个CO 2分子距离最接近且相等的CO 2分子有 12 个。 象这种在分子晶体中作用力只是范德华力,以一个分子为中心,其 周围通常可以有12个紧邻的分子的特征称为 分子密堆积 。(若将CO 2分子换成O 2、I 2或C 60等分子,干冰的晶体结构就变成了O 2、I 2或C 60的晶体结构。) C 60晶胞 I 2单质 2、水分子: 冰中1个水分子与周围4个水 分子形成氢键, 所以1 mol 水拥有的氢键数目为2N A

3、白磷晶体:分子式为P 4, 124g 白磷形成的P---P 键数目是6 N A 金属晶体 混合型晶体 1、石墨晶体 ①石墨晶体是层状结构,层与层之间是以 范德华力 结合,同一层内C 原子与C 原子以 共价键 结合成平面网状,每一层碳原子排列成六边形,则碳原子采用 sp 2 杂化。未成对电子形成 大π 键。 ②石墨晶体中C 原子数与C -C 键数之比是2:3 。其中每个正六边形占有的 C 原子数平均为 2 个。

晶胞的相关计算

晶胞的有关计算:体积、微粒数、晶体密度 一、如何利用晶胞参数计算晶胞体积? 平行六面体的几何特征可用边长关系和夹角关系确定。布拉维晶胞的边长与夹角叫做晶胞参数。共有7种不同几何特征的三维晶胞,称为布拉维系,它们的名称、英文名称、符号及几何特征如下: 立方cubic(c)a=b=c,α=β=γ=90°,(只有一个晶胞参数a) 四方tetragonal(t)a=b≠c,α=β=γ=90°,(有2个晶胞参数a 和c) 六方hexagonal(h)a=b≠c,α=β=90°,γ=120°,(有2个晶胞参数a 和c) 正交orthorhombic(o)a≠b≠c,α=γ=90°,(有3个晶胞参数a,b 和c) 单斜monoclinic(m)a≠b≠c,α=γ=90°,β≠90°,(有4个晶胞参数a,b,c 和β) 三斜anorthic(a)a≠b≠c,α≠β≠γ,(有6个晶胞参数a,b,c,α,β和γ) 菱方rhombohedral(R)a=b=c,α=β=γ≠90°,(有2个晶胞参数a 和α) 六方a^2Xcsin120 正交V=abc 单斜V=abcsin β 三斜V=abc(1-cos2α-cos2β-cos2γ+2cos αcos βcos γ) 菱方V=a^3(1-3cos2α+2(cos α)^3) 二、均摊法---计算晶胞中的粒子数 位于晶胞顶点的微粒,实际提供给晶胞的只有1/8; 位于晶胞棱边的微粒,实际提供给晶胞的只有1/4; 位于晶胞面心的微粒,实际提供给晶胞的只有1/2; 位于晶胞中心的微粒,实际提供给晶胞的只有1. 三、晶胞的密度计算 1) 利用晶胞参数可计算晶胞体积(V),根据相对分子质量(M)、晶胞中粒子数(Z)和阿伏伽德罗NA ,可计算晶体的密度ρ: V N MZ A =ρ

四种晶体类型的比较

四种晶体类型的比较

物质熔沸点高低的比较方法

物质的熔沸点的高低与构成该物质的晶体类型及晶体内部粒子间的作用力有关,其规律如下: 1、在相同条件下,不同状态的物质的熔、沸点的高低是不同的,一般有:固体> >HBr(气)。 液体>气体。例如:NaBr(固)>Br 2 2、不同类型晶体的比较规律 一般来说,不同类型晶体的熔沸点的高低顺序为:原子晶体>离子晶体>分子晶体,而金属晶体的熔沸点有高有低。这是由于不同类型晶体的微粒间作用不同,其熔、沸点也不相同。原子晶体间靠共价键结合,一般熔、沸点最高;离子晶体阴、阳离子间靠离子键结合,一般熔、沸点较高;分子晶体分子间靠范德华力结合,一般熔、沸点较低;金属晶体中金属键的键能有大有小,因而金属晶体熔、沸点有高(如W)有低(如Hg)。例如:金刚石>食盐>干冰 3、同种类型晶体的比较规律 A、原子晶体:熔、沸点的高低,取决于共价键的键长和键能,键长越短,键能越大共价键越稳定,物质熔沸点越高,反之越低。如:晶体硅、金刚石和碳化硅三种晶体中,因键长C—C碳化硅>晶体硅。 B、离子晶体:熔、沸点的高低,取决于离子键的强弱。一般来说,离子半径越小,离子所带电荷越多,离子键就越强,熔、沸点就越高,反之越低。 例如:MgO>CaO,NaF>NaCl>NaBr>NaI。KF>KCl>KBr>KI,CaO>KCl。

C 、金属晶体:金属晶体中金属阳离子所带电荷越多,半径越小,金属阳离子与自由电子静电作用越强,金属键越强,熔沸点越高,反之越低。如:Na <Mg <Al ,Li>Na>K 。 合金的熔沸点一般说比它各组份纯金属的熔沸点低。如铝硅合金<纯铝(或纯硅)。 D 、分子晶体:熔、沸点的高低,取决于分子间作用力的大小。分子晶体分子间作用力越大物质的熔沸点越高,反之越低。(具有氢键的分子晶体,熔沸点反常地高) 如:H 2O >H 2Te >H 2Se >H 2S ,C 2H 5OH >CH 3—O —CH 3。 (1)组成和结构相似的分子晶体,相对分子质量越大,分子间作用力越强,物质的熔沸点越高。如:CH 4<SiH 4<GeH 4<SnH 4。 (2)组成和结构不相似的物质(相对分子质量相近),分子极性越大,其熔沸点就越高。如熔沸点 CO >N 2,CH 3OH >CH 3—CH 3。 (3)在高级脂肪酸形成的油脂中,不饱和程度越大,熔沸点越低。 如:C 17H 35COOH >C 17H 33COOH ;硬脂酸 > 油酸 (4)烃、卤代烃、醇、醛、羧酸等有机物一般随着分子里碳原子数增加, 熔沸点升高,如C 2H 6>CH 4, C 2H 5Cl >CH 3Cl ,CH 3COOH >HCOOH 。

(精品)高中化学选修三晶胞参数计算

* 晶胞参数的计算 1. 均摊法确定晶体的化学式 给出晶体的—部分(称为晶胞)的图形,要求确定晶体的化学式:通常采用均摊法.均摊法有如下规则,以NaCl的晶胞为例: ①处于顶点的粒子,同时为8个晶胞所共有,所以,每个粒子只分摊1/8给该晶胞. ②处于棱上的粒子,同时为4个晶胞所共有,所以,每个粒子只分摊1/4给该晶胞. ③处于面上的粒子,同时为2个晶胞所共有,所以,每个粒子只分摊1/2给该晶胞. ④处于晶胞内部的粒子,则完全属于该晶胞. \ 由此算出在NaCl的晶胞中: 含数: 含数: 故NaCl晶体中,和数目之比为1∶1. 2. 晶胞参数的计算 根据(1)ρ= m/V (2)V=a 【 例.(1)化学教材中图示了NaCl晶体结构,它向三维空间延伸得到完美晶体。NiO(氧化镍)晶体的结构与NaCl 相同,Ni2+与最临近O2-的核间距离为a×10-8cm,计算NiO晶体的密度(已知NiO的摩尔质量为mol)。 (2)天然和绝大部分人工制备的晶体都存在各种缺陷,例如在某氧化镍晶体中就存在如图所示的缺陷:一个Ni2+空缺,另有两个Ni2+被两个Ni3+所取代。其结果晶体仍呈电中性,但化合物中Ni和O的比值却发生了变化。某氧化镍样品组成,试计算该晶体中Ni3+与Ni2+的离子个数之比。

[练习] # 1. 由钾和氧组成的某种离子晶体中含钾的质量分数为78/126,其阴离子只有过氧离子(O22 -)两种。在此晶体中,过氧离子和超氧离子的物质的量之比为 -)和超氧离子(O 2 A. 2︰1 B. 1︰1 C. 1︰2 D. 1︰3 2.食盐晶体如右图所示。在晶体中,表示Na+,表示Cl。已知食盐的密度为g / cm3,NaCl摩尔质量M g / mol,阿伏加德罗常数为N,则在食盐晶体里Na+和Cl的间距大约是 A cm B cm A cm D cm 3.某物质的晶体中,含A、B、C三种元素,其排列方式如右图所 示(其中前后两面心上的B原子不能画出),晶体中A、B、C的 原子个数比依次为 ( ) ; A.1:3:1 B.2:3:1 C.2:2:1 D.1:3:3 4. 如右图所示,是一种晶体的晶胞,该离子晶体的化学式为() A.ABC B.ABC3 C.AB2C3 D.AB3C3 5.晶体具有规则的几何外形,晶体中最基本的重复单位称为晶胞。 NaCl晶体结构如右图所示。已知Fe x O晶体晶胞结构为NaCl型,由 ·

(完整版)常见晶胞模型.docx

离子晶体 氯化钠晶体 (1) NaCl 晶胞中每个 Na+等距离且最近的 Cl-(即 Na+配位数)为 6 个NaCl 晶胞中每个 Cl-等距离且最近的 Na+(即 Cl-配位数)为 6 个 (2)一个晶胞内由均摊法计算出一个晶胞内占有的Na+4_个; 占有的 Cl-4 个。 (3)在该晶体中每个 Na+周围与之最接近且距离相等的 Na+共有 12 个; 与每个 Na+等距离且最近的 Cl -所围成的空间几何构型为正八面体CsCl 晶体(注意:右侧小立方体为CsCl 晶胞;左侧为8 个晶胞) (1) + 等距离且最近的 -+ 配位数)CsCl 晶胞中每个 Cs Cl(即 Cs 为 8个 CsCl 晶胞中每个 Cl-等距离且最近的Cs+(即 Cl -配位数) 为 8 个,这几个 Cs+在空间构成的几何构型为正方体 ++(2)在每个 Cs 周围与它最近的且距离相等的Cs 有 。 6 个 这几个 Cs+在空间构成的几何构型为正八面体(3)一个晶胞内由均摊法计算出一个晶胞内占有的。 Cs+ 1 个;占有的Cl- 1 个。 CaF2晶体 (1)) Ca2+立方最密堆积, F-填充在全部四面体空隙中。 (2) CaF2晶胞中每个 Ca2+等距离且最近的 F-(即 Ca2+配位数)为 8 个CaF2晶胞中每个 F-等距离且最近的 Ca2+(即 F-配位数)为 4 个( 3)一个晶胞内由均摊法计算出一个晶胞内占有的Ca2+4 个; 占有的 F-8 个。 ZnS晶体: (1)1 个 ZnS晶胞中,有 4 个 S2-,有 4 个 Zn2+。 (2)Zn2+的配位数为 4 个, S2-的配位数为 4 个。

晶胞参数、坐标参数的分析与应用

晶胞参数、坐标参数的分析与应用 宏观晶体密度与微观晶胞参数的关系 1.钙钛矿晶体的晶胞结构如图所示,则该晶体的化学式为________________。晶胞中的原子可用x 、y 、z 组成的三数组来表示它在晶胞中的位置,称为原子坐标。已知原子坐标为A(0,0,0),B(0,1 2 ,0);则Ca 的原子坐标为__________。 答案 CaTiO 3 (12,12,1 2) 2.(1)晶胞有两个基本要素: ①原子坐标参数,表示晶胞内部各原子的相对位置。如图为Ge 单晶的晶胞,其中原子坐标参数A 为(0,0,0);B 为(12,0,12);C(12,1 2 ,0)。则D 原子的坐标参数为________。 ②晶胞参数,描述晶胞的大小和形状。已知Ge 单晶的晶胞参数a = pm ,其密度为_____________________________________________________g·cm -3 (列出计算式即可)。

; (2)某镍白铜合金的立方晶胞结构如图所示。 ①晶胞中铜原子与镍原子的数量比为________。 ②若合金的密度为d g·cm -3 ,晶胞参数a =________nm 。 答案 (1)①(14,14,14 ) ②错误!×107 (2)①3∶1 ②???? ? ?251×1023×d 1 3×107 解析 (2)①根据均摊法计算,晶胞中铜原子个数为6×12=3,镍原子的个数为8×1 8=1,则 铜原子和镍原子的数量比为3∶1;②根据上述分析,该晶胞的组成为Cu 3Ni ,若合金的密度 为d g·cm -3 ,根据ρ=m V ,则晶胞参数a = 3 251 dN A ×107 nm 。 3.用晶体的X -射线衍射法对Cu 的测定得到以下结果:Cu 的晶胞为面心立方最密堆积(如下图),已知该晶体的密度为 g·cm -3 ,晶胞中该原子的配位数为________;Cu 的原子半径为________________________________________________________________________cm (阿伏加德罗常数为N A ,要求列式计算)。 答案 12 24× 3 4×64××10 23 cm≈×10-8 (

晶胞结构

晶胞结构 一、金属晶体 2.钾型A2(体心立方堆积)堆积晶胞 钾型A2堆积晶胞是立方体心, 因此晶胞的大小可以用等径圆球的半径r 表示出来, 即晶胞的边长a 与r 的关系为: A2堆积的空间利用率的计算:A2堆积用圆球半径r 表示的晶胞体积为: a r r a r a 43 ,3 4 ,43===%02.68833 3643422342 23364)34(333 33==?=?===πππr r V V A r V r r V 晶胞圆球圆球晶胞堆积的空间利用率为:个圆球的体积为:每个晶胞中

3.六方最密堆积 (4)A1(面心立方最密堆积) A1是ABCABCABC······型式的堆积,从这种堆积中可以抽出一个立方面心点阵,因此这种堆积型式的最小单位是一个立方面心晶胞。A1堆积晶胞是立方面心, 因此晶胞的大小可以用等径圆球的半

径r 表示出来, 即晶胞的边长a 与r 的关系为: A1堆积空间利用率的计算: A1堆积用圆球半径r 表示的晶胞体积为: (5)A4 堆积形成晶胞 A4堆积晶胞是立方面心点阵结构, 因此晶胞的大小可以用等径圆球的半径r 表示出来, 即晶胞的边长a 与r 的关系为: A4堆积的空间利用率的计算: A4堆积用圆球半径r 表示的晶胞体积为: r a r a 22 ,42==%05.742 3121634413 4 4 4216)22(3 3 3 3 3==?=?===πππr r V V A r V r r V 晶胞 圆球圆球晶胞堆积的空间利用率为:个圆球的体积为:每个晶胞中 a r r a r r a 83 ,38 ,8243== =?=%01.341633 35123484348 833512)38(3333 3==?=?===πππr r V V A r V r r V 晶胞 圆球 圆球晶胞堆积的空间利用率为:个圆球的体积为:每个晶胞中

相关文档
最新文档