五氧化二钒

五氧化二钒纳米片3D结构的建立与作为电极在超级电容器中的应用

李鲁育、张浏茜

目录

一研究背景

二制备方法

三检测讨论

四实验结论

研究背景

?许多二维(2D)材料因它们独特的性能与在电子、催化以及能量的储存和转化上的广泛的应用前景而吸引了极大的关注。然而,大规模超薄薄片和功能性纳米片的生产仍然是科学和工程上的一项挑战。

?超级电容器:功率密度高、传输速度快和生命周期长等特性,被用作锂离子电池的补充物,因而被广泛研究。然而,超级电容器的低能量密度妨碍了其作为独立装置的应用。

超级电容器的能量密度取决于它的比电容C和电池电压V。

2

1CV

E

2

/

因此,提高电极材料的比电容是获得高能量密度的超级电容器的一种有效方法。通常,高电容电极材料拥有较大的比表面积和较好的导电性。研究最早和最成熟的是以碳材料作电极的双层电容器。

?碳基电化学双层电容器缺点:电容较低,特别是在高速率的充放电中。

?金属氧化物和氢氧化物:它们有更有效的储能机制,通常在储能中表现出高电容的性质。其中V2O5是一种重要的功能材料具有非常稳定的晶体结构、高法拉第活性和宽电位窗,资源丰富、价格便宜被广泛研究。

?许多研究证明V2O5的结构对能量密度有重大影响

?大块V2O5的能量密度较低,只有11.6 W·h·kg-1

?由覆盖在碳纤维表面的一层薄的V2O5层构成的多孔的、像纸一样的V2O5结构可以表现出45.0 W·h·kg-1的能量密度。

?发展具有合适结构的V2O5纳米材料是进一步提高它们的能量密度的关键。

制备方法

?这里我们展示一种大规模生产4 nm厚,水平尺寸最高为10微米的超薄V2O5纳米薄片的有效方法和通过冷冻干燥的方法,利用V2O5纳米片作为结构单元建立3D结构体系。

结构体系形成过程的原理图

3D V2O5

?这种超薄V2O5纳米片是通过冷冻干燥过程制造3D结构体系的理想的结构单元。

?(1)在190℃的H2O2中通过水热法用V2O5粉末生成柔韧的薄V2O5纳米

片(2)通过冷冻干燥法将水从生成的V2O5纳米片样品中除去

简单的水热处理和随后的冷冻干燥处理,一种由大量V2O5纳米片构成的凝胶被装备出来。

典型的大块V2O5首先分散在H2O2(30 wt %)和去离子水的混合物中,混合物的体积比例保持在1:5

然后对混合物进行2-3分钟的超声处理以快速溶解

V2O5。在声波降解过程中,橙色的混合物逐渐变为透明红色溶液,并伴随有大量的气泡(气泡和颜色变化分别由氧气的释放和复杂化学反应中中间相的产生而导致)。

V2O5 + 4H202 → 2[VO(O2)2(OH2)]-+ 2H+ + H20⑴

V2O5 + 2H+ + 2H202 + 3H20 → 2[VO(O2)(OH2)3]-+ O2⑵

2[VO(O2)2(OH2)]-+ 2H+ + 2H20 → 2[VO(O2)(OH2)3]-+ O2⑶

2[VO(O2)(OH2)3]-→ 2[VO2]+ + O2 + 6H20⑷

随后,将透明红色溶液密封在一个40 mL 的聚四氟乙烯高压锅里,加热到190℃保持5-20小时。在这个水热过程中,被制造

出的高黏性的红色凝胶由大量V2O5纳米片组成。

最终,这种由随机连通的纳米片构成的高粘性V2O5凝胶通过液

氮冷冻和高真空泵干燥,纯化至冰态。结果,获得了高比表面

积的V2O5结构。

这种简单的无模板的生产方式生产这种产品的产量只取决于高压锅的容积和合成过程中前驱物的质量,这有利于大规模生产。

?用场发射扫描电子显微镜(FE-

SEM )和透射电子显微镜(TEM )

系统的研究制备好的3D 结构体系

的相形态和结构。

?如图a 和b 所示,高度连通和多孔

的3D 结构体系由大量纳米片组成,

与3D 单层石墨网状物和气凝胶相

似。结构单元纳米片有500 nm 至

数十微米的横向尺寸,它们随机

地在3D 结构体系里聚集。这种几

微米至几十微米的气孔可以被辨认。气孔结构来源于冷冻干燥过程中水的移动。

3D V2O5结构体系的特点

(a-b )典型由纳米片构成的3D

V2O5结构体系的电场发射扫描电子显微镜(FESEM )图像;

(c-d)纳米片的透射电子显微镜(TEM)图像显示出褶皱和对应的高分辨TEM图像(内嵌FFT)从图d中可以清楚地看出点阵周期为0.19和0.18 nm,分别与正交V2O5的(600)和(200)晶面间距一致。

如图e-g所示,V和O原子均匀的分散在纳米片里(e-g)扫描投射电子显微镜(STEM)图案想和对应的氧(f)和钒(g)的元素映射系统,说明V和O在纳米片中的分布相同。

X射线衍检测晶体结构进行比较(a)X射线衍射图,显示出层

状的3D V

2O

5

结构体系、层叠

V 2O

5

薄膜以及大块正交V

2

O

5

体的不同之处;

(b)3D V2O5结构体系、层叠V2O5薄膜以及商用大块V2O5材料的拉曼图谱,表明V2O5在3D 结构体系中和层叠薄膜的样品中与大块V2O5有相同的平面性质;

用氮气物理吸附方法研究样品的多孔性

吸附和脱附等温线表现出

典型的H3滞后回线。通过

Brunauer-Emmett-Teller

(BET)法(即BET比表面

积测试法)对吸附的分析,

显示出3D结构的高比表面

积值(图c),比其他薄膜

堆叠而成的V2O5(27

m2·g-1)和大块V2O5

(5.4 m2·g-1)要高很多。(c)3D V2O5结构体系、层叠V2O5薄

膜以及商用大块V2O5样品中氮的吸附

和脱附等温线,表明3D V2O5结构体

系的比表面积最高;

3D V2O5结构体系、层叠V2O5薄膜以及大块V2O5超级

电容器的电化学性能

(a)通过在各种扫描速度下测得的循环伏安法曲线计算出的比电容(b)在1 mol/L的Na2SO4水溶液中,电流密度为0.5 A·g -1,电压为-1.0V到+1.0V 的条件下,恒流充放电;

(d)3D V2O5结构体系、层叠V2O5薄

膜以及大块V2O5电极的比功率密度和

比能量密度。

(c)

电化学阻抗光谱技术?通过应用振幅为5.0 mV的正弦波在100 kHz到0.01 Hz的频率下获得的3D V2O5结构

体系、层叠V2O5薄膜以及大块V2O5电极的尼奎斯特

(Nyquist)图;

?与层叠V2O5以及大块V2O5相比,3D结构体系的V2O5电极显示出了最小的半圆直径。

最小的直径说明3D V2O5结

构体系电极的电阻最低(内嵌在高频下的放大图)。

结论

?V2O5在3D结构体系和层叠薄膜样品中与大块V2O5有相同的堆叠行为。

?V2O5电极的电荷转移电阻要比层叠V2O5电极和大块V2O5电极低得多。3D结构体系的V2O5在电能储存方面有着最高的电化学活性。

?3D结构体系的V2O5放电曲线斜率要小于层叠V2O5以及大块V2O5的放电曲线斜率,说明3D结构体系的V2O5电极的电化学活性更高。

?V2O5结构体系的这种特殊的结构特性包括高比表面积、超薄的片层和多孔的结构,当它们在储能装置中被用于电极时,导致大的电极/电解液接触面和短的电子/离子扩散途径。

五氧化二钒使用管理制度

五氧化二钒使用管理制度 一、五氧化二钒在本单位使用用途为向脱硫溶液中添加作为催化剂。 二、计划申报:每月10日前由工艺技术员对上月脱硫溶液中总钒的含量情况制定下月的五氧化二钒物资计划,经相关领导审批后报采购部门进行采购。 三、物资领取:由分公司检修技术员负责与采购业务员联系,出具领料单进行领取,五氧化二钒入库后,实行双人双锁管理制度。根据生产情况组织化工人员溶解添加到脱硫溶液系统。 四、五氧化二钒溶解操作规定: 1、参与人员必须按照规定穿戴防护眼镜、防尘口罩、劳保工作服、胶皮手套方可进行作业。 2、五氧化二钒必须等碳酸钠充分溶解后方可加入溶液制备槽,在保证溶液沸腾状况下搅拌半个小时以上方可送入脱硫溶液系统。 3、向溶液制备槽内添加五氧化二钒时,必须放低盛装容器缓慢加入,避免出现粉尘飞扬,同时保证容器内物料全部倒空,不留残余,盛装容器必须进行回收统一处理。 4、制备五氧化二钒溶液后,要及时洗澡,以防过敏中毒。 5、作业现场禁止非作业人员逗留。 五、五氧化二钒对人体影响 1、对人体健康影响 侵入途径:吸入、食入、经皮吸收。 健康危害:对呼吸系统和皮肤有损害作用。急性中毒:可引起鼻、咽、肺部刺激症状,多数工人有咽痒、干咳、胸闷、全身不适、倦怠等表现,部分患者可引起肾炎、肺炎。慢性中毒:长期接触可引起慢性支气管炎、肾损害、视力障碍等。 2、环境标准: 车间空气中有害物质的最高容许浓度0.1mg/m3[烟];0.5mg/m3[粉尘]。 六、应急处置方法 1、泄漏应急处理 隔离泄漏污染区,周围设警告标志,建议应急处理人员戴正压自给式呼吸器,穿化学防护服。不要直接接触泄漏物。避免扬尘,用清洁的铲子收集于干燥净洁有

攀枝花钒产业现状分析及对策

攀枝花钒产业现状分析及对策 摘要:本论文通过对攀枝花钒产业现状和问题的分析,认为攀枝花钒产业集中度不高,企业之间的产业关联度低,产业链相对较短,钒产品的附加值较低,一些核心技术尚待突破,税收等优惠扶植政策不健全,缺少必要的环境保护和资源综合利用等措施,产业结构缺乏合理的规划和政策引导,这些问题都亟待解决。必须实现攀枝花钒产业的转型升级,产业结构的合理优化,产业的合理布局,提高资源的综合利用,才有利于攀枝花的钒产业的发展。 关键词:攀枝花产业集中度产业关联度产业链产业结构产业布局资源综合利用产业规制 Analysis and Countermeasures of the status of Panzhihua vanadium industry Abstract:The analysis of Panzhihua vanadium industry present situation and the question, think Panzhihua vanadium industry concentration is not high, between enterprises of the industry related degree low, industrial chain is relatively short, vanadium products of low added value, some of the core technology still needs a breakthrough, tax policy is not perfect, the lack of the necessary environmental protection and comprehensive utilization of resources, industrial structure, lack of reasonable planning and policy guidance, these problems needs to be solved urgently in the. It is necessary to realize the transformation and upgrading of the vanadium industry in Panzhihua, the reasonable optimization of industrial structure, the reasonable layout of the industry, and the comprehensive utilization of resources, which will benefit the development of vanadium industry in Panzhihua.. Key words:Panzhihua industry concentration Industrial relevancy industrial chain Industrial structure Industrial Distribution Comprehensive utilization of resources Industrial regulation

五氧化二钒

五氧化二钒 钒是一种有色金属,五氧化二钒广泛用于冶金、化工等行业,主要用于冶炼钒铁用作合金添加剂,占五氧化二钒总消耗量的80%以上,其次是用作有机化工的催化剂,即触媒,约占总量的10%,另处用作无机化学品、化学试剂、搪瓷和磁性材料等约占总量的10% 五氧化二钒简介 管制信息 五氧化二钒(剧毒) 本品根据《危险化学品安全管理条例》受公安部门管制。 名称 中文名称:五氧化二钒 中文别名:五氧化钒,无水钒酸,氧化钒(V) 英文别名:Vinylchloroformate,Vanadic acid anhydride,Vanadium pentoxide 化学式 V2O5 相对分子质量 性状

固体。对湿敏感。相对密度 (d25)。沸点67~69℃。折光率(n20D)。闪点-4℃。易燃。有刺激性和催泪性。有毒。商品常加% 2,6-二叔丁基对甲酚或%对苯二酚一甲酯作稳定剂。 储存 充氩密封4℃干燥保存。 用途 氨基和羟基的保护试剂。 工业上硫氧化法制硫酸工艺中二氧化硫转变为三氧化硫步骤地催化剂。 用于冶金工业:制钒铁合金、钒铝合金及其它特种金属材料. 在化肥工业中用于脱碳、脱硫等。还可用于印染、陶瓷的着色材料, 石油化工装置设备的缓蚀剂。用作制硫酸和有机合成的催化剂, 还用于玻璃工业 理化常数 国标编号 61028 CAS号 1314-62-1

EINECS登录号[1] 215-239-8 五氧化二钒 英文名称 Vanadium pentoxide 别名 钒酸酐 摩尔质量 g /mol 外观 橙黄色粉末,熔融成块时呈紫红色光泽分子式 V2O5 分子量 熔点

钒行业市场分析报告

凡宇资讯网VIP会员专刊 目录 前言 (1) 1价格行情 (1) 1.1钒铁合金 (1) 1.1.1市场走势 (1) 1.1.2钢厂招标 (2) 1.1.3国际市场 (4) 1.2钒氮合金 (4) 1.3五氧化二钒 (5) 1.3.1国内市场 (5) 1.3.2国际市场 (6) 1.4偏钒酸铵 (6) 1.53月我国钒系产品进出口市场分析 (7) 1.5.13月我国钒系产品进出口总量分析 (7) 1.5.23月我国钒系产品进出口量按国别统计 (8) 1.5.33月我国钒系产品出口量按企业统计 (9) 1.5.42014.01-03我国钒系产品出口分析 (9) 1.5.52013、2014一季度我国钒系产品出口对比分析 (11) 1.5.62013、2014一季度我国钒系产品分国别对比图 (12) 2下游钢厂部分 (13) 2.1一季度钢铁市场运行困难 (13) 2.25月钢市或有震荡回升 (14) 2.3螺纹钢最新价格信息(截止4月30日) (15) 3相关行业动态 (16) 3.1攀枝花钒钛产业园区转型升级需借鉴他山石 (16) 3.3攀钢清洁提钒废水处理中试试验取得重大进展 (16) 3.4攀西战略资源开发面临诸多瓶颈 (16) 3.5攀西战略资源开发:试验区的现实落差 (16) 3.62014年一季度攀钢钒产品产量 (16) 3.7攀钢历时8年攻克钒产业世界性难题 (17) 3.8新疆巴楚县钒钛磁铁矿选铁、选钛试验研究 (17) 3.9秦岭山区开展钒、石煤矿山开采情况调研 (17) 3.10承钢含钒铁水冶炼ER70S-6焊丝钢获国家发明专利 (17) 3.11湖南众鑫新材料科技有限公司钒氮合金项目正式投产 (17) 4后市预测 (17)

五氧化二钒制备氮化钒的过程研究 康鑫磊

五氧化二钒制备氮化钒的过程研究康鑫磊 发表时间:2017-12-01T17:30:14.960Z 来源:《建筑科技》2017年第11期作者:康鑫磊[导读] 在还原氮化五氧化二钒制备氮化钒的过程中, 还原程度直接影响氮化程度, 为了寻求一种经济、高效的制取氮化钒的方法。本文分析了五氧化二钒制备氮化钒的过程。 河钢股份有限公司承德分公司钒钛事业部河北省承德市 067000 摘要:随着转炉冶炼高强度低合金钢技术的飞速发展, 氮化钒的应用不断增加。在还原氮化五氧化二钒制备氮化钒的过程中, 还原程度直接影响氮化程度, 为了寻求一种经济、高效的制取氮化钒的方法。本文分析了五氧化二钒制备氮化钒的过程。 关键词:五氧化二钒;制备;氮化钒; 钒是一种重要的金属元素, 具有许多可贵的理化特性和机械特性, 能细化晶粒, 提高钢的硬度和耐磨性, 在冶金和化工部门有着广泛的用途。中国生产五氧化二钒的原料主要有3种:石煤、矾渣和废钒催化剂,国外还有少数国家如美国、日本等从石油渣中提取钒。 一、简述 由热力学分析可知,在一定温度和氮气气氛下,碳还原五氧化二钒制备氮化钒在热力学上是可行的,还原过程存在间接还原和直接还原2 种方式,何种方式占主导地位取决于V2O5 和C 的初始混合态。为了减少钒的挥化损失,应在五氧化二钒的熔点下进行一级还原反应,同时为了避免生成的氮化钒重新转变为碳化钒,反应温度应控制在1546K 以下。碳还原五氧化二钒制备氮气钒的反应过程动力学速率方程可通过氮气条件下氮化钒的曲线确定。曲线显示氧化钒的碳热氮化还原过程是多个反应并存的复合反应过程,存在2 个明显的质量损失阶段和3 个不同的吸热反应峰,说明有不同类型的化学反应发生,并且前一个吸热峰未结束,后一吸热峰即开始,表明不同的反应交错在一起同时进行。根据氧化钒的碳热还原氮化复合反应可分为2 个阶段,即低温反应阶段和高温反应阶段。低温反应阶段的活化能较低,反应容易进行,反应机理为一级化学反应;高温反应阶段的活化能很高,是整个反应的控制环节,反应机理为二级化学反应。氧化钒的碳热还原氮化反应体系符合反应控制机制(Rn 模型),氮气气氛有利于反应的进行,升高温度可加快反应进行的速率。实际生产过程应尽可能将V2O5 还原为VC,再调节温度和氮气分压制取VN 或V(C,N)。但必须指出的是过高的反应+温度反而会导致发生氮化钒转变为碳化钒的反应,因此,反应过程的实际温度应控制在1450K以下。 二、实验 1.氮化钒的制备。采用真空碳热还原法制备碳化钒,再直接渗氮制取氮化钒。钒源为工业用V2O5 粉末,纯度为99%;以冶金用高纯炭黑作为碳源,纯度大于99%;氮源为高纯氮气。在V2O5 粉末中加入炭黑,配碳量(质量分数)分别为20.0%、20.5%、21.0%、21.5%、2 2.0%和22.5%,同时加入适量聚乙烯醇水溶液,利用行星球磨机混合均匀。混合料通过液压压片机和钢制模具压制成直径为45 mm、厚度20 mm 的球饼样品。将压坯置入真空炉内,抽真空至20MPa,150 ℃下保温4 h 烘干。然后以40℃/min 速率升温至还原温度1400~1420℃,保温约4~6 h。升温过程中通入高纯氮气进行氮化,因氮化过程中氮气参与氮化反应而不断消耗,故需通过氮气阀门控制氮气的加入量,并保证真空炉内压力在260kPa 左右。氮化反应完毕后真空炉停止加热,继续通入氮气,同时调节真空炉的出气口,维持真空炉内微正压,在氮气气氛的保护下冷却到室温,得到氮化钒产品。 2.性能检测。采用全自动X 射线衍射仪测定所得氮化钒的物相组成;通过扫描电镜观察氮化钒颗粒形貌;用密度测量仪测定氮化钒的表观密度;利用化学滴定法分析氮化钒的钒含量;用氧氮仪测定氮化钒的氮含量;用碳硫测定仪测定氮化钒的碳含量;采用综合热分析仪对氮化钒进行热重分析。 三、结果与讨论 1.热质量分析。氮化钒在氮气和氩气条件下的质量损失曲线和质量损失速率曲线在温度低于1160 K 时,不同气氛下的曲线重合性很好,这时氮气和氩气所起的作用完全一样,只充当保护气体;通过调节真空炉的出气口阀门,降低真空炉内CO 分压,可促进V2O5 的逐步还原。温度高于1560 K 时,由于VN 转化为VC 而释放出N2 产生新的质量损失,因此在实际制备VN 过程中,当氮气压力为101kPa 时,氮化温度不能超过1560 K(和理论分析的1546 K 接近),否则VN 转变为VC。最初发生质量损失的温度(656K)为一级还原开始温度,这表明在低于V2O5 的熔点温度下V2O5 就发生了还原反应。氮化钒产品的XRD谱V2O5 的还原氮化产物的XRD 谱与纯VN 和VC 的标准图谱相吻合,因此确定产物为碳氮化钒的固溶体。制备过程工艺参数不同,产品的氮含量在一定范围内发生变化。 2.配碳量。配碳量对产物中碳、氧含量以及氮含量的影响。在氮化钒的制备过程中,配碳比是还原氮化产物中碳、氧和氮含量的主要影响因素,配碳量太少,还原不充分,产品的氧含量高,导致氮含量低;但配碳比过高时,碳还原反应过程中产生CO气体,CO 气体溢出时导致颗粒内部产生许多气孔,气孔的数量与大小也影响氮化反应的进行。随配碳比增加,产物的氮含量增加,当配碳比为21%时,产物的氮含量达到最大值14.76%,配碳比进一步提高时,产物中的氮含量下降。这是因为VN、VC 和VO 形成固溶体,而VN、VC 和VO 均为面心立方间隙型化合物,N、C 和O 在面心立方点阵中占用同样的位置,只有当C 和O 总含量最小时,还原氮化产物才可能得到最大的N 含量。为了保证还原氮化产物具有最高的氮含量,原料的质量配碳比约为21%。从热力学的角度讲, 碳还原五氧化二钒制备氮化钒的过程中, 间接还原和直接还原都可以发生, 且应在五氧化二钒的熔点温度以下进行一级还原反应, 以减少钒损失。 3.氮化温度。氮化温度对产物氮含量的影响(配碳量为21.0%)。从反应过程热力学角度看,提高反应温度对吸热反应有利,对放热反应不利。三氧化二钒的还原过程是一个吸热过程,必须高于一定的温度反应才可发生,但中间产物VC 的氮化系放热反应,提高温度对反应不利,因此氮化钒的制备需选择适宜的温度。从反应过程动力学角度看,无论是吸热反应还是放热反应,提高温度都有利于活化反应物的分子,加快反应的进行。随温度升高,产物的氮含量增加,氮化温度达到1420℃时,氮含量为1 4.76%,原因是升高温度使还原反应速率加快。当温度超过1420 ℃时,随温度升高,产物中氮含量反而降低,这是因为高温下生成的VN 发生反应。因此控制适宜的氮化反应温度是提高产物氮含量的关键之一。实际生产过程中氮化温度应控制在1400~1420 ℃范围内。在氮化温度1420℃下,氮化时间对产物中氮含量的影响。当氮化反应时间小于4h 时,氮化时间对氮含量的影响很大,随氮化时间增加,产物氮含量增加,因为反应时间过短,氮化反应进行不彻底。当氮化反应时间超过4 h 后,氮化时间对产物氮含量影响不明显,产物氮含量几乎不再发生变化,说明氮化时间达到4 h 即可实现氮化完全。20%氮化温度1 400 ℃,氮化时间4 h。该过程中同时发生了直接还原和间接还原, 且随着试样配碳系数的增加, 烧后试样中碳含量增加, 氮含量降低, 氧含量降低, 间接还原发生的几率增大。本研究制备的氮化钒性能指标已达到国外同类产品水平,部分性能超过国外同类产品。

五氧化二钒安全技术说明书

五氧化二钒安全技术说明书 第一部分化学品及企业标识 化学品中文名称:五氧化二钒 化学品商品名:钒(酸)酐 化学品英文名称:Vanadium pentoxide 企业名称:江西百川钒业有限公司 地址:江西省上饶市经济技术开发区191号 第二部分成分/组成信息 化学品名称:五氧化二钒 有害成分:五氧化二钒 纯度:分析纯≥% CAS No. 1314-62-1 第三部分危险性概述 危险性类别:第类毒害品 侵入途径:吸入、食入、经皮肤吸收 健康危害:对呼吸系统和皮肤有损害作用。急性中毒:可引起鼻、咽、肺部刺激症状,接触者出现眼烧灼感、流泪、咽痒、干咳、胸闷、全身不适、倦怠等表现,重者出现支气管炎或支气管肺炎。皮肤高浓度接触可致皮炎,剧烈瘙痒。慢性中毒:长期接触可引起慢性支气管炎、肾损害、视力障碍等。 环境危害:对环境有害 燃爆危险:无意义 第四部分急救措施 皮肤接触:立即脱去污染的衣着,用大量流动清水冲洗。就医。 眼睛接触:提起眼睑,用流动清水或生理盐水冲洗。就医。 吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。 食入:饮足量温水,催吐。就医。 第五部分消防措施 危险特性:未有特殊的燃烧爆炸特性。 有害燃烧产物:可能产生有害的毒性烟雾。 灭火方法及灭火剂:不燃。火场周围可用的灭火介质。 灭火注意事项:周围环境着火时,根据周围环境要求使用灭火器灭火。 第六部分泄露应急处理 应急处理及消除方法 将泄漏物清扫进容器中;如果适当,首先湿润防止扬尘;小心收集残余物,回收或运至废物处理场所处置;不要让该化学品进入环境;个人防护用具:使用于有毒颗粒物的P3过滤呼吸器。

五氧化二钒

YB/T 5304—201×《五氧化二钒》(征求意见稿) 起草说明 2015年12月

YB/T 5304—201×《五氧化二钒》(征求意见稿) 编制说明 一、概况 五氧化二钒是钒渣或其它含钒矿物经焙烧、浸出、沉淀、分解、熔化制得的,是生产合金、化工产品和工业用催化剂的常见原料,广泛用于冶金、化工、医药、能源、环保、航空航天等行业。现行标准为YB/T 5034—2011《五氧化二钒》。该标准由攀钢负责于2008年底就完成标准研究并通过标委的审定,由于该标准仅规定了98%和99%品级的片钒和97%品级的粉钒,同时由于客观原因报批时间较长,其主要技术内容已不能完全适应近年来五氧化二钒的生产和使用情况。 随着冶金和化工等行业的进步,各行业对五氧化二钒的要求越来越高,冶金和化工行业的部分高精尖产品需要五氧化二钒的纯度达到99.5%以上,有些行业甚至要求五氧化二钒的纯度达到99.99%。2008年至今钒产业突飞猛进的发展,产品应用得到大力拓展,产品的质量及主要经济技术指标逐年提高,用户对高纯度粉状五氧化二钒中杂质含量的要求越来越高,比如耐热高强度钛基合金、催化剂领域、钒电池、飞行器机体、颜料、医药等行业的应用。攀钢等企业成功研制并投放市场的98.0%~99.8%品级的较高纯度五氧化二钒已成为制造高档钒催化剂、宇航级钒铝或钛钒铝合金等高端产品的关键原料。但现行行业标准并未规定其要求,为促进五氧化二钒应用领域的拓展,特别是加快推进高纯度五氧化二钒的生产和应用,有必要对现行标准进行必要的修改、补充和完善,满足生产企业精细化生产需要和下游高端

用户使用需要。 二、标准修订依据 1、GB/T1.1—2009《标准化工作导则第1部分:标准的结构和编写规则》。 2、参照铁合金的相关国家/行业标准。 3、国内有关部门专家的意见。 三、修订内容 经攀钢集团有限公司申报,工业和信息化部于二○一四年四月以《2014年第一批行业标准制修订计划》下达了修订YB/T 5304—2011《五氧化二钒》的任务(计划号2014-0192T-YB),由全国生铁及铁合金标准化技术委员会归口,由攀钢集团有限公司牵头,联合冶金工业信息标准研究院等对YB/T 5304—2011《五氧化二钒》进行必要的修改、补充和完善。 据此,攀钢集团有限公司委托攀钢集团攀枝花钢钒有限公司成立了《五氧化二钒》标准修订起草小组。通过系统的调研,标准起草小组在原标准基础上,结合近年来五氧化二钒的生产和使用实践起草了YB/T 5304—××××《五氧化二钒》(征求意见稿)。有关情况说明如下: (一)关于范围和规范性引用文件 1、本标准本次修订,对原标准规定的范围没有进行修改。对规范性引用文件,鉴于产品纯度的提高和航空航天应用的推广,产品杂质元素项目及其含量的要求逐步提高,通常需要对十余种杂质元素进行

年产500吨五氧化二钒生产项目环评报告

一、建设项目概况 1、项目名称:年产500吨五氧化二钒生产项目 2、建设性质:新建 3、建设规模:年产五氧化二钒500吨 4、建设地点:池州市牛头山镇宝赛村,见建设项目区域地理位置图(附图2-1)。 5、投资总额及环保投资:本项目总投资资金2390万元,其中环保投资150万元,占总投资的6.3%。 二、项目建设内容 1、本项目组成见表 建设项目组成一览表

2、总平面布置 生产区占地总面积13000 m2。其中建筑物占地面积4000 m2,道路及堆场占地面积9000 m2。 3、产品方案 本项目产品为V 2O 5 ,年设计生产能力为500t。 4、污染物排放量总汇 污染物排放量总汇表单位:t/a

三、项目拟采取的污染防治措施 1、废气防治措施 焙烧炉废气用塑料风机先抽入第一个吸收塔用水喷淋吸收,此时氯化氢的吸收率可达99.2%,对氯气的吸收率可达到80%。然后再进入第二个吸收塔用石灰乳三级喷淋吸收,进一步除去废气中的氯化氢和氯气,最后通过70m高的烟筒排放。根据国家排放标准。经过二级处理后的废气可达标。 在灼烧工序排出的废气含氨气,计算量为偏钒酸铵的15.7%,每小时约有19.4公斤左右的氨气逸出,可用水喷淋吸收回收铵。产生的废氨水可用于中和沉钒酸性废水。 2、废水治理 对于含钒废水采用氯化亚铁还原和石灰乳中和沉淀的方法来处理,处理后废水中含钒低于0.1毫克/升,回收率可达99%以上,沉淀物返回焙烧,废水进入循环。 对于焙烧废气处理的喷淋水,含大量的氯化氢、氯化钙等采用石灰乳中和的办法,使PH值达6~7,生成的氯化钙沉淀经澄清后上层清液含氯化氢<10毫克/ )沉淀配升。生成的氯化钙可利用沉钒废水中的硫铵与之反应生成石膏(CaSO 4 入废渣中制砖。 3、废渣治理 浸出的石煤废渣及污泥日产量为348吨左右,设计采用压滤机对废渣进行强化处理,使其中可容性钒盐、钾盐、钠盐的含量大大降低,处理后的废渣供碳化砖生产线加工新型墙体钙化免烧砖和水泥砖,原石煤综合利用有限公司可年产200万块,同时大大节约生产成本。 4、废水脱盐工艺 本项目废水中盐含量极高,直接排放对资源是一种浪费,同时污染水环境,因此本项目采取下述工艺对废水中盐进行回收。 生产废水→调节池→预处理→中间水池→膜分离→淡水回用 ↓ 污泥返回焙烧 盐回用←浓缩水结晶成盐→废水返回成球 工艺说明: ①调节池:生产废水进入调节,经过调节池及均匀水质后进入预处理工序。 ②预处理:通过物理方法,包括混凝沉淀、过滤、吸附等手段。除去废水中的悬浮颗粒、胶体等杂质,使水体的浊度、色度悬浮物等指标满足膜技术要求。

钒矿资源介绍

钒资源简介 地质锤钒是属于高熔点稀有金属,银灰色,熔点为1919.2±2℃,沸点为3000-3400℃。它以钒铁、钒化合物和金属钒的形式广泛应用于冶金、宇航、化工和电池等行业。自然界中,钒很少形成独立的矿物,主要赋存于钒钛磁铁矿、磷酸盐岩、含铀砂岩和粉砂岩中,此外还有大量的钒赋存于铝土矿和含碳物质中(如石油、煤)。 1、全球钒资源分布 现在已探明的钒资源储量绝大部分赋存于钒钛磁铁矿中。根据美国地质调查局不完全统计,截止2010年,全球钒金属储量超过1360万吨,主要分布在中国(510万吨)、俄罗斯(500万吨)、南非(350万吨)等国家,此外还有澳大利亚、美国、加拿大、新西兰等国家。目前国际市场上主要的钒供应国为中国、南非和俄罗斯。 表1 世界钒金属产量和储量(数据来自美国地质调查局报告,2010)

e表示估计 2、中国钒资源分布 中国钒资源非常丰富,是全球钒资源大国。中国主要分布在四川、湖南、广西、甘肃、湖北、河北等省份(表2)。我国钒矿资源主要有两种形式,即钒钛磁铁矿和含钒石煤。 表2 中国分地区钒基础储量(数据来自国土资源部,2009年)

钒钛磁铁矿主要分布在四川攀枝花西昌地区和河北承德地区。攀枝花地区的钒资源相当丰富,已探明的钒钛磁铁矿储量近100亿t,V205储量为1578万t,约占全国钒钛磁铁矿储量的55%,世界储量的11%;河北承德地区,高铁品位钒钛磁铁矿(铁含量大于30%, V 2O 5 含量大于0.7%)已探明储量2.6亿t,其中保有储量2.2亿t;低铁品位钒钛磁铁矿(铁 含量大于10%,V 20 5 含量大于0.13%)已详细勘查确定的储量为29.6亿吨,总共约占全国 钒钛磁铁矿储量的40%。 含钒石煤主要分布在我国湖南、广西、湖北等省。 3、钒生产工艺 3.1 钒钛磁铁矿生产工艺 目前有以下三种: 1.吹炼钒渣法。在转炉内或用雾化法吹炼生铁水,得到含V 20 5 12%~16%的钒渣和半钢。

从废弃钒渣中提取五氧化二钒(1)

万方数据

万方数据

从废弃钒渣中提取五氧化二钒 作者:钱强, QIAN Qiang 作者单位:攀钢集团,钢城仓业总公司,四川,攀枝花,617022 刊名: 湿法冶金 英文刊名:HYDROMETALLURGY OF CHINA 年,卷(期):2008,27(2) 被引用次数:1次 参考文献(2条) 1.王金超钙对钒渣提钒的影响[期刊论文]-四川有色金属 2004(04) 2.张大德;张玉东攀钢转炉提钒工艺的回顾与展望[期刊论文]-钢铁钒钛 2001(01) 本文读者也读过(10条) 1.邱士星.刘先松.周丹.高华敏.王鹏鹏.贾道宁.胡锋.Qiu Shixing.Liu Xiansong.Zhou Dan.Gao Huamin.Wang Pengpeng.Jia Daoning.Hu Feng钒渣提取五氧化二钒的研究[期刊论文]-无机盐工业2010,42(4) 2.席增宏.覃向民.赵景富.Xi Zenghong.Tan Xiangmin.Zhao Jingfu钠化焙烧钒渣提钒工艺中焙烧温度的控制[期刊论文]-铁合金2005,36(4) 3.边悟.Bian Wu高硅低钒钒渣提取五氧化二钒的研究[期刊论文]-铁合金2008,39(3) 4.朱燕.贺慧琴.邓方.刘大银.ZHU Yan.HE Hui-qin.DENG Fang.LIU Da-yin钒渣中钒的浸出特性[期刊论文]-环境科学与技术2006,29(12) 5.杨康.田学达.杨用龙.钟仁华.陈燕波.刘洪.YANG Kang.TIAN Xue-da.YANG Yong-long.ZHONG Ren-hua.CHEN Yan-bo.LIU Hong碱法浸出某含钒铬泥中的钒[期刊论文]-矿冶工程2010,30(3) 6.王金超钙对钒渣提钒的影响[期刊论文]-四川有色金属2004(4) 7.姬云波.童雄.叶国华提钒技术的研究现状和进展[期刊论文]-国外金属矿选矿2007,44(5) 8.彭毅.谢屯良.周宗权.潘平.孙朝晖.Peng Yi.Xie Tunliang.Zhou Zongquan.Pan Ping.Sun Chaohui高钙高磷低品位钒渣制取V2O5的研究[期刊论文]-铁合金2007,38(4) 9.杨静翎.金鑫.YANG JingLing.JIN Xin酸浸法提钒新工艺的研究[期刊论文]-北京化工大学学报(自然科学版)2007,34(3) 10.宁华.周晓源.白桦.NING Hua.ZHOU Xiao-yuan.BAI Hua利用炼钢钒渣生产片钒的工艺设计[期刊论文]-稀有金属与硬质合金2009,37(1) 引证文献(1条) 1.陈庆根石煤钒矿提钒工艺技术的研究进展[期刊论文]-矿产综合利用 2009(2) 本文链接:https://www.360docs.net/doc/d47268957.html,/Periodical_sfyj200802009.aspx

五氧化二钒的生产及市场情况

五氧化二钒的生产及市场情况 2、V2O5主要用途 2325的产能约为10万吨,2011年产量约7万吨。 4、市场行情 ①1991-2012年我国五氧化二钒年均价见下图。

②2012年我国五氧化二钒价格走势见下图。 ③2011-2012年国内片钒月均价格对比见下图。 98片钒和粉钒这两年一直处于倒挂阶段,片钒2012年最低价格一度降至6.2万元/吨左右成交,也是近几年市场的最低价位,随着价格的逐步下滑,厂家停产情况愈发明显,走货意愿越来越弱。从10月份开始随着国内钒铁、钒氮合金市场现货供应的不足引起价格上扬,对于片钒的采购急剧增加,也一度出现供不

应求的局面,所以片钒价格也逐步恢复到上升阶段,至12月底98片钒价格回升至8.7-8.8万元/吨。进入13年,受各钢厂钒产品存货较多、螺纹钢库存消耗缓慢,钢厂招标推后的影响,钒产品价格继续延续跌势,其中钒氮合金下滑幅度仍在扩大,而面对迅速的跌势,各厂商为争夺钢厂订单,报盘积极。3月1日,98%片钒成交价格则已下滑到了含税现款8.1-8.2万元/吨,预计后续价格很快会跌破8万元/吨。 5、未来市场行情预测 (1)不利因素 ①产能严重过剩造成供需关系不平衡; ②应用领域相对集中,钢材市场行情直接影响钒的价格。 (2)利好因素 ①城镇化的建设或将对于未来几年的钢材市场发展注入新的活力。 ②2013年开始禁产一二级螺纹钢,大力推进三级、四级螺纹钢,将促进钒的需求。 ③全钒蓄能电池、钒基固溶体贮氢合金等新技术的逐渐成熟,加大了钒的应用范围及用量。 ④“十二五”钒钛规划:其一,严禁以开发钒钛资源为名,扩大钢铁产能。提钒炼钢产能保持在2800万吨规模(攀西基地保持1500万吨提钒钢规模,承德基地保持1300万吨提钒钢规模)。其二,对石煤提钒有严格的限制,加速淘汰污染严重、产能未达到标准的厂家。 由于上述因素短期内还难有改观,整个市场下游需求仍未好转,且厂商存货较多,缺乏有力因素的支撑,下滑风险仍较大。长远来看,受国家调控影响,钒产业正逐渐向大型化、垄断化发展,钒系产品市场会逐渐规范、稳定。

片钒(五氧化二钒)金属钒及其市场简介

金属钒及其市场简介 摘要 钒是一种高熔点稀有金属,作为非常宝贵的战略性资源,广泛应用于各行业。世界上已知的钒产量有98%产于钒钛磁铁矿中,因此,钒产品生产也主要集中在南非、俄罗斯和中国等含钒磁铁矿资源比较丰富的国家。我国的钒资源储量虽然第四,但是我国钒的供给居世界第一。从近些年供给来看,近期乃至未来一段时间内世界钒的供给量的增加主要来自中国。钒的生产属于资源依赖和技术依赖型行业,因此决定了钒的生产具有一定的集中度。攀钢和承钢垄断了我国60%钒的供应量,对我国的钒的供给起重大作用。 我国也是钒的最大的消费国,占世界的35%。欧洲、美国、日本、韩国等是另外几个消费大国。钒的应用领域较广,出了在钢铁、合金以及电池行业有需求外,在化学催化剂行业、医药行业、陶瓷行业、光学、电学行业等都有一定需求。其中,钒在钢铁行业的需求占90%左右,对钒的价格影响很大。未来,含钒抗震钢筋的使用和储能设备对钒电池的使用,是带动钒需求增长的主要动力。 得益于全球钢产量及钒消费强度的同步增长,预计2010-2015年世界钒消费量年平均增长率预计10.4%。

图表目录 图表1钒产业链简介 (5) 图表2全球钒资源储量分布 (7) 图表3我国钒资源分布图 (8) 图表4全球2010年金属钒的产量国家分布图 (9) 图表5全球钒产品2010年总产能分布图 (10) 图表6我国钒钛磁铁矿产钒产能分布 (11) 图表7我国与全球钒产量增长状况 (12) 图表8金属钒的应用领域分布图 (13) 图表9全球金属钒的供给和需求状况 (14) 图表10全球钒产品的消费地区分布图 (14) 图表11我国钢铁行业钒消费强度仅为美国的1/5 (16) 图表12钒电池的优点 (18) 图表13钒电池的部分应用领域 (18) 图表14我国2009年-2020年风力、光伏发电装机容量预测 (19) 图表15全球钒2010-2015年需求预测 (22) 图表16钒铁生产比例图 (22) 图表17我国2004年4月-2012年4月钢铁价格指数与五氧化二钒价格走势比较 (24) 图表18我国2004年4月-2012年4月钢铁价格指数与GDP增长率走势图比较 (24) 图表19钒铁、铌铁的价格走势比较图 (26) 图表20国际五氧化二钒均价历年走势图 (27) 图表21中国五氧化二钒价格历年走势图 (28)

船舶柴油机排气阀常见故障分析与检修

船舶柴油机排气阀常见故障分析与检修 摘要:换气机构在船舶柴油机中起着极其重要的作用,换气质量的好坏直接影响着柴油机的动力性、经济性、可靠性及排气污染指标,是柴油机工作优劣的先决条件。 关键词:船舶柴油机排气阀故障分析检修 概述: 排气阀是组成柴油机燃烧室的重要部件,它的工作状况直接影响换气过程的质量,影响柴油机的动力性、经济性、可靠性及排气污染,是柴油机工作优劣的先决条件之一。因此对于轮机管理人员来说,要严格按规范做好排气阀的拆检与修理工作,重视排气阀运行管理,如稍有修理上的失误会加快排气阀损坏的速度,甚至影响柴油机的正常运行。现在随着机舱自动化的不断完善、柴油机结构的不断改进,在船舶柴油机上,电(力)、液(压)、气(动)融合为一体,他们之间相互配合、相互制约,共同服务于机器,使得机器正常运转。然而,在船舶柴油机的实际运行过程中会出现一些意想不到的问题,这就需要轮机管理人员根据其原理认真分析,找出故障的原因,进而解决问题,使机器恢复正常运转,保证船舶航行安全。 一、船舶柴油机排气阀常见故障的原因分析 1.排气阀的工作条件 船舶柴油机中排气阀的工作条件十分恶劣,气阀底面与高温燃烧产物直接接触,在气阀开启期间还承受着高温(900~1000°C)和具有腐蚀性气体的高速(达600m/s)冲刷,气阀中心温度高达700~800°C,在阀盘与阀杆过渡圆弧中段,温度也有600~700°C,排气阀工作温度分布如图1-1所示。过高的温度会使金属材料的机械性能降低,材料发生热变形。当阀面密封不严时,就会引起高温燃气对阀面的烧损。气阀落座时,阀与阀座的惯性力和弹簧作用力的共同作用下,还承受着相当大的冲击性交变载荷,在气阀出现跳动或气阀间隙增大时,这种载荷会明显增加。阀与阀座的撞击,容易形成密封面的变形和严重的磨损。因船用柴油机绝大部分多为增压柴油机,由于进气道内的新鲜空气压力阻止了从气阀导管中获得滑油的可能,因此,金属之间易发生干摩擦。但在一般柴油机的气阀以及增压柴油机的排气阀座合金面间总会布有一层滑油或烟油等润滑物。此外,阀杆与导管间也会发生磨损,阀杆顶端受摇臂的撞击与磨损。 图.1

钒渣生产五氧化二钒工艺流程

五氧化二钒的生产工艺 用钒渣生产五氧化二钒的基本原理:由钒渣的物相结构可知,钒在钒渣中是以三价V 离子状态存在于尖晶石物相中,同时,钒渣中还含有硅酸盐玻璃体、金属铁等物相,从钒渣中提钒主要是将低价钒氧化成五价钒,使之生成溶解于水的钒酸钠,再用水浸出到溶液中使钒与固相分离,然后再从溶液中沉淀出钒酸盐,使钒与液相分离,最终将钒酸盐转化成五氧化二钒。钒渣的氧化焙烧是将钒渣破碎到一定粒度,与钠盐混合后在氧化气氛加热炉内加热,使钒完成氧化并转化为可溶性钒酸钠的钠化过程。水溶钒转化程度的高低,直接影响到钒的回收率。 传统的以苏打为主作为添加剂的钒渣生产五氧化二钒的工艺流程主要有原料预处理(包括钒渣破碎、粉碎、配料、混料)、氧化焙烧、熟料浸出、沉钒及熔化五个工序。流程图如下: 钒渣苏打 片状五氧化二钒 1、原料预处理:包括钒渣破碎、球磨、除铁、配料、混料等。原料预处理是将钒 渣破碎到一定的粒度后再与一定比例的钠盐添加剂混合均匀的过程,钒渣破碎是将大块钒渣经破碎机和球磨机粉碎到一定粒度的粉末状态。它提高了钒渣的比表面积,保证钒渣在氧化焙烧过程中能充分氧化。为避免金属铁在氧化焙烧过程中放出打料热量致使炉料粘结,钒渣要磁选除铁。为了提取钒渣中的钒,使之变为溶解于水的钒酸钠,因此要配入一定量的钠盐添加剂,以苏打为主。 2、焙烧:焙烧转化率是熟料中转化为可溶钒的钒量占全钒的比例。影响焙烧转化

率的因素很多,除了与钒渣的结构和化学成分有关外,还与钒渣的粒度、添加剂的种类、添加剂的用量、焙烧温度、焙烧时间等多种因素有关。目前焙烧的设备采用回转窑,回转窑的炉温多控制在800°左右。 3、浸出:钒渣经焙烧后称为熟料,熟料的浸出通常是水浸,水浸是将熟料中的可溶性钒酸钠溶解到水溶液的过程。浸出方式有连续式和间歇式两种。影响浸出率的因素包括熟料粒度、熟料可溶钒含量、液固比、浸出温度、浸出时间、搅拌、浸出方式等。目前我公司采用的间歇方式进行浸出。 4、沉钒:沉钒方法有水解沉钒法和铵盐沉淀法。为制取高品位的五氧化二钒,需采用铵盐沉淀法。目前采用酸性多钒酸铵沉淀法,将净化后的碱性溶液在搅拌下缴入硫酸中和,当钒酸钠溶液PH值在5左右,加入铵盐,再用硫酸调节PH值在2.5左右,在加热、搅拌可结晶出橘黄色多钒酸铵,操作简单、沉钒结晶速度快,铵盐消耗量低,产品纯度高。 5、片状五氧化二钒的制取:五氧化二钒的工业产品,大部分是用于冶金行业,因此要以片状为主,酸性铵盐沉钒饿产物多钒酸铵中含有大量的硫酸钠,在过滤过程中要进行洗涤,用1%浓度的氨水溶液,洗涤后得到“黄饼”。从“黄饼”到片状五氧化二钒要经过脱水、脱铵和熔化三个步骤,最后在包装成桶。

五氧化二钒的生产与市场

五氧化二钒的生产与市场 五氧化二钒(vanadium pentoxide)是一种橙黄或砖红色固体。无臭、无味、有毒性。熔点690℃,密度3.357g/cm3。熔体冷却时析出橙红色针状晶体,在1750℃时分解。微溶于水,生成淡黄色酸性溶液。五氧化二钒是两性氧化物,酸性大于碱性,溶于强碱生成钒酸盐,溶于强酸形成钒氧离子VO或VO3+。 五氧化二钒主要用于冶金工业制钒铁合金钢,合成氨工业中脱碳、脱硫和催化剂。用做印染、陶瓷的着色材料,石油化工装置中设备防腐的缓蚀剂,也是制备钒化合物的原料。 五氧化二钒CAS NO:1314-62-1,EINECS号:231-171-1,分子式为V2O5,分子量为130.94,其化学分析结构式为: 钒是元素周期表中的第23号元素,与铌(Nb)和钽(Ta)同属第五副族元素。在地壳中的平均丰度约为1.2 ppm,排在22位,高于铜和铅的含量,但其在地壳中很分散,至今没有发现单独存在的钒矿物,主要伴生于钒钾铀矿、钒云母、钒铅矿、钒铜铅矿、绿硫钒矿、钒钛铁矿和钛磁铁矿等矿物中。

钒最早于1801年被墨西哥的矿物学家Andres Manuel del Rio 所发现,但当时他认为,这不过是不纯的铬。1830年瑞典化学家Nils Gabriel Sefstrom从转炉渣中重新发现了钒,并根据其化合物在溶液中的绚丽颜色用代表美丽和年轻的女神Vanadis的名字命名。钒具有较强的金属光泽和超强的硬度,也具有很强的抗酸碱腐蚀性能,尤其是在钢中能显著改善钢材的力学性能。因此,作为一种重要的战略资源,广泛用于冶金、国防、化工、机械、电子、汽车、铁路、船舶及轻工等领域。 钒是一种稀有黑色金属,五氧化二钒广泛用于冶金、化工等行业,主要用于冶炼钒铁用作合金添加剂,占五氧化二钒总消耗量的80%以上,其次是用作有机化工的催化剂,即触媒,约占总量的10%,另处用作无机化学品、化学试剂、搪瓷和磁性材料等约占总量的10%。 工业上提取五氧化二钒的原料主要是含钒石煤矿和钒钛磁铁矿,含钒石煤矿五氧化二钒品位一般在0.5~1.5%,钒钛磁铁矿五氧化二钒品位一般在1.0~5.0%。 我国有丰富的石煤矿资源,主要集中在四川、湖南、湖北和甘肃等地,其特点是五氧化二钒质量分数较高,一般都在0.5%以上,矿床中有的部位钒质量分数更高,主要赋存于粘土矿中。 从石煤中提取五氧化二钒的工艺主要有火法、湿法和火法—湿法联合流程。目前普遍使用的湿法提钒为焙烧→浸出→沉钒→灼烧工艺。在矿热炉内冶炼含钒石煤,并将其中的钒富集到铁相中,得到合

钒及钒生产工艺

钒及钒生产工艺 第一章钒的性质及应用 一、钒的性质: 钒是一种十分重要的战略物资,在钢铁、电子、化工、宇航、原子能、航海、建筑、体育、医疗、电源、陶瓷等在国民经济和国防中占有十分重要的位置。 常温下钒的化学性质较稳定,但在高温下能与碳、硅、氮、氧、硫、氯、溴等大部分非金属元素生成化合物。例如:钒在空气中加热至不同温度时可生成不同的钒氧化物。在180℃下,钒与氯作用生成四氯化钒(VCl4);当温度超过800℃时,钒与氮反应生成氮化钒(VN);在800~1000℃时,钒与碳生成碳化钒(VC)。 钒具有较好的耐腐蚀性能,能耐淡水和海水的侵蚀,亦能耐氢氟酸以外的非氧化性酸(如盐酸、稀硫酸)和碱溶液的侵蚀,但能被氧化性酸(浓硫酸、浓氯酸、硝酸和王水)溶解。在空气中,熔融的碱、碱金属碳酸盐可将金属钒溶解而生成相应的钒酸盐。此外,钒亦具有一定的耐液态金属和合金(钠、铅、铋等)的腐蚀能力。 钒有多种氧化物。V2O3和V2O4之间,存在着可用通式V n O2n-1(3≤n≤9)表示的同族氧化物,在V2O4到V2O5之间,已知有V3O5、V3O7、V4O7、V4O9、V5O9、V6O11、V6O13等氧化物。工业上钒氧化物主要是以V2O5、V2O4和V2O3

形式存在,特别是V2O5和生产尤为重要。它们的主要性质列于下表: 二、钒的应用 三、五氧化二钒的性质 V2O5是一种无味、无嗅、有毒的橙黄色或红棕色的粉末,微溶于水(质量浓度约为L),溶液呈黄色。它在约670℃熔融,冷却时结晶成黑紫色正交晶系的针状晶体,它的结晶热很大,当迅速结晶时会因灼热而发光。V2O5是两性氧化物,但主要呈酸性。当溶解在极浓的NaOH 中时,得到一种含有八面体钒酸根离子VO43-的无色溶液。它与Na2CO3

钒的物化性质

一、钒的物理性质 钒属于元素周期表第VB族。它与其他VB族金属一样,具有体心立方结构,没有任何晶型变化,致密钒的外观呈浅灰色,熔点较高,在冶金分类上与同一副族的铌和钽同属于稀有高熔点金属。琪硬度和抗拉强度极限与加工和热处理状况及杂质含量有密切关系。纯钒具有良好的可塑性,在常温下可轧成片、箔和拉成丝。少量的杂质,特别是碳、氧、氮和氢等间隙元素,可使钒的可塑性降低,硬度和脆性增加。 钒的物理性质

二、钒的化学性质 钒原子的价电子结构为3d34s2,五个价电子都可以参加成健,能生成+2、+3、+4、+5氧化态的化合物,其中以五价钒的化合物较稳定。五价钒的化合物具有氧化性能,低价钒则具有还原性。钒的价态越低还原性越强。 不同价态的钒离子在酸性溶液中具有不同的颜色。因此,可以根据离子的颜色和颜色的深浅初步鉴别酸性溶液中钒离子的价态和离子浓度。 室温下金属钒较稳定,不与空气、水和碱作用,也能耐稀酸。高温下,金属钒很容易与氧化氮作用。当金属钒在空气中加热时,钒氧化成棕黑色的三氧化二钒、铁红色的四氧化二钒,并最终成为桔黄色的五氧化二钒。钒在氮气中加热至900~1300℃会生成氮化钒。钒与碳在高温下可生成碳化钒,但碳化反应必须在真空中进行。当钒在真空下或惰性气氛中与硅、硼、磷、砷一同加热时,可形成相应的硅化物、硼化物、磷化物和砷化物。 三、钒的主要化合物 3、1、氧化物 钒与氧形成众多的氧化物,但公认的主要氧化物为V2O5、V2O4、V2O3和VO,他们的主要性质见下表:

3、2、钒酸 VO2是两性氧化物,能与碱形成四价钒的钒酸盐。五价钒的氧化物是酸性较强的两性氧化物,它与碱形成的钒酸盐的趋势更为明显。钒在溶液中的聚合状态不仅与溶液的酸度有关,而且也与其浓度关系密切。 3、3、钒酸盐 通常说的钒酸盐多指含(V)V的钒酸盐。钒酸盐分偏矾酸盐MVO3、正钒酸盐M3VO4、和焦钒酸盐M4V2O7,式中M代表一价金属。Bi、Ca、Cd、Cr、Co、Cu、Fe、Pb、Mg、Mn、Ni、K、Ag、Na、Sn和Zn均能生成钒酸盐。碱金属和镁的偏矾酸盐可溶于水,得到的溶液呈淡黄色。其他金属的钒酸盐不大能溶于水。 对钒冶金而言,最重要的钒酸盐是钒酸钠和偏钒酸铵。 3、3、1、钒酸钠 偏钒酸钠(NaVO3)、焦钒酸钠(Na4V2O7)和正钒酸钠(Na3VO4)比较常见,它们在水中易溶解,生成水合物。以偏钒酸钠为例,在35℃以上时它能从其溶液中结晶出无水结晶,而在35℃以下则析出NaVO3·2H2O。偏钒酸钠的溶解度随温度升高而增加。 3、3、2、钒酸铵 偏钒酸铵在钒的湿法冶金中占有重要地位。偏钒酸铵为白色或微黄色的晶体粉末,微溶于水和氨水,难溶于冷水。它在不同温度下在水中溶解度也不尽相同。

相关文档
最新文档