激光的特性及应用教案

激光的特性及应用教案
激光的特性及应用教案

《6.2 激光的特性及应用》教学设计

【教学内容】

第六单元第2节。

【教学目标】

知识与技能:了解激光的产生机理,掌握激光的基本特性,知道激光的常见应用;通过延伸阅读,收集整理行业内激光应用的相关资料,了解行业内对激光的应用。

过程与方法:通过对激光的特点及应用的学习,培养应用物理知识解决实际问题的意识与能力;通过课外阅读收集整理有关激光应用的资料,培养学生收集、加工、整理、应用信息的能力。

情感态度价值观:通过对激光应用的学习,使学生感受到科学知识的无穷力量,感受科技进步对社会文明进程的推进作用,培养学生热爱科学、献身科学的品质。

【教学重点】

激光的特性及应用。

【教学难点】

激光的产生机理。

【教具准备】

激光器等。

【教学过程】

◆创设情境──引出课题

1.引导学生说说自然界及生产生活中见到的各种光现象

太阳光,烛光,各式各样的电灯发光,物体燃烧发光,炽热的固体、液体、气体发光,霓虹灯发光,雷电发光等等。

2.光是怎样产生的?

是由光源发出的。

3.光源是怎样发光的?

各种光源发光的机理不同,发出的光的特性也会不同。这节课我们了解一种在自然界本来不存在,在人们使用了一种特殊刺激的方法,从原子内部激发出光的方法及激发出的光的特性和应用。

◆合作探究──新课学习

一、激光

1.什么是激光?

学生阅读课文,归纳小结,得出结论:

激光:原子受到特定刺激,内部结构发生变化时发出的光。对于激光的理解,有三个方面,一是激光在自然界原本不存在,二是激光是从原子内部发出的,三是原子内部发出激光不是自发进行的,需要特定的刺激。

1964年,我国科学家钱学森建议,中文中用“激光”一词。

2.世界上第一台激光器

1964年,人类制造出了第一台红宝石激光器。

3.激光技术

将激光应用于生产、生活、科技、军事等的技术。

二、激光的特性

1.学生阅读课文,思考问题:激光具有什么特性?各个特性有何应用?

2.组织学生讨论,得出结论

(1)方向性好

激光器发出的光是较好的平行光,传播过程中可以较好的保持平行,不发生散射。利用激光的这一特性,人类从地球表面向月球表面发射激光,成功接收到了被月面反射回的激光,利用光速和测出的激光从发出到接受经历的时间,计算出了月地距离。

(2)亮度极高

激光的能量极高,如果将激光束利用特殊“透镜”聚焦到一点上,这一点的能量极高,可以融化物质。利用激光的这一特性,加工行业中可以用激光进行切割、焊接、打孔,医学上可以利用激光切除病灶或杀死病变组织。

(3)单色性好

激光的颜色纯,可以获得特定颜色的单色光,作为光学研究中的单色光,也可制作广告牌、装饰舞台等等。

(4)相干性好

光是电磁波,具有波的一切特性,比如两列频率相等、振动方向相同、相位一致的两列光波相遇,会发生干涉现象。由于激光的单色性好,容易获得满足干涉条件的两列光波。

三、激光的应用

1.医学应用

(1)激光美容:利用激光去除皮肤色斑、纹身图案等。

(2)激光手术:利用激光束作为手术刀,完成手术,手术创口小、出血少、愈合快。

(3)激光治癌:利用激光束杀死癌变组织。

(4)激光戒烟:激光束刺激人体特定穴位,提高烟民体内吗啡激素的分泌水平,减少戒烟初期造成的各种不适反应。

2.工业应用

机等焊接,激光切割,激光钻孔等。

3.信息技术中的应用

传输信息:光纤通讯中,将传输的信息通过调制加载在激光上,利用激光在光纤中的全反射传递出去。

记录、读取信息:利用激光束在光盘上刻录信息,读取信息,实现海量信息的方便存储与读取;制作商品的防伪标识,读取商品条码信息。

激光全息照相:利用激光束的干涉,拍摄物体的全息照片;在利用激光的干涉立体显示拍摄物体的像,即使照片损伤,利用激光干涉,从照片任一碎片,也可显出物体的整个立体像。

4.测量地形地貌,获取地理信息。

5.军事应用──激光武器:

(1)激光炮、激光枪:发射高能激光束,利用激光能量摧毁目标。

(2)激光瞄准:狙击步枪等配置激光瞄准器,提高射击精度。

(3)地形地貌测绘:了解战场情况,敌情侦查等。

6.农业上的应用

利用激光照射农作物种子,改善作物品质,提高产量等。

◆交流评价──巩固总结

1.讨论问题:课本第172页“复习与巩固”1、2、3。

2.归纳小结本节要点(见板书设计)。

【布置作业】

1.复习课文,书面完成课本第172页“复习与巩固”1。

2.查阅有关激光特性与应用的资料,撰写小论文《激光的工业(或医学、农业、军事)应用》。【板书设计】

简述光的特性及其应用

简述光的特性及其应用 姓名:期班:学号: 当我们开始感知,便发现这个世界丰富多姿、五彩斑斓。这是因为我们拥有一双雪亮的眼睛吗?不是,美丽大自然的伴侣——光,才是美丽世界的缔造者。 红橙黄绿蓝靛紫——彩虹的出现总是让人喜悦。然而作为一名大学生,对事物的了解当然不能局限于表面。通过初高中的科学学习,我们知道彩虹是气象中的一种光学现象。造成彩虹的光学原理是因为阳光射到空中接近圆形的小水滴,造成折射与反射而成。阳光射入水滴时会同时以不同角度入射,在水滴内亦以不同的角度反射。造成这种反射时,阳光进入水滴,先折射一次,然后在水滴的背面反射,最后离开水滴时再折射一次。因为水对光有色散的作用,不同波长的光的折射率有所不同,蓝光的折射角度比红光大。由于光在水滴内被反射,所以观察者看见的光谱是倒过来的,红光在最上方,其他颜色在下。 类似的例子还有很多,比如月光是月球表面反射到地球上的太阳光;南北两极的极光由来自地球磁层或太阳的高能带电粒子流(太阳风)使高层大气分子或原子激发(或电离)而产生;朝霞与晚霞是日出或日落前后,阳光通过厚厚的大气层,被大量的空气分子散射的结果……因为光的存在,我们的世界显得美妙多姿。 那么光究竟是什么东西呢? 【光是人类眼睛可以看见的一种电磁波,也称可见光谱。在科学上的定义,光是指所有的电磁波谱。光是由光子为基本粒子组成,具有粒子性与波动性,称为波粒二象性。】①光可以在真空、空气、水等透明的物质中传播。对于可见光的范围没有一个明确的界限,一般人的眼睛所能接受的光的波长在380~760nm之间。380nm以下的为红外光谱,760nm以上的为紫外光谱。 如右下图所示: 其中可见光为我们五彩缤纷的世界做出了很大贡献。 【光在介质中传播时产生的干涉、衍射和偏振等波动 现象,以及麦克斯韦电磁理论和赫兹实验,证实了光是一 定频率范围内的电磁波,而在热辐射、光电效应和康普顿 效应等现象中,普朗克和爱因斯坦关于光的微粒性质的理 论又取得了极大的成功。因此,光具有“波粒二象性”这 一结论,全面揭示了光的本性。】② 而光除了给我们以美妙的视觉体验之外,还在生活的其他方面造福人类。在电磁波谱中,各种电磁波的性质不同,因而它们就具有不同的用途。 红外线主要特点是热效应,一切物体都在不停地辐射红外线,并且不同的物体辐射红外线的波长和强度不同. 我们可以利用红外线的热效应对物体进行烘干;利用红外线波长较长、容易发生衍射的特点进行远距离和高空摄影;利用不同物体辐射红外线的波长和强度的不同可以对物体进行远距离探测,这种技术叫红外线遥感。 紫外线的主要作用是化学作用。一切高温物体发出的光都含有紫外线,紫外线的波长比紫光还短,紫外线有很强的荧光效应,紫外线有杀菌消毒的作用,广泛应用于医院手术室、手术器具的消毒。 X射线是比紫外线波长还短的电磁波,它的穿透本领很大,广泛应用于医学诊断和治疗。如X射线透视、摄影与造影技术均能得到相关影像以达到诊断的目的。另外,数字外X射线影像技术能将数字化图像信息传输给图像存储与通讯系统,实现远程诊断和远程医学。而远程技术正日益凸显期优越性,对医学的发展起着重要的推动作用。最后,现代医学成像技术还包括X射线计算机体层成

激光原理及应用试卷

激光原理及应用 考试时间:第 18 周星期五 ( 2007年1 月 5日) 一单项选择(30分) 1.自发辐射爱因斯坦系数与激发态E2平均寿命τ的关系为( B ) 2.爱因斯坦系数A 21和B 21 之间的关系为( C ) 3.自然增宽谱线为( C ) (A)高斯线型(B)抛物线型(C)洛仑兹线型(D)双曲线型 4.对称共焦腔在稳定图上的坐标为( B ) (A)(-1,-1)(B)(0,0)(C)(1,1)(D)(0,1) 5.阈值条件是形成激光的( C ) (A)充分条件(B)必要条件(C)充分必要条件(D)不确定 6.谐振腔的纵模间隔为( B ) 7.对称共焦腔基模的远场发散角为( C ) 8.谐振腔的品质因数Q衡量腔的( C ) (A)质量优劣(B)稳定性(C)储存信号的能力(D)抗干扰性 9.锁模激光器通常可获得( A )量级短脉冲 10.YAG激光器是典型的( C )系统 (A)二能级(B)三能级(C)四能级(D)多能级 二填空(20分) 1.任何一个共焦腔与等价, 而任何一个满足稳定条件的球面腔地等价于一个共焦腔。(4分) 2 .光子简并度指光子处于、 、、。(4分) 3.激光器的基本结构包括三部分,即、 和。(3分)

4.影响腔内电磁场能量分布的因素有、 、。(3分) 5.有一个谐振腔,腔长L=1m,在1500MHz的范围内所包含的纵模个数为 个。(2分) 6.目前世界上激光器有数百种之多,如果按其工作物质的不同来划分,则可分为四大类,它们分别是、、和。(4分) 三、计算题( 42分) 1.(8分)求He-Ne激光的阈值反转粒子数密度。已知=6328?,1/f()=109Hz,=1,设总损耗率为,相当于每一反射镜的等效反射率R=l-L=%,=10—7s,腔长L=。 2.(12分)稳定双凹球面腔腔长L=1m,两个反射镜的曲率半径大小分别为R 1=3m求它的等价共焦腔腔长,并画出它的位置。 =,R 2 3.(12分)从镜面上的光斑大小来分析,当它超过镜子的线度时,这样的横模就不可能存在。试估算在L=30cm, 2a= 的He-Ne激光方形镜共焦腔中所可能出现的最高阶横模的阶次是多大? 4.4.(10分)某高斯光束的腰斑半径光波长。求与腰斑相距z=30cm处的光斑及等相位面曲率半径。 四、论述题(8分) 1.(8分)试画图并文字叙述模式竞争过程

激光主要有四大特性

激光主要有四大特性:激光高亮度、高方向性、高单色性和高相干性 激光的高亮度:固体激光器的亮度更可高达1011W/cm2Sr。不仅如此,具有高亮度的激光束经透镜聚焦后,能在焦点附近产生数千度乃至上万度的高温,这就使其可能可加工几乎所有的材料。 激光的高方向性:激光的高方向性使其能在有效地传递较长的距离的同时,还能保证聚焦得到极高的功率密度,这两点都是激光加工的重要条件 激光的高单色性:由于激光的单色性极高,从而保证了光束能精确地聚焦到焦点上,得到很高的功率密度。 激光的高相干性:相干性主要描述光波各个部分的相位关系。正是激光具有如上所述的奇异特性因此在工业加工中得到了广泛地应用。 目前激光已广泛应用到激光焊接、激光切割、激光打孔(包括斜孔、异孔、膏药打孔、水松纸打孔、钢板打孔、包装印刷打孔等)、激光淬火、激光热处理、激光打标、玻璃内雕、激光微调、激光光刻、激光制膜、激光薄膜加工、激光封装、激光修复电路、激光布线技术、激光清洗等 激光加工的特点 由于激光具有高亮度、高方向性、高单色性和高相干性的特性,因此就给激光加工带来如下一些其它方法所不具备的可贵特点 ● 由于它是无接触加工,对工件无直接冲击,因此无机械变形; ● 激光加工过程中无"刀具"磨损,无"切削力"作用于工件; ● 激光加工过程中,激光束能量密度高,加工速度快,并且是局部加工,对非激光照射部位没有或影响极小。因此,其热影响的区小工件热变形小后续加工最小; ● 由于激光束易于导向、聚焦、实现方向变换,极易与数控系统配合、对复杂工件进行加工因此它是一种极为灵活的加工方法; ● 生产效率高,加工质量稳定可靠,经济效益和社会效益好激光加工的优势 激光具有的宝贵特性决定了激光在加工领域存在的优势: ①由于它是无接触加工,并且高能量激光束的能量及其移动速度均可调,因此可以实现多种加工的目的。 ②它可以对多种金属、非金属加工,特别是可以加工高硬度、高脆性、及高熔点的材料。 ③激光加工过程中无“刀具”磨损,无“切削力”作用于工件。 ④激光加工过程中,激光束能量密度高,加工速度快,并且是局部加工,对非激光照射部位没有影响或影响极小。因此,其热影响区小,工件热变形小,后续加工量小。 ⑤它可以通过透明介质对密闭容器内的工件进行各种加工。 ⑥由于激光束易于导向、聚集实现作各方向变换,极易与数控系统配合,对复杂工件进行加工,因此是一种极为灵活的加工方法。 ⑦使用激光加工,生产效率高,质量可靠,经济效益好。

激光传感器特性及应用

东北电力大学 仪器仪表新技术作业 激光传感器特性及应用 学生姓名:应力 班级:测控071班 专业名称:测控技术与仪器 任课教师:曹生现 论文提交日期:

总得分: 1、论文内容 1)论文内容与题目要求相关程度 2)论文字数 3)内容论述思路、语言简练程度 4)个人总结观点 5)论文内容新颖性 2、论文格式 1)摘要、关键词、主要内容、结论、参考文献2)排版格式 3)论文内容序号编排

目录 摘要 (1) 关键词 (1) 1.引言 (1) 2.激光传感器基本工作原理 (2) 3.特性及应用 (2) 个人感受 (6) 参考文件 (7)

激光传感器特性及应用 摘要:激光是在20世纪60年代初问世的。由于其具有方向性强、亮度高、单色性好等特点,广泛用于工农业生产、国防军事、医学卫激光传感器生、科学研究等方面,如用来测距、精密检测、定位等,还用做长度基准和光频基准。其基本方法是将光信号转化成电信号。虽然高精密激光距离传感器已上市多年,但是由于其价格太高,一直不能获得广泛应用。最近,由于其价格的大幅度下降,使其成为长距离检测场合一种最经济有效的方法。本文介绍其原理、特性及应用。Abstract: Laser is in the early 20th century came out of 60. Because of its directive, the high brightness and good color characteristics, widely used in industrial and agricultural production, national defense, military, medical satellite laser sensor health, research in this regard, such as in distance, precision detection, location, etc. length is also used as benchmarks and optical frequency reference. The basic approach is to convert light signals into electrical signals. Although the high-precision laser distance sensor has been listed for years, but because of its price is too high, has not widely applied. Recently, because of its sharp drop in prices, making it one of the most long-distance detection of occasions, cost-effective way. This paper describes the principles, characteristics and application. 关键词:激光传感器激光传感器技术激光传感器应用单频激光干涉仪 引言:激光传感器一般是由激光器,光学零件,和光电器件所构成的,它能把 被测物理量(如长度,流量,速度等)转换成光信号,然后应用光电转换器把光信号变成电信号,通过相应电路的过滤,放大,整流得到输出信号,从而算出被测量。 激光式传感器具有以下优点:结构,原理简单可靠,抗干扰能力强,适应于各种恶劣的工作环境,分辨率较高(如在测量长度时能达到几个纳米),示值误差小,稳定性好,宜用于快速测量。

不同波长激光的特性

不同波长激光的特性 蓝绿激光:穿透深度最浅,作用与视网膜内层和外层,主要被RPE吸收,如氩激光。 绿色激光:组织穿透力比蓝光强,被血红蛋白和RPE吸收,57%被RPE吸收,47%被脉络膜吸收。 黄激光:视网膜神经纤维层的弥散很少,穿透力强,黄色激光被RPE层和脉络膜内层的吸收各占50%。 红光和红外激光:穿透力最强,主要作用于脉络膜中、外层的激光。红色激光随波长的增加被脉络膜的吸收逐渐增加。 不同组织的吸光波长 1.激光波长从400~950nm在眼内的穿透性可以达到95%。RPE和脉络膜在波长450~630nm是 吸收率可以达到70%。随着波长的增加,吸收率很快下降,因而氩激光(蓝绿)激光和532激光是眼内最常使用的激光光谱。 2.血红蛋白对光的吸收特性: 在波长400~600nm(蓝到黄的部分),血红蛋白有较高的吸收率,而600nm以上(红和接近红外)的波长很受被血红蛋白吸收,所以有视网膜下出血时可选用600nm(红)以上的激光。 3.叶黄素的吸收特性: 叶黄素是锥体细胞的感光色素,对480nm一下的波长有较高的吸收峰,容易造成叶黄素的破坏,为了避免损伤,用绿色以上的波长对视锥细胞较安全,其中810激光对其损伤最小。 眼科激光的分类 眼科激光分气体、液体和固体激光三大类 ,其中气体激光又分分子(CO2 分子) 、原子(氦氖原子)和离子(氩离子及氪离子)激光三种。液体激光有染料激光。固体激光有红宝石激光 ,Nd:YAG激光 ,半导体激光。应用途径有眼内和眼外 2种途径。眼内激光是在玻璃体手术时眼内使用。眼外激光使用途径有2 种, 一种为经过瞳孔的,另一种是经巩膜的。 眼底光凝治疗的原理 眼底病进行光凝治疗的原理是: 激光被眼底之色素吸收后产生热能。热能使它作用的组织发生变化, 从而达到治疗目的。眼底吸收激光的物质主要为黑色素, 其次为叶黄素的血红蛋白。眼底含有黑色素的组织为视网膜色素上皮和脉络膜。这些色素和血红蛋白对不同波长光的吸收曲线是激光光凝的依据。眼底色素吸收激光后产生的热能可以使组织凝固、坏死及发生炎症, 继而机化从而达到使组织粘连, 还可以直接使视网膜上的新生血管和微血管瘤封闭, 直接破坏产生新生血管生长因子的视网膜组织和视网膜及脉络膜上的肿瘤组织。 激光光凝四要素 激光技术四要素是指波长,光斑大小,曝光时间和输出功率 ,这是完成眼底激光治疗技中十分重要且不能忽视的问题 ,是与治疗效果十分相关的因素,是保证实现视网膜有效光斑的关键。 波长选择的原则 波长的选择主要由病变部位和性质决定 ,当具有多种波长激光时 ,可以选择最合适的激光波长但当只有单波长激光时 ,选择的余地不存在,可发挥其他参数的功能. 氩激光(蓝绿激光):主要作用于视网膜内层和外层。如糖网,静脉阻塞,EALES,视网膜裂孔等选择绿色以上的波长,临床多使用绿光。

激光原理及应用(第二版)课后习题答案(全)

思考练习题1 1. 试计算连续功率均为1W 的两光源,分别发射λ=0.5000μm ,ν=3000MHz 的光,每秒 从上能级跃迁到下能级的粒子数各为多少? 答:粒子数分别为:18 8 346341105138.21031063.6105.01063.61?=????=? ?==---λ ν c h q n 23 9 342100277.510 31063.61?=???==-νh q n 2.热平衡时,原子能级E 2的数密度为n 2,下能级E 1的数密度为n 1,设21g g =,求:(1)当原子跃迁时相应频率为ν=3000MHz ,T =300K 时n 2/n 1为若干。(2)若原子跃迁时发光波长λ=1μ,n 2/n 1=0.1时,则温度T 为多高? 答:(1)(//m n E E m m kT n n n g e n g --=) 则有:1]300 1038.11031063.6exp[23 93412≈?????-==---kT h e n n ν (2)K T T e n n kT h 3 6 23834121026.61.0]1011038.11031063.6exp[?=?=???????-==----ν 3.已知氢原子第一激发态(E 2)与基态(E 1)之间能量差为1.64×l0- 18J ,设火焰(T =2700K)中含有1020个氢原子。设原子按玻尔兹曼分布,且4g 1=g 2。求:(1)能级E 2上的原子数n 2为多少?(2)设火焰中每秒发射的光子数为l08 n 2,求光的功率为多少瓦? 答:(1)1923 181221121011.3]2700 1038.11064.1exp[4----?=???-?=?=??n n e g n g n kT h ν 且20 2110=+n n 可求出312≈n (2)功率=W 918 8 10084.510 64.13110--?=??? 4.(1)普通光源发射λ=0.6000μm 波长时,如受激辐射与自发辐射光功率体密度之比 q q 激自1 = 2000 ,求此时单色能量密度νρ为若干?(2)在He —Ne 激光器中若34/100.5m s J ??=-νρ,λ为0.6328μm ,设μ=1,求 q q 激 自 为若干? 答:(1)

激光原理及应用实验讲义 -4个实验

实验一CO2激光器及激光扫描实验 一、实验目的 1、了解CO2激光器的工作原理及典型结构; 2、掌握CO2激光器的输出特性; 3、掌握CO2激光器的使用方法; 4、掌握激光扫描及F-Theta镜的工作原理。 二、实验器材 CO2激光管1支,激光电源1台,功率计1台,水冷系统1套,扫描系统1套,控制器1套,计算机1台 三、实验原理 1、CO2激光器工作原理 CO2激光器的工作气体是CO2、N2和He的混合气体。波长9-11um间,处于大气传输窗口(吸收小,2-2.5um;3-5um;8-14um)。利用同一电子态的不同振动态(对称、弯曲和反对称振动)的转动能级间的跃迁。 图1 CO2激光器典型结构 CO2激光器由工作气体、放电管、谐振腔和电源等组成。放电管大多采用硬质玻璃(如GG)制成,放电管的内径和长度变化范围很大。为了防止内部气压和气压比的变化而影响17 器件寿命,放电管外加有贮气管。为了防止发热而降低输出功率,加有水冷装置。激光器的 输出功率随着放电管长度加长而增大。 CO2激光器中与激光跃迁有关的能级是由CO2分子和N2分子的电子基态的低振动能级构成的。CO2振动模型如图1所示。 激光跃迁主要发生在0001→1000和0001→0200两个过程,分别输出10.6um和9.6um。激光低能级100和020都可以首先通过白发辐射到达0l0,再次通过自发辐射到达基态000,但由于自发辐射的几率不大,远不如碰撞驰豫过程快,其主要的驰豫过程如图2。

分子反对称振动 CO 2 分子振动模型 图1 CO 2 图2 CO2分子能级跃迁过程 其中前两个过程进行得很快,而后两个过程进行得很慢,故分子堆积在010能级上,形成瓶颈效应,而使粒子数反转减小,特别是温度升高时,由热激发而使010能级上分子增加,造成粒子数反转的严重下降,甚至停振,最后一个式子中的M代表辅助气体。如果选择恰当的气体(常见的如H2O和H2)作为辅助气体,可促进010能级上分子的弛豫过程。另外由于010能级上的分子扩散到管壁上会引起消激发,这就使器件的管壁不能太粗。另外,为了增加气体的热导率,通过在气体中加入He气,可实现对放电管的冷却,同样使气体流动,都是降低温的好办法。 气体中一般还需要加入N2气,利用其v=1能级与CO2分子的001能级相差较小,可以实现共振转移,选择性激励co2分子进入001态,特别由于N2气的v=1态不能通过自发

激光的发展与应用

激光的发展与应用 摘要:激光作为20世纪的新发明,从1960年第一台激光器问世以来,激光技术与应用发展迅猛。它不仅在产业上有了飞速发展,而且还为科学技术、国民经济和国防建设做出了积极贡献。本文综述性描写激光的发展与应用,首先简要的介绍激光的发展史,其次介绍激光的特性,最后结合激光的特性和发展史以典型的实例来简要的说明激光在各个方面的主要应用。 关键词:激光;发展;应用;特性;实例 1.引言 激光,作为高新技术的研究成果,它不仅广泛应用于科学技术研究的各个前沿领域,而且已经在人类生活和生产的许多方面得到了大量的应用,与激光相关的产业已在全球形成了超过千亿美元的年产值,可见它对人类社会的影响之深刻而广泛。 2.激光的发展简史 1916年,爱因斯坦在研究黑体辐射的普朗克公式时曾寓言了受激辐射的存在,从而提出受激辐射的概念,并预见到受激辐射光放大器诞生,也就是激光产生的可能性[1]。 20世纪50年代美国科学家汤斯及前苏联科学家普罗克霍洛夫等人分别独立发明了一种底噪声微波放大器,即一种在微波波段的受激辐射放大器(Microwave amplification by stimulate emission of radiation),并以其英文的第一个

字母缩写命名为maser[1]。1958年美国科学家汤斯和肖洛提出在一定的条件下,可将这种微波受激辐射放大器的原理推广到光波波段,制成受激辐射光放大器(Light amplification by stimulated emission of radiation,缩写为laser)。1960年7月美国的梅曼宣布制成了第一台红宝石激光器[2]。1961年我国科学家邓锡铭、王之江制成我国第一台红宝石激光器,在1961年11期《科学通报》上发表了相关论文,称其为“光量子学放大器”。其后在我国科学家钱学森的建议下,统一翻译为“激光”或“激光器”[3]。1962年雅文等人在美国贝尔实验室制成了氦氖激光器[1]。自此新的激光器不断的被研制出来,激光开始走上了高速发展的道路。 3.激光的特性 由于激光产生的机制与普通光不同,因此,它具有许多与普通光不同的特性。 3.1.单色性好。激光几乎是严格的单色光。通常所谓的单色光,实际上其波长并不只为某一数值,而是由许多波长相近的光所组成,其波长取值范围,称为谱线宽度[2]。不同光源发出的光有不同的谱线宽度。过去作为长度基准的单色性最好的氪灯,它的谱线宽度为,而氦氖激光器所发的632.8nm的激光,它的谱线宽度可达,由此可见其单色性之好[4]。正是由于激光单色性好,目前国际上采用甲烷稳定的氦氖激光器(激光波长为3392.23140nm)作为体现米定义的标准辐射源[4]。 3.2.方向性好。与普通光源以立体角不同,激光发射限定在很小的立体角内。它大致等于激光器通过光孔径的圆孔衍射的发散角因此是几乎平行的光

激光原理及应用习题

《激光原理及应用》习题 1. 激光的产生分为理论预言和激光器的诞生两个阶段?简述激光理论的创始人,理论要点和提出理论的时间。简 述第一台激光诞生的时间,发明人和第一台激光器种类? 答:激光理论预言是在1905年爱因斯坦提出的受激辐射理论。世界上第一台激光器是于1960年美国的梅曼研制成功的。第一台激光器是红宝石激光器。 2. 激光谱线加宽分为均匀加宽和非均匀加宽,简述这两种加宽的产生机理、谱线的基本线型。 答:如果引起加宽的物理因数对每一个原子都是等同的,则这种加宽称为均匀加宽,线型为洛仑兹线型。自然加宽、碰撞加宽及晶格振动加宽均属均匀加宽类型。 非均匀加宽是原子体系中每一个原子只对谱线内与它的表观中心频率相应的部分有贡献,线型为高斯线型。多普勒加宽和固体晶格缺陷属于非均匀加宽。 3. 军事上的激光器主要应用那种激光器?为什么应用该种激光器? 答:军事上主要用的是CO 2激光器,这是因为CO 2激光波长处于大气窗口,吸收少,功率大,效率高等特点。 4. 全息照相是利用激光的什么特性的照相方法?全息照相与普通照相相比有什么特点? 答:全息照相是利用激光的相干特性的。全息照片是三维成像,记录的是物体的相位。 1. 激光器的基本结构包括三个部分,简述这三个部分 答:激光工作物质、激励能源(泵浦)和光学谐振腔; 2. 物质的粒子跃迁分辐射跃迁和非辐射跃迁,简述这两种跃迁的区别。 答:粒子能级之间的跃迁为辐射跃迁,辐射跃迁必须满足跃迁定则;非辐射跃迁表示在不同的能级之间跃迁时并不伴随光子的发射或吸收,而是把多余的能量传给了别的原子或吸收别的原子传给他的能量。 3. 工业上的激光器主要有哪些应用?为什么要用激光器? 答:焊接、切割、打孔、表面处理等等。工业上应用激光器主要将激光做热源,利用激光的方向性好,能量集中的特点。 4. 说出三种气体激光器的名称,并指出每一种激光器发出典型光的波长和颜色。 答:He-Ne 激光器,632.8nm (红光),Ar+激光器,514.5nm (绿光),CO 2激光器,10.6μm (红外) 计算题 1.激光器为四能级系统,已知3能级是亚稳态能级,基态泵浦上来的粒 子通过无辐射跃迁到2能级,激光在2能级和1能级之间跃迁的粒子产 生。1能级与基态(0能级)之间主要是无辐射跃迁。 (1)在能级图上划出主要跃迁线。 (2)若2能级能量为4eV ,1能级能量为2eV ,求激光频率; 解:(1)在图中画出 (2)根据爱因斯坦方程 21h E E ν=- 得 ()1914213442 1.610 4.829106.62610E E Hz h ---??-===??ν 2.由凸面镜和凹面镜组成的球面腔,如图。凸面镜的曲率半径为2m ,凹面镜的曲率半径为3m ,腔长为1.5m 。发光波长600nm 。判断此腔的稳定性; 解: 激光腔稳定条件 R3 32ω 21ω

Nd∶YAG激光器的特性及应用

激光是60 年代初出现的一种新型光源,激光以其高亮度、高单色性、高方向性和高相干性,引起普遍重视,并很快在工农业生产、科学技术、医疗、国防等各个领域得到广泛应用。激光医学是激光技术与医疗科学有机结合的产物,激光在70 年代开始广泛用于临床;90 年代,随着新型激光器的研制成功,激光与医疗、生物组织科学紧密结合,研究范围日益扩大。 Nd:YAG 激光器以其增益高、阈值低、量子效率高、热效应小、机械性能良好、适合各种工作模式(连续、脉冲) 等特点,在当今各种固体激光器中应用物质相互作用的效果是不同的, 不同波长的Nd:YAG激光器采用连续、脉冲等方式工作使激光与不同部位的生物组织相互作用,可以获得良好的疗效。医用Nd:YAG 激光器在外科手术、眼科、牙科、口腔科、耳鼻喉科、皮肤科、美容等方面应用广泛,特别是治疗皮肤色素性疾病,有创伤小、愈合好、无疤痕等独特优点,本文主要介绍Nd:YAG 激光器的特性以及在治疗皮肤疾病方面的应用,使读者了解各种激光器的性能及不同种类激光治疗仪的治疗效果。 一、Nd:YAG 激光器的特性 能产生激光的系统,称为激光器。一台简单的激光器通常由工作物质、泵浦源和谐振腔三部分组成。自1960 年第一台激光器诞生以来,已有上百种激光器问世。形形色色的激光器彼此之间差异极大,根据产生激光的工作物质,有气体、液体、固体和半导体激光器等。固体激光器是以固态基质中掺入少量激活元素为工作物质的激光器,工作物质的物理化学性能主要取决于基质材料,而其光谱特性主要由发光粒子的能级结构决定。但发光粒子受基质材料的影响,其光谱特性将有所变化,有的甚至变化很大。用作基质的主要有刚玉、石榴石晶体及各种玻璃等。发光粒子称为激活离子,最常用的激活离子为钕、铬等稀土元素离子。例如世界上第一台激光器所用工作物质为红宝石,就是掺入极少量铬离子的刚玉。以掺有一定量钕离子(Nd3 + ) 的钇铝石榴石( YAG) 晶体为工作物质的激光器,称为掺钕钇铝石榴石(Nd:YAG) 激光器。掺钕激光器是当前应用最广泛的固体器件之一,在激光加工、医疗、军事等领域应用广泛。

超强超快激光的特点及发展方向

超强超快激光的特点及发展方向 ?激光作为20世纪人类最重要的科技发明之一,经过40年的发展,直接推动了一批新兴学科与高新技术的发展,如非线性光学、激光光谱学、强场物理、光通信、光计算、光信息存储、激光化学、激光医学、激光生物学、激光核聚变、激光分离同位素、激光全息术、激光加工等等。同时,激光技术也已经走进了人们的日常生活,如随处可见的CD唱机、VCD影碟机、超市收银机的条形码扫描仪、激光打印机等,无不采用先进的激光技术。激光的发展开拓了激光技术的应用,激光技术的应用又推动了激光科学技术的进一步发展。 激光科技的最新前沿之一是超强超快激光。超强即超高的功率和功率密度(指单位面积上的功率),目前一个激光系统甚至可产生高达1015瓦的峰值功率,而全世界电网的平均功率只不过1012瓦数量级;超快即极短的时间尺度,目前激光脉冲最短不过几个飞秒(10-15秒),光在1飞秒内仅仅传播 0.3微米。 近年来新型小型化超强超快激光技术的迅猛发展,为人类提供了全新的实验手段与极端的物理条件。这种在实验室中创造的极端物理条件,目前还只有在核爆中心、恒星内部、或是黑洞边缘才能找到。 在当今超强超快激光技术已经提供并将由于其进一步发展而能提供的越来越强并越来越快的光场条件下,激光与各种形态物质之间的相互作用,将进入到前所未有的高度非线性与相对论性起主导作用的强场超快范围,并将进一步把光与物质的相互作用研究深入到更深的物质层次,甚至光与真空的相互作用,由此开创了超强超快激光这一全新的现代科学技术前沿领域。 超强超快激光物理与技术 输出功率大于1太瓦,脉宽小于1皮秒,可聚焦激光功率密度大于1017瓦/厘米2的小型化超强超快激光的发展研究,是超强超快激光研究广泛深入开展的基础和推动力。 近十几年来,由于啁啾脉冲放大(chirped pulse amplification, 简称CPA)技术的提出和应用,宽带激光晶体材料(如掺钛蓝宝石)的出现,以及克尔透镜锁模技术的发明,使超强超快激光技术得到迅猛发展。小型化飞秒太瓦(1012瓦)甚至更高数量级的超强超快激光系统已在各国实验室内建成并发挥重要作用。https://www.360docs.net/doc/d47379032.html,/最近,更短脉冲和更高功率的激光输出,如直接由激光振荡器产生的短于5飞秒的激光脉冲,小型化飞秒100太瓦级超强超快激光系统,以及CPA技术应用到传统大型钕玻璃激光装置上获得1拍瓦(1015瓦)级激光输出已有报道,激光功率密度达到1019~1020瓦/厘米2的超强超快激光与物质相互作用研究也已开始进行。 ?传统的激光放大采用直接的行波放大,而对超短激光脉冲来说,随着能量的提高,其峰值功率将很快增加,并出现各种非线性效应及增益饱和效应,从而限制了能量的进一步放大。 CPA技术的原理是,在维持光谱宽度不变的情况下通过色散元件将脉冲展宽好几个数量级,形成所谓的啁啾脉冲。这样,在放大过程中,即使激光脉冲的能量增加很快,其峰值功率也可以维持在较低水平,从而避免出现非线性效应及增益饱和效应,保证激光脉冲能量的稳定增长。当能量达到饱和放大可获得的能量之后,借助与脉冲展宽时色散相反的元件将脉冲压缩到接近原来的宽度,即可使峰值功率大大提高。深圳市星鸿艺激光科技有限公司专业生产激光打标机,激光焊接机,深圳激光打标机,东莞激光打标机 为了突破CPA技术的一些局限性,目前国际上正在积极探索发展新一代超强超快激光的新原理与新方法,如啁啾脉冲光学参量放大(OPCPA)原理,目标是创造更强更快的强场超快极端物理条件,特别是获得大于(等于)1021瓦/厘米2的可聚焦激光光强。OPCPA充分发挥了啁啾脉冲放大与光学参量放大各自的优点,是国际上近年来提出的发展超强超快激光的全新技术途径。

激光的特点

1、单色性好:普通光源发射的光子,在频率上是各不相同的,所以包含有各种颜色。而激光发射的各个光子频率相同,因此激光是最好的单色光源。 由于光的生物效应强烈地依赖于光的波长,使得激光的单色性在临床选择性治疗上获得重要应用。此外,激光的单色特性在光谱技术及光学测量中也得到广泛应用,已成为基础医学研究与临床诊断的重要手段。 2、相干性好:由于受激辐射的光子在相位上是一致的,再加之谐振腔的选模作用,使激光束横截面上各点间有固定的相位关系,所以激光的空间相干性很好(由自发辐射产生的普通光是非相干光)。激光为我们提供了最好的相干光源。正是由于激光器的问世,才促使相干技术获得飞跃发展,全息技术才得以实现。 3、方向性好:激光束的发散角很小,几乎是一平行的光线,激光照射到月球上形成的光斑直径仅有1公里左右。而普通光源发出的光射向四面八方,为了将普通光沿某个方向集中起来常使用聚光装置,但即便是最好的探照灯,如将其光投射到月球上,光斑直径将扩大到1 000公里以上。 激光束的方向性好这一特性在医学上的应用主要是激光能量能在空间高度集中,从而可将激光束制成激光手术刀。另外,由几何光学可知,平行性越好的光束经聚焦得到的焦斑尺寸越小,再加之激光单色性好,经聚焦后无色散像差,使光斑尺寸进一步缩小,可达微米级以下,甚至可用作切割细胞或分子的精细的“手术刀”。 4、亮度高:激光的亮度可比普通光源高出1012-1019倍,是目前最亮的光源,强激光甚至可产生上亿度的高温。激光的高能量是保证激光临床治疗有效的最可贵的基本特性之一。利用激光的高能量还可使激光应用于激光加工工业及国防事业等。

(1)激光通讯 用光传送信息,在今天非常普遍。比方,舰船用灯语通讯,交通灯用红、黄、绿三色彩度。但是一切这些用普通光传送信息的方式,都只能局限在短间隔内。要想把信息经过光直接传送到悠远的中央,就不能用普通光,而只能动用激光。 (2)材料加工 钻孔、切割、焊接以及淬火,是加工金属资料时最常用的操作。自从引进了激光后,在加工的强度、质量以及范围等方面创始了全新的场面。除了金属资料外,激光还能加工许多非金属资料。 激光钻孔的原理,是应用激光束汇集使金属外表焦点温度疾速上升,温升可达每秒l00万度。当热量尚未发散之前,光束就烧熔金属,直至汽化,留下一个个小孔。激光钻孔不受加工资料的硬度和脆性的限制,而且钻孔速度异常快,快到能够在几千分之一秒,乃至几百万分之一秒内钻出小孔。(3)激光照相排版 与利用普通光源进行照相排版相比,激光排版省时省力。由于激光亮度高,颜色浅,能够大大改善图像的明晰度,印出来的书质量自然就高。它的原理是怎样的呢?首先经过计算机把文字变成一个个点,然后用点来控制激光扫描感光底片,才真正拍摄出全息照相。 全息照相与平面照相是两回事。虽然平面彩色照片看上去颜色鲜艳、层次清楚,富有平面感,但它总归仍是单面图像,再好的平面照也替代不了真实的实物。比方,一个正方形木块的平面照,不管我们怎样改动察看角度,只能看到照片上的那个画面,但全息照就不同了,我们只需改动一

激光加工技术的特点及应用

激光加工技术的特点及应用-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

激光加工技术的特点及应用 摘要:“激光(器)”的英语为Laser,它是Light Amplification by Stimulated Emission of Radiation的第一个字母组成的缩写,意思是“光受激辐射放 大”。所谓激光加工技术就是利用激光束与物质相互作用的特性对材料 (包括金属与非金属)进行切割、焊接、表面处理、打孔、微加工以 及做为光源,识别物体等的一门技术,它也是涉及到光、机、电、材 料及检测等多门学科的一门综合学科。 关键词:加工原理、特点、加工技术、发展前景 一激光的特点 激光是一种崭新的光源,它除了与其他光源一样是一种电磁波外,还具有其它光源所不具备的特性: 高方向性:激光的发散角很小,接近平行光,可把激光用于定位、准直、导向和测距等 亮度高(光强):聚焦后光斑上的功率密度达1015W/cm2或更高,其亮度比太阳光起码要亮100亿倍,只有氢弹爆炸瞬间产生的闪光才能勉强与激光相比。材料在如此之高的功率密度光照射下,会很快熔化、气化或爆炸,因此,可以来进行材料的加工或是医疗外科手术。 高单色性:其单色性比一般光高108-109倍以上,可把激光波长作为长度的标准进行精密测量,或把其周期用作时间测量标准,应用于激光通讯和等离子体测量。 高相干性:单色性越好的光,相干长度越长。可用于较长工件的高精度测量与校验。 二激光加工的原理及其特点 1.激光加工的原理 激光加工是将激光束照射到工件的表面,以激光的高能量来切除、熔化材料以及改变物体表面性能。由于激光加工是无接触式加工,工具不会与工件的表面直接磨察产生阻力,所以激光加工的速度极快、加工对象受热影响的范围较小而且不会产生噪音。由于激光束的能量和光束的移动速度均可调节,因此激光加工可应用到不同层面和范围上。 2.激光加工的特点 激光具有的宝贵特性决定了激光在加工领域存在的优势: ①非接触加工,无工具磨损,不需要中途更换工具,并且高能量激光束的能量及其移动速度均可调,因此可以实现多种加工的目的; ②激光束能量密度高,加工速度快,工件变形小、热影响区小,后续加工量小; ③它可以对多种金属、非金属加工,特别是可以加工高硬度、高脆性及高熔点材料,可加工材料范围广泛;

激光原理及应用

激光原理及应用 第1章 辐射理论概要与激光产生的条件 1.光波:光波是一种电磁波,即变化的电场和变化的磁场相互激发,形成变化的电磁场在空间的传播。光波既是电矢量→E 的振动和传播,同时又是磁矢量→B 的振动和传播。在均匀介质中,电矢量→ E 的振动方向与磁矢量→B 的振动方向互相垂直,且→E 、→B 均垂直于光的传播方向→k 。(填空) 2.玻尔兹曼分布:e g n g n kT n n m m E E n m )(--=(计算) 3.光和物质的作用:原子、分子或离子辐射光和吸收光的过程是与原子的能级之间的跃迁联系在一起的。物质(原子、分子等)的相互作用有三种不同的过程,即自发辐射、受激辐射及受激吸收。对一个包含大量原子的系统,这三种过程总是同时存在并紧密联系的。在不同情况下,各个过程所占比例不同,普通光源中自发辐射起主要作用,激光器工作过程中受激辐射起主要作用。(填空) 自发辐射:自发辐射的平均寿命A 211=τ(A 21指单位时间内发生自 发辐射的粒子数密度,占处于E 2能级总粒子数密度的百分比) 4.自发辐射、受激吸收和受激吸收之间的关系 在光和大量原子系统的相互作用中,自发辐射、受激辐射和受激吸收三种过程是同时发生的,他们之间密切相关。在单色能量密度为ρV 的光照射下,dt 时间内在光和原子相互作用达到动平衡的条件下有下述关系:dt dt dt v v n B n B n A ρρ112221221=+ (自发辐射光子数) (受激辐射光子数) (受激吸收光子数)

即单位体积中,在dt 时间内,由高能级E2通过自发辐射和受激辐射而跃迁到低能级E1的原子数应等于低能级E1吸收光子而跃迁到高能级E2的原子数。(简答) 5.光谱线增宽:光谱的线型和宽度与光的时间相干性直接相关,对许多激光器的输出特性(如激光的增益、模式、功率等)都有影响,所以光谱线的线型和宽度在激光的实际应用中是很重要的问题。(填空) 光谱线增宽的分类:自然增宽、碰撞增宽、多普勒增宽 自然增宽:自然增宽的线型函数的值降至其最大值的1/2时所对应的两个频率之差称作原子谱线的半值宽度,也叫作自然增宽。 碰撞增宽:是由于发光原子间的相互作用造成的。 多普勒增宽:是由于发光原子相对于观察者运动所引起的谱线增宽。当光源和接收器之间存在相对运动时,接收器接收到的光波频率不等于光源与接收器相对静止时的频率,叫光的多普勒效应。 6.按照谱线增宽的特点可分为均匀增宽和非均匀增宽两类。 7.要实现光的放大,第一需要一个激励能源,用于把介质的粒子不断地由低能级抽运到高能级上去;第二需要有合适的发光介质(或称激光工作物质),它能在外界激励能源的作用下形成g n g n 1 122 的粒子数密度反转分布状态。 8.要使受激辐射起主要作用而产生激光,必须具备三个条件: (1)有提供放大作用的增益介质作为激光工作物质,其激活粒子(原子、分子或者离子)有适合于产生受激辐射的能级结构; (2)有外界激励源,将下能级的粒子抽运到上能级,使激光上下能

各功率激光的特点

常见激光技术总结 目前常见的激光器按工作介质分气体激光器、固体激光器、半导体激光器、光纤激光器和染料激光器5大类,近来还发展了自由电子激光器。大功率激光器通常都脉冲方式输出已获得较大的峰值功率。 单脉冲激光指的是几分钟才输出一个脉冲的激光,重频激光指的是每分钟输出几次到每秒输出数百次甚至更高的激光。 一、气体激光器 1.He-Ne激光器:典型的惰性气体原子激光器,输出连续光,谱线有63 2.8nm(最常用),1015nm,3390nm,近来又向短波延伸。这种激光器输出地功率最大能达到1W,但光束质量很好,主要用于精密测量,检测,准直,导向,水中照明,信息处理,医疗及光学研究等方面。 2.Ar离子激光器:典型的惰性气体离子激光器,是利用气体放电试管内氩原子电离并激发,在离子激发态能级间实现粒子数反转而产生激光。它发射的激光谱线在可见光和紫外区域,在可见光区它是输出连续功率最高的器件,商品化的最高也达30-50W。它的能量转换率最高可达0.6%,频率稳定度在3E-11,寿命超过1000h,光谱在蓝绿波段(488/514.5),功率大,主要用于拉曼光谱、泵浦染料激光、全息、非线性光学等研究领域以及医疗诊断、打印分色、计量测定材料加工及信息处理等方面。 3.CO2激光器:波长为9~12um(典型波长10.6um)的CO2激光器因其效率高,光束质量好,功率范围大(几瓦之几万瓦),既能连续又能脉冲等多优点成为气体激光器中最重要的,用途最广泛的一种激光器。主要用于材料加工,科学研究,检测国防等方面。常用形式有:封离型纵向电激励二氧化碳激光器、TEA二氧化碳激光器、轴快流高功率二氧化碳激光器、横流高功率二氧化碳激光器。 4.N2分子激光器:气体激光器,输出紫外光,峰值功率可达数十兆瓦,脉宽小于10ns,重复频率为数十至数千赫,作可调谐燃料激光器的泵浦源,也可用于荧光分析,检测污染等方面。 5.准分子激光器:以准分子为工作物质的一类气体激光器件。常用电子束(能量大于200千电子伏特)或横向快速脉冲放电来实现激励。当受激态准分子的不稳定分子键断裂而离解成基态原子时,受激态的能量以激光辐射的形式放出。准分子激光物质具有低能态的排斥性,可以把它有效地抽空,故无低态吸收与能量亏损,粒子数反转很容易,增益大,转换效率高,重复率高,辐射波长短,主要在紫外和真空紫外(少数延伸至可见光)区域振荡,调谐范围较宽。它在分离同位素,紫外光化学,激光光谱学,快速摄影,高分辨率全息术,激光武器,物质结构研究,光通信,遥感,集成光学,非线性光学,农业,医学,生物学以及泵浦可调谐染料激光器等方面已获得比较广泛的应用,而且可望发展成为用于核聚变的激光器件。 二、固体激光器 1.YAG激光器:可分为:Nd-YAG晶体、Ce-Nd-YAG晶体、Yb-YAG晶体、Ho-YAG晶体、Er-YAG晶体。 Nd-YAG激光器:固体激光器,1064nm,Nd-YAG目前综合性能最为优异的激光晶体,连续激光器的最大输出功率1000W,广泛用于军事、工业和医疗等行业。若采用连续的方式运转,采用一级振荡可以获得400W的多模输出,若要输出在百瓦级的激光器,采用单灯单棒,200W以上的采用双灯单棒结构。Nd-YAG激光器不仅适合连续,而且在高重频下运转性能也很优越。重频可达100~200次/s,最高平均功率可400w。采用多级串联来实现高功率输出,目前平均功率最高可达到上600~800瓦,重频可达80~200次/s,单脉冲能量可达80J。 Ce-Nd-YAG激光器:在Nd-AG晶体的基础上添加Ce离子形成Ce-Nd-YAG。利用Ce离子能对紫外光谱区光子能量产生很好的吸收,并且将能量以无辐射跃迁的方式传递给Nd离子,从而增加了光谱的利用率,因此效率高、阈值低、重复频率特性好。 Yb-YAG激光器:Yb3+掺入YAG基质中形成的一种产生1.03um近红外激光的激光晶体,其与Nd-YAG属于同一种基质,但由于掺杂不同而导致生长工艺有所不同。掺Yb-YAG由于量子效率高,晶体光谱简单,无激发态吸收和上转换,且无荧光浓度猝灭,掺杂浓度高,有较长的荧光寿命,吸收带带宽比Nd-YAG宽得多,能与二极管的泵浦波长有效耦合。在相同的输入功率下,Yb-YAG泵浦生热仅为Nd-YAG的1/4。而且YAG基质的物化特性综合性能最为优良,所以Yb-YAG已成为最引人注目的固体激光介质之一,LD泵浦的高功率Yb-YAG固体激光器成为新的研究热点,并将其视为发展高效、高功率固体激光器的一个主要方向。

相关文档
最新文档