变频器制动电阻工作原理是怎样的

变频器制动电阻工作原理是怎样的

变频器制动电阻工作原理是怎样的

变频器维修2010-11-09 15:58:09 阅读18 评论0 字号:大中小订阅

当变频器带动电动机处于制动状态时(发电状态),比如吊车吊重物下降,或惯性很大的负载比较快速地停车。动能(势能)会转变回电能,返回变频器直流母线,造成母线电压很高。如果你的变频器有制动单元,它检测到母线电压高于某个阈值后,会将制动电阻与母线间的开关接通,能量通过制动电阻消耗,这时制动电阻发热。

平时制动电阻是绝对不发热的,如果正常工作时制动电阻发热,就是制动单元坏了,或者硬件问题造成制动电阻始终接在直流母线上,那你这个变频器的动作没有大问题,但能耗绝对大的。

变频器输出控制电动机在加速或恒速状态下,制动电阻是不起作用的,但在电机减速或紧急停车时,由于电动机处于再生制动状态,变频器内直流电路的电压将升高,制动电阻就是将这部分增加的能量通过发热的形式消耗掉。

异步电动机将处于再生发电状态,产生反馈电流,这个电流经过返流二极管(D1一D6)返回直流回路,并向主电容器充电,使直流电压升高,为了避免电压过高,损坏变频器,在直流回路侧接人制动电阻R,当直流电压高出一定值后,使晶体管开关TR导通并接人制动电阻,将反馈能量在电阻R上以热能的形式消耗掉。

变频器制动电阻选配表

制动电阻标称功率 = 制动电阻降额系数×制动期间平均消耗功率×制动使用率% 在连铸工艺中,连铸机拉坯辊速度控制是连铸机的三大关键技术之一,拉坯速度控制水平直接影响连铸坯的产量和质量,而拉坯辊电机驱动装置的性能又在其中发挥着重要作用。交流电机变频调速技术日益成熟,交流变频驱动调速平稳,调速范围宽,对机械冲击低,交流电机维护量低,交流变频调速已取代直流调速,完全能够满足拉坯辊速度控制的需要。 4、5号连铸机的拉矫机为五辊双机架三驱动,上拉坯辊、下拉坯辊、矫直辊由三台同型号电机共同驱动,完成引锭杆的上下传送运行和连铸坯牵引,三台电机必须保持同步,与一般的同步要求不同的是要保证三个辊面的线速度相同,而不是三台电机的转速相同,以避免出现负载分配不均引起母线过压、欠压、过载故障。

三台变频器接受相同的速度指令,按照同一频率运行,但由于三辊处于一个半径8m的圆弧段的不同位置上,若要保持三个辊面的线速度相同,则三台电机的转速实际应有轻微差别,加上三台电机的参数不可能完全相同,这就造成了三台电机同步的困难。如果打开母线调节功能,虽然可以在一定程度上避免由于不同步造成的母线电压升高,但会造成电机转速的不稳定,从而使拉速值波动,进一步影响到结晶器钢水液面和二冷配水的稳定,甚至有造成事故的危险。为此,我们利用变频器内置的PI控制功能,使三台电机构成主从驱动系统,即以上拉坯电机作为主驱动电机,工作在速度调节方式,下拉坯电机和矫直电机作为从动电机,工作在带有速度修正的速度调节方式下,通过比较主从电机的力矩电流产生偏差信号,从而修正从动电机的速度。变频器间的力矩电流信号传送可以通过变频器内置的模拟量输入、输出通道来实现,无需另外添加硬件。这种方法构成的主从驱动系统,结构简单,完全利用变频器内置功能实现,可以连续自动完成速度修正,应用在多辊传动的拉矫机上效果非常理想。 拉矫机和结晶器振动装置采用变频器调速系统,拉矫机变频器的启动、停止以及调速由PLC 发送给拉矫机变频器,拉矫机的实际速度FM经光电隔离后再反馈给PLC,然后由PLC传送给相应仪表显示实际值。结晶器振动采用同调方式,即振动频率随拉速变化而变化,即根据下面的公式,来控制结晶器振动频率f: 计算出振动频率f由PLC发送给结晶器振动变频器,使结晶器的振动适应于拉速变化,系统框图如图所示。 结晶器 2008-11-25 19:43 在连续铸造、真空吸铸、单向结晶等铸造方法中,使铸件成形并迅速凝固结晶的特种金属铸型。 结晶器包括: 直型结晶器、 弧形结晶器curved mold:用于弧型和超低头型(椭圆型)连铸机上。 组合式结晶器composite mold:由四块壁板组成,每块壁板又由一块铜板和一块钢(铁)板用螺栓连接而成。 多级结晶器multi stage mold 调宽结晶器adjustable mold:宽度可调的结晶器,一般只用于板坯连铸。 结晶器是连铸机的核心设备之一,直接关系到连铸坯的质量。结晶器的振动频率要求准确,并根据拉坯速度自动调整,在高振频时,由于电机负载率上升,转差率增加,导致振动频率有所降低,而为了保证振动频率的精确,需要打开变频器的转差补偿控制,在负载增加时,使变频器自动增加输出频率以提供在没有速度降低情况下所需要的电机转差率,补偿量正比于负载的增加量,并在整个调速范围内都起作用。 另外,结晶器的振动是由电机带动偏心机构旋转来实现的,因此表现为输出电流及母线电压呈现周期性震荡,在振动频率较高时有引起母线过电压故障的可能,通过允许变频器的母线调节功能,使变频器会基于直流母线电压自动调整输出频率,监测到母线电压瞬时升高时变频器会适当增加输出频率以减小引起母线电压升高的再生能量,这样做降低了出现变频

变频器的制动电阻作用

在变频调速系统中,电机的降速和停机是通过逐渐减小频率来实现的,在频率减小的瞬间,电机的同步转速随之下降,而由于机械惯性的原因,电机的转子转速未变。当同步转速小于转子转速时,转子电流的相位几乎改变了180度,电机从电动状态变为发电状态;与此同时,电机轴上的转矩变成了制动转矩,使电机的转速迅速下降,电机处于再生制动状态。电机再生的电能经续流二极管全波整流后反馈到直流电路。由于直流电路的电能无法通过整流桥回馈到电网,仅靠变频器本身的电容吸收,虽然其他部分能消耗电能,但电容仍有短时间的电荷堆积,形成“泵升电压”,使直流电压升高。过高的直流电压将使各部分器件受到损害。 因此,对于负载处于发电制动状态中必须采取必需的措施处理这部分再生能量。处理再生能量的方法:能耗制动和回馈制动. 能耗制动的工作方式 能耗制动采用的方法是在变频器直流侧加放电电阻单元组件,将再生电能消耗在功率电阻上来实现制动。这是一种处理再生能量的最直接的办法,它是将再生能量通过专门的能耗制动电路消耗在电阻上,转化为热能,因此又被称为“电阻制动”,它包括制动单元和制动电阻二部分。 制动单元 制动单元的功能是当直流回路的电压Ud超过规定的限值时(如660V或710V),接通耗能电路,使直流回路通过制动电阻后以热能方式释放能量。制动单元可分内置式和外置式二种,前者是适用于小功率的通用变频器,后者则是适用于大功率变频器或是对制动有特殊要求的工况中。从原理上讲,二者并无区别,都是作为接通制动电阻的“开关”,它包括功率管、电压采样比较电路和驱动电路。 制动电阻 制动电阻是用于将电机的再生能量以热能方式消耗的载体,它包括电阻阻值和功率容量两个重要的参数。通常在工程上选用较多的是波纹电阻和铝合金电阻两种:前者采用表面立式波纹有利于散热减低寄生电感量,并选用高阻燃无机涂层,有效保护电阻丝不被老化,延长使用寿命;后者电阻器耐气候性、耐震动性,优于传统瓷骨架电阻器,广泛应用于高要求恶劣工控环境使用,易紧密安装、易附加散热器,外型美观。 制动过程 能耗制动的过程如下: 能耗制动的过程如下:A、当电机在外力作用下减速、反转时(包括被拖动),电机即以发电状态运行,能量反馈回直流回路,使母线电压升高;B、当直流电压到达制动单元开的状态时,制动单元的功率管导通,电流流过制动电阻;C、制动电阻消耗电能为热能,电机的转速降低,母线电压也降低;D、母线电压降至制动单元要关断的值,制动单元的功率管截止,制动电阻无电流流过;E、采样母线电压值,制动单元重复ON/OFF过程,平衡母线电压,使系统正常运行。

制动电阻的选择和计算

1 引言 目前市场上变频器的制动方法大致有三种:能耗制动,直流制动,回馈(再生)制动。台达变频器属于不可控整流电压源型的变频器,其制动方式属于能耗制动和直流制动。能耗制动是台达变频器让生产机械在运动过程中快速地减速或停车的主要形式;直流制动则在电机运转准备时刻输出一直流电流产生转矩迫使电机停止,以得到平稳的启动特性,或者当变频器停止时刻输出一直流电流产生转矩迫使电机停止,以确保电机已准确停车。在使用台达变频器的变频调速系统中,减速的方法就是通过逐步降低给定频率来实现的。在频率下降过程中,电动机将处于再生制动状态(发电机状态),使得电动机的转速迅速地随频率的下降而下降。在制动过程中,泵生电压的产生会导致直流母线上的电压升高,此时变频器会控制刹车单元通过刹车电阻把升高的电压以热能的方式消耗掉。为了使得系统平稳降速,需要设置适当的减速时间,同时选择合适的制动电阻和制动单元才能满足需要。目前关于制动电阻的计算方法有很多种,从工程的角度来讲要精确的计算制动电阻的阻值和功率在实际应用过程中不是很实际,主要是部分参数无法精确测量。目前通常用的方法就是估算方法,由于每一个厂家的计算方法各有不同,因此计算的结果不大一致。本文所介绍的计算方法仅仅是供参考,具体的情况要根据每一个现场的使用情况来进行分析计算。 2 制动电阻的介绍 制动电阻是用于将电动机的再生能量以热能方式消耗的载体,它包括电阻阻值和功率容量两个重要的参数。通常在工程上选用较多的是波纹电阻和铝合金电阻两种:波纹电阻采用表面立式波纹有利于散热减低寄生电感量,并选用高阻燃无机涂层,有效保护电阻丝不被老化,延长使用寿命,台达原厂配置的就是这样的电阻;铝合金电阻易紧密安装、易附加散热器,外型美观,高散热性的铝合金外盒全包封结构,具有极强的耐振性,耐气候性和长期稳定性;体积小、功率大,安装方便稳固,外形美观,广泛应用于高度恶劣工业环境使用。 3 制动电阻的阻值和功率计算 3.1刹车使用率ED% 制动使用率ED%,也就是台达说明书中的刹车使用率ED%。刹车使用率ED%定义为减速时间T1除以减速的周期T2,制动刹车使用率主要是为了能让制动单元和刹车电阻有充分的时间来散除因制动而产生的热量;当刹车电阻发热时,电阻值将会随温度的上升而变高,制动转矩亦随之减少。刹车使用率ED%=制动时间/刹车周期=T1/T2*100%。(图1) 图1刹车使用率ED%定义 现在用一个例子来说明制动使用率的概念:10%的制动频率可以这样理解,如果制动电阻在10秒钟能够消耗掉100%的功率,那么制动电阻至少需要90秒才能把产生的热量散掉。 3.2 制动单元动作电压准位 当直流母线电压大于等于制动电压准位(甄别阈值)时,刹车单元动作进行能量消耗。台达制动电压准位如表1所示。

变频器制动电阻介绍及计算方法

变频器制动电阻介绍及计算方法 1 引言 目前市场上器的制动方法大致有三种:能耗制动,直流制动,回馈(再生)制动。 目前关于制动的计算方法有很多种,从工程的角度来讲要精确的计算的阻值和功率在实际应用过程中不是很实际,主要是部分参数无法精确测量。目前通常用的方法就是估算方法,由于每一个厂家的计算方法各有不同,因此计算的结果不大一致。 2 制动电阻的介绍 制动电阻是用于将电动机的再生能量以热能方式消耗的载体,它包括电阻阻值和功率容量两个重要的参数。通常在工程上选用较多的是和铝两种:波纹电阻采用表面立式波纹有利于散热减低寄生量,并选用高阻燃无机涂层,有效保护电阻丝不被老化,延长使用寿命,台达原厂配置的就是这样的电阻;铝合金电阻易紧密安装、易附加,外型美观,高散热性的铝合金外盒全包封结构,具有极强的耐振性,耐气候性和长期稳定性;体积小、功率大,安装方便稳固,外形美观,广泛应用于高度恶劣工业环境使用。 3 制动电阻的阻值和算 刹车使用率ED% 制动使用率ED%,也就是台达说明书中的刹车使用率ED%。刹车使用率ED%定义为减速时间T1除以减速的周期T2,制动刹车使用率主要是为了能让和有充分的时间来散除因制动而产生的热量;当刹车电阻发热时,电阻值将会随温度的上升而变高,制动转矩亦随之减少。刹车使用率ED%=制动时间/ 刹车周期=T1/T2*100%。(图1) 图1刹车使用率ED%定义

现在用一个例子来说明制动使用率的概念:10%的制动频率可以这样理解,如果制动电阻在10秒钟能够消耗掉100%的功率,那么制动电阻至少需要90秒才能把产生的热量散掉。 制动单元动作电压准位 当直流电压大于等于制动电压准位(甄别阈值)时,刹车单元动作进行能量消耗。台达制动电压准位如表1所示。 制动电阻设计 (1)工程设计。实践证明,当放电电流等于电动机额定电流的一半时,就可以得到与电动机的额定转矩相同的制动转矩了,因此制动电阻的粗略计算是: 其中: 制动电压准位 电机的额定电流 为了保证不受损坏,强制限定当流过制动电阻的电流为额定电流时的电阻数值为制动电阻的最小数值。选择制动电阻的阻值时,不能小于该阻值。 根据以上所叙,制动电阻的阻值的选择范围为: 制动电阻的耗用功率当制动电阻在直流电压为的工作时,其消耗的功率为: 耗用功率的含义:如果电阻的功率按照此数值选择的话,该电阻可以长时间的接入在电路里工作。

ABB 800系列变频器制动电阻选用

ABB 800系列变频器制动电阻的选定 1、制动电阻的必要性 如应用中减速时及下降时所产生的再生能量过大,则有变频器部的主电路电压上升导致损坏的可能。 因为通常变频器中置有过电压保护功能,检测出主电路过电压(OV)后则停止,不会造成损坏。但是,因在检测出异常后电机 会停止,所以就难于进行稳定的持续运行。 有必要应用制动电阻器/制动电阻器单元/制动单元,将再生能量释放到变频器外部。 (1)再生能量 连接在电机上的负载,在旋转时有动能、在高位置时有势能。电机减速、或负载减小时,该能量会返回到变频器。这种现象称为再生,该能量即称为再生能量。 (2)制动电阻的避免方法 避免制动电阻连接的方法有以下的方法。因为避免方法必定会增加减速时间,请研究确认即使减速时间延长也没有问题。

·减速时,防止失速功能生效(出货时的设定中,已设为有效)(为防止主电路过电压的发生,自动地增加减速时间)。 ·将减速时间设定得更长。(每单位时间的再生能量减少)。 ·选择自由旋转停止。(再生能量不会返回到变频器)。 2、制动电阻的简单选定 根据平常的动作模式中的再生能量产生的时间比率进行简单设定的方法。请按照下述的动作形式计算使用率。 (1)使用率3%ED以下的情况 请选定制动电阻器。与变频器容量相对应的制动电阻器的一览表记载在使用说明书·产品样本中。请根据所使用的变频器连接相应的制动电阻器。(如变频器的容量变大,则可在变频器的散热风扇上安装制动电阻器)。 (2)使用率10%ED以下的情况 请选定制动电阻器。与变频器容量相对应的制动电阻器的一览表记载在使用说明书·产品样本中,请根据所使用的变频器相应的制动电阻器单元。 3、制动电阻的简易选定

变频器制动电阻的作用

变频器制动电阻的作用 当变频器带动的电机或其他感性负载在停机的时候,一般都是采用能耗制动的方式来实现的,就是把停止后电机的动能和线圈里面的磁能都通过一个别的耗能元件消耗掉,从而实现快速停车。当供电停止后,变频器的逆变电路就反向导通,把这些剩余电能反馈到变频器的直流母线上来,直流母线上的电压会因此而升高,当升高到一定值的时候,变频器的制动电阻就投入运行,使这部分电能通过电阻发热的方式消耗掉,同时维持直流母线上的电压为一个正常值。 我现在用的是一个mm440的变频器,外界了一个制动电阻,我不知道设置那个参数可以切换到制动电阻制动,即制动电阻起作用!问题补充:我是想知道设置那个参数,可以让我的变频器在需要时起作用。还是默认的参数就可以啊? 要想使制动电阻工作,要满足以下几个条件:1、直流制动没有使能。P1230=0默认,P1233=0默认。2、复合制动没有使能。P1236=0默认。3、动力制动必须使能。也就是P1237>0。例如P1237=4(50%) 4、不使用最大直流电压控制器,P1240=0或2。主要是减速出现过压,首先最大电压控制器工作,制动电阻还没到门限,不会工作。通过以上设置,(如果你是380V 设定)制动电阻在默认直流电压达到或超过605V时动作。 变频器带负载直接断电对变频器有什么不良影响吗?这样的话是不是制动电阻就不起作用了。 原则上是没有影响的。但如果频繁的上电,电容的充电电阻就会频繁的受到冲击,网侧整流如果结构是带晶闸管软上电的问题就不大了。但不管什么结构,上电的冲击都是有的(主回路,控制回路等)。 第二个问题,有点复杂,要定量分析。有的变频器是有网侧电源判断电路的,当网侧电源断电后,变频器会开始自由停车(或并且给出报警信号)。有的是根据直流总线电压来推断的,控制电压也来自于直流总线,如果网侧断电前变频器已经开始减速停车,且负载有足够的转动惯量,已经开始把能量回馈给变频器,就会在断电后仍然有足够的直流总线电压,控制电源仍然存在,制动回路仍然会工作(适用再生制动,注意,直流制动是没有能力回馈的),把负载的能力回馈到制动电阻上,当回馈的能量不足以保持直流总线电压时,控制回路掉电,变频器进入自由停车状态。也就是说网侧电源掉电后,变频器仍然会保持制动力矩一段

变频器电路中的制动电路

变频器电路中的制动控制电路 一、为嘛要采用制动电路? 因惯性或某种原因,导致负载电机的转速大于变频器的输出转速时,此时电机由“电动”状态进入“动电”状态,使电动机暂时变成了发电机。一些特殊机械,如矿用提升机、卷扬机、高速电梯等,风机等,当电动机减速、制动或者下放负载重物时,因机械系统的位能和势能作用,会使电动机的实际转速有可能超过变频器的给定转速,电机转子绕组中的感生电流的相位超前于感生电压,并由互感作用,使定子绕组中出现感生电流——容性电流,而变频器逆变回路IGBT两端并联的二极管和直流回路的储能电容器,恰恰提供了这一容性电流的通路。电动机因有了容性励磁电流,进而产生励磁磁动势,电动机自励发电,向供电电源回馈能量。这是一个电动机将机械势能转变为电能回馈回电网的过程。 此再生能量由变频器的逆变电路所并联的二极管整流,馈入变频器的直流回路,使直流回路的电压由530V左右上升到六、七百伏,甚至更高。尤其在大惯性负载需减速停车的过程中,更是频繁发生。这种急剧上升的电压,有可能对变频器主电路的储能电容和逆变模块,造成较大的电压和电流冲击甚至损坏。因而制动单元与制动电阻(又称刹车单元和刹车电阻)常成为变频器的必备件或首选辅助件。在小功率变频器中,制动单元往往集成于功率模块,制动电阻也安装于机体。但较大功率的变频器,直接从直流回路引出P、N端子,由用户则根据负载运行情况选配制动单元和制动电阻。 一例维修实例: 一台东元7300PA 75kW变频器,因IGBT模块炸裂送修。检查U、V相模块俱已损坏,驱动电路受强电冲击也有损坏元件。将模块和驱动电路修复后,带7.5kW电机试机,运行正常。即交付用户安装使用了。 运行约一个月时间,用户又因模块炸裂。检查又为两相模块损坏。这下不敢大意了,询问用户又说不大清楚。到用户生产现场,算是弄明白了损坏的原因。原来变频器的负载为负机,因工艺要求,运行三分钟,又需在30秒停机。采用自由停车方式,现场做了个试验,因风机为大惯性负荷,电机完全停住需接近20分钟。为快速停车,用户将控制参数设置为减速停车,将减速时间设置为30秒。在减速停车过程中,电机的再生电能回馈,使变频器直流回路电压异常升高,有时即跳出过电压故障而停机。用户往往实施故障复位后,又强制开机。正是这种回馈电能,使直流回路电压异常升高,超出了IGBT的安全工作围,而炸裂了。

制动单元正确选型和制动电阻计算公式

制动单元正确选型和制动电阻计算公式制动单元正确选型和制动电阻 在变频调速系统中,电机的降速和停机是通过逐渐减小频率来实现的,在频率减小的瞬间,电机的同步转速随之下降,而由于机械惯性的原因,电机的转子转速未变。当同步转速小于转子转速时,转子电流的相位几乎改变了180度,电机从电动状态变为发电状态;与此同时,电机轴上的转矩变成了制动转矩,使电机的转速迅速下降,电机处于再生制动状态。电机再生的电能经续流二极管全波整流后反馈到直流电路。由于直流电路的电能无法通过整流桥回馈到电网,仅靠变频器本身的电容吸收,虽然其他部分能消耗电能,但电容仍有短时间的电荷堆积,形成“泵升电压”,使直流电压升高。过高的直流电压将使各部分器件受到损害。因此,对于负载处于发电制动状态中必须采取必需的措施处理这部分再生能量。处理再生能量的方法:能耗制动和回馈制动. 能耗制动的工作方式 能耗制动采用的方法是在变频器直流侧加放电电阻单元组件,将再生电能消耗在功率电阻上来实现制动。这是一种处理再生能量的最直接的办法,它是将再生能量通过专门的能耗制动电路消耗在电阻上,转化为热能,因此又被称为“电阻制动”,它包括制动单元和制动电阻二部分。 制动单元 制动单元的功能是当直流回路的电压Ud超过规定的限值时(如660V或710V),接通耗能电路,使直流回路通过制动电阻后以热能方式释放能量。制动单元可分内置式和外置式二种,前者是适用于小功率的通用变频器,后者则是适用于大功率变频器或是对制动有特殊要求的工况中。从原理上讲,二者并无区别,都是作为接通制动电阻的“开关”,它包括功率管、电压采样比较电路和驱动电路。 制动电阻 制动电阻是用于将电机的再生能量以热能方式消耗的载体,它包括电阻阻值和功率容量两个重要的参数。通常在工程上选用较多的是波纹电阻和铝合金电阻两种:前者采用表面立式波纹有利于散热减低寄生电感量,并选用高阻燃无机涂层,有效保护电阻丝不被老化,延长使用寿命;后者电阻器耐气候性、耐震动性,优于传统瓷骨架电阻器,广泛应用于高要求恶劣工控环境使用,易紧密安装、易附加散热器,外型美观。 制动过程 能耗制动的过程如下: 能耗制动的过程如下:A、当电机在外力作用下减速、反转时(包括被拖动),电机即以发电状态运行,能量反馈回直流回路,使母线电压升高;B、当直流电压到达制动单元开的状态时,制动单元的功率管导通,电流流过制动电阻;C、制动电阻消耗电能为热能,电机的转速降低,母线电压也降低;D、母线电压降至制动单元要关断的值,制动单元的功率管截止,制动电阻无电流流过;E、采样母线电压值,制动单元重复ON/OFF过程,平衡母线电压,使系统正常运行。 制动单元与制动电阻的选配 A、首先估算出制动转矩 =((电机转动惯量+电机负载测折算到电机测的转动惯量)*(制动前速度-制动后速度))/375*减速时间-负载转矩 一般情况下,在进行电机制动时,电机内部存在一定的损耗,约为额定转矩的18%-22%左右,因此计算出的结果在小于此范围的话就无需接制动装置; B、接着计算制动电阻的阻值 =制动元件动作电压值的平方/(0.1047*(制动转矩-20%电机额定转矩)*制动前电机转速)在制动单元工作过程中,直流母线的电压的升降取决于常数RC,R即为制动电阻的阻值,C

变频器制动电阻的确定

变频器制动电阻的确定 0 引言 在通用变频器、异步电动机和机械负载所组成的变频调速传动系统中,当电动机减速或所传动的位能负载下放时,异步电动机将处于再生发电制动状态。传动系统中所储存的机械能经异步电动机转换成电能,通过逆变器的续流二极管整流后回馈到直流侧,致使直流侧储能电容器的电压上升。如果电动机的制动并不快,电容器的电压升高就不十分明显。相反,如果电动机制动较快时,电容器的电压会上升很高,过高的电压会使变频器中的“制动过电压保护”动作,甚至造成变频器损坏。 目前,在变频调速系统中,电动机的快速制动或准确停车,一般采用动力制动和再生制动。对于动力制动方式,系统所需的制动转矩在电动机额定转矩的20%以下且制动并不快时,则不需要外接制动电阻,仅电动机内部的有功损耗,就可以使直流侧电压限制在过电压保护的动作值以下。反之,则需要选择制动电阻来耗散电动机再生的这部分能量。 1 变频器动力制动原理 1.1 变频器电压检测及驱动电路 为了实现电气制动,变频器的直流侧必须设置电压检测电路,检测电容器的电压,以实现能耗制动。图1为一种电压检测电路的工作原理图。 电压检测电路主要由电压采样电阻R1、R2、R3,滞环比较器LM399,逻辑转

换器件等组成。电压采样回路直接检测变频器直流侧电容器C 两端的电压,当被检测电压值超过设定的允许值时,滞环比较器翻转,输出端接近0 V,经逻辑转换后,触发制动晶体管V 导通,经过电阻R0释放,使电压下降;反之,当检测电压低于设定值时,滞环比较器翻转回原状态,使V关断。 特别强调的是,滞环比较器上下限值的设定很重要。一般选择原则:上限电压设定为正常直流电压的1.3倍,下限电压应考虑电网正常电压的波动,一般整定为略高于电网电压向上波动的最大值。 1.2 变频器制动单元 如图2 虚线框所示为制动单元PW 的实际电路,包括晶体管V、二极管D1、D2和制动电阻RB。

变频器制动电阻的选择及安装和配线注意事项

变频器制动电阻的选择及安装和配线注意事项 在变频调速系统中,电机的降速和停机是通过逐渐减小频率来实现的,在频率减小的瞬间,电机的同步转速随之下降,而由于机械惯性的原因,电机的转子转速未变。当同步转速小于转子转速时,转子电流的相位几乎改变了180度,电机从电动状态变为发电状态;与此同时,电机轴上的转矩变成了制动转矩,使电机的转速迅速下降,电机处于再生制动状态。电机再生的电能经续流二极管全波整流后反馈到直流电路。由于直流电路的电能无法通过整流桥回馈到电网,仅靠变频器本身的电容吸收,虽然其他部分能消耗电能,但电容仍有短时间的电荷堆积,形成“泵升电压”,使直流电压升高。过高的直流电压将使各部分器件受到损害。因此,对于负载处于发电制动状态中必须采取必需的措施处理这部分再生能量。处理再生能量的方法:能耗制动和回馈制动。 能耗制动的工作方式 能耗制动采用的方法是在变频器直流侧加放电电阻单元组件,将再生电能消耗在功率电阻上来实现制动。这是一种处理再生能量的最直接的办法,它是将再生能量通过专门的能耗制动电路消耗在电阻上,转化为热能,因此又被称为“电阻制动”,它包括制动单元和制动电阻二部分。 制动单元 制动单元的功能是当直流回路的电压Ud超过规定的限值时(如660V或710V),接通耗能电路,使直流回路通过制动电阻后以热能方式释放能量。制动单元可分内置式和外置式二种,前者是适用于小功率的通用变频器,后者则是适用于大功率变频器或是对制动有特殊要求的工况中。从原理上讲,二者并无区别,都是作为接通制动电阻的“开关”,它包括功率管、电压采样比较电路和驱动电路。 制动电阻 制动电阻是用于将电机的再生能量以热能方式消耗的载体,它包括电阻阻值和功率容量两个重要的参数。通常在工程上选用较多的是波纹电阻和铝合金电阻两种:前者采用表面立式波纹有利于散热减低寄生电感量,并选用高阻燃无机涂层,有效保护电阻丝不被老化,延长使用寿命;后者电阻器耐气候性、耐震动性,优于传统瓷骨架电阻器,广泛应用于高要求恶劣工控环境使用,易紧密安装、易附加散热器,外型美观。 制动过程

变频器制动电阻的计算方法及公式

A、首先估算出制动转矩一般情况下,在进行电机制动时,电机内部存在一定的损耗,约为额定转矩的18%-22%左右,因此计算出的结果在小于此范围的话就无需接制动装置; B、接着计算制动电阻的阻值在制动单元工作过程中,直流母线的电压的升降取决于常数RC,R即为制动电阻的阻值,C为变频器内部电解电容的容量。这里制动单元动作电压值一般为710V。 C、然后进行制动单元的选择在进行制动单元的选择时,制动单元的工作最大电流是选择的唯一依据,其计算公式如下: D、最后计算制动电阻的标称功率由于制动电阻为短时工作制,因此根据电阻的特性和技术指标,我们知道电阻的标称功率将小于通电时的消耗功率,一般可用下式求得:制动电阻标称功率 = 制动电阻降额系数 X 制动期间平均消耗功率 X 制动使用率% 2.6 制动特点能耗制动(电阻制动)的优点是构造简单,缺点是运行效率降低,特别是在频繁制动时将要消耗大量的能量,且制动电阻的容量将增大。 制动力矩计算要有足够的制动力矩才能产生需要的制动效果,制动力矩太小,变频器仍然会过电压跳闸。制动力矩越大,制动能力越强,制动性能约好。但是制动力矩要求越大,设备投资也会越大。 制动力矩精确计算困难,一般进行估算就能满足要求。按100%制动力矩设计,可以满足90%以上的负载。对电梯,提升机,吊车,按100% 开卷和卷起设备,按120%计算离心机100% 需要急速停车的大惯性负载,可能需要120%的制动力矩普通惯性负载80% 在极端的情况下,制动力矩可以设计为150%,此时对制动单元和制动电阻都必须仔细合算,因为此时设备可能工作在极限状态,计算错误可能导致损坏变频器本身。超过150%的力矩是没有必要的,因为超过了这个数值,变频器本身也到了极限,没有增大的余地了。 电阻制动单元的制动电流计算(按100%制动力矩计算) 制动电流是指流过制动单元和制动电阻的直流电流。 380V标准交流电机: P――――电机功率P(kW) k――――回馈时的机械能转换效率,一般k =0.7(绝大部分场合适用) V――――制动单元直流工作点(680V-710V,一般取700V) I――――制动电流,单位为安培 计算基准:电机再生电能必须完全被电阻吸收电机再生电能(瓦)=1000×P×k=电阻吸收功率(V×I)

变频器制动电阻选型

制动力矩×制动电阻 = 制动单元动作电压值/电动机的额定功率 92%×R = 780/电动机KW 100% R=700/电动机KW 110% R=650/电动机KW 120% R=600/电动机KW 制动性质 =电阻功率 一般负荷 W(Kw) 电阻KWΧ10℅频繁制动(1分钟5次以上) W(Kw) 电阻KWΧ15℅ 长时间制动(每次4分钟以上) W(Kw) 电阻KWΧ20℅ 常用制动电阻选配表(10ED,100%制动力矩) (仅适用于380V变频器选配制动电阻时参考) 电机功率(kW) 电阻值(Ω) 电阻功率(kW) 制动力矩(%) 7.5kW 100Ω 7kW 100% 11kW 70Ω 1kW 100% 15kW 47Ω 1.5kW 100% 18.5kW 38Ω 2kW 100% 22 kW 32Ω 2.2kW 100% 30kW 23Ω 3kW 100% 37kW 19Ω 3.7kW 100% 45kW 16Ω 4.5kW 100% 55k W 13Ω 5.5kW 100% 75kW 9Ω 7.5kW 100% 90kW 7.5Ω 9kW 100% 110kW 6Ω 11kW 100% 150kW 4Ω 15kW 100% 165-187kW 3.5Ω 20kW 100% 200-220kW 3Ω 25kW 100% 250-300 kW 2.5Ω 30kW 100% 制动电阻标称功率 = 制动电阻降额系数×制动期间平均消耗功率×制动使用率% 在连铸工艺中,连铸机拉坯辊速度控制是连铸机的三大关键技术之一,拉坯速度控制水平直接影响连铸坯的产量和质量,而拉坯辊电机驱动装置的性能又在其中发挥着重要作用。交流电机变频调速技术日益成熟,交流变频驱动调速平稳,调速范围宽,对机械冲击低,交流电机维护量低,交流变频调速已取代直流调速,完全能够满足拉坯辊速度控制的需要。 4、5号连铸机的拉矫机为五辊双机架三驱动,上拉坯辊、下拉坯辊、矫直辊由三台同型号电机共同驱动,完成引锭杆的上下传送运行和连铸坯牵引,三台电机必须保持同步,与一般的同步要求不同的是要保证三个辊面的线速度相同,而不是三台电机的转速相同,以避免出现负载分配不均引起母线过压、欠压、过载故障。 三台变频器接受相同的速度指令,按照同一频率运行,但由于三辊处于一个半径8m的圆弧段的不同位置上,若要保持三个辊面的线速度相同,则三台电机的转速实际应有轻微差别,加上三台电机的参数不可能完全相同,这就造成了三台电机同步的困难。如果打开母线调节功能,虽然可以在一定程度上避免由于不同步造成的母线电压升高,但会造成电机转速的不稳定,从而使拉速值波动,进一步影响到结晶器钢水液面和二冷配水的稳定,甚至有造成事

选择变频器制动电阻的案例及注意事项

选择正确的变频器制动电阻是保证制动效果并避免设备损坏的必要条件: 首先要计算制动功率并绘制正确的制动曲线;再根据制动曲线确定制动周期及制动功率;根据所确定的制动功率及制动周期,同时参考电压、阻值等条件选择合适的制动电阻;所选制动电阻阻值不能小于选型手册中规定的数值,否则将直接造成变频器损坏!这在电阻选型时应予以说明。 有时候制动功率不好确定,或为了确保安全,可选择制动功率较大的电阻;西门子标准传动产品提供的MM4系列制动电阻均为5%制动周期的电阻,所以在选型时应加以注意;制动周期在参数P1237中选择;同时应将P1240设置为0 用以禁止直流电压控制器。 制动周期的计算有时候容易混乱。实际上,5%制动周期就意味着制动电阻可以在12秒钟内消耗100%的功率,然后需要冷却228秒钟。当然如果制动的时间小于12秒钟,或者消耗的功率低于100%是另外一种情况,变频器会计算制动电阻的i2t。如果制动周期大于5%,440允许设置较高的制动周期,但实际上很难精确地计算出制动的情况。比如说,一台变频器每分钟制动5秒钟,制动功率50%。在这种情况下,一般建议选择比理论计算稍大一些的电阻,同时在参数 P1237中相应地设置高一些的制动周期。 下面给出个例子供参考: 假设一台7.5kW变频器,需要每分钟制动5次,每次2秒钟,制动功率50%。每分钟制动5次,每次2秒钟就相当于240秒钟内制动40秒钟, 8%,所以折算后的制动功率为625w,于是选择750w的制动 而50%的制动功率折算到时间上就是20秒钟。于是可以这样计算制动周期:20/240 电阻,同时在P1237中设置制动周期为10%。2*5*50%/60=7.5/制动电阻功率,然后选大一号的。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关仪器仪表产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城。https://www.360docs.net/doc/d49294256.html,/

ABB ACS550510 系列变频器 制动电阻 申世选型

ABB ACS550/510 系列变频器制动电阻申世选型 变频器型号变频器功率(KW)ABB原配制动电阻申世制动电阻料号 RW(L)G0CF00B00 ACS550-01-03A3-4 1.1 CBR-V210DT281200R RW(L)G0CF00B00 ACS550-01-04A1-4 1.5 CBR-V210DT281200R RW(L)G0CF00B00 ACS550-01-05A4-4 2.2 CBR-V210DT281200R ACS550-01-06A9-4 3 CBR-V460DT42180R RW(L)G0GI000H0 RW(L)G0GI000H0 ACS550-01-08A8-4 4 CBR-V460DT42180R RW(L)G0GI000H0 ACS550-01-012A-4 5.5 CBR-V460DT42180R ACS550-01-015A-4 7.5 CBR-V460DT42180R RW(L)G0GI000H0 RW(L)G0GI000H0 ACS550-01-023A-4 11 CBR-V460DT42180R ACS550-01-031A-4 15 已内置/ ACS550-01-038A-4 18.5 已内置/ ACS550-01-045A-4 22 已内置/ ACS550-01-059A-4 30 已内置/ ACS550-01-072A-4 37 已内置/ ACS550-01-087A-4 45 已内置/ ACS550-01-125A-4 55 SAFUR125F500 RWBIK00000D ACS550-01-157A-4 75 SAFUR125F500 RWBIK00000D ACS550-01-180A-4 90 SAFUR125F500 RWBIK00000D ACS550-01-195A-4 110 SAFUR200F500 RWBACKE0BPG ACS550-01-246A-4 132 SAFUR200F500 RWBACKE0BPG 备注:上表括号“()”代表或者的意思,以下情况请与本公司联系: 1、超出此范围的 2、用于起升位能负载:如电梯、起重吊钩、矿山提升机、倾斜式输送机 ABB ACS800系列变频器U N=230V(208-240V)制动电阻申世选型变频器型号变频器功率(KW)ABB原配制动电阻申世制动电阻料号ACS800-01-0001-2 1.1 SACE08RE44 RW(L)GAK0000DD ACS800-01-0002-2 1.5 SACE08RE44 RW(L)GAK0000DD ACS800-01-0003-2 1.5 SACE08RE44 RW(L)GAK0000DD ACS800-01-0004-2 2.2 SACE08RE44 RW(L)GAK0000DD ACS800-01-0005-2 3 SACE15RE22 RW(L)GBK0000BB ACS800-01-0006-2 4 SACE15RE22 RW(L)GBK0000BB ACS800-01-0009-2 5.5 SACE15RE22 RW(L)GBK0000BB ACS800-01-0011-2 7.5 SACE08RE13 RW(L)GBK0000AC ACS800-01-0016-2 11 SAFUR90F575 RWBDKE0000H ACS800-01-0020-2 15 SAFUR90F575 RWBDKE0000H ACS800-01-0025-2 18.5 SAFUR80F500 RWBFK00000F ACS800-01-0030-2 22 SAFUR125F500 RWBIK00000D ACS800-01-0040-2 30 SAFUR125F500 RWBIK00000D SAFUR125F500 RWUAHK0000B ACS800-01-0050-2 37 2* ACS800-01-0060-2 45 2*SAFUR125F500 RWUAHK0000B ACS800-01-0070-2 55 2*SAFUR125F500 RWUAHK0000B 备注:上表括号“()”代表或者的意思,以下情况请与本公司联系: 1、超出此范围的 2、用于起升位能负载:如电梯、起重吊钩、矿山提升机、倾斜式输送机

制动电阻计算方法

Delta变频器制动电阻设计 收藏此信息打印该信息添加:用户发布来源:未知 摘要:变频器的应用越来越广泛,台达变频器依靠自己强大的OEM能力和持续不断的研发能力其市场规模越来越壮大。变频器配件的选择对于用户前期的设计选型有至关重要的作用,本文主要介绍了台达变频器的制动电阻选择基本原则和方法。 关键词:台达变频器制动电阻变频器配件 1 引言 目前市场上变频器的制动方法大致有三种:能耗制动,直流制动,回馈(再生)制动。台达变频器属于不可控整流电压源型的变频器,其制动方式属于能耗制动和直流制动。能耗制动是台达变频器让生产机械在运动过程中快速地减速或停车的主要形式;直流制动则在电机运转准备时刻输出一直流电流产生转矩迫使电机停止,以得到平稳的启动特性,或者当变频器停止时刻输出一直流电流产生转矩迫使电机停止,以确保电机已准确停车。在使用台达变频器的变频调速系统中,减速的方法就是通过逐步降低给定频率来实现的。在频率下降过程中,电动机将处于再生制动状态(发电机状态),使得电动机的转速迅速地随频率的下降而下降。在制动过程中,泵生电压的产生会导致直流母线上的电压升高,此时变频器会控制刹车单元通过刹车电阻把升高的电压以热能的方式消耗掉。为了使得系统平稳降速,需要设置适当的减速时间,同时选择合适的制动电阻和制动单元才能满足需要。目前关于制动电阻的计算方法有很多种,从工程的角度来讲要精确的计算制动电阻的阻值和功率在实际应用过程中不是很实际,主要是部分参数无法精确测量。目前通常用的方法就是估算方法,由于每一个厂家的计算方法各有不同,因此计算的结果不大一致。本文所介绍的计算方法仅仅是供参考,具体的情况要根据每一个现场的使用情况来进行分析计算。 2 制动电阻的介绍

变频器刹车电阻的作用

变频器刹车电阻的作用 在变频调速系统中,电机的降速和停机是通过逐渐减小频率来实现的,在频率减小的瞬间,电机的同步转速随之下降,而由于机械惯性的原因,电机的转子转速未变。当同步转速小于转子转速时,转子电流的相位几乎改变了180度,电机从电动状态变为发电状态;与此同时,电机轴上的转矩变成了制动转矩,使电机的转速迅速下降,电机处于再生制动状态。电机再生的电能经续流二极管全波整流后反馈到直流电路。由于直流电路的电能无法通过整流桥回馈到电网,仅靠变频器本身的电容吸收,虽然其他部分能消耗电能,但电容仍有短时间的电荷堆积,形成“泵升电压”,使直流电压升高。过高的直流电压将使各部分器件受到损害。因此,对于负载处于发电制动状态中必须采取必需的措施处理这部分再生能量。处理再生能量的方法:能耗制动和回馈制动. 能耗制动的工作方式能耗制动采用的方法是在变频器直流侧加放电电阻单元组件,将再生电能消耗在功率电阻上来实现制动。这是一种处理再生能量的最直接的办法,它是将再生能量通过专门的能耗制动电路消耗在电阻上,转化为热能,因此又被称为“电阻制动”,它包括制动单元和制动电阻二部分。制动单元制动单元的功能是当直流回路的电压Ud超过规定的限值时(如660V或710V),接通耗能电路,使直流回路通过制动电阻后以热能方式释放能量。制动单元可分内置式和外置式二种,前者是适用于小功率的通用变频器,后者则是适用于大功率变频器或是对制动有特殊要求的工况中。从原理上讲,二者并无区别,都是作为接通制动电阻的“开关”,它包括功率管、电压采样比较电路和驱动电路。制动电阻制动电阻是用于将电机的再生能量以热能方式消耗的载体,它包括电阻阻值和功率容量两个重要的参数。通常在工程上选用较多的是波纹电阻和铝合金电阻两种:前者采用表面立式波纹有利于散热减低寄生电感量,并选用高阻燃无机涂层,有效保护电阻丝不被老化,延长使用寿命;后者电阻器耐气候性、耐震动性,优于传统瓷骨架电阻器,广泛应用于高要求恶劣工控环境使用,易紧密安装、易附加散热器,外型美观。制动过程能耗制动的过程如下:能耗制动的过程如下:A、当电机在外力作用下减速、反转时(包括被拖动),电机即以发电状态运行,能量反馈回直流回路,使母线电压升高;B、当直流电压到达制动单元开的状态时,制动单元的功率管导通,电流流过制动电阻;C、制动电阻消耗电能为热能,电机的转速降低,母线电压也降低;D、母线电压降至制动单元要关断的值,制动单元的功率管截止,制动电阻无电流流过;E、采样母线电压值,制动单元重复ON/OFF过程,平衡母线电压,使系统正常运行。

变频器制动电阻介绍及阻值和功率计算方法

变频器制动电阻介绍及阻值和功率计算方法 1 引言 目前市场上变频器的制动方法大致有三种:能耗制动,直流制动,回馈(再生)制动。 目前关于制动电阻的计算方法有很多种,从工程的角度来讲要精确的计算制动电阻的阻值和功率在实际应用过程中不是很实际,主要是部分参数无法精确测量。目前通常用的方法就是估算方法,由于每一个厂家的计算方法各有不同,因此计算的结果不大一致。 2 制动电阻的介绍 制动电阻是用于将电动机的再生能量以热能方式消耗的载体,它包括电阻阻值和功率容量两个重要的参数。通常在工程上选用较多的是波纹电阻和铝合金电阻两种:波纹电阻采用表面立式波纹有利于散热减低寄生电感量,并选用高阻燃无机涂层,有效保护电阻丝不被老化,延长使用寿命,台达原厂配置的就是这样的电阻;铝合金电阻易紧密安装、易附加散热器,外型美观,高散热性的铝合金外盒全包封结构,具有极强的耐振性,耐气候性和长期稳定性;体积小、功率大,安装方便稳固,外形美观,广泛应用于高度恶劣工业环境使用。 3 制动电阻的阻值和功率计算 3.1刹车使用率ED% 制动使用率ED%,也就是台达说明书中的刹车使用率ED%。刹车使用率ED%定义为减速时间T1除以减速的周期T2,制动刹车使用率主要是为了能让制动单元和刹车电阻有充分的时间来散除因制动而产生的热量;当刹车电阻发热时,电阻值将会随温度的上升而变高,制动转矩亦随之减少。刹车使用率ED%=制动时间/刹车周期=T1/T2*100%。(图1) 现在用一个例子来说明制动使用率的概念:10%的制动频率可以这样理解,如果制动电阻在10秒钟能够消耗掉100%的功率,那么制动电阻至少需要90秒才能把产生的热量散掉。3.2制动单元动作电压准位 当直流母线电压大于等于制动电压准位(甄别阈值)时,刹车单元动作进行能量消耗。台达制动电压准位如表1所示。 3.3制动电阻设计 (1)工程设计。实践证明,当放电电流等于电动机额定电流的一半时,就可以得到与电动机的额定转矩相同的制动转矩了,因此制动电阻的粗略计算是: 其中: 制动电压准位 电机的额定电流 为了保证变频器不受损坏,强制限定当流过制动电阻的电流为额定电流时的电阻数值为制动电阻的最小数值。选择制动电阻的阻值时,不能小于该阻值。 根据以上所叙,制动电阻的阻值的选择范围为:

相关文档
最新文档