线性规划模型在生活中的实际应用

线性规划模型在生活中的实际应用
线性规划模型在生活中的实际应用

线性规划模型在生活中的实际应用

一、线性规划的基本概念

线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源.线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域.决策变量、约束条件、目标函数是线性规划的三要素.

二、线性规划模型在实际问题中的应用

(1)线性规划在企业管理中的应用范围

线性规划在企业管理中的应用广泛,主要有以下八种形式:

1.产品生产计划:合理利用人力、物力、财力等,是获利最大.

2.劳动力安排:用最少的劳动力来满足工作的需要.

3.运输问题:如何制定运输方案,使总运费最少.

4.合理利用线材问题:如何下料,使用料最少.

5.配料问题:在原料供应的限制下如何获得最大利润.

6.投资问题:从投资项目中选取方案,是投资回报最大.

7.库存问题:在市场需求和生产实际之间,如何控制库存量从而获得更高利益.

8.最有经济计划问题:在投资和生产计划中如何是风险最小

.

(2)如何实现线性规划在企业管理中的应用

在线性规划应用前要建立经济与金融体系的评价标准及企业的计量体系,摸清企业的资源.首先通过建网、建库、查询、数据采集、文件转换等,把整个系统的各有关部分的特征进行量化,建立数学模型,即把组成系统的有关因素与系统目标的关系,用数学关系和逻辑关系描述出来,然后白较好的数学模型编制成计算机语言,输入数据,进行计算,不同参数获取的不同结果与实际进行分析对比,进行定量,定性分析,最终作出决策.

3.3 线性规划在运输问题中的应用

运输是物流活动的核心环节,线性规划是运输问题的常用数学模型,利用数学知识可以得到优化的运输方案.

运输问题的提出源于如何物流活动中的运输路线或配送方案是最经济或最低成本的.运输问题解决的是已知产地的供应量,销地的需求量及运输单价,如何寻找总配送成本最低的方案;运输问题包含产销平衡运输问题和产销不平衡运输问题;通常将产销不平衡问题转化为产销平衡问题来处理;运输问题的条件包括需求假设和成本假设.需求假设指每一个产地都有一个固定的供应量所有的供应量都必须配送到目的地.与之类似,每一个目的地都有一个固定的需求量,整个需求量都必须有出发地满足;成本假设指从任何一个产地到任何一个销地的配送成本和所配送的数量的线性比例关系.产销平衡运输问题的一般提法是:

假设某物资有m个产地

;各地产量分别为

物资从产地

运往销地

的单位运价为

,满足:

.其数学模型为:

Min Z=

产地约束

s.t

销地约束(a)

(

非负约束

1:产销不平衡运输问题分两种情况:

(1)总产量大于总销量,既满足

,此时其数学模型与表达式(a)基本相同,只需将表达式(a)中的产地约束条件

改为

.

(2)总产量小于总销量,既满足

,此时其数学模型与表达式(a)也基本相同,只需将表达式(a)中的产地约束条件

改为

.

2.运输问题的解决策略

现实生产的情况往往比较复杂,许多实际问题不一定完全符合运输问题的假设,可能一些特征近似但其中的一个或者几个特征却并不符合运输问题条件.一般

来说,如果一个问题中涉及两大类对象之间的联系或往来,且该问题能提供运输问题所需要的三类数据:供应量、需求量、单位运价,那么这个问题(不管其中是否涉及运输)经适当约束条件的处理后,基木都可以应用运输问题模型来解决.例如:

(1)追求的目标是效益最大而非成木最低,此时仅将表达式(a)中目标函数中的“Min Z”改为“Max Z”即可.

(2)部分(或全部)的供应量(产量)代表的是从产地提供的最大数量(而不是一个固定的数值),此时只需将表达式(a)中的产地约束中部分(或全部)的“

”改成“

”即可.

(3)部分(或全部)的需求量(销量)代表的是销地接收的最大数量(而不是一个固定的数值),此时只需将表达式(a)中的销地约束条件中的“

”部分(或全部)改成“

”即可.

(4)某些目的地的同时存在最大需求和最小需求,此时的解决办法是将表达式

(a)中的相应的销地约束中的“

”一个式子分解成最大需求和最小需求的两个式子即可.

三、结论

如今,线性规划的求解方法有很多,许多学者都对原先的求解方法进行了不断的改进,计算机时代的发展也加快了解决复杂线性规划问题的速度。这就使得线性规划在实际生活中的应用更加的广泛。

目前,中国经济正在快速的发展过程中,其发展的速度已经超过了发达国家在相同的时期发展速度。随着中国进入了WTO,中国经济正在熔入世界经济的大的市场并不断的适应和改进自己的各个方面的制度,与此同时世界各国都在不断的发展自己。所以线性规划在经济领域的应用显得非常重要。

运筹学中的线性规划在企业中的应用

线性规划在企业中的运用 摘要:运筹学是一门定量优化的决策科学,而线性规划是运筹学的一个基本分支,它广泛应用现有的科学技术和数学方法,解决实际中提出的专门问题、为决策者选择最优决策提供定量依据,帮助决策人员选择最优方针和决策,其英文名字为Operational Research.50年代中期,钱学森等教授将其由西方引入我国,并结合我国国情实际运用。线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法,线性规划是辅助企业“转轨”、“变型”的十分有利的工具,它在帮助企业经营决策、计划优化等方面具有重要的作用。 关键词:运筹学;线性规划;应用;企业 运筹学的特点是利用数学、管理科学、计算机科学技术等研究事物的数量化规律,使得有限的人、财、物、时、空、信息等资源得到合理充分合理的利用。 它以数学为工具,寻找解决各种问题的最优方案,并从系统的观点出发研究全局的规划。运筹学早期应用在军事领域,二战后转为民用,并且在企业中的应用越来越广泛,取得了良好的经济效益。运筹学的思想贯穿了企业发展的始终,运筹学对各种决策方案进行科学评估,为管理决策服务,使得企业管理者更有效合理地利用有限资源。优胜劣汰,适者生存,这是自然界的生存法则,也是企业的生存法则。只有那些能够成功地应付环境挑战的企业,才是得以继续生存和发展的企业。 线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法,早在1939年苏联的康托洛维奇(H.B.Kahtopob )和美国的希奇柯克(F.L.Hitchcock)等人就在生产组织管理和制定交通运输方案方面首先研究和应用线性规划方法。1947年旦茨格等人提出了求解线性规划问题的单纯形方法,为线性规划的理论与计算奠定了基础,特别是电子计算机的出现和日益完善,更使规划论得到迅速的发展,可用电子计算机来处理成千上万个约束条件和变量的大规模线性规划(或非线性规划)问题。从应用范围来看,小到一个班组的计划安排,大至整个部门,以至国民经济计划的最优化方案分析,它都有用武之地,从解决技术问题的最优化,到工业、农业、商业、交通运输业以及决策分析部门它都可以发挥作用。线性规划方法具有适应性强,应用面广,计算技术比较简便的特点。其基本思路是在满足一定的约束条件下,使预定的目标达到最优。它的研究内容可归纳为两个方面:一是系统的任务已定,如何合理筹划,精细安排,用最少

线性规划模型及其举例

线性规划模型及其举例 摘要:在日常生活中,我们常常对一个问题有诸多解决办法,如何寻找最优方案,成为关键,本文提出了线性规划数学模型及其举例,在一定约束条件下寻求最优解的过程,目的是想说明线性规划模型在生产中的巨大应用。 关键词:资源规划;约束条件;优化模型;最优解 在工农业生产与经营过程中,人们总想用有限的资源投入,获得尽可能多的使用价值或经济利益。如:当任务或目标确定后,如何统筹兼顾,合理安排,用最少的资源(如资金、设备、原材料、人工、时间等)去完成确定的任务或目标;企业在一定的资源条件限制下,如何组织安排生产获得最好的经济效益(如产品量最多,利润最大)。 一.背景介绍 如果产出量与投入量存在(或近似存在)比例关系,则可以写出投入产品的线性函数式: 1()n i ij j j f x a x ==∑,1,2,,,1i m m =+ (1) 若将(1)式中第(1m +)个线性方程作为待求的目标函数,其余m 个线性方程作为资源投入的限制条件(或约束条件),则(1)式变为: OPT. 1()n j j j f x c x ==∑ ST. 1 n ij j j a x =∑> ( =, < )i b , 1,2,,i m = (2) 0,j x ≥ 1,2,,j n =… (2)式特点是有n 个待求的变量j x (1,2,,j n =…);有1个待求的线性目标函数()f x ,有m 个线性约束等式或不等式,其中i b (1,2,,i m =…)为有限的资源投入常量。将客观实际问题经过系统分析后,构建线性规划模型,有决策变量,目标函数和约束条件等构成。 1.决策变量(Decision Variable,DV )在约束条件范围内变化且能影响(或限定)目标函数大小的变量。决策变量表示一种活动,变量的一组数据代表一个解决方案,通常这些变量取非负值。 2.约束条件(Subject To,ST )在资源有限与竞争激烈的环境中进行有目的性的一切活动,都

高考试题汇编--线性规划文科

高考试题汇编——线性规划 140(15)设x、y满足约束条件 23 21 x y x y x y -≥ ? ? +≤ ? ?-≤ ? ,则4 z x y =+的最大值为 . 141(11) 设x,y满足约束条件 , 1, x y a x y +≥ ? ? -≤- ? 且z x ay =+的最小值为7,则a= A.-5 B. 3 C.-5或3 D. 5或-3 142(9) 设x,y满足的约束条件 10 10 330 x y x y x y +-≥ ? ? --≤ ? ?-+≥ ? ,则2 z x y =+的最大值为 (A)8 (B)7 (C)2 (D)1 151(15) x,y满足约束条件,则z=3x+y的最大值为 . 152(14) 若x,y满足约束条件 50 210 210 x y x y x y +-≤ ? ? --≥ ? ?-+≤ ? ,则2 z x y =+的最大值为__________。 161(14) 若x,y满足约束条件 10 30 30 x y x y x -+≥ ? ? +-≥ ? ?-≤ ? ,则z=x-2y的最小值为__________ 162(16)某高科技企业生产产品A和产品B需要甲、乙两种新型材料。生产一件产品A需 要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元。该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B 的利润之和的最大值为元。 163(13) 设x,y满足约束条件 210, 210, 1, x y x y x -+≥ ? ? --≤ ? ?≤ ? 则z=2x+3y–5的最小值为______. 171.7.设x,y满足约束条件 33, 1, 0, x y x y y +≤ ? ? -≥ ? ?≥ ? 则z=x+y的最大值为 A.0 B.1 C.2 D.3

线性规划模型的应用分析

第3章线性规划模型的应用 1.某企业制造三种仪器,甲种仪器需要17小时加工装配,8小时检测,售价300元。乙种仪器需要10小时加工装配,4小时检测,售价200元。丙种仪器需要2小时加工装配,2小时检测,售价100元。三种仪器所用的元件和材料基本一样,可供利用的加工装配时间为1000小时,检测时间为500小时。又根据市场预测表明,对上述三种仪器的要求不超过50台、80台、150台。试求企业的最优生产计划。 解:首先将问题中的数据表示到如下表格: i maxZ=300x1+200x2+100x3 17x1+10x2+2x3≤1000 8x1+4x2+2x3≤500 x1≤50 x2≤80 x3≤150 x1,x2,x3≥0 2. 某铸造厂要生产某种铸件共10吨,其成分要求:锰的含量至少达到0.45%,硅的允许范围是 3.25%~5.5%。目前工厂有数量充足的锰和三种生铁可作为炉料使用。这些炉料的价格是:锰为15元/公斤,生铁A为340元/吨,生铁B为380元/吨,生铁C为280元/吨。这三种生铁含锰和含硅量(%)如表3.22所示,问工厂怎样选择炉料使成本最低。 表3.22 成分锰有部分是纯锰,部分是从生铁中提炼出来的,所以改进表格如下:

设铸件中含有三种生铁和锰的量分别为xi(i=1,2,3,4)吨,则数学模型如下: maxZ=340x1+380x2+280x3+15000x4 x1+x2+x3+x4=10 0.45%x1+0.5%x2+0.35%x3+x4≥0.45%*10 4%x1+1%x2+0. 5%x3≥3.25%*10 4%x1+1%x2+0. 5%x3≤5.5%*10 xi≥0(i=1,2,3,4) 3. 某工厂要做100套钢架,每套用长为2.9m,2.1m和1.5m的圆钢各一根。已知原料每根长7.4m,问应如何下料,可使所用原料最省。 解: 4. 绿色饲料公司生产雏鸡、蛋鸡、肉鸡三种饲料。这三种饲料是由A、B、C三种原料混合而成。产品的规格要求、产品单价、日销售量、原料单价见表3.23、表3.24。受资金和生产能力的限制,每天只能生产30吨,问如何安排生产计划才能获利最大? 表3.23 产品名称规格要求销售量(吨)售价(百元) 雏鸡饲料原料A不少于50% 5 9 原料B不超过20% 蛋鸡饲料原料A不少于30% 18 7 原料C不超过30% 肉鸡饲料原料C不少于50% 10 8 表3.24

2013—2017高考全国卷线性规划真题(含答案)

2013—2017高考全国卷线性规划真题 1.【2017全国1,文7】设x ,y 满足约束条件33,1, 0,x y x y y +≤??-≥??≥?则z =x +y 的最大值为 A .0 B .1 C .2 D .3 2.【2017全国2,文7】设,x y 满足约束条件2+330 233030x y x y y -≤??-+≥??+≥? ,则2z x y =+的最小值是 A.15- B.9- C.1 D 9 3.【2017全国3,文5】设x ,y 满足约束条件3260 0x y x y +-≤??≥??≥? ,则z x y =-的取值范围是 A .[–3,0] B .[–3,2] C .[0,2] D .[0,3] 4.(2016全国1,文16)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时.生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为________元. 5.(2016全国2,文14)若x ,y 满足约束条件?????x -y +1≥0,x +y -3≥0,x -3≤0, 则z =x -2y 的最小值为________. 6.(2016全国3,文13)设x ,y 满足约束条件?????2x -y +1≥0,x -2y -1≤0,x ≤1, 则z =2x +3y -5的最小值为_____. 7.(2015全国1,文15)若x ,y 满足约束条件20 210220x y x y x y +-≤??-+≤??-+≥? ,则z =3x +y 的最大值为 . 8.(2015全国2,文14)设x ,y 满足约束条件50 210210x y x y x y +-≤??--≥??-+≤?,则2 z x y =+的最大值为__________. 9.(2014全国1,文11)设x ,y 满足约束条件, 1,x y a x y +≥??-≤-?且z x a y =+的最小值为7,则a = A .-5 B.3 C.-5或3 D.5或-3

对偶线性规划理论及其在经济中的应用开题报告

开题报告 信息与计算科学 对偶线性规划理论及其在经济中的应用 一、选题的背景、意义[1] 21世纪中国进入到了一个新的时代,随着经济的快速发展和社会的进步,整个社会运行的各个方面——无论是在政治、经济、文化、科技、军事、外交方面,还是在环境、生态、资源问题方面,都将着眼于解决能否实现的问题扩充到更加重视解决如何优化实现的问题,从解决局部的简单问题扩充到解决系统的复杂问题,从静态地解决问题到动态地解决问题,从解决涉及单一领域的独立发展问题扩充到解决涉及多个领域的协同发展的问题,从通过直接办法解决问题扩充到通过间接的办法解决问题等,都迫切需要线性规划理论及其应用。随着计算机技术的发展和普及,线性规划的应用越来越广泛。它已成为人们合理利用有限资源制定最佳决策的有利工具。 二、研究的基本内容与拟解决的主要问题 2.1 对偶线性规划理论概述 2.1.1 对偶线性规划理论的发展历程及现状[2] [3] 线性规划理论产生于20世纪30年代。1939年,苏联数学家康托罗维奇在《生产组织与计划中的数学方法》一书中,最早提出和研究了线性规划问题。 1947年,美国数学家丹齐克提出线性规划的一般数学模型和求解线性规划问题的通用方法─单纯形法,为这门学科奠定了基础。1947年,美国数学家诺伊曼提出对偶理论,开创了线性规划的许多新的研究领域,扩大了它的应用范围和解题能力。 1951年,美国经济学家库普曼斯把线性规划应用到经济领域;1960年,康托罗维奇再次发表《最佳资源利用的经济计算》,创立了享誉全球的线性规划要点,对资源最优分配理论做出了贡献。为此,库普曼斯与康托罗维奇一起获1975年诺贝尔经济学奖。1984年,美国贝尔电话实验室的印度数学家卡马卡提出求解线性规划问题的投影尺度法,这是一个有实用意义的新的多项式时间算法。这个算法引起了人们对内点算法的关注,此后相

线性规划模型在生活中的实际应用

线性规划模型在生活中的实际应用 一、线性规划的基本概念 线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源.线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域.决策变量、约束条件、目标函数是线性规划的三要素. 二、线性规划模型在实际问题中的应用 (1)线性规划在企业管理中的应用范围 线性规划在企业管理中的应用广泛,主要有以下八种形式: 1.产品生产计划:合理利用人力、物力、财力等,是获利最大. 2.劳动力安排:用最少的劳动力来满足工作的需要. 3.运输问题:如何制定运输方案,使总运费最少. 4.合理利用线材问题:如何下料,使用料最少. 5.配料问题:在原料供应的限制下如何获得最大利润. 6.投资问题:从投资项目中选取方案,是投资回报最大. 7.库存问题:在市场需求和生产实际之间,如何控制库存量从而获得更高利益. 8.最有经济计划问题:在投资和生产计划中如何是风险最小 . (2)如何实现线性规划在企业管理中的应用 在线性规划应用前要建立经济与金融体系的评价标准及企业的计量体系,摸清企业的资

源.首先通过建网、建库、查询、数据采集、文件转换等,把整个系统的各有关部分的特征进行量化,建立数学模型,即把组成系统的有关因素与系统目标的关系,用数学关系和逻辑关系描述出来,然后白较好的数学模型编制成计算机语言,输入数据,进行计算,不同参数获取的不同结果与实际进行分析对比,进行定量,定性分析,最终作出决策.

高考线性规划必考题型非常全

线性规划专题 一、命题规律讲解 1、 求线性(非线性)目标函数最值题 2、 求可行域的面积题 3、 求目标函数中参数取值范围题 4、 求约束条件中参数取值范围题 5、 利用线性规划解答应用题 一、线性约束条件下线性函数的最值问题 线性约束条件下线性函数的最值问题即简单线性规划问题,它的线性约束条件是一个二元一次不等式组,目标函数是一个二元一次函数,可行域就是线性约束条件中不等式所对应的方程所表示的直线所围成的区域,区域内的各点的点坐标(),x y 即简单线性规划的可行解,在可行解中的使得目标函数取得最大值 和最小值的点的坐标 (),x y 即简单线性规划的最优解。 例1 已知4335251x y x y x -≤-?? +≤??≥?,2z x y =+,求z 的最大值和最小值 例2已知,x y 满足124126x y x y x y +=?? +≥??-≥-? ,求z=5x y -的最大值和最小值 二、非线性约束条件下线性函数的最值问题 高中数学中的最值问题很多可以转化为非线性约束条件下线性函数的最值问题。它们的约束条件是一个二元不等式组,目标函数是一个二元一次函数,可行域是直线或曲线所围成的图形(或一条曲线段),区域内的各点的点坐标 (),x y 即可行解,在可行解中的使得目标函数取得最大值和最小值的点的坐标 (),x y 即最优解。 例3 已知,x y 满足,2 2 4x y +=,求32x y +的最大值和最小值 例4 求函数4 y x x =+ []()1,5x ∈的最大值和最小值。 三、线性约束条件下非线性函数的最值问题 这类问题也是高中数学中常见的问题,它也可以用线性规划的思想来进行解决。它的约束条件是一个二元一次不等式组,目标函数是一个二元函数,可行域是直线所围成的图形(或一条线段),区域内的各点的点坐标(),x y 即可行解,在可行解中的使得目标函数取得最大值和最小值的点的坐标(),x y 即最优 解。 例5 已知实数,x y 满足不等式组10101x y x y y +-≤??-+≥??≥-?,求22 448x y x y +--+的最小值。 例6 实数,x y 满足不等式组0 0220 y x y x y ≥?? -≥??--≥? ,求11y x -+的最小值 四、非线性约束条件下非线性函数的最值问题 在高中数学中还有一些常见的问题也可以用线性规划的思想来解决,它的约束条件是一个二元不等式组,目标函数也是一个二元函数,可行域是由曲线或直线所围成的图形(或一条曲线段),区域内的各点的点坐标 (),x y 即可行解,在可行解中的使得目标函数取得最大值和最小值的点的坐标(),x y 即最优解。

高考全国卷及各省数学线性规划真题附答案.docx

2017 高考全国卷及自主招生数学高考真题 线性规划专题真题整理(附答案解析) x 3y 3, 1. ( 17 全国卷 I ,文数 )设 x ,y 满足约束条件 x y 1, 则 z=x+y 的最大值为( ) 7 y 0, A . 0 B . 1 C .2 D .3 答案: D 解析:如图,由图易知当目标函数 z x y 经过 直线 x 3 y 3 和 y 0 (即 x 轴)的交点 A(3,0) 时, z 能取到最大值,把 A(3,0) 代入 z=x+y 可得 z max 3 0 3 ,故选 D. x 2 y 1 2.(17 全国卷 I, 理数 14 题)设 x ,y 满足约束条件 2x y 1,则 z 3x 2 y 的最小值 x y 0 为 答案: 5 x 2 y 1 解析:不等式组 2x y 1 表示的平面区域如图所示。 x y 0 由 z 3x 2 y 变形得 y 3 x z 。要求 z 的最小值, 2 2 即求直线 y 3 x z 的纵截距的最大值。由右图,易知 2 2 当直线 y 3 x z 过图中点 A 时,纵截距最大。 2 2 联立方程组 2 x y 1 ,此时 z 3(1) 2 1 5 。 x 2 y 1 ,解得 A 点坐标为 ( 1,1) 故 z 3x 2 y 的最小值是 -5.

2x+3y 30 3. (17 全国卷Ⅱ,文数 7、理数 5)设 x、y 满足约束条件2x 3 y 3 0 .则z2x y的 y 30 最小值是() A.-15 C.1D9 答案: A 2x+3y 30 解析:不等式组2x 3y 30 表示的可行域如图所示, y30 易知当直线z 2x y 过到y 2 x 1与 y 3 交点 3 6 ,3 时,目标函数 z2x y 取到最小值,此时有 z min 26315 ,故所求z 最小值为15. )设,满足约束条件 3x 2 y60 的取值范围是 4. (17 全国卷Ⅲ,文数 5 x0,则 z=x-y x y y0 () A.[-3,0] B.[-3,2] C.[0,2] D.[0,3] 答案: B 解析:绘制不等式组表示的可行域,结合目标函数 的几何意义可得目标函数z x y 在直线3x 2y 60 与= - 直线 x0 (即x 轴)的交点A0,3处取得最小值, 此时 z min0 3 3。在点B2,0处取得最大值,此时 z max 2 0 2 . 故本题选择 B 选项 . 5.(17 全国卷Ⅲ,理数13)若 x,y 满足约束条件x y 0 x y 2 0 则z3x 4 y 的最小值为y 0 ________.

高考数学专题练习:不等式与线性规划

高考数学专题练习:不等式与线性规划 1.若不等式(-2)n a -3n -1-(-2)n <0对任意正整数n 恒成立,则实数a 的取值范围是( ) A.? ? ???1,43 B.? ???? 12,43 C.? ? ???1,74 D.? ?? ??12,74 答案 D 解析 当n 为奇数时,要满足2n (1-a )<3n -1恒成立, 即1-a <13× ? ????32n 恒成立,只需1-a <13×? ????321,解得a >1 2; 当n 为偶数时,要满足2n (a -1)<3n -1恒成立, 即a -1<13× ? ????32n 恒成立,只需a -1<13×? ????322,解得a <7 4. 综上,12<a <7 4,故选D. 2.已知a >0,b >0,且a ≠1,b ≠1,若log a b >1,则( ) A.(a -1)(b -1)<0 B.(a -1)(a -b )>0 C.(b -1)(b -a )<0 D.(b -1)(b -a )>0 答案 D 解析 取a =2,b =4,则(a -1)(b -1)=3>0,排除A ;则(a -1)(a -b )=-2<0,排除B ;(b -1)(b -a )=6>0,排除C,故选D. 3.设函数f (x )=??? x 2-4x +6,x ≥0, x +6,x <0,则不等式f (x )>f (1)的解集是( ) A.(-3,1)∪(3,+∞) B.(-3,1)∪(2,+∞) C.(-1,1)∪(3,+∞) D.(-∞,-3)∪(1,3) 答案 A 解析 f (1)=3.由题意得??? x ≥0,x 2-4x +6>3或??? x <0, x +6>3, 解得-33. 4. 若a ,b ,c 为实数,则下列命题为真命题的是( ) A.若a >b ,则ac 2>bc 2 B.若a <b <0,则a 2>ab >b 2

高考线性规划题型归纳

线性规划常见题型及解法 一、已知线性约束条件,探求线性目标关系最值问题 例1、设变量x 、y 满足约束条件?? ? ??≥+-≥-≤-1122y x y x y x ,则y x z 32+=的最大值为 。 解析:如图1,画出可行域,得在直线2x-y=2与直线x-y=-1的交点A(3,4)处,目标函数z 最大值为18 点评:本题主要考查线性规划问题,由线性约束条件画出可行域,然后求出目标函数的最大值.,是一道较为简单的送分题。数形结合是数学思想的重要手段之一。 习题1、若x 、y 满足约束条件222x y x y ≤?? ≤??+≥? ,则z=x+2y 的取值范围是 ( )A 、[2,6] B 、[2,5] C 、[3,6] D 、(3,5] 解:如图,作出可行域,作直线l :x+2y =0,将 l 向右上方平移,过点A (2,0)时,有最小值 2,过点B (2,2)时,有最大值6,故选A 二、已知线性约束条件,探求非线性目标关系最值问题 例2、已知10,220x y x y ?? -+≤??--≤?则22x y +的最小值是 . 解析:如图2,只要画出满足约束条件的可行域,而22x y +表 示可行域内一点到原点的距离的平方。由图易知A (1,2)是满 足条件的最优解。22x y +的最小值是为5。 图2 x y 2 2 x=2 y =2 x + y =2 B A

点评:本题属非线性规划最优解问题。求解关键是在挖掘目标关系几何意义的前提下,作出可行域,寻求最优解。 习题2、已知x 、y 满足以下约束条件220240330x y x y x y +-≥?? -+≥??--≤? ,则z=x 2+y 2的最大值和最 小值分别是( ) A 、13,1 B 、13,2 C 、13, 4 5 D 、13,255 解:如图,作出可行域,x 2+y 2是点(x ,y )到原点的距离的平方,故最大值为点A (2,3)到原点的距离的平方,即|AO|2 =13,最小值为原点到直线2x +y -2=0的距离 的平方,即为4 5,选C 练习2、已知x ,y 满足?? ? ??≥-+≥≥≤-+0320,10 52y x y x y x ,则 x y 的最大值为___________,最小值为 ____________. 2,0 三、设计线性规划,探求平面区域的面积问题 例3、在平面直角坐标系中,不等式组20 200x y x y y +-≤??-+≥??≥? 表 示的平面 区域的面积是()(A)42 (B)4 (C) 22 (D)2 2x + y - 2= 0 x – 2y + 4 = 3x – y – 3 = 0 O y

运筹学-线性规划模型在实际生活中的应用

线性规划模型在实际生活中的应用 【摘要】线性规划在实际生活中扮演着很重要的角色,研究对象是计划管理工作中有关安排和估值的问题,其广泛应用于经济等领域,是实际生活中进行管理决策的最有效的方法之一。解决的主要问题是在给定条件下,按某一衡量指标来寻找安排的最优方案。本文通过对例题利用线性规划分析,如何合理的分配利用,最终找到最优解使企业利润最大,说明了线性规划在实际生活中的应用,而且对线性规划问题模型的建立,模型的解进行了分析,运用图解法和单纯形法解决问题。 【关键词】线性规划、建模、实际生活、图解法、单纯形法 前言:线性规划(Linear programming,简称LP)是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法。研究线性约束条件下线性目标函数的极值问题的数学理论和方法。英文缩写LP。它是运筹学的一个重要分支,广泛应用于军事作战、经济分析、经营管理和工程技术等方面。为合理地利用有限的人力、物力、财力等资源作出的最优决策,提供科学的依据。 在实际生活中,经常会遇到一定的人力、物力、财力等资源条件下,如何精打细算巧安排,用最少的资源取得最大的效益的问题,而这正是线性规划研究的基本容,它在实际生活中有着非常广泛的应用.任何一个组织的管理者都必须对如何向不同的活动分配资源的问题做出决策,即如何有效地利用人力、物力完成更多的任务,或在预定的任务目标下如何耗用最少的人力、物力去实现目标。在许多情况下,大量不同的资源必须同时进行分配,需要这些资源的活动可以是不同的生产活动,营销活动,金融活动或者其他一些活动。随着计算技术的不断发展,使成千上万个约束条件和决策变量的线性规划问题能迅速地求解,更为线性规划在经济等各领域的广泛应用创造了极其有利的条件。线性规划已经成为现代化管理的一种重要的手段。本文运用常用的图解法和单纯形法解决利润最大化决策问题,贴近生活,很好的吧线性规划应用到生活实践中。 1、简单线性问题步骤简单介绍 建模是解决线性规划问题极为重要的环节,一个正确的数学模型的建立要求建模者熟悉线性规划的具体实际容,要明确目标函数和约束条件,通过表格的形式把问题中的已知

高中数学线性规划经典题型

高考线性规划归类解析 一、平面区域和约束条件对应关系。 例1、已知双曲线224x y -=的两条渐近线与直线3x =围成一个三角形区域,表示该区域的不等式组是() (A)0003x y x y x -≥??+≥??≤≤? (B)0003x y x y x -≥?? +≤??≤≤? (C) 003x y x y x -≤?? +≤??≤≤? (D) 0003x y x y x -≤?? +≥??≤≤? 解析:双曲线224x y -=的两条渐近线方程为y x =±,与直线3x =围 成一个三角形区域(如图4所示)时有0 003x y x y x -≥?? +≥??≤≤? 。 点评:本题考查双曲线的渐近线方程以及线性规划问题。验证法或排除法是最效的方法。 例2:在平面直角坐标系中,不等式组20 200x y x y y +-≤??-+≥??≥? 表示的平面区域的面积是() (A)42 (B)4 (C) 22 (D)2 解析:如图6,作出可行域,易知不等式组20 200x y x y y +-≤??-+≥??≥? 表示的平面区域是一个三角形。容 易求三角形的三个顶点坐标为A(0,2),B(2,0),C(-2,0).于是三角形的面积为: 11 ||||42 4.22 S BC AO =?=??=从而选B。 点评:有关平面区域的面积问题,首先作出可行域,探求平面区域图形的性质;其次利用面积公式整体或部分求解是关键。 二、已知线性约束条件,探求线性截距——加减的形式(非线性距离——平方的形式,斜率——商的形式)目标关系最值问题(重点) 例3、设变量x 、y 满足约束条件?? ? ??≥+-≥-≤-1122y x y x y x ,则 ①y x 32+的最大值为 。(截距) 解析:如图1,画出可行域,得在直线 2x-y=2与直线x-y=-1 的交点A(3,4)处,目标函数z 最大值为18 点评:本题主要考查线性规划问题,由线性约束条件画出可行域,然后求出目标函数的最大值.,是一道较为简单的送分题。数形结合是数学思想的重要手段之一。 ②则2 2 x y +的最小值是 . ③1y x =+的取值范围是 . 图1

高考全国卷线性规划真题含答案

高考全国卷线性规划真 题含答案 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

2013—2017高考全国卷线性规划真题 1.【2017全国1,文7】设x ,y 满足约束条件33,1,0,x y x y y +≤?? -≥??≥? 则z =x +y 的最大值为 A .0 B .1 C .2 D .3 2.【2017全国2,文7】设,x y 满足约束条件2+330233030x y x y y -≤?? -+≥??+≥? ,则2z x y =+的最小值是 A.15- B.9- C.1 D 9 3.【2017全国3,文5】设x ,y 满足约束条件32600 0x y x y +-≤?? ≥??≥? ,则z x y =-的取值范围是 A .[–3,0] B .[–3,2] C .[0,2] D .[0,3] 4.(2016全国1,文16)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时.生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为________元. 5.(2016全国2,文14)若x ,y 满足约束条件???? ?x -y +1≥0,x +y -3≥0,x -3≤0, 则z =x -2y 的最 小值为________. 6.(2016全国3,文13)设x ,y 满足约束条件? ??? ?2x -y +1≥0,x -2y -1≤0,x ≤1,则z =2x +3y -5

线性规划模型的应用与灵敏度分析

摘要 线性规划是解决稀缺资源最优分配的有效方法,使付出的费用最少或获得的利益最大。它的研究对象是有一定的人力、财力、资源条件下,如何合理安排使用,效益最高;某项任务确定后,如何安排人、财、物,使之最省。它要解决的问题的目标可以用数值指标反映,对于要实现的目标有多种方案可以选择,有影响决策的若干约束条件。本文主要介绍了线性规划模型在实际生活中的应用,其中包括解线性方程组的各种方法,如图解法、单纯形法、以及对偶单纯形法等等,以及简单介绍了有关灵敏度分析的方法。由于许多问题仅仅利用线性规划的方法还不足以解决,因此用到了对偶理论,也因此引出了对偶单纯形法。对偶规划是线性规划问题从另一个角度进行研究,是线性规划理论的进一步深化,也是线性规划理论整体的一个不可分割的组成部分。灵敏度分析是对线性规划结果的再发掘,是对线性规划理论的充要应用,本文以实例验证灵敏度分析的实际应用。 关键词:线性规划;单纯形法;对偶单纯形法

ABSTRCT Linear programming is an effective method to solve the optimal allocation of scarce resources, make the cost of pay or receive at least the interests of the largest. Its object of study is the human and financial resources, resource conditions, how to reasonably arrange to use, benefit is supreme; A task is determined, how to arrange people, goods, and make it the most provinces. It to the target can be used to solve the problem of the numerical indicators, to achieve a variety of solutions to choose from, have an impact on the decision of some constraint conditions. Through the subject design, can deepen the operations research, optimization method, linear programming, nonlinear programming, to improve the integrated use of knowledge, improve the ability of using the sensitivity analysis to solve various practical problems. This article mainly introduces the application of linear programming model in real life, including the various methods of solving linear equations, as shown in figure method, simplex method and dual simplex method, etc., and simply introduces the method of sensitivity analysis. Due to many problems just by using the method of linear programming is not enough to solve, so use the duality theory, thus raises the dual simplex method. The dual programming is linear programming problem from another Angle, is the further deepening of linear programming theory, linear planning theory as a whole is also an integral part of. Sensitivity analysis is to discover, the result of the linear programming is the charge to application of linear programming theory. Keywords: linear programming;Simplex method;The dual simplex method

北师大版数学高二必修5第三章4.2、4.3简单线性规划及其应用作业

[学业水平训练] 1.设x ,y 满足???? ?2x +y ≥4,x -y ≥-1,x -2y ≤2,则z =x +y ( ) A .有最小值2,最大值3 B .有最小值2,无最大值 C .有最大值3,无最小值 D .既无最小值,也无最大值 解析:选B.由图像可知z =x +y 在点A 处取最小值,即z m in =2,无最大值. 2.设变量x ,y 满足???? ?x -y ≤10,0≤x +y ≤20,0≤y ≤15,则2x +3y 的最大值为( ) A .20 B .35 C .45 D .55 解析:选D.作出可行域如图所示. 令z =2x +3y ,则y =-23x +13z ,要使z 取得最大值,则需求直线y =-23x +1 3z 在y 轴上 的截距的最大值,移动直线l 0:y =-2 3x ,可知当l 0过点C (5,15)时,z 取最大值,且z m ax =2×5+3×15=55,于是2x +3y 的最大值为55.故选D. 3.(2013·高考课标全国卷Ⅱ)设x ,y 满足约束条件???? ?x -y +1≥0,x +y -1≥0,x ≤3, 则z =2x -3y 的最小

值是() A.-7 B.-6 C.-5 D.-3 解析:选B.作出不等式组表示的可行域,如图(阴影部分). 易知直线z=2x-3y过点C时,z取得最小值. 由 ?? ? ??x=3, x-y+1=0, 得 ?? ? ??x=3, y=4, ∴z m in=2×3-3×4=-6,故选B. 4.直线2x+y=10与不等式组 ?? ? ??x≥0 y≥0 x-y≥-2 4x+3y≤20, 表示的平面区域的公共点有() A.0个B.1个 C.2个D.无数个 解析: 选B.画出可行域如图阴影部分所示. ∵直线过(5,0)点,故只有1个公共点(5,0). 5.已知实数x,y满足 ?? ? ?? y≥1, y≤2x-1, x+y≤m. 如果目标函数z=x-y的最小值为-1,则实数m等 于() A.7 B.5 C.4 D.3

高考中含参数线性规划问题专题(学生版)

高考中含参数线性规划问题专题(学生版) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高考中线性规划专题 纵观近几年高考试题,线性规划问题是每年的必考内容。题型多以选择题、填空题出现,它是直线方程在解决实际问题中的运用,特别是含参数线性规划问题,与数学中的其它知识结合较多,题目灵活多变,要引起高度重视. 近三年全国卷是这样考 1.(2015·新课标全国卷Ⅰ理科·T15)若x,y 满足约束条件?? ? ??≤-+≤-≥-0400 1y x y x x 则y x 的最 大值为 . 2.(2015·新课标全国卷Ⅰ文科·T15)若x,y 满足约束条件20210220x y x y x y +-≤?? -+≤??-+≥?则 z=3x+y 的最大值为 . 3.(2015·新课标全国卷Ⅱ理科·T14)若x,y 满足约束条件则z=x+y 的最大值为 . 4.(2015·新课标全国卷Ⅱ文科·T4)若x,y 满足约束条件50210210x y x y x y +-≤?? --≥??-+≤?则z=2x+y 的最大值为 . 5. (2014·新课标全国卷Ⅱ高考文科数学·T9) 设x,y 满足约束条件1010330x y x y x y +-≥?? --≤??-+≥? 则 z=x+2y 的最大值为( ) A.8 B.7 C.2 D.1

6. (2014·新课标全国卷Ⅱ高考理科数学·T9)设x,y 满足约束条件70310350x y x y x y +-≤?? -+≤??--≥? 则 z=2x-y 的最大值为 ( ) A.10 B.8 C.3 D.2 7.(2013·新课标全国Ⅱ高考理科·T9)已知a>0,x,y 满足约束条件 ()133x x y y a x ?≥? +≤??≥-? 若z=2x+y 的最小值为1,则a= ( ) A.14 B. 1 2 C.1 D.2 8.(2013·新课标全国Ⅱ高考文科·T3)设,x y 满足约束条件 10,10,3,x y x y x -+≥?? +-≥??≤? ,则23z x y =-的最小值是( ) A.7- B.6- C.5- D.3- 9.(2013·新课标Ⅰ高考文科·T14)设x ,y 满足约束条件 ? ? ?≤-≤-≤≤013 1y x x ,则y x z -=2的最大值为______. 10. (2013·大纲版全国卷高考文科·T15)若x y 、满足约束条件 0,34,34,x x y x y ≥?? +≥??+≤? 则z x y =-+的最小值为 . 11.(2013·大纲版全国卷高考理科·T15)记不等式组0,34,34,x x y x y ≥?? +≥??+≤? 所表 示的平面区域为.D 若直线()1y a x D a =+与有公共点,则的取值范围是 .

线性规划的实际应用模型

目录 摘要 ---------------------------------------------------1 引言 ---------------------------------------------------2 一线性规划的概念 -------------------------------------3 二线性规划的实际应用 ----------------------------------4 ( (四)体育上的应用 1.合理安排比赛问题 -------------13 2.选拔选手问题 -----------------14 (五)旅行上的问题:旅行背包问题 ------------------------15 (六)航空上的问题:航空时间安排问题 --------------------16 (七)城市规划的应用:设施布点问题 ----------------------18 (八)日常生活上的应用 1.食用油的结构优化问题 ---------19 2.饮食问题 ---------------------21 (九)农业上的应用:农业种植问题 ------------------------23 三总结及参考文献 --------------------------------------25 线性规划的实际应用模型 王丽娜 (渤海大学数学系辽宁锦州 121000 中国)

摘要:本文从运筹学的角度分析线性规划的实际应用模型,随着人类社会的进步,科学 技术的发展,经济全球化进程的日益加快,线性规划在实际中的应用越来越广泛,主要应用 于经济与管理,军事,金融,体育,旅行,航空,城市规划,日常生活,农业九大方面,因此,线性 规划作为一门科学已被人们广泛接受,并已日益成为人类社会和经济生活中一种不可或缺的 工具。 关键词:运筹学线性规划分析模型 Zhe model in practical application of linear programming Wang lina (Department of Mathematics Bohai University Liaoning Jinzhou 121000 China) Abstract:This article analyse the practical application of linear programming from the sight of operational research,with the advancement of human society,the development of science and technology and the faster grogramming has wider application in the practical,has been applied to nine aspects,in econemy,management,military,finance,physical education,travelling,airline,city planning,daily life, agriculture.The examples will be given to show the application in the nine aspects given abo。 Key word:operational research ,linaear programming, analy ,model 引言 线性规划是运筹学的一个重要分支。也是研究较早的,发展较快 的,应用较广而比较成熟的一个分支。

相关文档
最新文档