MATLAB仿真 课后习题

MATLAB仿真 课后习题
MATLAB仿真 课后习题

第一章习题

3.请指出以下的变量名(函数名、M文件名)中,哪些是合法的?Abc 2004x lil-1 wu_2004 a&b qst.u _xyz 解:合法的变量名有:Abc wu_2004

4.指令窗操作

(1)求[12+2×(7-4)]÷32的运算结果

解:>> [12+2*(7-4)]/3^2

ans =

2

(2)输入矩阵A=[1,2,3;4,5,6;7,8,9],观察输出。

解:>> A=[1,2,3;4,5,6;7,8,9]

A =

1 2 3

4 5 6

7 8 9

(3)输入以下指令,观察运算结果;

clear;x=-8:0.5:8;

y=x';

X=ones(size(y))*x;

Y=y*ones(size(x));

R=sqrt(X.^2+Y.^2)+eps;

Z=sin(R)./R;

mesh(X,Y,Z);

colormap(hot)

xlabel('x'),ylabel('y'),zlabel('z')

解:

7.指令行编辑

(1)依次键入以下字符并运行:y1=2*sin(0.3*pi)/(1+sqrt(5))

解:>>y1=2*sin(0.3*pi)/(1+sqrt(5))

y1 =

0.5000

(2)通过反复按键盘的箭头键,实现指令回调和编辑,进行新的计算;y2=2*cos(0.3*pi)/(1+sqrt(5))

解:>>y2=2*cos(0.3*pi)/(1+sqrt(5))

y2 =

0.3633

11.编写题4中(3)的M脚本文件,并运行之。

解:

第二章习题

1.在指令窗中键入x=1:0.2:2和y=2:0.2:1,观察所生成的数组。 解:>> x=1:0.2:2 x =

1.0000 1.2000 1.4000 1.6000 1.8000

2.0000 >> y=2:0.2:1 y =

Empty matrix: 1-by-0

2.要求在[0,2π]上产生50个等距采样数据的一维数组,试用两种不同的指令实现。

解: y1=0:2*pi/49:2*pi

y2=linspace(0,2*pi,50)

3.计算e -2t sint ,其中t 为[0,2π]上生成的10个等距采样的数组。

解:>> t=linspace(0,2*pi,10); x=exp(-2*t).*sin(t) x =

0 0.1591 0.0603 0.0131 0.0013 -0.0003 -0.0002 -0.0001 -0.0000 -0.0000

4.已知A=??????4321 , B=???

???8765,计算矩阵A 、B 乘积和点乘. 解:>> A=[1,2;3,4]; B=[5,6;7,8]; x=A*B x =

19 22 43 50 >> x=A.*B x =

5 12

21 32

5.已知A=??????05314320,B=?

??

???05314320,计算A&B, A|B, ~A, A==B, A>B. 解:>> A=[0,2,3,4;1,3,5,0];

B=[1,0,5,3;1,5,0,5]; a1=A&B

a2=A|B

a3=~A

a4=(A==B)

a5=(A>B)

a1 =

0 0 1 1

1 1 0 0

a2 =

1 1 1 1

1 1 1 1

a3 =

1 0 0 0

0 0 0 1

a4 =

0 0 0 0

1 0 0 0

a5 =

0 1 0 1

0 0 1 0

7.将题5中的A阵用串转换函数转换为串B,再size指令查看A、B的结构,有何不同?

解:>> A=[0,2,3,4;1,3,5,0]

B=num2str(A)

size(A)

size(B)

A =

0 2 3 4

1 3 5 0

B =

0 2 3 4

1 3 5 0

ans =

2 4

ans =

2 10

第三章习题

1.已知系统的响应函数为

)sin(1

1)(θββ

ε+-

=-t e t y t ,其中

???

?

??-=-=εεθεβ22

1arctan ,1 ,要求用不同线型或颜色,在同一张图上绘制ε取值分别为0.2、

0.4、0.6、0.8时,系统在t ∈[0,18] 区间内的响应曲线,并要求用ε=0.2和 ε=0.8对他们相应的两条曲线进行文字标志。

解: clc

close all clear all t=0:0.02:18;

xi=[0.2,0.4,0.6,0.8]'; sxi=sqrt(1-xi.^2); sita=atan(sxi./xi);

y=1-exp(-xi*t).*sin(sxi*t+sita*ones(1,901))./(sxi*ones(1,901))

plot(t,y(1), 'r-', t,y(2), ' b*', t,y(3), ' g+', t,y(4), ' k.')

text(4.2,1.4,'\xi =0.2') text(3.8,0.9,'\xi=0.8')

2.用plot3、mesh 、surf 指令绘制

()()2

22

2111

y x y x z +++

+-=

三维图(x,y 范围自定)。 解:

clc;close all ;clear all ; x=-5:0.1:5;y=-5:0.1:5; [X,Y]=meshgrid(x,y); a=sqrt((1-X).^2+Y.^2); b=sqrt((1+X).^2+Y.^2); Z=1./(a+b);

a1=sqrt((1-x).^2+y.^2); b1=sqrt((1+x).^2+y.^2); z=1./(a1+b1);

subplot(1,3,1),plot3(x,y,z),xlabel('x'),ylabel('y'),zlabel('z');box on ;

subplot(1,3,2),surf(X,Y,Z),xlabel('x'),ylabel('y'),zlabel('z');box

on ;

subplot(1,3,3),mesh(X,Y,Z),xlabel('x'),ylabel('y'),zlabel('z');box on ;

3.对向量t 进行以下运算可以构成三个坐标的值向量:x=sin(t),y=cos(t),z=t.利用指

令plot3,并选用绿色的实线绘制相应的三维曲线. 解:

t=(0:0.01:2)*pi;

x=sin(t);

y=cos(t);

z=t;

plot3(x,y,z,'b-');box on

1.请分别用for 和while 循环语句计算K=∑=63

02i i 的程序,再写出一种避免循环的

计算程序。(提示:可考虑利用MATLAB 的sum(X,n)函数,实现沿数组X 的第n 维求和。) 解:

1)K=0; for i=0:63; K=K+2^i; end K

K =1.8447e+019 2)i=0;K=0; while i<=63; K=K+2^i; i=i+1; end; K

K =1.8447e+019 3)i=0; X=0:63; for i=0:63;

X(i+1)=2^i; end

sum(X,2) ans =1.8447e+019

1.将下列系统的传递函数模型用MATLAB 语言表达出来。

(1))170046842541254289()

1700109329135()(23452341+++++++++=s s s s s s s s s s G 解:

num=[1,35,291,1093,1700];

den=[1,289,254,2541,4684,1700]; sys=tf(num,den) (2))

15).(5).(1()

3(15)(2++++=

s s s s s G 解:

z=-3;

p=[-1,-5,-15]; k=15;

sys=zpk(z,p,k)

(3))252).(1).(1()

23.()2.(.100)(23223+++-++++=s s s s s s s s s s G 解:

z=[0,-2,-2]; p=[-1,1]; k=100;

sys1=zpk(z,p,k); num=[1,3,2]; den=[1,2,5,2]; sys2=tf(num,den); sys=series(sys1,sys2)

4.求题3中的系统模型的等效传递函数模型和零极点模型。 解:

A=[3,2,1;0,4,6;0,-3,-5]; B=[1,2,3]' ; C=[1,2,5]; D=0;

sys=ss(A,B,C,D); systf=tf(sys) syszpk=zpk(sys)

Transfer function: 20 s^2 - 83 s + 138 --------------------- s^3 - 2 s^2 - 5 s + 6 Zero/pole/gain:

20 (s^2 - 4.15s + 6.9) ----------------------- (s-3) (s-1) (s+2)

5.已知系统的动力学方程如下,试用MATLAB 语言写出它们的传递函数。 (1))(2)()(500)(50)(15)(.

.....)3(t r t r t y t y t y t y +=+++ 解:

num=[1,2,0];

den=[1,15,50,500]; sys=tf(num,den) Transfer function: s^2 + 2 s ------------------------- s^3 + 15 s^2 + 50 s + 500

(2) )(4)(4)(6)(3)(.

..

t r dt t y t y t y t y =+++? 解:

num=[4,0]; den=[1,3,6,4]; sys=tf(num,den) Transfer function: 4 s --------------------- s^3 + 3 s^2 + 6 s + 4

6.试用MATLAB 语言表示图5-13所示系统。当分别以y =x 2和f 为系统输出、输入时的传递函数模型和状态空间模型(图中k =7N/m,c 1=0.5N/m.s -1, c 2=0.2N/m.s -1,m 1=3.5kg, m 2=5.6kg)。

f

解:)(t

k=7;

c1=0.5;

c2=0.2;

m1=3.5;

m2=5.6;

num=[m1,c1,k];

den=[m1*m2,c1*m1+c2*m1+c1*m2,c1*c2+m2*k,c1*k+c2*k,0];

sys=tf(num,den)

Transfer function:

3.5 s^2 + 0.5 s + 7

--------------------------------------

19.6 s^4 + 5.25 s^3 + 39.3 s^2 + 4.9 s

7.试用MATLAB语言分别表示图5-14所示系统质量m1,m2的位移x1,x2对输入f 的传递函数X2(s)/F(s)和X1(s)/F(s),其中m1=12kg, m2=38kg,k=1000N/m, c=0.1N/m.s-1。

解:

m1=12;

m2=38;

k=1000;

c=0.1;

num=[c,k];

den=[m1*m2,m1*c+m2*c,m1*k+m2*k,0,0];

sys1=tf(num,den)

num=[m1,c,k];

den=[m1*m2,m1*c+m2*c,m1*k+m2*k,0,0];

sys2=tf(num,den)

Transfer function:

0.1 s + 1000

---------------------------

456 s^4 + 5 s^3 + 50000 s^2

Transfer function:

12 s^2 + 0.1 s + 1000

---------------------------

456 s^4 + 5 s^3 + 50000 s^2

补充题

求图示传递函数

sys1=tf([1,2],[1,3,4]);

sys2=tf([1,4,5] ,[1,6,7,8]);

sys3=tf([1,0],[1,2]);

sys4=tf([1],[1,3]);

sys5=parallel(sys3,sys4);

sys=feedback(sys1*sys2*sys5,1,-1)

结果

s^5 + 10 s^4 + 39 s^3 + 74 s^2 + 66 s + 20

-----------------------------------------------------------------

s^7 + 14 s^6 + 81 s^5 + 262 s^4 + 530 s^3 + 684 s^2 + 538 s + 212

第六章习题2.将例6-2中的微分方程改写为以下形式:

1

)0(

,0

)0(0

.) 1.(

..

2

..

=

==

+

-

-

y

y y

y

y

求μ分别为1、2时,在时间区间t=[0,20]微分方程的解。

解:

M函数文件

function dx=wffc(t,x,flag,ps)

dx=zeros(2,1);

dx(1)=x(2);

dx(2)=ps*(1-x(1)^2)*x(2)-x(1);

调用程序

clc;close all;clear all;

tspan=[0,20];

x0=[0,1];

ps=1;

[T1,X1]=ode45('wffc',tspan,x0,odeset,ps);

ps=2;

[T2,X2]=ode45('wffc',tspan,x0,odeset,ps);

plot(T1,X1(:,1),'r',T2,X2(:,1),'b-.')

X1(:,1)

X2(:,1)

3.对图6-18所示反馈系统进行单位阶跃响应和方波响应(方波周期为30s)仿真。要求:

(1)利用MATLAB模型连接函数求出系统闭环传递函数。

(2)利用step 函数求单位阶跃响应。

(3)利用gensig 函数产生方波信号,利用lsim 函数求方波响应。 解:

clc;close all ;clear all ; % (1)

sys1=tf([1,0.5],[1,0.1]); sys2=ZPK([],[0,-2,-10],20); sys3=series(sys1,sys2); sys4=feedback(sys3,1,-1); % (2)

subplot(1,2,1) step(sys4); % (3)

[u,t]=gensig('square',30,60); subplot(1,2,2) lsim(sys4,'r',u,t)

20 (s+0.5)

--------------------------------------------

(s+10.23) (s+0.8195) (s^2 + 1.052s + 1.193)

4.已知系统传递函数01

.12.01

)(2++=

s s s G ;

(1)绘制系统阶跃响应曲线。

(2)绘出离散化系统阶跃响应曲线,采样周期T s =0.3s 。 解:

clc;close all ;clear all ; % (1)

sys=tf([1],[1,0.2,1.01]); subplot(1,2,1)

step(sys) % (2)

sys=tf([1],[1,0.2,1.01]); sys1=c2d(sys,0.3,'zoh'); [num,den]=tfdata(sys1,'v'); subplot(1,2,2) dstep(num,den)

附加题

1、已知二阶微分方程0342=-+-y y y y y &&&&,其初始条件为0)0(=y ,1)0(=y &,求在时间范围t=[0 5]内该微分方程的解。 M 函数为:

function dy=vdp(t,y)

dy=zeros(2,1); dy(1)= y(2); dy(2)= 4*y(2)-(y(1)^2)*y(2)+3*y(1); 调用函数为:

[T,Y]=ode45('vdp',[0 5],[0,1]); plot(T,Y(:,1),'r-',T,Y(:,2),'b:')

2、已知系统模型为

7

22)(3

+++=s s s s G ,计算系统在周期10s 的方波信号作用下5

个周期内的时间响应,并在同一图形窗口中绘制输入信号和时间响应曲线。 sys=tf([1,2],[1,0,2,7]);

[u,t]=gensig('square',10,50); %产生方波信号数据

lsim(sys,'r',u,t) , hold on %产生方波响应并绘曲线 plot(t,u,'-.') %在同一坐标系绘方波波形 hold off

第七章习题

1.绘制下列各单位反馈系统开环传递函数的Bode 图和Nyquist 图,并根据其稳定裕度判断系统的稳定性。 (1))

31).(21).(1(10

)(s s s s G k +++=

解:

clc;clear all ;close all ; % (1)

Gk=zpk([],[0,-0.5,-1/3],5/3); subplot(1,2,1) margin(Gk) grid on

subplot(1,2,2) nyquist(Gk)

由上图的稳定裕度知系统临界稳定。 (2))

101).(1.(10

)(s s s s G k ++=

解:

clc;clear all ;close all ; % (2)

Gk=zpk([],[0,-1,-0.1],1); subplot(1,2,1) margin(Gk) grid on

subplot(1,2,2) nyquist(Gk)

由上图的稳定裕度知系统不稳定。 (3))

2.01).(1.01.(10

)(2s s s s G k ++=

解:

clc;clear all ;close all ; % (3)

Gk=zpk([],[0,0,-10,-5],500); subplot(1,2,1) margin(Gk) grid on

subplot(1,2,2) nyquist(Gk)

由上图的稳定裕度知系统不稳定。 (4) )

101).(1.01.(2

)(2s s s s G k ++=

解:

clc;clear all;close all; % (4)

Gk=zpk([],[0,0,-10,-0.1],2); subplot(1,2,1) margin(Gk) grid on

subplot(1,2,2) nyquist(Gk)

由上图的稳定裕度知系统不稳定。

2.设单位反馈系统的开环传递函数为

)

12.()(22++=

n n

k w s w s s K

s G ξ,其中无阻尼固有频率w n =90rad/s ,阻尼比ξ=0.2,试确定使系统稳定的K 的范围。 解: 方法1

g=tf(1,[1/90^2 0.4/90 1 0]);%系统开环模型

w=logspace(0,3,1000); %生成频率向量 bode(g,w)

[mag,phase,w]=bode(g,w); %产生幅值(非分贝)和相位向量

mag1=reshape(mag,1000,1); %重构幅值向量(1000*1)

phase1=reshape(phase,1000,1);%重构相频向量(1000*1)

wc=interp1(phase1,w,-180) %插值求-180度所对应的频率——wc

gk=interp1(w,mag1,wc) %插值求wc所对应的增益

gkk=1/gk %该增益的倒数即为可增加的最大增益

wc =

90.0004

gk =

0.0278

gkk =

36.0033

方法2

wc=0;wg=0.01;k=1;

while wc

sys=tf(k,[1/(90*90),2*0.2/90,1,0]);

[gm,pn,wg,wc]=margin(sys);

k=k+0.1;

end

k-0.1

ans =

36.0000

方法3

xi=0.2;omega=90;w=90;

sys1=tf(1,[1,0]);

sys2=tf(1,[1/w^2,2*xi/w,1]);

sys=series(sys1,sys2);

[Gm,Pm,Wcg,Wcp]=margin(sys);

k=Gm

k =

36

3.设系统结构如图7-22所示,试用LTI Viewer分析系统的稳定性,并求出系统的稳定裕度及单位阶跃响应峰值。

clc;close all;clear all;

G11=0.5;

G12=zpk([0],[-0.5],1);

G1=G11-G12;

G2=tf(1,[1 2 0]);

Gk=G1*G2;

Gb=feedback(Gk,1,-1);

[Gm,Pm,Wcg,Wcp]=margin(Gb)

step(Gb)

[y,t]=step(Gb);

控制系统MATLAB仿真基础

系统仿真 § 4.1控制系统的数学模型 1、传递函数模型(tranfer function) 2、零极点增益模型(zero-pole-gain) 3、状态空间模型(state-space) 4、动态结构图(Simulink结构图) 一、传递函数模型(transfer fcn-----tf) 1、传递函数模型的形式 传函定义:在零初始条件下,系统输出量的拉氏变换C(S)与输入量的拉氏变换R(S)之比。 C(S) b1S m+b2S m-1+…+b m G(S)=----------- =- -------------------------------- R(S) a1S n + a2S n-1 +…+ a n num(S) = ------------ den(S) 2、在MATLAB命令中的输入形式 在MATLAB环境中,可直接用分子分母多项式系数构成的两个向量num、den表示系统: num = [b1, b2, ..., b m]; den = [a1, a2, ..., a n]; 注:1)将系统的分子分母多项式的系数按降幂的方式以向量的形式输入两个变量,中间缺项的用0补齐,不能遗漏。 2)num、den是任意两个变量名,用户可以用其他任意的变量名来输入系数向量。 3)当系统种含有几个传函时,输入MATLAB命令状态下可用n1,d1;n2,d2…….。 4)给变量num,den赋值时用的是方括号;方括号内每个系数分隔开用空格或逗号;num,den方括号间用的是分号。 3、函数命令tf( ) 在MATLAB中,用函数命令tf( )来建立控制系统的传函模型,或者将零极点增益模型、状态空间模型转换为传函模型。 tf( )函数命令的调用格式为: 圆括号中的逗号不能用空格来代替 sys = tf ( num, den ) [G= tf ( num, den )]

MATLAB仿真实验报告

MATLAB 仿真实验报告 课题名称:MATLAB 仿真——图像处理 学院:机电与信息工程学院 专业:电子信息科学与技术 年级班级:2012级电子二班 一、实验目的 1、掌握MATLAB处理图像的相关操作,熟悉相关的函数以及基本的MATLAB语句。 2、掌握对多维图像处理的相关技能,理解多维图像的相关性质 3、熟悉Help 命令的使用,掌握对相关函数的查找,了解Demos下的MATLAB自带的原函数文件。 4、熟练掌握部分绘图函数的应用,能够处理多维图像。 二、实验条件

MATLAB调试环境以及相关图像处理的基本MATLAB语句,会使用Help命令进行相关函数查找 三、实验内容 1、nddemo.m函数文件的相关介绍 Manipulating Multidimensional Arrays MATLAB supports arrays with more than two dimensions. Multidimensional arrays can be numeric, character, cell, or structure arrays. Multidimensional arrays can be used to represent multivariate data. MATLAB provides a number of functions that directly support multidimensional arrays. Contents : ●Creating multi-dimensional arrays 创建多维数组 ●Finding the dimensions寻找尺寸 ●Accessing elements 访问元素 ●Manipulating multi-dimensional arrays操纵多维数组 ●Selecting 2D matrices from multi-dimensional arrays从多维数组中选择二维矩 阵 (1)、Creating multi-dimensional arrays Multidimensional arrays in MATLAB are created the same way as two-dimensional arrays. For example, first define the 3 by 3 matrix, and then add a third dimension. The CAT function is a useful tool for building multidimensional arrays. B = cat(DIM,A1,A2,...) builds a multidimensional array by concatenating(联系起来)A1, A2 ... along the dimension DIM. Calls to CAT can be nested(嵌套). (2)、Finding the dimensions SIZE and NDIMS return the size and number of dimensions of matrices. (3)、Accessing elements To access a single element of a multidimensional array, use integer subscripts(整数下标). (4)、Manipulating multi-dimensional arrays

APF matlab仿真建模要点

电力电子系统建模与仿真 学院:电气工程学院 年级:2012级 学号:12031236 姓名:周琪俊 指导老师:舒泽亮

二极管钳位多电平APF电压平衡SPWM仿真报告 1 有源电力滤波器的发展及现状 有源电力滤波器的发展最早可以追溯到20 世纪60 年代末,1969 年B.M.Bird 和J.F.Marsh发表的论文中,描述了通过向电网注入三次谐波电流来减少电源电流中的谐波成分,从而改善电源电流波形的新方法,这种方法是APF 基本思想的萌芽。1971年日本的H.Sasaki 和T.Machida 首先提出APF 的原始模型。1976 年美国西屋电气公司的L.Gyugyi 等提出了用PWM 变流器构成的APF 并确立了APF 的概念。这些以PWM 变流器构成的APF 已成为当今APF 的基本结构。但在70 年代由于缺少大功率的快速器件,因此对APF 的研究几乎没有超出实验室的范围。80 年代以来,随着新型电力半导体器件的出现,脉宽调制的发展,以及H.Akagi 的基于瞬时无功功率理论的谐波电流瞬时检测方法的提出,APF有了迅速发展。 现在日本、美国、德国等工业发达国家APF已得到了高度重视和日益广泛的应用。由于理论研究起步较早,目前国外有源电力滤波器的研究已步入工业化应用阶段。随着容量的逐步提高,其应用范围也从补偿用户自身的谐波向改善整个电网供电质量的方向发展。有源电力滤波器的工业化应用对理论研究起了非常大的推动作用,新的理论研究成果不断出现。1976 年美国西屋公司的L.Gyugyi 率先研制出800kV A的有源电力滤波器。在此以后的几十年里,有源电力滤波器的实践应用得到快速发展。在一些国家,已经投入工业应用的有源电力滤波器容量已增加到50MV A。目前大部分国际知名的电气公司如西屋电气、三菱电机、西门子和梅兰日兰等都有相关的部门都已有相关的产品。 我国在有源电力滤波器的研究方面起步较晚,直到20 世纪80 年代末才有论文发表。90 年代以来一些高等院校和科研机构开始进行有源电力滤波器的研究。1991 年12 月由华北电科院、北京供电局和冶金部自动化研究所研制的国内第一台400V/50kV A 的有源电力滤波器在北京某中心变电站投运,2001 年华北电科院又将有源电力滤波器的容量提高到了10kV/480kV A。由中南大学和湖南大学研制的容量为500kV A 并联混合型有源电力滤波器已在湖南娄底早元220kV 变电站挂网运行。在近几年国内的有源电力滤波器产品已有很多应用,本文研制的两种APF都已应用于工业现场。 2 二极管箝位式多电平逆变器 自从日本学者南波江章于1980 年提出三电平中性点箝位逆变器以来,多电平逆变器的拓扑结构就受到人们的普遍关注,很多学者相继提出了一些实际应用

Matlab通信系统仿真实验报告

Matlab通信原理仿真 学号: 2142402 姓名:圣斌

实验一Matlab 基本语法与信号系统分析 一、实验目的: 1、掌握MATLAB的基本绘图方法; 2、实现绘制复指数信号的时域波形。 二、实验设备与软件环境: 1、实验设备:计算机 2、软件环境:MATLAB R2009a 三、实验内容: 1、MATLAB为用户提供了结果可视化功能,只要在命令行窗口输入相应的命令,结果就会用图形直接表示出来。 MATLAB程序如下: x = -pi::pi; y1 = sin(x); y2 = cos(x); %准备绘图数据 figure(1); %打开图形窗口 subplot(2,1,1); %确定第一幅图绘图窗口 plot(x,y1); %以x,y1绘图 title('plot(x,y1)'); %为第一幅图取名为’plot(x,y1)’ grid on; %为第一幅图绘制网格线 subplot(2,1,2) %确定第二幅图绘图窗口 plot(x,y2); %以x,y2绘图 xlabel('time'),ylabel('y') %第二幅图横坐标为’time’,纵坐标为’y’运行结果如下图: 2、上例中的图形使用的是默认的颜色和线型,MATLAB中提供了多种颜色和线型,并且可以绘制出脉冲图、误差条形图等多种形式图: MATLAB程序如下: x=-pi:.1:pi; y1=sin (x); y2=cos (x); figure (1); %subplot (2,1,1); plot (x,y1); title ('plot (x,y1)'); grid on %subplot (2,1,2); plot (x,y2);

基于MATLAB的变压器仿真 与分析

于MATLAB_Simulink的牵引变压器建模与仿真 基于MATLAB/Simulink的牵引变压器建模与仿真徐(西安铁路局安康供电段新陕西汉中 723000)摘要:针对多种牵引变压器接线方式,建立数学模型,基于Matlab/Simulink仿真软件,建立牵引变压器的仿真模型,并验证数学模型和仿真模型的一致性。利用所建立仿真模型对不同接线形式牵引变压器在不同条件下对公用电网产生的谐波和负序影响进行仿真试验,对研究各种类型的牵引变压器特性在我国电气化铁路的应用提供条件。关键词:牵引变压器;数学模型;仿真模型;Matlab/Simulink 中图分类号:U223.6 文献标识码:A 文章编号:1671-7597(2011)0610061-03 牵引变压器按其特性可分为平衡接线和不平衡接线。其中不平衡接线有单相接线、Vv接线和YNd11接线;平衡接线是试图实现三相两相对称变换而提出的,主要代表方式有Scott,Leblanc、Kubler、Wood-bridge、阻抗匹配接线等。本次主要总结了常用牵引变压器的特点并建立数学模型,包括每种牵引变压器的原理结构、原次边电气量关系等,基于Matlab/Simulink软件建立牵引变压器仿真模型,并对牵引变压器在不同条件下的负序、谐波特性的进行了研究. 1 牵引变压器数学模型研究 1.1 YNd11接线 YNd11变压器接线原理如下图所示,如果忽略激磁电流及其漏阻抗压降,二次侧绕组ac相与一次侧绕组A相同相,cb相与C相同相。由于变压器一次侧绕组A,B,C相与电力系统的相序一致,A相滞后C相,对应的二次侧ac也滞后cb相[2]。其中Z为牵引端口对应变压器漏抗,和β相的端口电压。 1.2 Vv接线 Vv接线牵引变压器接线原理如图2所示。为二次侧空载相即α相图2 Vv接线牵引变压器设Vv接线变压器一次侧、二次侧绕组匝数分别为可得电流输入输出关系[3]:和,电压输入输出关系如下:图1 YNd11接线牵引变压器设YNd11接线变压器一次侧、二次侧绕组匝数分别为和假设变压器原边中性点接地,可以得出一次侧三相电流。,其中为牵引端口对应变压器漏抗,为二次侧空载相即α相和β相的端口电压。 1.3 Scott接线 Scott接线变压器(又称T形接法变压器)属于能完成三相-两相变换的平衡变压器,Scott接线牵引变压器接线原理如图3所示。图3 Scott牵引变压器接线原理图 1 61 设一次侧绕组BC的匝数为次侧绕组AD的匝数为,记,二次的绕组ad、bc的匝数为,则一。可得电流输入输出关系[4]:把一次侧绕组电流用相电流替换,即为:式中,为从三相端子流进变压器的电流。输出端口电压方程为:图6 YNd11接线牵引变压器两供电臂输出电压波形从电压输出波形中可以得到α供电臂电压波形超前β供电臂电压波形120°,在对称阻性负载下,两臂电流输出波形幅值相同,相位相差120°,满足理论值。 2.2 Vv接线牵引变压器 Vv 接线牵引变压器是由两个单相牵引变压器并联而成,仿真模型如图7所示.在仿真模型中牵引变压器T1和T2的原、次边变比设置为110kV/27.5kV。对,于

控制系统的MATLAB仿真与设计课后答案

控制系统的MATLAB仿真与设计课后答案

>>z=-4*sqrt(2)*sin(t); >>plot3(x,y,z,'p'); >>title('Line in 3-D Space'); >>text(0,0,0,'origin'); >>xlabel('X'),ylable('Y'),zlable('Z');grid; 4>>theta=0:0.01:2*pi; >>rho=sin(2*theta).*cos(2*theta); >>polar(theta,rho,'k'); 5>>[x,y,z]=sphere(20); >>z1=z; >>z1(:,1:4)=NaN; >>c1=ones(size(z1)); >>surf(3*x,3*y,3*z1,c1); >>hold on >>z2=z; >>c2=2*ones(size(z2)); >>c2(:,1:4)=3*ones(size(c2(:,1:4))); >>surf(1.5*x,1.5*y,1.5*z2,c2); >>colormap([0,1,0;0.5,0,0;1,0,0]); >>grid on >>hold off 第四章 1>>for m=100:999 m1=fix(m/100); m2=rem(fix(m/10),10); m3=rem(m,10); if m==m1*m1*m1+m2*m2*m2+m3*m3*m3 disp(m) end end 2M文件:function[s,p]=fcircle(r) s=pi*r*r; p=2*pi*r; 主程序: [s,p]=fcircle(10) 3>>y=0;n=100; for i=1:n y=y+1/i/i; end >>y

MATLAB仿真实验全部

实验一 MATLAB 及仿真实验(控制系统的时域分析) 一、实验目的 学习利用MATLAB 进行控制系统时域分析,包括典型响应、判断系统稳定性和分析系统的动态特性; 二、预习要点 1、 系统的典型响应有哪些 2、 如何判断系统稳定性 3、 系统的动态性能指标有哪些 三、实验方法 (一) 四种典型响应 1、 阶跃响应: 阶跃响应常用格式: 1、)(sys step ;其中sys 可以为连续系统,也可为离散系统。 2、),(Tn sys step ;表示时间范围0---Tn 。 3、),(T sys step ;表示时间范围向量T 指定。 4、),(T sys step Y =;可详细了解某段时间的输入、输出情况。 2、 脉冲响应: 脉冲函数在数学上的精确定义:0 ,0)(1)(0 ?==?∞ t x f dx x f 其拉氏变换为:) ()()()(1)(s G s f s G s Y s f === 所以脉冲响应即为传函的反拉氏变换。 脉冲响应函数常用格式: ① )(sys impulse ; ② ); ,();,(T sys impulse Tn sys impulse ③ ),(T sys impulse Y = (二) 分析系统稳定性 有以下三种方法: 1、 利用pzmap 绘制连续系统的零极点图; 2、 利用tf2zp 求出系统零极点; 3、 利用roots 求分母多项式的根来确定系统的极点 (三) 系统的动态特性分析 Matlab 提供了求取连续系统的单位阶跃响应函数step 、单位脉冲响应函数impulse 、零输入响应函数initial 以及任意输入下的仿真函数lsim.

倒立摆系统的建模及Matlab仿真资料

第1 页共11 页 倒立摆系统的建模及Matlab仿真 1.系统的物理模型 考虑如图(1)所示的倒立摆系统。图中,倒立摆安装在一个小车上。这里仅考虑倒立摆在图面内运动的二维问题。 图(1)倒立摆系统 假定倒立摆系统的参数如下。 摆杆的质量:m=0.1g l=1m小车的质量:摆杆的长度:2重力加速度:g=9.8m/M=1kg s摆杆的质量在摆杆的中心。 设计一个控制系统,使得当给定任意初始条件(由干扰引起)时,最大超调量?≤10%,调节时间ts ≤4s ,通过小车的水平运动使倒立摆保持在垂直位置。 2.系统的数学模型 2.1建立倒置摆的运动方程并将其线性化。 为简化问题,在数学模型中首先假设:1)摆杆为刚体;2)忽略摆杆与支点之间的摩擦;3)忽略小车与接触面间的摩擦。 ?),在u设小车瞬时位置为z,摆心瞬时位置为(作用下,小车及摆均产生加速远 动,sin?lz根据牛顿第二定律,在水平直线远动方向的惯性力应与u平衡,于是有 22dzd?)?sinu?M?m(zl22dtdt???2????z(M?mml?)cos?mlusin? 即:??①

绕摆轴转动的惯性力矩与重力矩平衡,因而有. 第2 页共11 页 2??d??? sin??lcosm(z?lsinmgl)??2dt?????22???????即: nis?l?ocgcosincoszs?ls??② 以上两个方程都是非线性方程,为求得解析解,需作线性化处理。由于控制的目的是保持倒立摆直?2?????且可忽略则,立,在试驾合适的外力条件下,假定θ很小,接近于零时合理的,1sincos??,项。于是有 ???M?zm?u?ml??)(③ ????g?z?l??④联立求解可得1mg?u?z????MM 1)?m(M????u??MlMl 列写系统的状态空间表达式。2.2??T xx,x,x,,选取系统变量则 xx,x,xx?,42134123xx??211mgux???x?32MM x?x?431)(M?mu?x?x? 34MlMl 即00100????z??1mg??????000?z?????d MM??Bu?Ax?xux????????00001???dt????1gm?(M)????000??????? MlMl??????Cx?0?y?xx1001代入数据计算得到:0100????000?1??????T0D,?0??1BA?,?001,C100??1000??00011?? 11 页3 页共第 3.设计控制器3.1判断系统的能控性和稳定性 1100????0011????23BBAABAB?Q?故被控对象完全可控, rank()=4,Q kk??11?0?10??011?10???22???11?。出现大于零的特征值,故被,,0 解得特征值为 0由特征方程0??11I?A?)(控对象不稳定3.2确定希望的极点, 另一对为远极点,认为系统性能主要由主导,选其中一对为主导极点和希望的极点n=4ss21极点决定,远极点只有微小影响。根据二阶系统的关系式,先确定主导极点???42??1????10.?e??t1.67?有,闭环可得;取误差带,于是取,则6.?059?0.02.?0? pns??n2????1?js??=-10.8j,远极点选择使它和原点的距离大于主导极点与原点 距离主导极点为?n,21s??15倍,取的54,33.3采用状态反馈方法使系统稳定并配置极点 ??kkkk?k;状态反馈系统的状态方程,馈状态反的控制规律为为kxu??3102?,其

MATLAB Simulink系统建模与仿真 实验报告

MATLAB/Simulink 电力系统建模与仿真 实验报告 姓名:****** 专业:电气工程及其自动化 班级:******************* 学号:*******************

实验一无穷大功率电源供电系统三相短路仿真 1.1 无穷大功率电源供电系统仿真模型构建 运行MATLAB软件,点击Simulink模型构建,根据电路原理图,添加下列模块: (1)无穷大功率电源模块(Three-phase source) (2)三相并联RLC负荷模块(Three-Phase Parallel RLC Load) (3)三相串联RLC支路模块(Three-Phase Series RLC Branch) (4)三相双绕组变压器模块(Three-Phase Transformer (Two Windings)) (5)三相电压电流测量模块(Three-Phase V-I Measurement) (6)三相故障设置模块(Three-Phase Fault) (7)示波器模块(Scope) (8)电力系统图形用户界面(Powergui) 按电路原理图连接线路得到仿真图如下: 1.2 无穷大功率电源供电系统仿真参数设置 1.2.1 电源模块 设置三相电压110kV,相角0°,频率50Hz,接线方式为中性点接地的Y形接法,电源电阻0.00529Ω,电源电感0.000140H,参数设置如下图:

1.2.2 变压器模块 变压器模块参数采用标幺值设置,功率20MVA,频率50Hz,一次测采用Y型连接,一次测电压110kV,二次侧采用Y型连接,二次侧电压11kV,经过标幺值折算后的绕组电阻为0.0033,绕组漏感为0.052,励磁电阻为909.09,励磁电感为106.3,参数设置如下图: 1.2.3 输电线路模块 根据给定参数计算输电线路参数为:电阻8.5Ω,电感0.064L,参数设置如下图: 1.2.4 三相电压电流测量模块 此模块将在变压器低压侧测量得到的电压、电流信号转变成Simulink信号,相当于电压、电流互感器的作用,勾选“使用标签(Use a label)”以便于示波器观察波形,设置电压标签“Vabc”,电流标签“Iabc”,参数设置如下图:

三相变压器建模及仿真及MATLAB仿真

XXXXXXX学院课程设计报告 课程名称: 系部: 专业班级: 学生姓名: 指导教师: 完成时间: 报告成绩: 学院教学工作部制

目录 摘要 (3) 第一章变压器介绍 (4) 1.1 变压器的磁化特性 (4) 1.2 变压器保护 (4) 1.3 励磁涌流 (7) 第二章变压器基本原理 (9) 2.1 变压器工作原理 (9) 2.2 三相变压器的等效电路及联结组 (10) 第三章变压器仿真的方法 (11) 3.1 基于基本励磁曲线的静态模型 (11) 3.2基于暂态磁化特性曲线的动态模型 (13) 3.3非线性时域等效电路模型 (14) 第四章三相变压器的仿真 (16) 4. 1 三相变压器仿真的数学模型 (16) 4.2电源电压的描述 (20) 4.3铁心动态磁化过程简述 (21) 第五章变压器MATLAB仿真研究 (25) 5.1 仿真长线路末端电压升高 (25) 5.2 仿真三相变压器 T2 的励磁涌流 (28) 5.3三相变压器仿真模型图 (34) 5.4 变压器仿真波形分析 (36) 结论 (40) 参考文献 (41)

摘要 在电力变压器差动保护中,励磁涌流和内部故障电流的判别一直是一个关键问题。文章阐述了励磁涌流的产生及其特性,利用 MATLAB 对变压器的励磁涌流、内部故障和外部故障进行仿真,对实验的数据波形分析,以此来区分故障和涌流,目的是减少空载合闸产生的励磁涌流对变压器差动保护的影响,提高保护的灵敏性。 本文在Matlab的编程环境下,分析了当前的变压器仿真的方法。在单相情况下,分析了在饱和和不饱和的励磁涌流现象,和单相励磁涌流的特征。在三相情况下,在用分段拟和加曲线压缩法的基础上,分别用两条修正的反正切函数,和两条修正的反正切函数加上两段模拟饱和情况的直线两种方法建立了Yd11、Ynd11、Yny0和Yy0四种最常用接线方式下三相变压器的数学仿真模型,并在Matlab下仿真实现。通过对三相励磁涌流和磁滞回环波形分析,三相励磁涌流的特征分析,总结出影响三相变压器励磁涌流地主要因素。最后,分析了两种方法的优劣,建立比较完善的变压器仿真模型。 关键字: 变压器;差动保护;励磁涌流;内部故障;外部故障;波形分析;仿真;数学模型

MATLAB的建模和仿真

课程设计说明书 题目:基于Matlab的IIR滤波器设计与仿真班级:2012 级电气五班 姓名:王璐 学号:201295014178 指导教师:张小娟 日期:2015年 1 月12日

课程设计任务书

基于MATLAB的IIR滤波器设计与仿真 前言 数字信号处理(digital signal processing,DSP)是从20世纪60年代以来,随着信息学科和计算机学科的高速发展而迅速发展起来的一门新兴学科。数字信号处理是把信号用数字或符号表示的序列,通过计算机或通用(专用)信号处理设备,用数字的数值计算方法处理(例如滤波、变换、压缩、增强、估计、识别等),以达到提取有用信息便于应用处理的目的。数字信号处理系统有精度高、灵活性高、可靠性高、容易大规模集成、时分复用、可获得高性能指标、二维与多维处理等特点。正是由于这些突出的特点,使得它在通信、语音、雷达、地震测报、声呐、遥感、生物医学、电视、仪器中得到愈来愈广泛的应用。在数字信号处理中起着重要的作用并已获得广泛应用的是数字滤波器(DF,Digital Filter),根据其单位冲激响应函数的时域特性可分为两类:无限冲激响应IIR(Infinite Impulse Response)滤波器和有限冲激响应FIR(Finite Impulse Response)滤波器。MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来结算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且MATLAB也吸收了像Maple等软件的有点,使MATLAB成为一个强大的数学软件,在新的版本中也加入了对C,FORTRAN,C++,JA V A的支持。可以直接调用,用户也可以将自己编写的实用程序导入到MATLAB函数库中方便自己以后调用。 1 数字滤波器概述 数字滤波器是对数字信号实现滤波的线性时不变系统。数字滤波实质上是一种运算过程,实现对信号的运算处理。输入数字信号(数字序列)通过特定的运算转变为输出的数字序列,因此,数字滤波器本质上是一个完成特定运算的数字计算过程,也可以理解为一台计算机。描述离散系统输出与输入关系的卷积和差分方程只是给数字信号滤波器提供运算规则,使其按照这个规则完成对输入数据的处理。时域离散系统的频域特性:Y(eωj)=X(eωj)H(eωj) 其中Y(eωj)、X(eωj)分别是数字滤波器的输出序列和输入序列的频域特性(或称为

增量调制MATLAB仿真实验

增量调制MATLAB仿真实验

增量调制(DM)实验 一、实验目的 (1)进一步掌握MATLAB的应用。 (2)进一步掌握计算机仿真方法。 (3)学会用MATLAB软件进行增量调制(DM)仿真实验。 二、实验原理 增量调制是由PCM发展而来的模拟信号数字化的一种编码方式,它是PCM的一种特例。增量调制编码基本原理是指用一位编码,这一位码不是表示信号抽样值的大小,而是表示抽样幅度的增量特性,即采用一位二进制数码“1”或“0”来表示信号在抽样时刻的值相对于前一个抽样时刻的值是增大还是减小,增大则输出“1”码,减小则输出“0”码。输出的“1”,“0”只是表示信号相对于前一个时刻的增减,不表示信号的绝对值。 增量调制最主要的特点就是它所产生的二进制代码表示模拟信号前后两个抽样值的差别(增加、还是减少)而不是代表抽样值本身的大小,因此把它称为增量调制。在增量调制系统的发端调制后的二进制代码1和0只表示信号这一个抽样时刻相对于前一个抽样时刻是增加(用1码)还是减少(用0码)。收端译码器每收到一个1码,译码器的输出相对于前一个时刻的值上升一个量化阶,而收到一个0码,译码器的输出相对于前一个时刻的值下降一个量化阶。 增量调制(DM)是DPCM的一种简化形式。在增量调制方式下,采用1比特量化器,即用1位二进制码传输样值的增量信息,预测器是

一个单位延迟器,延迟一个采样时间间隔。预测滤波器的分子系数向量是[0,1],分母系数为1。当前样值与预测器输出的前一样值相比较,如果其差值大于零,则发1码,如果小于零则发0码。 三、实验内容 增量调制系统框图如图一所示,其中量化器是一个零值比较器,根据输入的电平极性,输出为 δ,预测器是一个单位延迟器,其输出为前一个采样时刻的解码样值,编码器也是一个零值比较器,若其输入为负值,则编码输出为0,否则输出为1。解码器将输入1,0符号转换为 δ,然后与预测值相加后得出解码样值输出,同时也作为预测器的输入 输入样值 e n e n =δsgn(e n ) 传输 n ) n n-1+δsgn(e n ) x n + - + + 预测输出 + n-1 + 预测输出 解码样值输出 x n-1 预测输入x n =x n-1+δsgn(e n ) 图一 增量调制原理框图 设输入信号为: x(t)=sin2π50t+0.5sin 2π150t 增量调制的采样间隔为1ms,量化阶距δ=0.4,单位延迟器初始值为0。建立仿真模型并求出前20个采样点使客商的编码输出序列以 解码 编码 二电平量化 单位延迟 单位 延迟

倒立摆系统的建模及Matlab仿真

倒立摆系统的建模及Matlab 仿真 1.系统的物理模型 考虑如图(1)面内运动的二维问题。 图(1)倒立摆系统 假定倒立摆系统的参数如下。 摆杆的质量:m=0.1g 摆杆的长度:l =1m 小车的质量: M=1kg 重力加速度:g=9.8m/2s 摆杆的质量在摆杆的中心。 设计一个控制系统,使得当给定任意初始条件(由干扰引起)时,最大超调量δ ≤10%,调节时 间ts ≤4s ,通过小车的水平运动使倒立摆保持在垂直位置。 2.系统的数学模型 2.1建立倒置摆的运动方程并将其线性化。 为简化问题,在数学模型中首先假设:1)摆杆为刚体;2)忽略摆杆与支点之间的摩擦;3)忽略小车与接触面间的摩擦。 设小车瞬时位置为z,摆心瞬时位置为(θsin l z +),在u 作用下,小车及摆均产生加速远动,根据牛顿第二定律,在水平直线远动方向的惯性力应与u 平衡,于是有 u l z dt d m dt z d M =++)sin (22 22θ 即: u ml ml z m M =-++θθθθsin cos )(2&&&&& ① 绕摆轴转动的惯性力矩与重力矩平衡,因而有

θθθsin cos )sin (22mgl l l z dt d m =??? ????+ 即: θθθθθθθsin cos sin cos cos 22g l l z =-+&&&&& ② 以上两个方程都是非线性方程,为求得解析解,需作线性化处理。由于控制的目的是保持倒立摆直 立,在试驾合适的外力条件下,假定θ很小,接近于零时合理的,则1cos ,sin ≈≈θθθ,且可忽略θ θ2&项。于是有 u ml z m M =++θ&&&& )( ③ θθg l z =+&&&& ④ 联立求解可得 u Ml Ml m M u M M mg z 1)(1 -+=+- =θθθ&&&& 2.2列写系统的状态空间表达式。 选取系统变量4321,,,x x x x , []T x x x x x 4321,,,=则 u Ml x Ml m M x x x u M x M mg x x x 1 )(134433221-+= =+-==&&&& 即 []Cx x x y Bu Ax u Ml M x Ml g m M M mg z z dt d x ===+=?????? ? ???????-+?????????? ??? ? +- =???? ????????=000110100)(0 010 0000000 1 1θθ&&& 代入数据计算得到: [][]0,0001,1010,01100 1000010000 1 0==-=? ? ??? ? ??? ???-=D C B A T

MATLAB控制系统与仿真设计

MATLAB控制系统与仿真 课 程 设 计 报 告 院(系):电气与控制工程学院 专业班级:测控技术与仪器1301班 姓名:吴凯 学号:1306070127

指导教师:杨洁昝宏洋 基于MATLAB的PID恒温控制器 本论文以温度控制系统为研究对象设计一个PID控制器。PID控制是迄今为止最通用的控制方法,大多数反馈回路用该方法或其较小的变形来控制。PID控制器(亦称调节器)及其改进型因此成为工业过程控制中最常见的控制器(至今在全世界过程控制中用的84%仍是纯PID调节器,若改进型包含在内则超过90%)。在PID控制器的设计中,参数整定是最为重要的,随着计算机技术的迅速发展,对PID参数的整定大多借助于一些先进的软件,例如目前得到广泛应用的MATLAB仿真系统。本设计就是借助此软件主要运用Relay-feedback法,线上综合法和系统辨识法来研究PID控制器的设计方法,设计一个温控系统的PID控制器,并通过MATLAB中的虚拟示波器观察系统完善后在阶跃信号下的输出波形。 关键词:PID参数整定;PID控制器;MATLAB仿真。 Design of PID Controller based on MATLAB Abstract This paper regards temperature control system as the research object to design a pid controller. Pid control is the most common control method up until now; the great majority feedback loop is controlled by this method or its small deformation. Pid controller (claim regulator also) and its second generation so become the most common controllers in the industry process control (so far, about 84% of the controller being used is the pure pid controller, it’ll exceed 90% if the second generation included). Pid parameter setting is most important in pid controller designing, and with the rapid development of the computer technology, it mostly recurs to some advanced software, for example, mat lab simulation software widely used now. this design is to apply that soft mainly use Relay feedback law and synthetic method on the line to study pid

高频电子线路Matlab仿真实验

高频电子线路Matlab 仿真实验要求 1. 仿真题目 (1) 线性频谱搬移电路仿真 根据线性频谱搬移原理,仿真普通调幅波。 基本要求:载波频率为8kHz ,调制信号频率为400Hz ,调幅度为0.3;画出调制信号、载波信号、已调信号波形,以及对应的频谱图。 扩展要求1:根据你的学号更改相应参数和代码完成仿真上述仿真;载波频率改为学号的后5位,调制信号改为学号后3位,调幅度设为最后1位/10。(学号中为0的全部替换为1,例如学号2010101014,则载波为11114Hz ,调制信号频率为114,调幅度为0.4)。 扩展要求2:根据扩展要求1的条件,仿真设计相应滤波器,并获取DSB-SC 和SSB 的信号和频谱。 (2) 调频信号仿真 根据调频原理,仿真调频波。 基本要求:载波频率为30KHz ,调制信号为1KHz ,调频灵敏度32310f k π=??,仿真调制信号,瞬时角频率,瞬时相位偏移的波形。 扩展要求:调制信号改为1KHz 的方波,其它条件不变,完成上述仿真。 2. 说明 (1) 仿真的基本要求每位同学都要完成,并且记入实验基本成绩。 (2) 扩展要求可以选择完成。

1.0 >> ma = 0.3; >> omega_c = 2 * pi * 8000; >> omega = 2 * pi * 400; >> t = 0 : 5 / 400 / 1000 : 5 / 400; >> u_cm = 1; >> fc = cos(omega_c * t); >> fa = cos(omega * t); >> u_am = u_cm * (1 + fa).* fc; >> U_c =fft(fc,1024); >> U_o =fft(fa,1024); >> U_am =fft(u_am, 1024); >> figure(1); >> subplot(321);plot(t, fa, 'k');title('调制信号');grid;axis([0 2/400 -1.5 1.5]); >> subplot(323);plot(t, fc, 'k');title('高频载波');grid;axis([0 2/400 -1.5 1.5]); >> subplot(325);plot(t, u_am, 'k');title('已调信号');grid;axis([0 2/400 -3 3]); >> fs = 5000; >> w1 = (0:511)/512*(fs/2)/1000; >> subplot(322);plot(w1, abs([U_am(1:512)']),'k');title('调制信号频谱');grid;axis([0 0.7 0 500]); >> subplot(324);plot(w1, abs([U_c(1:512)']),'k');title('高频载波频谱');grid;axis([0 0.7 0 500]); >> subplot(326);plot(w1, abs([U_am(1:512)']),'k');title('已调信号频谱');grid;axis([0 0.7 0 500]); 1.1 >> ma = 0.8; >> omega_c = 2 * pi * 11138; >> omega = 2 * pi * 138; >> t = 0 : 5 / 400 / 1000 : 5 / 400; >> u_cm = 1; >> fc = cos(omega_c * t);

四旋翼飞行器建模与仿真Matlab

四轴飞行器的建模与仿真 摘要 四旋翼飞行器是一种能够垂直起降的多旋翼飞行器,它非常适合近地侦察、监视的任务,具有广泛的军事和民事应用前景。本文根据对四旋翼飞行器的机架结构和动力学特性做详尽的分析和研究,在此基础上建立四旋翼飞行器的动力学模型。四旋翼飞行器有各种的运行状态,比如:爬升、下降、悬停、滚转运动、俯仰运动、偏航运动等。本文采用动力学模型来描述四旋翼飞行器的飞行姿态。在上述研究和分析的基础上,进行飞行器的建模。动力学建模是通过对飞行器的飞行原理和各种运动状态下的受力关系以及参考牛顿-欧拉模型建立的仿真模型,模型建立后在Matlab/simulink软件中进行仿真。 关键字:四旋翼飞行器,动力学模型,Matlab/simulink Modeling and Simulating for a quad-rotor aircraft ABSTRACT The quad-rotor is a VTOL multi-rotor aircraft. It is very fit for the kind of reconnaissance mission and monitoring task of near-Earth, so it can be used in a wide range of military and civilian applications. In the dissertation, the detailed analysis and research on the rack structure and dynamic characteristics of the laboratory four-rotor aircraft is showed in the dissertation. The dynamic model of the four-rotor aircraft areestablished. It also studies on the force in the four-rotor aircraft flight principles and course of the campaign to make the research and analysis. The four-rotor aircraft has many operating status, such as climbing, downing, hovering and rolling movement, pitching movement and yawing movement. The dynamic model is used to describe the four-rotor aircraft in flight in the dissertation. On the basis of the above analysis, modeling of the aircraft can be made. Dynamics modeling is to build models under the principles of flight of the aircraft and a variety of state of motion, and Newton - Euler model with reference to the four-rotor aircraft.Then the simulation is done in the software of Matlab/simulink. Keywords: Quad-rotor,The dynamic mode, Matlab/simulink

相关文档
最新文档