一种高效率低功耗的电荷泵设计

双吸离心泵毕业设计-开题报告

双吸离心泵毕业设计-开题报告

毕业设计(论文)开题报告 学生姓名:陈乐东学号:20121698 学院:机电工程学院 专业:热能动力工程 设计(论文)题目:800S26型双吸泵的设计 指导教师:杨辉 2016年2月15日

开题报告填写要求 1.开题报告(含“文献综述”)作为毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。此报告应在指导教师指导下,由学生在毕业设计(论文)工作前期内完成,经指导教师签署意见及所在专业审查后生效; 2.开题报告内容必须用黑墨水笔工整书写或按教务处统一设计的电子文档标准格式(可从教务处网页上下载)打印,禁止打印在其它纸上后剪贴,完成后应及时交给指导教师签署意见; 3.“文献综述”应按论文的格式成文,并直接书写(或打印)在本开题报告第一栏目内,学生写文献综述的参考文献应不少于15篇; 4.有关年月日等日期,按照如“2002年4月26日”方式填写。

1.结合毕业设计(论文)课题情况,根据所查阅的文献资料,每人撰写1500字左右的文献综述(包括研究进展,选题依据、目的、意义) 文献综述 800S26型双吸泵的型号意义是,入口直径为800mm,设计点扬程为26m的单极双吸水平中开式离心清水泵。要想了解此泵,首先要了解双吸离心泵。 双吸离心泵是从叶轮两面进水的双吸离心泵,因泵盖和泵体是采用水平接缝进行装配的,又称为水平中开式离心泵。与单级单吸离心泵相比,效率高、流量大、扬程较高。但体积大,比较笨重,一般用于固定作业。适用于丘陵、高原中等面积的灌区,也适用于工厂、矿山、城市给排水等方面。 S型单极双吸离心泵也被称为为中开式离心泵,供抽送清水或物理化学性质类似于水的其他液体之用。S系列单级双吸离心泵主要适用于自来水厂、空调循环用水、建筑供水、灌溉、排水泵站、电站、工业供水系统、消防系统、船舶工业等输送液体的场合。 S型中开泵与其他同类型泵相比较具有寿命长、效率高、结构合理,运行成本低、安装及维修方便等特点,是消防、空调、化工、水处理及其他行业的理想用泵。泵体设计压力为1.6MPa和2.0MPa。泵体的进出口法兰均位于下泵体,这样可以在不拆卸系统管路的情况下取出转子,维修方便。部分泵体采用双流道设计,以减少径向力,从而延长机封和轴承的寿命。叶轮叶轮的水力设计采用了最先进的 CFD 技术,因此提高了S泵的水力效率。对叶轮进行动平衡, 确保S泵的运行平稳。轴轴径较粗,轴承间距较短,从而减小了轴的挠度,延长了机械密封和轴承的寿命。轴套可以采用多种不同的材料,以防止轴被腐蚀和磨损,轴套可更换。磨损环泵体与叶轮间采用可更换的磨损环,防止泵体和叶轮的磨损,更换方便,维修费用低,同时保证运行间隙和较高的工作效率。既可以使用填料也可以使用机械密封,可以在不拆卸泵盖的情况下更换密封装置。轴承独特的轴承体设计使轴承可采用油脂或稀油润滑,轴承的设计寿命10万小时以上,也可使用双列推力轴承和封闭轴承。材料根据用户的实际需要,S型中开泵的材料可为铜、铸铁、球铁、316不锈钢、416;7锈钢、双向钢、哈氏合金、蒙耐合金,钛合金及20号合金等材料。 我国水泵技术的现状 1、我国泵产品图样的来源可分为联合设计、引进、自行开发等几种,引进的这些

电荷泵设计原理及在电路中的作用

1、电荷泵原理 电荷泵的基本原理是,电容的充电和放电采用不同的连接方式,如并联充电、串联放电,串联充电、并联放电等,实现升压、降压、负压等电压转换功能。 上图为二倍升压电荷示,为最简单的电荷泵电路。V2输出为方波信号,当V2为低电平的时候,V1通过D1、C1、V2对电容C2充电,C2两端电压上正下负;当V2为高电平输出的时候,V2输出电压与C1两端电压相叠加,通过D3对负载供电并对C2充电。如果忽略二极管压降,则C2两端电压Vo=V2+V1,其中V2为电压源V2的高电平输出电压。 由于电荷泵整个工作过程的核心部分为电容充放电过程,所以最重要的公式为电容充放电公式:I*T=ΔV*C,其中T为电容充放电周期,ΔV为每个充放电周期内电容两端电压波动,I为充放电电流。 电荷泵以非常简单的电路可以实现升压、降压、负压等功能,所以各种不同的场合为电路扩展小功率电路。 2、电荷泵在电路中的作用 1.功率电路中的电荷泵 电荷泵的一个非常广泛的用途就是在由N沟道MOSFET构成的半桥电路中为上桥臂提供浮驱电压。典型接法如下图所示,图中红框内的二极管D及电容Cboot与主电路中半桥的下桥臂T1构成电荷泵。当半桥的下臂T1开通时,Vcc 通过D与T1为电容Cboot充电;当T1关断T2导通时,Cboot为上臂T2提供MOSFET导通所必需的Vgs电压。这是由于T2在电路中的位置所决定的,当T2导通时,如果忽略导通压降Vds,T2的源极电压Vs=Vr,所以如果想要饱和导通,加上T2门极上的驱动电压需满足Vg=Vr+Vgs,对于功率型N沟道

MOSFET而言,Vgs通常需要15V左右。电荷泵以很少的元器件满足了这一设计要求,所以在此类应用中得到广泛应用。 虽然上图中所述的自举型电荷泵(采用半桥的下臂作为电荷泵的一部分)使电路设计变得非常简单,但实际使用过程中有些限制,如对桥臂的开通时序和占空比有限制等。所以,在某些要求比较高的应用场合,采用他驱型的电荷泵,即将电荷泵电路及驱动波形与主功率电路分离,采用外部电路构成电荷泵。这样的电路虽然结构比自举驱动电路略微复杂一些,但克服了自举驱动电路的一些问题,在某些场合也得到较广泛的应用。 2.RS-232电平转换中的升压、负压 电荷泵的另外一个极为广泛的应用就是为电平转换芯片提供符合RS-232标准的电源电压。电平转换芯片的供电通常为3.3V或者5V的单电源,而RS232电平标准要求,以-3~-15V表示逻辑电平“1”,以+3~+15V表示逻辑电平“0”,所以RS232转换芯片不仅要完成电平转换,还要提供符合要求的电源转换。 下图为RS232电平转换芯片的典型结构框图,首先以一个升压电荷泵将+3.3V或5V的输入电源进行二倍压升压,然后采用一个负压电荷泵将二倍压升压后的电源输出进行转换为负电压。

渣浆泵管路设计及阀门选型

水泵在管道管线上的选型配管要求 为了提高水泵的吸入性能,水泵吸入管路应尽可能缩短,尽量少拐弯(弯头最好用大曲率半径),以减少管道阻力损失。为防止泵产生汽蚀,泵吸入管路应尽可能避免积聚气体的囊形部位,不能避免时,应在囊形部位设DN15或DN20的排气阀。当泵的吸入管为垂直方向时,吸入管上若配置异径管,则应配置偏心异径管,以免形成气囊。 为了避免管道、阀门的重量及管道热应力所产生的力和力矩超过泵进出口的最大允许外载荷,在泵的吸入和排出管道上须设置管架。泵管口允许最大载荷应由水泵制造厂提供。垂直进口或垂直出口的泵,为了减少对泵管口的作用力,管口上方管线须设管架,其平面位置要尽量靠近管口,可以利用管廊纵梁支吊管线,所以常把泵布置在管廊下。 输送密度小于650Kg/m3的液体,如液化石油气、液氨等,泵的吸入管道应有1/10~1/100的坡度坡向泵,使气化产生的气体返回吸入罐内,以避免泵产生汽蚀。单吸泵的进口处,最好配置一段约3倍进口直径的直管。 对于双吸泵,为了避免双向吸入水平离心泵的汽蚀,双吸入管要对称布置,以保证两边流量分配均匀。垂直管道通过弯头直接连接,但泵的轴线一定要垂直于弯头所在的平面。此时,进口配管要求尽量短,弯头接异径管,再接进口法兰。在其它条件下,泵进口前应有不小于3倍管径的直管段。 泵出口的切断阀和止回阀之间用泄液阀放净。管径大于DN50时,也可在止回阀的阀盖上开孔装放净阀。同规格泵的进出口阀门尽量采用同一标高。 非金属泵的进出口管线上阀门的重量决不可压在泵体上,应设置管架,防止压坏泵体与开关阀门时扭动阀门前后的管线。 蒸汽往复泵的排汽管线应少拐弯,在可能积聚冷凝水的部位设排放管,放空量大的还要装设消音器。进汽管线应在进汽阀前设冷凝水排放管,防止水击汽缸。 蒸汽往复泵在运行中一般有较大的振动,与泵连接的管线应很好地固定。 当水泵出口中心线和管廊柱子中心线间距离大于0.6m,出口管线上的旋启式止回阀应放在水平位置,此时不允许在阀盖上装放净阀。 当管线架在和电动机的上方时,为不影响起重设备吊装,管线要有足够的高度。输送腐蚀性液体的管线不宜布置在原动设备的上方。 管廊下部管线的管底至地坪的净距离不应小于4m,,以满足检修要求。 当管线架在泵体上方时,管底距地面净空高度应不小于2.2m。

电荷泵设计指南

设计指南Q&A系列: 电荷泵 上网时间:2006年05月26日 Sam Davis 著 电荷泵主要有哪些应用? 在过去的十年了,电荷泵得到了广泛运用,从未调整单输出IC到带多输出电压的调整IC。输出功率和效率也得到了发展,因此现在的电荷泵可以输出高达250mA的电流,效率达到75%(平均值)。电荷泵大多应用在需要电池的系统,如蜂窝式电话、寻呼机、蓝牙系统和便携式电子设备。 主要应用包括驱动用于手机背光的白光LED和毫瓦范围的数字处理器(如图)。 电荷泵如何工作? 电荷泵(开关电容)IC通过利用一个开关网络给两个或两个以上的电容供电或断电来进行DC/DC电压转换。基本电荷泵开关网络不断在给电容器供电和断电这两个状态之间切换。C1(充电电容)传输电荷,而C2(充电电容器)则储存电荷并过滤输出电压。 额外的“快速电容”和开关阵列带来多种好处。 电荷泵有哪些工作模式? 电荷泵IC可以用作逆变器、分路器或者增压器。逆变器将输入电压转变成一个负输出。作为分路器使用时,输出电压是输出电压的一部分,例如1/2或2/3。作为增压器时,它可以给I/O带来一个1.5X或者2X的增益。很多便携式系统都是用一个单锂离子电池或者两个金属氢化物镍电池。因此当在2X模式下运行时,电荷泵可以给一般在3.3V到4.0V的范围内工作的白光LED供应适当的正向电压。 电荷泵的输出电压经过调节吗? 基本电荷泵缺少调整电路,因此实际上所有当今使用的电荷泵IC都增加线性调整或者电荷泵调制。线性调整的输出噪音最低,并可以在更低的效率情况下提供更好的性能。而由于调整IC没有串联传输晶体管,控制开关电阻的电荷泵调制就可以提供更高的效率,并为一个给定的芯片面积(或消耗)提供更多的输出电流。 电荷泵的主要优势是什么? 电荷泵消除了电感器和变压器所带有的磁场和电磁干扰。但是,仍然有一个可能的微小噪音源,那就是当快速电容和一个输入源或者另外一个带不同电压的电容器相连时,流向它的高充电电流。同样的,“分路器”电荷泵也能在LDO上改进

电荷泵扫盲篇

电荷泵扫盲篇 介绍功率MOS管的驱动时,提到一个电荷泵,用来提供高于V cc的电压。这在马达驱动器,开关电源驱动芯片经常用到。而且很多情况下,跨接电容需要单独选择。这时需要了解一些基本的内容。 1,原理 电荷泵的基本原理是,通过电容对电荷的积累效应而产生高压,使电流由低电势流向高电势。(参考资料1) 最简单的电荷泵:跨接电容A端通过二极管接V cc,另一端B端接振幅V in 的PWM方波。当B点电位为0时,A点电位为V cc;当B点电位上升至V in时,因为电容两端电压不变,此时A点电位上升为V cc + V in。(参考资料2)。所以,A点的电压就是一个PWM方波,最大值是V cc + V in,最小值是V cc。(假设二极管为理想二极管)(很简单的电路,可以用Pspice模拟) A点的方波经过简单的整流,就可以作为驱动MOS管的电源了。 常见的马达驱动器或者开关电源驱动芯片有一个引脚,通常叫做V boost,推荐电路会在V boost管脚和驱动管脚之间接上一个电容,这个电容就是上面介绍的跨接电容。二极管会接在V cc与V boost之间。对于跨接电容,需要注意的是耐压和容量。 2,计算(参考凌特LTC3240 DATASHEET) 通常对于电荷泵,最感兴趣的是下面两个指标:

1,输出电压 理想情况下,输出电压最大值V outmax = V in + V cc - V f (Vf=二极管压降)。2,输出电流 经整流后得到的输出电压为V out,可由公式算出V out与最大可用输出电流的关系(参考资料3,page8,9): I out= ( V cc + V in - V f-V out )×f×C fly (f = PWM波频率,C fly = 跨接电容值) 用来驱动MOS管时,因为此时相当于给电容充电,而电容充电瞬间相当于短路(输出电压为0),所以,我们用短路输出电流来评价电荷泵: I out = ( V cc + V in- V f)×f×C fly 上面两个公式是理想情况下得出的。因为电荷泵的有效开环输出电阻(参考资料3)存在,使得实际情况不是那么理想。所以在MOS管的驱动设计中,选择跨接电容时一般要留有一半的余量。 3,应用 除了MOS管的驱动,电荷泵有时也用于相机的照明灯等设备,也有升压,降压,和产生负压的电荷泵。当然因为有更高的要求,内部原理要比上面介绍的复杂得多,但是,万变不离其宗,了解了电荷泵的基本动作原理,更复杂的电路也就不难了。 参考资料: 1,DC-DC电荷泵的研究与设计,<<通信电源技术>>2004年05期,曹香凝 2,《晶体管电路设计》(下),铃木雅臣,科学出版社 3,凌特LTC3240 DATASHEET

离心泵设计论文解析

XXXXX 学院 毕业设计(论文) 题目 学生姓名 年级专业 学号 指导教师 起止日期 20 年月日

XXXXX学院 毕业设计 (论文)任务书机电工程系班级()姓名学号

北海职业学院 学生毕业设计(论文)成绩鉴定表

综述离心泵的完好标准 泵与风机、压缩机是流体机械的重要组成部分,一直是制冷与空调专业人士学习的基本科目。泵是输送液体或使液体增压的机械。它将原动机的机械能或其他外部能量传送给液体,使液体能量增加。泵主要用来输送液体包括水、油、酸碱液、乳化液、悬乳液和液态金属等,也可输送液体、气体混合物以及含悬浮固体物的液体。 离心泵就是根据设计高速旋转的叶轮叶片带动水转动,将水甩出,从而达到输送的目的. 离心泵有好多种.从使用上可以分为民用与工业用泵,从输送介质上可以分为清水泵、杂质泵、耐腐蚀泵等。 一离心泵的分类方式类型特点一览表

二、离心泵基本构造 离心泵的基本构造是由六部分组成的,分别是:叶轮,泵体,泵轴,轴承,密封环,填料函。 1、叶轮是离心泵的核心部分,它转速高输出力大,叶轮上的叶片又起到主要作用,叶轮在装配前要通过静平衡实验。叶轮上的内外表面要求光滑,以减少水流的摩擦损失。 2、泵体也称泵壳,它是水泵的主体。起到支撑固定作用,并与安装轴承的托架相连接。 3、泵轴的作用是借联轴器和电动机相连接,将电动机的转距传给叶轮,所以它是传递机械能的主要部件。 4、轴承是套在泵轴上支撑泵轴的构件,有滚动轴承和滑动轴承两种。滚动轴承使用牛油作为润滑剂加油要适当一般为2/3~3/4的体积太多会发热,太少又有响声并发热!滑动轴承使用的是透明油作润滑剂的,加油到油位线。太多油要沿泵轴渗出并且漂*,太少轴承又要过热烧坏造成事故!在水泵运行过程中轴承的温度最高在85度一般运行在60度左右,如果高了就要查找原因(是否有杂质,油质是否发黑,是否进水)并及时处理! 5、密封环又称减漏环。叶轮进口与泵壳间的间隙过大会造成泵内高压区的水经此间隙流向低压区,影响泵的出水量,效率降低!间隙过小会造成叶轮与泵壳摩擦产生磨损。为了增加回流阻力减少内漏,延缓叶轮和泵壳的所使用寿命,在泵壳内缘和叶轮外援结合处装有密封环,密封的间隙保持在0.25~1.10mm之间为宜。 6、填料函主要由填料,水封环,填料筒,填料压盖,水封管组成。填料函的作用主要是为了封闭泵壳与泵轴之间的空隙,不让泵内的水流不流到外面来也不让外面的空气进入到泵内。始终保持水泵内的真空!当泵轴与填料摩擦产生热量就要靠水封管住水到水封圈内使填料冷却!保持水泵的正常运行。所以在水泵的运行巡回检查过程中对填料函的检查是特别要注意!在运行600个小时左右就要对填料进行更换。 三、离心泵的工作原理 离心泵的工作原理是:离心泵所以能把水送出去是由于离心力的作用。水泵在工作前,泵体和进水管必须罐满水行成真空状态,当叶轮快速转动时,叶片促使水很快旋转,旋转着的水在离心力的作用下从叶轮中飞去,泵内的水被抛出后,叶轮的中心部分形成真空区域。水在大气压力(或水压)的作用下通过管网压到了进水管内。这样循环不已,就可以实现连续抽水。在此值得一提的是:离心泵启动前一定要向泵壳内充满水以后,方可启动,否则将造成泵体发热,震动,出水量减少,对水泵造成损坏(简称“气蚀”)造成设备事故! 四、离心泵的主要性能参数 (一)流量Q(m3/h或m3/s)离心泵的流量即为离心泵的送液能力,是指单位时间内泵所输送的流体体积。 (二)扬程H(m) 扬程又称为泵的压头,是指单体重量流体经泵所获得的能量。 (三)转速叶轮每分钟的旋转周数叫转数,单位为r/min . (四)效率η泵的效率为有效功率和轴功率之比。效率的表达式为:η=P e/P*100% (五)轴功率N (W或kW)泵的轴功率即泵轴所需功率,其值可依泵的有效功率Ne和效率η 计算,即 五、离心泵的性能曲线

渣浆泵型号意义

一、.渣浆泵的用途 渣浆泵可广泛用于矿山,电力、冶金、煤炭、环保等行业输送含有磨蚀性固体颗粒的浆体。如 冶金选 渣浆泵 矿厂矿浆输送,火电厂水力除灰、洗煤厂煤浆及重介输送,疏浚河道,河流清淤等。在化工产业,也可输送一些含有结晶的腐蚀性浆体。 首先,在选矿厂的应用,80%左右都是用在矿山行业选矿厂。由于矿石初选工况较为恶劣,因此在这一工段,渣浆泵的使用寿命普遍较低。当然,不同的矿石,磨蚀性也不一样。如在精矿输送等工段相对磨蚀性减小,泵的整体使用寿命也就较长。所以一般用户在采购过程中经常问到供应商的产品的使用寿命问题时候,严格讲任何一家生产商等都不会毫无根据的为用户承诺一个准确使用寿命周期,因为过流部件的使用寿命(耐磨耐腐蚀件)的寿命取决于多种不同因素,工况的的多样性和复杂性导致同样品质的材质的使用寿命是有差异的。但是在前期选型阶段可以让有实力的生产厂家为其做合理工况选型设计。 其次,在电力行业,主要是火力发电厂。目前我国电厂中主要是火力发电和水利发电,在火电厂中,由于用大量燃煤发电,燃煤后的炉渣或者灰渣需要清除,渣浆泵被用在除灰渣的作用,炉渣通过混合一定量的水后,通过渣浆泵将其输送到灰渣堆放的地方,因此有时渣浆泵在电厂也成为灰渣泵。 再次,在洗煤行业,由于工况不同,较大煤块,煤矸石容易堵塞,对于渣浆泵的设计要求很高。淮北矿务局下属某洗煤厂05年采用经特殊设计的、替代原来从澳大利亚进口的渣浆泵,至今运转正常,输送较大煤块、煤矸石无堵塞,使用磨损寿命超过了国外进口泵。 在海水选砂领域,渣浆泵应用也开始逐渐被客户认可。但是在海水里选砂,河道里挖沙,渣浆泵更容易被称为砂泵,挖泥泵。尽管叫法不一,但是从结构特点和泵的性能原理上来讲,都可以通称为渣浆泵。因此在这海水选砂中我们经常称为砂泵,在河道清淤里面习惯上叫挖泥泵。 渣浆泵的用途虽然广泛,但是正确的应用是十分重要的。渣浆泵由于其名称本身的局限性使得一些非本行业的人对此产生误解,事实上,泥浆泵,杂质泵,挖泥泵,清淤泵,等都在渣浆泵的应用范围。 二、渣浆泵型号解释及意义

DCDC转换器回路设计指南

DCDC转换器回路设计指南本资料为DC/DC转换器电路的设计提供一些提示,尽量用具体事例说明在各种制约条件下,怎样才能设计出最接近要求规格的DC/DC转换器电路。 DC/DC转换器电路的各种特性(效率、纹波、负载瞬态响应等)可根据外设元件的变更而变更,一般最佳外设元件因使用条件(输入输出规格)不同而不同,例如,当您问“怎样才能提高效率?”,回答“视使用条件而不同”或者“那要看具体情况啦”,感觉好像被巧妙地塘塞过去了,估计您也遇到过这样的情况吧。那么,为什么会出现这样的回答呢?其理由就是因为电源电路大多使用市售的商品作为电路的一部分,所以必须既要考虑大小、成本等的制约又要考虑电气要求规格来设计。 通常产品目录中的标准电路选定的元件大多是在标准使用条件下能发挥一般特性的元件,因而,并不一定能说在各种使用条件下都是最佳的元件选定。所以在各个设计中,必须根据各自的要求规格(效率、成本、贴装空间等)从标准电路进行设计变更。但要能设计出符合要求规格的电路,需要足够的知识和经验。 本资料就用具体的数值为不具备这些知识和经验的人说明哪些元件如何改变就能达到要求的动作,这样不需要进行复杂的电路计算就能快捷地使DC/DC转换器电路正常工作。至于正常工作后对设计

的检验,可以自己以后细细地计算,也可以一开始就请具有丰富知识和经验的人进行检验。 DC/DC转换器的种类和特点 DC/DC转换器电路根据其电路方式主要有以下一些: 非绝缘型 基本(单线圈)型 电容耦合型双线圈SEPIC, Zeta,… 电荷泵(开关电容/无线圈)型 绝缘型 变压器耦合型正向 变压器耦合型回扫

基本型系指通过将电路工作限定为只升压或者只降压来最低限度地减少元件数目,输入侧和输出侧没有电气绝缘的类型。 图1所示为升压电路

离心泵的设计

齿轮油泵工艺设计和夹具设计 第一章引言 利用油输水的想法最早出现在列奥纳多达芬奇所作的草图中。1689年,法国物理学家帕潘发明了四叶片叶轮的蜗壳油泵。但更接近于现代油泵的,则是1818年在美国出现的具有径向直叶片、半开式双吸叶轮和蜗壳的所谓马萨诸塞泵。1851~1875年,带有导叶的多级油泵相继被发明,使得发展高扬程油泵成为可能。 尽管早在1754年,瑞士数学家欧拉就提出了叶轮式水力机械的基本方程式,奠定了油泵设计的理论基础,但直到19世纪末,高速电动机的发明使油泵获得理想动力源之后,它的优越性才得以充分发挥。在英国的雷诺和德国的普夫莱德雷尔等许多学者的理论研究和实践的基础上,油泵的效率大大提高,它的性能范围和使用领域也日益扩大,已成为现代应用最广、产量最大的泵。 油泵的应用是很广泛的,在国民经济的许多部门要用到它。在给水系统中几乎是不可缺少的一种设备,如若把自来水管网当作人身的血管系统,那么油泵就是压送血液的心脏。 齿轮油泵是在原有的KS型单级单吸油泵的基础上进行的一种改进,现市面上大多的油泵,在安装叶轮时,是采用的泵轴的锥度进行定位的,这样的定位,对于轴的加工精度要求很高,在一般的小型加工单位很难达到这样的精度等级,所以通过把锥度轴变为直轴的方法来避免因为加工精度不高而导致的安装不便的弊端,同时在叶轮安装时通过加轴套的方法进行定位,这样的改进在提高轴强度的同时,加工也方便了,且其他部件的制作模具的改动也很少,生产成本也没有增加。

第二章型号意义示例及名词解释 2.1 型号名称:KS 125 —100 —200 KS:符合国际标准的用语空调制冷等领域的单级单吸油泵。 125:泵吸入口直径(mm)。 100:泵排出口的直径(mm)。 200:叶轮名义直径(mm). 2.2 名词解释 油泵:通过利用离心力输水的水泵。 单级单吸:单级是指一个叶轮,单吸是指只有一个进水口。 在油泵系列中还有双级双吸、双级单吸、单级双吸油泵,至于叶轮和进水口的数量主要是通过考虑到油泵的功率和性能参数来确定的,其中单级单吸油泵是功率和性能最简单的一种。

升压(自举)电路原理

自举电路也叫升压电路,利用自举升压二极管,自举升压电容等电子元件,使电容放电电压和电源电压叠加,从而使电压升高.有的电路升高的电压能达到数倍电源电压。 升压电路原理 举个简单的例子:有一个12V的电路,电路中有一个场效应管需要15V的驱动电压,这个电压怎么弄出来?就是用自举。通常用一个电容和一个二极管,电容存储电压,二极管防止电流倒灌,频率较高的时候,自举电路的电压就是电路输入的电压加上电容上的电压,起到升压的作用。 升压电路只是在实践中定的名称,在理论上没有这个概念。升压电路主要是在甲乙类单电源互补对称电路中使用较为普遍。甲乙类单电源互补对称电路在理论上可以使输出电压Vo达到Vcc的一半,但在实际的测试中,输出电压远达不到Vcc的一半。其中重要的原因就需要一个高于Vcc的电压。所以采用升压电路来升压。 开关直流升压电路(即所谓的boost或者step-up电路)原理 the boost converter,或者叫step-up converter,是一种开关直流升压电路,它可以是输出电压比输入电压高。基本电路图见图1. 假定那个开关(三极管或者mos管)已经断开了很长时间,所有的元件都处于理想状态,电容电压等于输入电压。下面要分充电和放电两个部分来说明这个电路。 充电过程 在充电过程中,开关闭合(三极管导通),等效电路如图二,开关(三极管)处用导线代替。这时,输入电压流过电感。二极管防止电容对地放电。由于输入是直流电,所以电感上的电流以一定的比率线性增加,这个比率跟电感大小有关。随着电感电流增加,电感里储存了一些能量。

放电过程 如图,这是当开关断开(三极管截止)时的等效电路。当开关断开(三极管截止)时,由于电感的电流保持特性,流经电感的电流不会马上变为0,而是缓慢的由充电完毕时的值变为0。而原来的电路已断开,于是电感只能通过新电路放电,即电感开始给电容充电,电容两端电压升高,此时电压已经高于输入电压了。升压完毕。 说起来升压过程就是一个电感的能量传递过程。充电时,电感吸收能量,放电时电感放出能量。如果电容量足够大,那么在输出端就可以在放电过程中保持一个持续的电流。如果这个通断的过程不断重复,就可以在电容两端得到高于输入电压的电压。

电荷泵转换器工作原理

Charge Pump Converter Operation Principles Aje Tu 19/08/2005 Abstract This paper analyzes the charge pump circuit operation principles. Useful formulas are derived based practical approximations. Some characteristics of charge pump converter are well explained by the derived formulas. Introduction Charge pump converters have been widely used in modern electronic products. Comparing to conventional boost converters, charge pump converters feature several advantages including: 1.) less EMI emission due to inductorless design, 2.) less PCB area since only small MLCC capacitors are used, 3.) less expensive. Charge pump converters will keep dominating in industry for low power applications like white LED backlight in hand held devices. However, charge pump converter is not well understood today. Aimtron and AIC analyze operation principles of charge pump converter in [1, 2]. The analysis is based on some impractical assumptions, and some errors occur during the derivation procedures. This paper analyzes the charge pump circuit operation principles. Useful formulas are derived based practical assumptions. Some characteristics of charge pump converter are well explained by the derived formulas. Charge Pump Converters Figure 1 shows a 2X charge pump converter. Q1/Q2 and Q3/Q4 turn on and off alternatively. V I N V I N D S(O N) V C D S(O N) O U T V I N D S(O N) (a) (b) (c) Figure 1. Charge pump converter circuitry on different operation stages.

ZGB系列渣浆泵说明书样本

1.概述 ZGB(P)系列渣浆泵是我厂针对除灰除渣工况特点, 在多年渣浆泵设计制造经验基础上, 广泛吸取国内外先进技术和研究成果, 自行开发设计的新型产品。该系列产品具有结构合理、效率高、寿命长、可靠性高、维修方便、运行费用低等显著优点, 广泛用于电力、冶金、矿山、煤炭、建材、化工等工业部门输送含有磨蚀或腐蚀性的渣浆, 特别适用于电厂灰渣输送。 泵型号意义: 例如: 100 Z G B (P) 多级串联( 3-4) 级( 1、2级无标记) 系列代号 高扬程 渣浆泵 吐出口直径( mm) 2.结构说明 ZGB(P)系列渣浆泵结构相似, 均为卧式、单级、单吸、悬臂双泵壳离心式, 其结构特点分泵头部分、轴封部分、传动部分作分别说明。 2.1泵头部分 ZGB(P)系列渣浆泵为双泵壳结构, 即泵体、泵盖带有可更换的耐磨金属内衬( 包括护套、护板等) , 如图1和图2所示。泵体、泵盖根

据工作压力采用灰铸铁或球墨铸铁制造。该系列泵均为垂直中开式, 吐出口方向可按450间隔八个角度旋转安装。叶轮前后盖板设有付叶轮以减少泄漏及提高泵的使用寿命。 该系列进口均为水平方向, 从传动端看泵为顺时针旋转。起动及运转时, 严禁电机反方向旋转。否则, 将使泵叶轮脱落造成事故。 2.2 轴封部分 轴封有两种型式: (1) 付叶轮加填料组合式密封: 该种密封型式是我厂采用可靠性设计研制的高性能密封, 它使轴封的泄漏减少到了最小。针对某些不允许稀释、不允许加轴封水的特殊工况( 单级) 也能正常工作, 并达到无任何泄漏的效果。付叶轮、减压盖、轴套均采用耐磨材料制造, 维修量少、使用寿命长, 使整机平均无故障工作时间MTBF大大提高。 (2) 机械密封: 该形式的密封特别适用于多级串联渣浆泵的密封, 完全无泄漏。 凡串联渣浆泵二级及二级以上, 建议采用高压轴封水的机械密封, 单级采用付叶轮加填料组合式密封。 2.3轴封水压 对于单级( 或串联一级) 采用填料加付叶轮组合式密封, 轴封水压力一般不低于0.2Mpa。 对于多级串联采用填料加付叶轮组合式密封, 二级和二级以上轴封水压力一般为: n-1 第n 级轴封水最低压力=∑ Hi + 0.7Hn, 其中n≥2

渣浆泵型号说明及介绍

渣浆泵型号说明及介绍 ZJ渣浆泵作为一类特殊的渣浆泵,为单级单吸式渣浆泵,泵体采用内外双金属结构,泵壳为垂直中开式出水口可按45°间隔旋转八个不同的位置。 什么是ZJ渣浆泵?ZJ渣浆泵型号说明 (一)ZJ渣浆泵的定义 ZJ渣浆泵具有高效、节能、使用寿命长、重量轻,结构合理,运行可靠,维修方便的特点,适用于电力、冶金、煤炭、建材等行业,处理介质为含有固体颗粒的磨蚀性或腐蚀性浆体,固液混合浓度灰浆为45%,矿浆为60%,介质温度≤60°C,该型泵可以多级串级使用。 泵体泵盖及过流部件:该系列泵为卧式、垂直中形式、双泵壳结构渣浆泵。泵体和泵盖带有可更换的金属内衬,内衬材质为高铬耐磨合金材料,内衬可一直用到磨穿为止,延长维修周期,降低运行成本。泵的出口方向可按8个角度旋转安装。 轴承组件:泵的轴承组件采用圆筒式结构,便于调整叶轮与前护板的间隙,维修时可整体拆出。轴承采用油脂润滑。 轴封(密封):泵的轴封型式有填料密封、付叶轮密封、机械密封。 传动方式:有V型三角带传动、弹性联轴传动、齿轮减速箱传动、液力偶合器传动、变频驱动装置、可控硅调速等。其中V型三角带传动有CL、CV、CR、ZL、ZV、ZR传动。 整体性能:泵的性能范围宽、汽蚀性能好、效率高。可采用多级串联技术,以满足远距离输送。过流部件有多种金属可供选用,并且增加深度。采用多种速度和多种变型方式,使得泵在最佳工矿下运行。使用寿命长,运行效益高,能满足多类恶劣的输送条件。 (二)ZJ渣浆泵型号说明 国内ZJ型渣浆泵等同于国内的EZJ型。实际上是同一种产品的两个不同叫法。 ZGB系列渣浆泵为卧式、单级、单吸、悬臂、双泵壳、离心式渣浆泵。 相同口径的ZGB和ZGBP型渣浆泵的过流部件可以互换。外形安装尺寸完全相同。ZGB系列渣浆泵的传动部分采用水平中开式稀油润滑托架,并设有内外两组冷系统,必要时可加冷却水。 ZGB系列渣浆泵的轴封型多有两种:付叶轮加填料组合式密封和机械密封。 凡串联渣浆泵(二级或二级以上)建议采用有高压轴封水的机械密封。单级或串联一级采用付叶轮加填料组合式密封。 产品用途: 经过特殊处理,用于海水除灰及海水和盐雾电化学腐蚀工况; 在允许的压力范围内可以多级串联使用,其允许最大工作压力为3.6MPa。

音频电路设计指南

针对便携式设备中音频电路的设计指南 在便携式产品设计中很容易遇到与音频相关的特殊问题,由于音频电路看似简单,规划设计时工程师通常不会在相对低频的音频电路(20Hz至20KHz)中花费太多时间。本文试图从最基本的音频电路设计入手,为工程设计人员提供一定的设计参考意见和方法。 最后开启音频电路 这个简单的原则可能最为重要,但却经常被系统设计者所忽略。功率放大器无法区分噪音、咔嗒声和信号。如果过早地开启功放,它会不加区分地放大所有输入信号。便携式产品播放电路通常包含数字信号存储器、数模转换器(DAC)、功放、扬声器或耳机(图1)。存储器中的数字信号经过解码后发送到DAC进行转换,DAC的模拟输出通过电容交流耦合到功放的输入端,放大器必须能够提供足够的电流驱动低阻扬声器。如上所述,放大器使能后将放大进入其输入端的任何信号,包括有用信号、噪声、咔嗒或嘭嘭声。 如图2所示,扬声器放大器连接在8?扬声器和音频DAC之间。DAC输出与功放之间的交流耦合电容是必需的,以保证两个器件具有适当的输入和输出偏置电压。大多数音频放大器的输出端含有偏置电压,为了可靠传输音频信号需要将此偏置电压预先设置好。在开启功率放大器之前必须留出一定的时间间隔,以便建立适当的偏置电压。假如过早地开启功率放大器,DAC输出正处于爬升阶段的偏置电压对于放大器输入来说相当于一个衰减脉冲。该信号经过-放大器放大后进入扬声器,产生可闻的咔嗒声。 图2假定功率放大器已经开启,并在DAC开启之前已经建立输入偏置。DAC使能后,节点A的电压会爬升到如图所示的DAC输出偏置电压。当DAC的偏置电压爬升时,由耦合电容以及放大器的输入电阻构成的高通滤波器在节点B会产生一个毛刺,经过放大器后的输出信号等于输入信号之间的差值[(IN+)-(IN-)]乘以放大器的增益。 低频响应与输入时间常数 用于隔离DAC的偏置电压与功放输入端口的输入电容,与放大器的输入阻抗一起构成高通滤波器。可以考虑使用较大容量的电容以降低低频衰减,但由于功率放大器的输入偏置电压,增大了的输入时间常数可能导致输出砰砰声。假如放大器在输入稳定之前开启,就会导致砰砰声。功率放大器输入端的简化模型中以RIN表示输入阻抗,前置放大器的同相端连接到内部基准电压,这个输入结构是单电源功率放大器的典型结构。

电荷泵

电荷泵 电荷泵: 1、定义:也称为开关电容式电压变换器,是一种利用所谓的“快速”(flying)或“泵送”电容(而非电感或变压器)来储能的DC-DC(变换器).它们能使输入电压升高或降低,也可以用于产生负电压。其内部的FET开关阵列以一定方式控制快速电容器的充电和放电,从而使输入电压以一定因数(0.5,2或3)倍增或降低,从而得到所需要的输出电压。这种特别的调制过程可以保证高达80%的效率,而且只需外接陶瓷电容。由于电路是开关工作的,电荷泵结构也会产生一定的输出纹波和EMI(电磁干扰) e.g:通过控制内部三极管的gate来控制电容充放电,比如升1.5倍,输出为Vin 加上电容两端的0.5Vin达到Vout=1.5Vin DC-DC:直流-直流转换模块 2、电荷泵的分类、工作原理及典型应用电路 2.1电荷泵分类 电荷泵可分为: ——开关式调整器升压泵,如图1(a)所示。 ——无调整电容式电荷泵,如图1(b)所示。 ——可调整电容式电荷泵,如图1(c)所示。 2.2工作过程 3种电荷泵的工作过程均为:首先贮存能量,然后以受控方式释放能量,以获得所需的输出电压。开关式调整器升压泵采用电感器来贮存能量,而电容式电荷泵采用电容器来贮存能量。 电容式电荷泵通过开关阵列和振荡器、逻辑电路、比较控制器实现电压提升,采用电容器来贮存能量。因工作于较高频率,可使用小型陶瓷电容器(1μF),占用空间最小,使用成本较低。电荷泵仅用外部电容器即可提供±2倍的输出电压。其损耗主要来自电容器的等效串联电阻(ESR)和内部开关晶体管的RDS(ON)。电荷泵转换器不使用电感器,因此其辐射EMI可以忽略。输入端噪声可用一只小型电容器滤除。它的输出电压是工厂生产时精密预置的,可通过后端片上线性调整器调整,因此电荷泵在设计时可按需要增加电荷泵的开关级数,以便为后端调整器提供足够的活动空间。电荷泵十分适用于便携式应用产品的设计。电容式电荷泵的内部结构如图2所示。它实际上是一个基准、比较、转换和控制电路组成的系统。 电荷泵工作原理

典型的渣浆泵泵池设计

典型的渣浆泵泵池设计 当矿浆使用泵扬送时,泵池的设计十分重要。一个泵池如果连续溢出矿浆或者使泵吸入空气就要对操作、维修和清扫造成严重问题。在设计泵池前,应当确定以下各项: a.固体百分数; b.矿浆中固体的磨蚀性; c.所需的最小吸入压头。 一、泵池的设计综述 泵池和吸入管都是泵系统中的重要环节,泵池是第一位考虑的。矿浆泵池的设计主要要防止产生旋回流和各种旋涡,防止旋涡吸入或其他方式夹杂空气进入吸入管,防止渣浆沉积、聚堵和不均匀分布,防止吸入口阻力过大,减小不必要的水头损失。 旋涡和吸入空气会使泵运行不稳,工况下降,并产生振动、噪音,可靠性差、影响径向机械平衡和使轴承超载;渣浆泵允许含气量一般为5%左右。因此泵池必须科学设计,应做到: 1.使泵池内流动接近自然流动,流道平滑,多台泵要平均吸入,流道不突然扩大,也不急剧改变方向,封闭流道的吸入水槽应防止空气积留。 2.降低进料流道的底面,使其平滑地进入泵池;进料和回料管应设于水中,并离泵吸入管口有一定距离。 3.泵吸入管(管径为d/mm)应具有一定的淹没深度(约4d以上),离池底有一定悬空高度(约1.5d以上),离池壁在2-3d左右,不能太靠近池中央。吸水口附近流速在0.5m/s以下为宜。 4.泵池不要太大,也不能太小,适应矿浆的波动即可(1-3min泵流量)。自动化要求高时应设液位指示器。倾斜侧的角度必须超过固体的安息角(如55°左右),防止固体物料周期性滑入泵内引起堵塞。 5.最好提供较大的泵池高度。渣浆泵吸入性差,因此有条件最好倒灌吸入。 6.泵的配置、流入口的位置、泵池形状应防止产生旋回流和旋涡。

在客观条件影响下,可以用防涡壁、分流墙、浮筏、横向挡板、水平障板和导流板等设施减小或消除。非圆形泵池能避免旋涡产生。 7.含泡沫多的泵池应设消泡设施;对于封闭矿浆罐,应设平衡管控制高度,并在上部接真空以抽走矿浆中的气泡。 所装备的泵池要操作良好,其中矿浆停留时间应当接近一分钟,这样可使带进的空气逸散出来。在处理量很大的选矿厂一分钟太高,致使带进的空气成了一个问题。 在处理磨蚀性矿浆时,要有足够的预防措施以避免给矿物料冲击池底或池的侧壁。在磨损处应考虑衬以橡胶或耐磨的钢板。 应当装备有适当的溢流装置,其溢流管将溢流输送至离开泵和电机的底面。 各泵池应当装置有适当的放矿塞子,最好是快速开启型,这样,由于动力故障或其他事故造成的停车事故时,泵池能排掉其中的矿浆。 二、常用卧式渣浆泵泵池的设计 典型的磨矿回路中,渣浆泵通常用来向旋流器输送给料矿浆,此时,泵、泵池、管路和分配器系统的设计必须决定需要的产量和循环负荷的范围。泵池设计时使用深泵池是有价值的。泵池横断面不宜太大,周壁要陡,以避免堆积的固体物料间断地涌入泵入口。给入矿浆时,应尽可能使固体平稳地顺着斜面流入,以便减少充气现象;不能让给料从很高的地方经过空气落入泵池中。空气会严重破坏分级作用并加剧泵的涌浪倾向,当矿浆液面过于接近泵的入口时,也会有这种倾向。 标准泵池如下图1、图2。 渣浆泵及管路系统属易损件,需考虑备用管线及渣浆泵,常见的设计有1用1备、2用1备、2用2备等。设计时,多台泵间要保持一定的空间距离(在1m以上),以滿足安全规范对操作、检修空间的要求。 以上图3,典型的一用一备两台泵共用一泵池的案例为例,两台渣浆泵1、2需有一定的中心距,除现场场地约束外,平行的两台泵

电荷泵工作原理

电荷泵工作原理 电荷泵电压反转器是一种DC/DC变换器,它将输入的正电压转换成相应的负电压,即VOUT= -VIN。另外,它也可以把输出电压转换成近两倍的输入电压,即VOUT≈2VIN。由于它是利用电容的充电、放电实现电荷转移的原理构成,所以这种电压反转器电路也称为电荷泵变换器(Charge Pump Converter)。 电荷泵的应用 电荷泵转换器常用于倍压或反压型DC-DC 转换。电荷泵电路采用电容作为储能和传递能量的中介,随着半导体工艺的进步,新型电荷泵电路的开关频率可达1MHz。电荷泵有倍压型和反压型两种基本电路形式。 电荷泵电路主要用于电压反转器,即输入正电压,输出为负电压,电子产品中,往往需要正负电源或几种不同电压供电,对电池供电的便携式产品来说,增加电池数量,必然影响产品的体积及重量。采用电压反转式电路可以在便携式产品中省去一组电池。由于工作频率采用2~3MHz,因此电容容量较小,可采用多层陶瓷电容(损耗小、ESR 低),不仅提高效率及降低噪声,并且减小电源的空间。 虽然有一些DC/DC 变换器除可以组成升压、降压电路外也可以组成电压反转电路,但电荷泵电压反转器仅需外接两个电容,电路最简单,尺寸小,并且转换效率高、耗电少,所以它获得了极其广泛的应用。 目前不少集成电路采用单电源工作,简化了电源,但仍有不少电路需要正负电源才能工作。例如,D/A 变换器电路、A/D 变换器电路、V/F或F/V 变换电路、运算放大器电路、电压比较器电路等等。自INTERSIL公司开发出ICL7660电压反转器IC后,用它来获得负电源十分简单,90 年代后又开发出带稳压的电压反转电路,使负电源性能更为完善。对采用电池供电的便携式电子产品来说,采用电荷泵变换器来获得负电源或倍压电源,不仅仅减少电池的数量、减少产品的体积、重量,并且在减少能耗(延长电池寿命)方面起到极大的作用。现在的电荷泵可以输出高达250mA的电流,效率达到75%(平均值)。 电荷泵大多应用在需要电池的系统,如蜂窝式电话、寻呼机、蓝牙系统和便携式电子设备。便携式电子产品发展神速,对电荷泵变换器提出不同的要求,各半导体器件公司为满足不同的要求开发出一系列新产品,本文将作一个概况介绍。 电荷泵的分类 电荷泵分类 电荷泵可分为: ?开关式调整器升压泵,如图1(a)所示。 ?无调整电容式电荷泵,如图1(b)所示。 ?可调整电容式电荷泵,如图1(c)所示。

相关文档
最新文档